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Quantum coherence, quantum entanglement and quantum nonlocality are important resources in
quantum information precessing. However, decoherence happens when a quantum system interacts
with the external environments. We study the dynamical evolution of the three-qubit GHZ-like
states in non-inertial frame when one and/or two qubits undergo decoherence. Under the amplitude
damping channel we show that the quantum decoherence and the Unruh effect may have quite
different influences on the initial state. Moreover, the genuine tripartite entanglement and the
quantum coherence may suffer sudden death during the evolution. The quantum coherence is most
resistent to the quantum decoherence and the Unruh effect, then comes the quantum entanglement
and the quantum nonlocality which is most fragile among the three. The results provide a new
research perspective for relativistic quantum informatics.

PACS numbers: 04.70.Dy, 03.65.Ud, 04.62.+v

Introduction

The interactions with external environments may re-
sult in energy dissipations or relative phase changes of
a quantum system, leading to the quantum state degen-
erating from a coherent superposition state to mixed or
single states [1]. On the one hand, such decoherence re-
duces the quantum advantages of the important resources
including coherence [2], quantum entanglement [3] and
quantum nonlocality [4] of the system. On the other
hand, the decoherence also causes the entanglement be-
tween the system and the environment. The dynamics
of the system is no longer unitary in this case. It plays
a fundamental role in the quantum-to-classical transition
[5, 6] and has been successfully applied in cavity QED [7]
and ion trap experiments [8].

These quantum resources have been investigated
mostly in inertial systems. In 2013 quantum telepor-
tation with a uniformly accelerated partner has been
demonstrated based on quantum entanglement degener-
ated in noninertial system [9]. Soon after, Fuentes et
al. [10] observed that entanglement in noninertial frames
is characterized by the observer-dependent properties.
Since then, progresses have been made to the researches
on quantum information theory in noninertial systems
[11–39].

Among the noninertial systems, the Dirac field [13, 15,
34, 36, 40, 41] can be described by a superposition of the
Unruh monochromatic modes from an inertial perspec-
tive [42],

|0〉 = cosβ|0〉+I |0〉−II + sinβ|1〉+I |1〉−II ,
|1〉 = |1〉+I |0〉−II ,

(1)

where |n〉I and |n〉II are the number states of the par-
ticle outside the (physically accessible) region and the
antiparticle inside the (physically inaccessible) region of
the event horizon, respectively. The superscripts + and
− denote particle and antiparticle, respectively. cosβ =
(e−2πωc/a)−1/2, where a is the acceleration of the ob-
server, ω is the frequency of the Dirac particle and c is
the speed of light in vacuum. As β increases when a in-
creases, in the following the accelerating parameter β of
the Unruh effect is used instead of a.

For two qubit states, the authors in [16] show that the
decoherence and the loss of entanglement resulted from
the Unruh effect will influence each other remarkably.
Sudden death of entanglement may appear for any accel-
eration when the whole system undergoes decoherence.
However, when only one qubit undergoes decoherence,
such sudden death may only occur when the acceleration
parameter is greater than a critical point. Recently, the
genuine tripartite nonlocality (GTN) and the genuine tri-
partite entanglement (GTE) of Dirac fields in the back-
ground of a Schwarzschild black hole for Greenberger-
Horne-Zeilinger-like (GHZ-like) states have been studied
[34, 36]. It is found that the Hawking radiation [43] de-
grades both the physically accessible GTN and the phys-
ically accessible GTE. The former suffers from sudden
death at some critical Hawking temperature, while the
latter approaches to a nonzero asymptotic value in the
limit of infinite Hawking temperature. Moreover, the
Hawking effect cannot generate the physically inacces-
sible GTN, but can generate the physically inaccessible
GTE for fermion fields in curved spacetime. More re-
cently, it is shown that for three-qubit mixed states the
Hawking effect can also generate the physically inacces-
sible GTN in curved spacetime [44].
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Recently, the influences of different noisy environments
on quantum coherence and entanglement for W state
in noninertial frames have been investigated intensively
[52–55]. Zeng and Cao [53] studied the evolution and
distribution of quantum coherence for multipartite W
and GHZ states of Dirac fields under amplitude-damping,
phase damping and depolarizing channels in the nonin-
ertial frames. Wu et al. [54] investigated the quantum
coherence for N-partite W and GHZ states under the
local amplitude-damping environment when N − 1 ob-
servers are accelerated. They found that quantum co-
herence is symmetric with respect to all the observers
for GHZ state, but to two accelerating observers only
for W state. In Ref. [55], the authors studied quantum
coherence and entanglement for W state of Dirac fields
under bit flip, phase flip and phase damping channels in
noninertial frames.

