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The angular displacement estimation is one of significant branches of quantum parameter estima-
tion. However, most of the studies have focused on the single-angular displacement estimation, while
the multiple angular displacement estimation in ideal and noisy scenarios is still elusive. In this paper,
we investigate the simultaneous multiple angular displacement estimation based on an orbital angular
momentum (OAM), together with inputting (d + 1)-mode NOON-like states as the probe state. By
revealing the role of the intramode correlation of the probe state, this allows us to give a reasonable
explanation for the corresponding quantum Cramér-Rao bound (QCRB) behaviors with and without
photon losses. Our analyses suggest that the QCRB for the multiple angular displacement estima-
tion is always positively related to the intramode correlation, especially for the multimode entangled
squeezed vacuum state showing the best performance compared to another probe state. More im-
portantly, strengthening the robustness of multiple angular-displacement estimation systems can be
achieved by increasing the OAM quantum number.

PACS: 03.67.-a, 05.30.-d, 42.50,Dv, 03.65.Wj

I. INTRODUCTION

Quantum parameter estimation provides a feasible
way to more accurately estimate physical quantities that
can not be measured directly than its classical counter-
part [1–4]. As a specific example, in phase-estimated
systems, the usage of quantum resources, involving non-
classical and entanglement states, can make the phase
sensitivity beat the so-called shot-noise limit, even clos-
ing to the renowned Heisenberg limit [5–7]. In general,
the precision limit of quantum parameter estimation can
be visually quantified by means of the quantum Cramér-
Rao bound (QCRB), which is not only inversely propor-
tional to the quantum Fisher information (QFI) [2, 8],
but also has been extensively studied and used especially
in quantum single-(or multi-) phase estimation.

Originally, a conventional model to study the quantum
parameter estimation is the phase estimation problem
[9]. In particular, taking advantage of optical interfer-
ometers, such as a Mach–Zehnder interferometer [10–
12] and an SU(1,1) interferometer [13–16], early inves-
tigations of phase estimation pay attention to the single-
phase estimation since it can be easily realized both theo-
retically and experimentally [5, 11, 15]. More strikingly,
the single-phase estimation with the QCRB in the pres-
ence of noisy environments, e.g., photon loss [17–19],
phase diffusion [20, 21], and thermal noise [22, 23],
can be tackled using the variational method [17, 20] pro-

∗Corresponding author. 71147@nchu.edu.cn
†Corresponding author. gaosy@xjtu.edu.cn

posed by Escher, greatly promoting the practical applica-
tions of quantum metrology [24–26]. On the other hand,
extending toward the multiple phase estimation with the
QCRB has attracted considerable interest more recently,
thereby resulting in the potential applications [27–34],
such as quantum-enhanced sensor network [29–32] and
optical imaging [33, 34]. Moreover, in order to improve
the precision of multiple-phase estimation, multimode
NOON (or NOON-like) states [35–39], generalized en-
tangled coherent states [40] and multimode Gaussian
states [41] have been considered, even in the presence
of noisy environment [42–45]. More interestingly, by
using correlated quantum states, the simultaneous esti-
mation performance of multiple phases can show a sig-
nificant advantage scaling as O(d) with the number of
phase shifts d over the optimal individual case [35], but
the O(d) advantage would fade away in photon-loss sce-
narios [45]. Further, in order to find saturable QCRB in
multiparameter estimation, the necessary and sufficient
conditions for projective measurements to saturate the
QFI for multiple phase estimation with pure probe states
can be achieved [46].

In addition to the phase-estimated systems, the angu-
lar displacement estimation based on an orbital angular
momentum (OAM) has been one of important branches
of parameter-estimated systems, particularly when the
OAM quantum number l that is theoretically unbounded
can give rise to the unbounded increase in the esti-
mation precision [47–49]. Although the OAM values
as high as 10010 quanta have been proven experimen-
tally [50], this value is not indeed unbounded via the
limited aperture of optical systems [47, 50, 51]. As
a result, other methods have to be found to improve
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the angular displacement estimation. For instance, to
show the increased performance of angular displace-
ment estimation, the usages of entangled photon states
[49] and twisted N00N states [47] were taken into ac-
count. Apart from the aforementioned methods of gen-
erating the probe states, Magañ-Loaiza et al presented
the quantum-improved sensitive estimation of angular
rotations based on a sort of weak-value amplification
[52]. More dramatically, in ideal and realistic scenar-
ios, Zhang et al suggested a super-resolved angular dis-
placement estimation protocol using a Sagnac interfer-
ometer together with parity measurement [53]. Even
so, it should be noticed that these studies mentioned
above pay attention to the single-angular displacement
estimation systems, whereas the multiple angular dis-
placement estimation problem in the ideal and noisy
environments has not been studied before. Therefore,
in this paper, we shall present the derivation of the
QCRB for the multiple angular displacement estimation
with and without the photon losses when using the
(d+1)-mode NOON-like states [including the multimode
NOON state (MNOONS), the multimode entangled co-
herent state (MECS), the multimode entangled squeezed
vacuum state (MESVS) and the multimode entangled
squeezed coherent state (MESCS)] as the probe states.
Our results find that, the QCRB for the multiple angular
displacement estimation in both ideal and photon-loss
cases is positively associated with the intramode corre-
lation, especially for the MESVS exhibiting the best per-
formance when comparing to other probe states. More
interestingly, the OAM quantum number l can be prof-
itably used for strengthening the robustness of multiple
angular displacement estimation systems.

The rest of this paper is arranged as follows. In Sec.
2, we first describe the QCRB for the multiple angular
displacement estimation with d independent angular dis-
placements in the ideal scenario, and then focus on the
behaviors of the QCRB when given the four specific probe
states. In Sec. 3, we consider the effects of photon
losses on the multiple angular displacement estimation
precision, and also analyze its QCRB with the four probe
states under the photon losses. Finally, conclusions are
presented in the last section.

II. THE QCRB FOR THE MULTIPLE ANGULAR
DISPLACEMENT ESTIMATION IN THE IDEAL SCENARIO

In an ideal case, let us beginning with the description
of the QCRB for the simultaneous estimation with d in-
dependent angular displacements, whose schematic dia-
gram is shown in Fig. 1. To be more specific, here we
first take a balanced (d + 1)-mode entangled pure as the
probe state, which can be defined as [36]

|Ψ〉 = N̆

d
∑

m=0

|0〉0 |0〉1 |0〉2 ... |ψ〉m ... |0〉d , (1)

DP-d
...

SPP-d

DP-0SPP-0

DP-1SPP-1

DP-2SPP-2...

Y

Probe 

Generation

Probe 

Readout

Probe Modification

FIG. 1: Schematic diagram of multiple angular displacement
estimation with d angular displacements, where a given probe
state |Ψ〉 after passing through spiral phase plate (SPP) and
Dove prisms (DP) with the same number d + 1 can be in read-
out.

where N̆ = [(1 + d)(1 + d |〈ψ|0〉|2)]−1/2 is the normal-
ization factor. According to Eq. (1), it is obvious that
this probe state is a superposition of d + 1 multimode
quantum states with both an arbitrary single-mode quan-
tum state |ψ〉m on the mth mode and a zero photon
state on the other modes. It should be mentioned that,
when |ψ〉m is respectively the Fock state |N〉m, the co-
herent state |α〉m, the squeezed vacuum state |r1〉m and
the squeezed coherent state |β, r2〉m, one can obtain the
MNOONS |ΨN〉, the MECS |Ψα〉, the MESVS |Ψr1〉 and
the MESCS |Ψβ,r2〉, which will be seen as the probe state
to analyze the behaviors of the QCRB in the following
sections.

Subsequently, the generated probe state |Ψ〉 is sent
to d + 1 spiral phase plates (SPPs) which introduce the
OAM degree of freedom, and after undergoing the d+ 1
Dove prisms (DPs) to generate d independent angular
displacements θm to be estimated (here θ0 = 0 is viewed
as the reference beam), the corresponding evolution op-
erator can be expressed as

Ûθ = exp

(

i

d
∑

m=1

2ln̂mθm

)

, (2)

where l is the quanta number of the OAM, n̂m = â†mâm
and θm denote the photon number operator and the an-
gular displacement on mode m, respectively. After the
interaction between the probe state and the evolution

operator Ûθ, the resulting state becomes |Ψθ〉 = Ûθ |Ψ〉 ,
so that the QCRB for the multiple angular displacement
estimation in an ideal scenario is given by [35–38]

|δθ|2 ≥ |δθ|2QCRB = Tr
(

F−1
)