In this paper we study the system-environment dy-
namics for three-qubit states of the Dirac fields in a non-
inertial frame. We consider the most typical amplitude-
damping channel [56], which can be modeled by the spon-
taneous decay of a two-level quantum state in an electro-
magnetic field [46]. We consider the case that one and
two of the observers move (or stay) in the noisy environ-
ment and investigate whether or not the quantum deco-
herence and the loss of the quantumness generated by
the Unruh radiation would influence each other, as well
as the sudden death [47] of coherence, entanglement and
nonlocality.

The outline of the paper is as follows. In Section 2
we simply recall some knowledge about the theory of
open quantum systems, amplitude damping channel and
the quantization of the quantumness of three-qubit X-
type states. In Section 3 we investigate the system-
environment dynamics of GHZ-like states in noninertial
frames. We summarize and discuss our conclusions in the
last section.

Some preliminaries

The evolution of a system state ρS of an open quantum
systems is governed by [7, 48, 49] USE(ρS ⊗ |0〉〈0|)U †

SE,
where |0〉〈0| represents the initial state of the environ-
ment, USE is the evolution operator for the system and
environment. By tracing over the environment, one gets
the evolution of the system,

L(ρS) = TrE[USE(ρS ⊗ |0〉〈0|)U †
SE]

=
∑

µ

E〈µ|USE |0〉E ρS E〈0|U †
SE |µ〉E , (2)

where |µ〉E is the orthogonal basis of the environment,
and L stands for the evolution of the system. Eq. (2)

can also be expressed as

L(ρS) =
∑

µ

MµρSM
†
µ, (3)

where Mµ = E〈µ|USE |0〉E are the Kraus operators [50,
51]. There are at most d2 independent Kraus operators
when the dimension of the system is d [56, 57].
Consider a three-qubit state ρABC in which one sub-

system, say C, undergoes the amplitude damping chan-
nel. The action of the amplitude damping channel on the
qubit C can be represented by the following phenomeno-
logical map [48, 49, 58],

|0〉C |0〉eC → |0〉C |0〉eC , (4)

|1〉C |0〉eC →
√
1− P |1〉C |0〉eC +

√
P |0〉C |1〉eC , (5)

where |0〉C (|1〉C) stands for the ground (excited) state
of the subsystem C, |0〉eC and |1〉eC are the states of the
environment with no and one excitation of its modes, re-
spectively. Eq. (4) indicates that the system has no de-
cay and the environment is untouched. Eq. (5) shows
that the system remains with probability 1 − P and
the environment exits with probability P . P is time-
dependent, P = (1 − e−Γt), where Γ is called the deco-
herence rate [56]. In this paper, we consider the same
environment to all the qubits, i.e., P is the same for each
subsystem.
Eqs. (4) and (5) can also be expressed in the form of

Eq. (3) with Kraus operators [16, 50, 51]:

M0 =

(

1 0

0
√
1− P

)

, M1 =

(

0
√
P

0 0

)

. (6)

That is,

L(ρC) =

1
∑

i=0

MiρCM
†
i . (7)

When two qubits, say B and C, are coupled to the noisy
environment independently, the evolution of the reduced
state ρBC is given by [16]

L(ρBC) =

1
∑

i,j=0

(Mi ⊗Mj)ρBC(Mi ⊗Mj)
†. (8)

In the computational basis {|000〉, |001〉, · · · , |111〉},
the density matrix of a three-qubit X-type state has the
following general form,

ρX =

























d1 0 0 0 0 0 0 f1
0 d2 0 0 0 0 f2 0
0 0 d3 0 0 f3 0 0
0 0 0 d4 f4 0 0 0
0 0 0 f∗

4 e4 0 0 0
0 0 f∗

3 0 0 e3 0 0
0 f∗

2 0 0 0 0 e2 0
f∗
1 0 0 0 0 0 0 e1

























.
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The GTN of ρX is characterized by [59]

S(ρX) = max{8
√
2|fi|, 4|N |}, (9)

where N = d1−d2−d3+d4−e4+e3+e2−e1. According
to the Svetlichny inequality [60], ρX is genuine tripartite
nonlocal if S(ρX) > 4. The GTE of ρX is given by [61]