, (3)

where F−1 represents the inverse matrix of the d × d
quantum Fisher information matrix (QFIM). Generally
speaking, the QCRB for the multiple angular displace-
ment estimation is not achievable. Nevertheless, for
the unitary angular displacement process, i.e., |Ψθ〉 =
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Ûθ |Ψ〉 , the QCRB of pure quantum states can be satu-
rated if the probe state |Ψ〉 satisfies [40, 54]

〈Ψ|
[

i(∂Û †
θ/∂θj)Ûθ, i(∂Û

†
θ/∂θm)Ûθ

]

|Ψ〉
= 〈Ψ| [2ln̂j, 2ln̂m] |Ψ〉
= 0, ∀j,m, (4)

where n̂j,m are the photon number operators on modes
j and m. Since both n̂j and n̂m are the Hermitian and
mutually commuting operators, i.e., [n̂j , n̂m] = 0, ∀j,m,
it is easy for the probe state |Ψ〉 to find that the saturation
condition is always true. Thus, its elements of the QFIM
can be given by

Fjm = 16l2Cov(n̂j , n̂m), (5)

where Cov(n̂j , n̂m) = 〈n̂j n̂m〉 − 〈n̂j〉 〈n̂m〉 is the covari-
ance between the photon number operators n̂j and n̂m,
and the average 〈·〉 is taken with respect to the probe
state |Ψ〉. Combining Eqs. (1) and (5), as a result, the
QFIM can be calculated as

F = 16l2
[

〈

n̂2
m

〉

I − 〈n̂m〉2 Ĩ
]

, (6)

where I is the d× d identity matrix and Ĩ represents the
matrix with the elements Ĩjm = 1, for all j and m. Upon
substituting Eqs. (6) into (3), the analytical expression
of the QCRB for the multiple angular displacement esti-
mation with the probe state |Ψ〉 shown in Eq. (1) can be
finally derived by

|δθ|2QCRB

=
d

16l2(n̄2
mg

(2)
m + n̄m)

(

1 +
1

g
(2)
m + n̄−1

m − d

)

, (7)

where n̄m = 〈n̂m〉 denotes the average photon num-

ber of the probe state |Ψ〉 on mode m, and g
(2)
m =

〈

â†mâ
†
mâmâm

〉

/n̄2
m is the second-order coherence func-

tion, represented as an intramode correlation [55]. Gen-
erally speaking, the smaller the value of the QCRB, the
more precise the parameter estimation. According to Eq.
(7), notably, the QCRB is positively correlated with the

intramode correlation g
(2)
m . That is to say, the intramode

correlation contributes to the enhancement of multiple
angular displacement estimation precision.

To clearly see the behaviors of the QCRB for the
multiple angular displacement estimation, here we take
four specific probe states into account, including the
MNOONS |ΨN〉, the MECS |Ψα〉, the MESVS |Ψr1〉, and
the MESCS |Ψβ,r2〉 as the probe states [see Appendix A
for more details]. Without loss of generality, we also as-
sume that both the amplitude α (β) of coherent states
and the squeezing parameter r1 (r2) are real numbers,
so as to achieve the total mean photon numbers N̄ for
the above four multimode entangled states [see Eq. (10)
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FIG. 2: (Color online) Both (a) the QCRB and (b) the second-

order coherence function g
(2)
m for the multiple angular displace-

ment estimation as a function of the total mean photon number
N̄ with several different probe states, i.e., the MNOONS (black
line), the MECS (blue line), the MESVS (red line), and the
MESCS (green line), at fixed parameters of l = 2 and d = 15.

in Ref. [36]]. In this case, Fig. 2(a) shows the QCRB for
the four multimode entangled states changing with the
total mean photon number N̄ , when fixed values of l = 2
and d = 15. It is shown that the value of the QCRB for
the given multimode entangled states rapidly decreases
with the increase of N̄ . Moreover, at the same total mean
photon number N̄ , the MESVS (red line) shows the low-
est QCRB value, followed by the MESCS (green line), the
MECS (blue line) and the MNOONS (black line), which
means that the usage of the MESVS as the probe state
can achieve the highest estimation precision. The reason
for this phenomenon is that the intramode correlation
of the MESVS is the strongest in comparison to another
multimode probe state, as shown in Fig. 2(b). In this
sense, it is also demonstrated that the intramode corre-
lation is conducive to effectively improve the multiple
angular displacement estimation precision.