E(ρX) = 2max{0, |fi| −mi}, i = 1, 2, 3, 4, (10)

where mi =
∑4

j 6=i

√

djej. The Cl1 quantum coherence is
given by [2]

C(ρX) = Cl1(ρX) =
∑

i6=j

|ρij | = 2

4
∑

i=1

|fi|. (11)

System-environment dynamics for GHZ-like states

In this section, let us consider the GHZ-like states
|GHZ〉 = α|000〉 +

√
1− α2|111〉 of the Dirac fields

shared by Alice, Bob and Charlie.
Case (i): Alice and Bob stay stationary while Charlie

moves with uniform acceleration. With respect to the
Minkowske modes for Alice and Bob and the Rindler
modes for Charlie, by using Eq. (1), the GHZ-like
states can be written as |ψ〉ABCICII

= α cosβ|0000〉 +
α sinβ|0011〉+

√
1− α2|1110〉. By tracing over the inac-

cessible modes CII , we have the following density matrix,

ρABCI
=

























d1 0 0 0 0 0 0 f1
0 d2 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
f1 0 0 0 0 0 0 e1

























,

where d1 = α2 cos2 β, d2 = α2 sin2 β, e1 = 1 − α2

and f1 = α
√
1− α2 cosβ. Under the bipartition AB|CI

ρABCI
can be also expressed as

ρABCI

= |00〉〈00| ⊗ (d1|0〉〈0|+ d2|1〉〈1|) + |00〉〈11| ⊗ (f1|0〉〈1|)
+|11〉〈00| ⊗ (f1|1〉〈0|) + |11〉〈11| ⊗ (e1|1〉〈1|).

Consider that the Charlie’s qubit couples to the noisy
environment. From Eqs. (6) and (7), ρABCI

evolves into

ρ′ABCI

=

























d1 + Pd2 0 0 0 0 0 0
√
1− Pf1

0 (1 − P )d2 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 pe1 0√

1− Pf1 0 0 0 0 0 0 (1− P )e1

























.

  

 

FIG. 1: S(ρ′ABCI
) as a function of the acceleration parame-

ter β and decoherence parameter P for the initial GHZ state,
when the Charlie’s qubit undergoes acceleration and decoher-
ence.

Using Eqs. (9), (10) and ((11)), we obtain

S(ρ′ABCI
) = max{8

√
2
√
1− Pα

√

1− α2 cosβ,

4[α2 cos2 β + 2Pα2 sin2 β − α2 sin2 β

+(2P − 1)(1− α2))]},

E(ρ′ABCI
) = 2max{0,

√
1− Pα

√

1− α2 cosβ −
√

(1− P )α2 sin2 βP (1− α2)},

C(ρ′ABCI
) = 2

√
1− Pα

√

1− α2 cosβ.

In FIG. 1 we show the behavior of GTN of ρ′ABCI
for

the GHZ state with α = 1/
√
2. It is seen that the in-

crease of either the parameter β of the Unruh effect or
the decoherence parameter P reduces the GTN. More-
over, the increase of the two parameters will cause the
sudden death of GTN. With the increase of the accelera-
tion parameter β, S(ρ′ABCI

) is larger than 4 at first and
then smaller than 4, but will not tend to zero. However,
with the increase of P the GTN tends to zero first and
then increases.

FIG. 2 (a) and (b) show the behavior of GTE and
quantum coherence of ρ′ABCI

(α = 1√
2
), respectively. We

observe that with the increase of β the GTE and quantum
coherence decrease slowly. But the increase of P has
a stronger influence on GTE and quantum coherence,
which makes them tend to 0. And for large β, with the
decrease of P the GTE and quantum coherence behavior
differently, as GTE is a convex function, while quantum
coherence is a concave function.

Similarly, by tracing over the mode CI we have the
reduced state ρABCII

. Correspondingly, using Eqs. (6)
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                                (a) 

 

                                (b) 

FIG. 2: E(ρ′ABCI
) and C(ρ′ABCI

) as functions of the accel-
eration parameter β and the decoherence parameter P for
the initial GHZ state with α = 1√

2
, when the Charlie’s qubit

undergoes acceleration and decoherence.

and (7) we get

ρ′ABCII
=

























d1 + Pd2 0 0 0 0 0 0 0
0 (1 − P )d2 0 0 0 0

√
1− Pf2 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0

√
1− Pf2 0 0 0 0 e2 0

0 0 0 0 0 0 0 0

























,

where d1 = α2 cos2 β, d2 = α2 sin2 β, e2 = 1 − α2 and
f2 = α

√
1− α2 sinβ. From straightforward calculation

we have

S(ρ′ABCII
) = max{8

√
2
√
1− Pα

√

1− α2 sinβ,

4[α2 cos2 β + 2Pα2 sin2 β + (1− α2)−
α2 sin2 β]}

and

E(ρ′ABCII
) = C(ρ′ABCII

) = 2
√
1− Pα

√

1− α2 sinβ.