On the other hand, we also consider the effects of both
the number of independent angular displacements d and
the quanta number of the OAM l on the QCRB, as de-
picted in Fig. 3. It is clearly seen from Fig. 3(a) that
when fixed parameters of l = 2 and N̄ = 5, the QCRB
for the four probe states increases with the increase of
d, meaning that as the number of independent angular
displacements d increases, the multiple angular displace-
ment estimation precision becomes worse. This phe-
nomenon results from that the QCRB is passively corre-
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FIG. 3: (Color online) The QCRB for the multiple angular
displacement estimation as a function of (a) the independent
angular-displacement number d with l = 2 and N̄ = 5, and of
(b) the quanta number of the OAM l with d = 15 and N̄ = 5,
when given several different probe states, i.e., the MNOONS
(black line), the MECS (blue line), the MESVS (red line), and
the MESCS (green line).

lated with the number of independent angular displace-
ments d, as given in Eq. (7). Even so, as we can see in
Fig. 3(b), at fixed parameters of d = 15 and N̄ = 5, when
increasing the quanta number of the OAM l, the QCRB
for the four probe states tends to be smaller and smaller.
This reflects, to some extent, that increasing l can ef-
fectively improve the multiple angular displacement es-
timation precision. More importantly, it is seen from Fig.
3 that compared to other probe states, the MESVS still
maintains the highest estimation precision.

III. THE QCRB FOR THE MULTIPLE ANGULAR

DISPLACEMENT ESTIMATION WITH PHOTON LOSSES

In the real-life scenarios, the inevitable interaction
between the probe state system S and its surrounding
environment E is always existed, greatly making the
parameter-estimated performance worse. In general,
there are various interactions, such as photon loss, phase
diffusion, and thermal noise. For the sake of simplicity,
here we only pay attention to how the photon losses af-
fect the multiple angular displacement estimation preci-
sion. In addition, it should be noted that the probe state
interacts with the d+1 DPs to generate d independent an-
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FIG. 4: (Color online) Schematic diagram of multiple angular
displacement estimation with d angular displacements under
the photon losses occurring at both ends of d+1 DPs. Here we
use the fictitious beam splitter (BS) with a transmissivity ηm to
simulate a photon-loss process

gular displacements θm in the photon-loss environment,
which would no longer be an unitary evolution. This
also leads to that, for the multiple angular displacement
estimation with photon losses, the methods used to de-
rive the QCRB given in Eq. (7) can not be directly em-
ployed. Fortunately, with the assistance of an variational
method, Yue et al. derived the general form of the QCRB
of multiphase estimation systems in the photon-loss case
[45]. By extending that work [45], in this section, we
shall utilize the variational method to study the effects
of photon losses on the multiple angular displacement
estimation precision (see Fig.4), such that a brief review
of this variational approach is necessary in the following.

When given an initial (d + 1)-mode probe state |Ψ〉S
in the probe system S and an initial state

∣

∣

∣

~0
〉

E
in the

photon-loss environment, it is essential to expand the
sizes of both the probe system space S and the photon-
loss environment space E, thereby resulting in that the
probe state |Ψ〉S in the enlarged system-environment

space S + E undergoes the unitary evolution ÛS+E(θ),
which can be expressed as [45]

|Ψ(θ)〉S+E

= ÛS+E(θ) |Ψ〉S
∣

∣

∣

~0
〉

E

=
∑

k

Π̂k(θ) |Ψ〉S
∣

∣

∣

~k
〉

E
, (8)

where ÛS+E(θ) = ⊗d
m=0Û

m
S+E(θm) is the unitary evolu-

tion operator,
∣

∣

∣

~0
〉

E
= ⊗d

m=0 |0〉Em
is the initial state of

environment,
∣

∣

∣

~k
〉

E
= ⊗d

m=0 |km〉Em
is the orthogonal ba-

sis of the environment, and Π̂k(θ) = ⊗d
m=0Π̂km

(θm) is
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the direct product of all kraus operator, defined as

Π̂km
(θm)