                                    

(a) 

 

                                  (b) 

FIG. 3: S(ρ′ABCII
) and E(ρ′ABCII

)=C(ρ′ABCII
) as functions

of the acceleration parameter β and the decoherence param-
eter P with respect to the initial GHZ state, when Charlie’s
qubit undergoes acceleration and decoherence.

We plot the GTN of ρ′ABCII
for GHZ the state with

α = 1√
2
in FIG. 3(a). It is shown that the increase of β

has a greater impact on S(ρ′ABCII
), while the increase of

P has less impact on S(ρ′ABCII
). However, the values of

GTN are all smaller than 4. The behavior of GTE (quan-
tum coherence) of ρ′ABCII

for the GHZ state (α = 1√
2
) is

shown in FIG. 3(b). We see that the effect of the increase
of β and P on GTE (or quantum coherence) is completely
the opposite. The GTE (or quantum coherence) increases
with the increase of β, but decreases with the increase of
P . Moreover, the quantum coherence of the initial state
of GHZ-like states |GHZ〉 = α|000〉+

√
1− α2|111〉 sat-

isfies the following strong nonlinear relationship.

C2(ρ′ABCI
) + C2(ρ′ABCII

) = 4(1− P )α2(1− α2), (12)

which is given by the decoherence parameter P , and has
nothing to do with the Unruh effect.
Case(ii): we now let Alice still stay at an asymptoti-

cally flat region, while Bob and Charlie move with uni-
form acceleration a. Using Eqs. (1), we can rewrite the
GHZ-like states as |ψ〉ABIBIICICII

, with the detailed ex-
pression given in [34, 36]. By tracing over the freedom in



5

the region II, the density matrix ρAB1CI
of the physically

accessible part I is of the form [36],

ρABICI
=

























d1 0 0 0 0 0 0 f1
0 d2 0 0 0 0 0 0
0 0 d3 0 0 0 0 0
0 0 0 d4 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
f1 0 0 0 0 0 0 e1

























,

where d1 = α2 cos4 β, d2 = d3 = α2 sin2 β cos2 β, d4 =
α2 sin4 β, e1 = 1 − α2 and f1 = α

√
1− α2 cos2 β. It can

also be written as in the form of bipartition A|BICI ,

ρABICI
= |0〉〈0|⊗N1+|0〉〈1|⊗N2+|1〉〈0|⊗N3+|1〉〈1|⊗N4,

where N1 =









d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4









, N2 =









0 0 0 f1
0 0 0 0
0 0 0 0
0 0 0 0









,

N3 =









0 0 0 0
0 0 0 0
0 0 0 0
f1 0 0 0









, N4 =









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 e1









.

Now we consider that both Bob and Charlie’s qubits
couple to the noisy environment independently. From
Eqs. (6) and (8), state ρAB1CI

evolves to

ρ′ABICI
=

























d′1 0 0 0 0 0 0 f ′
1

0 d′2 0 0 0 0 0 0
0 0 d′3 0 0 0 0 0
0 0 0 d′4 0 0 0 0
0 0 0 0 e′4 0 0 0
0 0 0 0 0 e′3 0 0
0 0 0 0 0 0 0 0
f ′
1 0 0 0 0 0 0 e′1

























,

where d′1 = d1 − P (d2 + d3) + P 2d4, d
′
2 = (1 − P )d2 +

P (1−P )d4, d′3 = (1−P )d3−P (1−P )d4, d′4 = (1−P )2d4,
e′1 = (1 − P )2e1, e

′
3 = P (1 − P )e1, e

′
4 = Pe1 and f ′

1 =
(1− P )f1. We obtain

S(ρ′ABICI
) = max{8

√
2
√
1− Pα

√

1− α2 cosβ,

4[α2(cos4 β − 2 sin2 β cos2 β + (1− 2P + 2P 2))

−(1− 2P + 2P 2)(1− α2)]} (13)

and

E(ρ′ABICI
)

= 2max{0, [(1− P )α
√

1− α2 cos2 β

−α sinβ

√

(1− P ) cos2 β − (1− P )P sin2 β

−(1− P )α sin2 β
√

P (1− α2)]}. (14)

We plot the GTN of ρ′ABICI
for α = 1√

2
in FIG. 4(a).

It is seen that S(ρ′ABICI
) is larger than 4 at first and then

       

                                 (a) 

 

                                 (b) 

FIG. 4: S(ρ′ABICI
) and E(ρ′ABICI

) as functions of the ac-
celeration parameter β and decoherence parameter P for the
initial GHZ state, when Bob’s and Charlie’s qubits undergo
acceleration and decoherence.

becomes smaller than 4 with the increase of β or P . The
increase of the two parameters cause the sudden death
of GTN. With the increase of acceleration parameter β,
GTN slowly approaches to 3, but never reaches 0. How-
ever, with the increase of the decoherence parameter P ,
the GTN decreases monotonically and tends to 0. FIG.
4(b) shows the behavior of GTE of ρ′ABICI

with α = 1√
2
.

One sees that when only the parameter β increases, the
GTE will not decrease to zero. But when P also exerts
influence, the GTE decreases to zero first, and then in-
creases. Moreover, compared with FIG. 1 and FIG. 2, we
can find that the GTN and GTE change faster with the
change of the parameters. Hence, the decoherence when
the two subsystems undergo noisy channel is stronger
than that of one system does.

The quantum dynamics of the rest reduced density ma-
trices can be similarly analyzed. Due to the symmetry
between Bob and Charlie, we only need to consider the
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following three situations.

ρ′ABICII
=

























d′1 0 0 0 0 0 0 0
0 d′2 0 0 0 0 f ′

2 0
0 0 d′3 0 0 0 0 0
0 0 0 d′4 0 0 0 0
0 0 0 0 e′4 0 0 0
0 0 0 0 0 0 0 0
0 f ′

2 0 0 0 0 e′2 0
0 0 0 0 0 0 0 0

























,

where d′1 = d1−P (d2+d3)+P 2d4, d
′
2 = (1−P )d2+P (1−

P )d4, d
′
3 = (1 − P )d3 − P (1 − P )d4, d

′
4 = (1 − P )2d4,

e′4 = P (1 − α2), e′2 = (1 − P )(1 − α2) and f ′
2 = (1 −

P )α
√
1− α2 sinβ cosβ. According to Eqs. (9) and (10),

we have

S(ρ′ABICII
) = max{8

√
2(1− P )α

√

1− α2 sinβ cosβ,

4[α2(cos2 β − sin2 β)2 + (1− 2P )(1− α2)]},

E(ρ′ABICII
) = 2max{0, (1− P )α

√

1− α2 sinβ cosβ

−(1− P )α sin2 β
√

P (1− α2)}.
FIG. 5(a) and (b) show the behavior of GTN and GTE
of ρ′ABICII

when α = 1√
2
, respectively.

Concerning the systems A and BIICII we have

ρ′ABIICII
=

























d′1 0 0 0 0 0 0 0
0 d′2 0 0 0 0 0 0
0 0 d′3 0 0 0 0 0
0 0 0 d′4 f ′

4 0 0 0
0 0 0 f ′

4 e′4 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























,

where d′1 = d1 − P (d2 + d3) + P 2d4, d
′
2 = (1 − P )d2 +

P (1−P )d4, d′3 = (1−P )d3−P (1−P )d4, d′4 = (1−P )2d4,
e′4 = 1−α2 and f ′

4 = (1−P )α
√
1− α2 sin2 β. According

to Eqs. (9) and (10), we obtain

S(ρ′ABIICII
) = max{8

√
2(1− P )α

√

1− α2 sin2 β,

4[α2(cos2 β − sin2 β)2 − (1− α2)]}
and

E(ρ′ABIICII
) = 2max{0, (1− P )α

√

1− α2 sin2 β}.
In FIG. 6(a) and (b), we plot the GTN and GTE of
ρ′ABIICII

as functions of β and P when α = 1√
2
, respec-

tively.
With respect to the systems A, BI and BII , we have

ρ′ABIBII
=

























d′1 0 0 0 0 0 0 f ′
1

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 e′4 0 0 0
0 0 0 0 0 e′3 0 0
0 0 0 0 0 0 e′2 0
f ′
1 0 0 0 0 0 0 e′1

























,

 

                                 (a) 

 