=

√

(1 − ηm)km

km!
ei2lθm(n̂m−δmkm)η

n̂m
2

m âkm

m , (9)

with the variational parameters δm (δm = 0 and −1 are
respectively the photon losses occurring before and after
the d + 1 DPs), and ηm quantifying the strength of the
photon losses. In practice, such a photon-loss strength
can be often regarded as the transmissivity of fictitious
beam splitters, as seen in Fig. 4. Among them, ηm = 0
and 1 respectively indicate the complete-absorption and
lossless cases. In this situation, the QCRB for the multiple
angular displacement estimation under the photon losses
turns out to be [45]

|δθ|2QCRBL
= max

Π̂k(θ)
Tr[C−1

Q (θ, Π̂k(θ))], (10)

where CQ(θ, Π̂k(θ)) is the QFIM for the enlarged system-
environment space S + E, and the matrix elements of

CQ(θ, Π̂k(θ)) are expressed as

CQjm
(θ, Π̂k(θ)) = 4

[〈

Λ̂jm

〉

−
〈

Γ̂j

〉〈

Γ̂m

〉]

, (11)

with

Γ̂m = i
∑

km

dΠ̂†
km

(θm)

dθm
Π̂km

(θm),

Λ̂jm =







∑

km

dΠ̂†

km
(θm)

dθm

dΠ̂km (θm)
dθm

, j = m

Γ̂jΓ̂m, j 6= m

. (12)

Upon substituting Eqs. (9) into (12), one can further
obtain

Γ̂m = 2lχmn̂m,

Λ̂jm =

{

4l2(χ2
mn̂

2
m + γmn̂m), j = m

Γ̂jΓ̂m, j 6= m
, (13)

with χm = 1 − (1 + δm) (1− ηm) and γm = ηm(1 −
ηm) (1 + δm)

2
. For the sake of calculation, here we only

consider the specific cases of ηm = η and δm = δ for any
m. Thus, based on Eqs. (11) and (13), one can derive
the lower bound of the QCRB for the multiple angular
displacement estimation, i.e.,

Tr[C−1
Q ]

=
(d− 1)N̆−2

16l2σ
+

N̆−2

16l2
[

σ − dN̆2χ2 〈ψ| n̂ |ψ〉2
] ,(14)

where σ = χ2 〈ψ| n̂2 |ψ〉+ γ 〈ψ| n̂ |ψ〉 . To further simplify
the calculation, we also assume that d ≫ 1, leading to

that the second term is infinitesimal compared with the
first term given in Eq. (14), such that

Tr[C−1
Q ] ≈ (d− 1)N̆−2

16l2σ
. (15)

In order to maximize Tr[C−1
Q ], the optimal value of δ can

be easily calculated as

δopt

=
〈ψ| n̂2 |ψ〉

(1− η) 〈ψ| n̂2 |ψ〉+ η 〈ψ| n̂ |ψ〉 − 1. (16)

Therefore, substituting Eqs. (16) into (15), one can ob-
tain the explicit expression of the QCRB for the multiple
angular displacement estimation in the presence of pho-
ton losses, i.e.,

|δθ|2QCRBL

=
d− 1

16l2n̄m

(

1− η

η
+

1

1 + n̄mg
(2)
m

)

. (17)

From Eq. (17), it is clear that the QCRB is also positively

correlated with the intramode correlation g
(2)
m even in the

presence of photon losses.
Next, in order to analyze the effects of the photon

losses on the QCRB, let us consider the four probe re-
sources, involving the MNOONS |ΨN 〉, the MECS |Ψα〉,
the MESVS |Ψr1〉, and the MESCS |Ψβ,r2〉 [One can re-
fer to Appendix B about the expressions of the QCRB for
these probe states]. When given the values of N̄ = 5,
d = 15 and l = 2, we plot the QCRB as a function of
the photon-loss strength η for the four probe resources,
as depicted in Fig. 5(a). As we can see, the value of the
QCRB for these probe states increases rapidly with the
decrease of η, implying that the accuracy of the multi-
ple angular displacement estimation is greatly affected
by the photon losses. In spite of this, the QCRB for
the MESVS (red dashed line) still shows the best perfor-
mance even in the presence of photon losses, followed by
the MESCS, the MECS and the MNOONS. Moreover, in
order to compare the gap between the ideal and photon-
loss cases, at fixed parameters of η = 0.7, d = 15 and
l = 2, we also show the QCRB changing with the mean
photon number N̄ for the given probe resources, i.e.,
the MNOONS (black lines), the MECS (blue lines), the
MESVS (red lines), and the MESCS (green lines), as pic-
tured in Fig. 5(b). It is clearly seen that, although the
QCRB for the MNOONS performs worse than that for
other probe states with and without the photon losses, its
gap between the ideal and photon-loss cases is the small-
est. This means that applying the MNOONS into multiple
angular displacement estimation systems is more robust
against photon losses than other probe resources at the
same conditions. More interestingly, for these probe re-
sources, both the QCRB and the gap with and without
the photon losses can be further reduced as the mean
photon number N̄ increases, implying that the increase
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FIG. 5: (Color online) The QCRB for the multiple angular
displacement estimation as a function of (a) the photon-loss
strength η with l = 2, d = 15, and N̄ = 5, and of (b) the mean
photon number N̄ with l = 2, d = 15 and η = 0.7, when in-
putting the MNOONS (black lines), the MECS (blue lines), the
MESVS (red lines), and the MESCS (green lines). The dashed
and solid lines correspond to the photon-loss and ideal cases,
respectively.

of the mean photon number N̄ of probe states is a highly
effective way to enhance the multiple angular displace-
ment estimation performance.

On the other hand, we also examine the influences of
both d and l on the QCRB under the photon losses when
given parameters of η = 0.7 and N̄ = 5, as pictured in
Fig. 6. Analogous to the ideal cases, for the photon losses
as the d (l) increases, the multiple angular displacement
estimation precision becomes worse (more precise), and
the MESVS still maintains the highest estimation preci-
sion even beyond the ideal case of the MNOONS. In ad-
dition, we also notice that, when given the same probe
state, e.g., the MESVS, as the d (l) increases, the corre-
sponding gap between the ideal and photon-loss scenar-
ios increases (decreases), implying that the decrease of
d (or the increase of l) can not only improve the multi-
ple angular displacement estimation precision, but also
enhance the robustness against the photon losses. How-
ever, for different probe states, such as the MESVS and
the MECS shown in Fig. 6(a), their gaps can not be di-
rectly visualized and compared. For this reason, to intu-
itively quantify and visualize the gaps for the four probe
states, we give the definition of the robustness against
the photon losses, i.e.,

R = |δθ|2QCRBL
− |δθ|2QCRB . (18)
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FIG. 6: (Color online) The QCRB for the multiple angular dis-
placement estimation as a function of (a) the number of in-
dependent angular displacements d with η = 0.7, l = 2 and
N̄ = 5, and of (b) the quanta number of the OAM l with
η = 0.7, d = 15 and N̄ = 5, when inputting the MNOONS
(black lines), the MECS (blue lines), the MESVS (red lines)
and the MESCS (green lines). The dashed and solid lines cor-
respond to the photon-loss and ideal cases, respectively.

From Eq. (18), the smaller the value of R, the smaller

the gap between |δθ|2QCRBL
and |δθ|2QCRB , meaning that

the robustness against the photon losses is stronger. To
see this point, Fig. 7 shows the R changing with d and
l for the four probe resources when given parameters of
η = 0.7 and N̄ = 5. Visually, for the given probe re-
sources, the corresponding robustnessR is positively cor-
related with l and negatively correlated with d. In partic-
ular, it is more interesting that the MNOONS presents the
best robustness, followed by the MECS, the MESCS, and
the MESVS, which is completely opposite to the presen-
tation accuracy of their multiple angular displacement
estimations. That is to say, the QCRB for the MNOONS
shows the worst performance with and without the pho-
ton losses compared to other probe resources, but the
usage of the MNOONS in the multiple angular displace-
ment estimation systems has the best robustness. Fur-
thermore, it is worth mentioning that, when comparing
to other probe resources, the robustness performance
for the MESVS against the photon losses is relatively
poor, but can gradually approach the robustness of the
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FIG. 7: (Color online) The R for the multiple angular displace-
ment estimation as a function of (a) the number of independent
angular displacements d with η = 0.7, l = 2 and N̄ = 5, and
of (b) the quanta number of the OAM l with η = 0.7, d = 10
and N̄ = 5, when inputting the MNOONS (black solid line),
the MECS (blue dot-dashed line), the MESVS (red dashed line)
and the MESCS (green dot line).

MNOONS with the increase of l, which also means that
the OAM quantum number l is profitably used for en-
hancing the robustness of multiple angular displacement
estimation systems.