                                  (b) 

FIG. 5: S(ρ′ABICII
) and E(ρ′ABICII

) as functions of the ac-
celeration parameter β and decoherence parameter P for the
initial GHZ state, when Bob’s and Charlie’s qubits undergo
acceleration and decoherence.

where d′1 = α2 cos2 β, e′1 = (1−P )2α2 sin2 β, e′2 = P (1−
P )α2 sin2 β+(1−P )(1−α2), e′3 = P (1−P )α2 sin2 β, e′4 =
P 2α2 sin2 β + P (1 − α2) and f ′

1 = (1 − p)α2 sinβ cosβ.
From Eqs. (9) and (10) we get

S(ρ′ABIBII
) = max{8

√
2(1− P )α2 sinβ cosβ,

4[α2(cos2 β + (2P + 2P 2 − 1) sin2 β) + (1− P )(1 − α2)]}

and

E(ρ′ABIBII
) = 2max{0, (1− P )α2 sinβ cosβ}.

In FIG.7 (a) and (b) we plot the behavior of GTN and
GTE of ρ′ABIBII

for GHZ state (α = 1√
2
), respectively.

From the figures above, we observe that (1) the influ-
ence of the quantum decoherence and the Unruh effect on
the dynamical evolution of the systems are not always in
the same rhythms. (2) For the most cases, the quantum
decoherence has a stronger influence than Unruh effect,
as it may result in the phenomena of sudden death. (3)
The decoherence of two subsystems is stronger than that
of only one subsystem.
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                              (a) 

 

                               (b) 

FIG. 6: S(ρ′ABIICII
) and E(ρ′ABIICII

) as functions of the ac-
celeration parameter β and decoherence parameter P for the
initial quantum state is GHZ state, when Bob’s and Charlie’s
qubit undergoes acceleration and decoherence.

In the case (ii), the influence of P is exerted under
the influence of acceleration parameter β. We find that
throughout the process of decay the quantum coherence
satisfies strictly a beautiful relation. For example, the
following relations always hold,

C(ρ′ABICI
) + C(ρ′ABIICII

) = 2(1− P )α
√

1− α2, (15)

C2(ρ′ABICI
) + C2(ρ′ABIICII

) + C2(ρ′ABICII
) +

C2(ρ′ABIICI
) = 4(1− P )2α2(1 − α2), (16)

C2(ρ′ABICI
) + C2(ρ′ABIICII

) + (1 − α2)[C2(ρ′ABIBII
)

+C2(ρ′ACICII
)] = 4(1− P )2α2(1 − α2). (17)

Interestingly, when P = 0 the right hands of the above
equations are just the quantum coherence of the initial
GHZ-like state. When the decoherence appears, that is,
the value of P increases, the quantum coherence of the

(a)

 

                                 (b) 

FIG. 7: S(ρ′ABIBII
) and E(ρ′ABIBII

) as functions of the ac-
celeration parameter β and decoherence parameter P when
Bob’s and Charlie’s qubits undergo acceleration and decoher-
ence.

single qubit state decreases at a rate of about (1 − P ).
Therefore, the larger the P is, the faster the quantum
coherence decreases. When P → 1, the quantum co-
herence of a single reduced density matrix tends to 0.
This phenomena is independent of the parameter β of
the Hawking effect.

It is noted that without decoherence (P = 0), the en-
tanglement of all the above three-body reduced states
is equal to quantum coherence, namely, Eqs (15), (16)
and (17) hold both for entanglement and quantum co-
herence [34]. Nevertheless, after decoherence they are
valid only for coherence, because the entanglement of
ρ′ABICI

and ρ′ABICII
are slightly reduced due to deco-

herence. Therefore, the quantum entanglement is more
fragile than quantum coherence during the decoherence.

Conclusions and discussions

We have studied the dynamical evolution of the three-
qubit GHZ-like states in non-inertial frame when one and
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two qubits undergo decoherence. Under the amplitude
damping channel the influences of the quantum decoher-
ence and the Unruh effect on the initial states has been
investigated. It is shown that the GTE and quantum
coherence may suffer sudden death. The results can be
applied to the cases in which Alice moves along a geodesic
while Bob and/or Charlie hover near the event horizon
with an uniform acceleration. Our results may also in-
spire the study on the dynamics of quantum states in
the framework of relativity. In addition, one can also
consider the dynamical behavior under the influence of
amplitude damping or phase damping for other initial
quantum states such as W-state or mixed states.
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