IV. CONCLUSIONS

In summary, we have revealed an important factor,
i.e., the intramode correlation of the probe state, which
affects the multiple angular displacement estimation
precision with and without the photon losses. This
finding offers a reasonable explanation for the multiple
angular displacement estimation performance with
(d + 1)-mode NOON-like probe states. The results show
that the usage of the MESVS as the probe state is more
beneficial for obtaining the highest estimation precision
than another multimode probe state, which results from
the intramode correlation of the MESVS is the strongest.
We have also considered the effects of the photon
losses on the multiple angular displacement estimation
precision by the means of the variational method.
The results suggest that the accuracy of the multiple
angular displacement estimation is greatly affected by
the photon losses, but the QCRB for the MESVS still
shows the best estimation performance when comparing

to the one for another probe state. More interestingly,
different from the multiphase estimated systems, we can
also regulate and control the quanta number of the OAM
l to effectively improve the robustness and precision of
multiple angular displacement estimation.
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Appendix A: The QCRB of four specific multimode en-
tangled state in the deal case

Based on Eq. (7), one can get the

|δθ|2QCRB(MNOONS)

=
d

16l2(n̄2
m(N)g

(2)
m(N) + n̄m(N))



1 +
1

g
(2)
m(N) + n̄−1

m(N) − d



 ,

|δθ|2QCRB(MECS)

=
d

16l2(n̄2
m(α)g

(2)
m(α) + n̄m(α))



1 +
1

g
(2)
m(α) + n̄−1

m(α) − d



 ,

|δθ|2QCRB(MESV S)

=
d

16l2(n̄2
m(r1)

g
(2)
m(r1)

+ n̄m(r1))



1 +
1

g
(2)
m(r1)

+ n̄−1
m(r1)

− d



 ,

|δθ|2QCRB(MESCS) =
d

16l2(n̄2
m(β,r2)

g
(2)
m(β,r2)

+ n̄m(β,r2))

×



1 +
1

g
(2)
m(β,r2)

+ n̄−1
m(β,r2)

− d



 , (A1)
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where we have set

n̄m(N) = N̆2
NN,

g
(2)
m(N) =

N − 1

n̄m(N)
,

n̄m(α) = N̆2
αα

2,

g
(2)
m(α) =

1

N̆2
α

,

n̄m(r1) = N̆2
r1 sinh

2 r1,

g
(2)
m(r1)

=
N̆2

r1 (3 cosh 2r1 − 7) cosh2 r1 + 4

2n̄2
m(r1)

,

n̄m(β,r2) = N̆2
β,r2(β

2 + sinh2 r2),

g
(2)
m(β,r2)

=
N̆2

β,r2
(Z1 + Z2) + 2

n̄2
m(β,r2)

, (A2)

with

N̆N =
1√
1 + d

,

N̆α =
1

√

(1 + d) (1 + de−α2)
,

N̆r1 =
1

√

(1 + d) (1 + d sechr1)
,

N̆β,r2 =
1

√

(1 + d) (1 + de−β2(1−tanh r2) sechr2)
,

Z1 = β2 sinh(2r2) +
(

2β2 − 1
)

cosh(2r2),

Z2 =
3

8
cosh(4r2) + β4 − 2β2 − 11

8
. (A3)

Appendix B: The QCRB of four specific multimode en-
tangled state under the photon losses

According to the Eq. (17), one can obtain

|δθ|2QCRBL(MNOONS)

=
d− 1

16l2n̄m(N)





1− η

η
+

1

1 + n̄m(N)g
(2)
m(N)



 ,

|δθ|2QCRBL(MECS)

=
d− 1

16l2n̄m(α)





1− η

η
+

1

1 + n̄m(α)g
(2)
m(α)



 ,

|δθ|2QCRBL(MESV S)

=
d− 1

16l2n̄m(r1)





1− η

η
+

1

1 + n̄m(r1)g
(2)
m(r1)



 ,

|δθ|2QCRBL(MESCS)

=
d− 1

16l2n̄m(β,r2)





1− η

η
+

1

1 + n̄m(β,r2)g
(2)
m(β,r2)



 ,

(A4)

where n̄m(N), g
(2)
m(N), n̄m(α), g

(2)
m(α), n̄m(r1), g

(2)
m(r1)

,

n̄m(β,r2), and g
(2)
m(β,r2)

can be given by Eq. (A2).
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