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Anita Dąbrowska1 ·Marcin Marciniak1

Received: 21 March 2023 / Accepted: 2 September 2023
© The Author(s) 2023

Abstract
We determine filtering and master equations for a quantum system interacting with
wave packet of light in a continuous-mode squeezed number state. We formulate
the problem of conditional evolution of a quantum system making use of model of
repeated interactions and measurements. In this approach, the quantum system under-
goes a sequence of interactions with an environment defined by a chain of harmonic
oscillators. We assume that the environment is prepared in an entangled state being a
discrete analogue of a continuous-mode squeezed number state. We present a deriva-
tion of a discrete stochastic dynamics that depends on the results of measurement
performed on the field after its interaction with the system. In this paper, we consider
a photon counting measurement scheme. By taking a continuous time limit, we finally
obtain differential stochastic equations for the system. Analytical formulae for quan-
tum trajectories and exclusive probability densities that allow to fully characterize the
statistics of photons in the output field are given.

Keywords Stochastic master equation · Quantum trajectories · Quantum
non-Markovian dynamics · Continuous-mode squeezed number state · Collision
model · Open system

1 Introduction

Quantumfiltering theory [1–5], formulated in the framework of quantum Ito stochastic
calculus (QSC) [6, 7], provides mathematical tools that are used to study the evolution
of an open quantum systemconditioned by results of a continuous in timemeasurement
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performed on a field that has interactedwith the system. The evolution of the composed
system (quantum system and the field) is given there by unitary operatorwhich satisfies
quantum stochastic differential equation of Itô type [6, 7]. The filtering theory is
connected to the input–output formalism [4]. Information about the system, carried by
the output field, can be gained in different detection schemes: direct photon counting,
homodyne, or heterodyne measurement. The random results of the measurement give
rise to stochastic evolution of the open system. The conditional evolution of the system
is described by equation that is known as filtering or stochasticmaster equation (SME).
Its form depends on the state of the input field and the type of detection that are taken.
Solutions to the filtering equation are called a posteriori states or quantum trajectories.
If the measurement is not performed or its results are not taken into account, then the
evolution of the open system is given by the master equation.

The methods of quantum filtering theory were originally developed for the input
field prepared in a Gaussian state (vacuum, coherent, squeezed, thermal). In that case,
the unconditional evolution of the system is given by a single master equation [1–5]
of the Lindblad form [8, 9]. The recent development of experimental techniques of
producing and manipulating propagating wave packets of light in non-classical states
[10–14], such as n-photon state, squeezed vacuum state [15–18], and application of
such packets, for instance, in quantum communication and quantum cryptography
[19–22] brought the extension of the filtering theory methods. The wave packet of the
n-photon state possesses temporal correlations that make the dynamics of the system
non-Markovian [23–25]. The reduced evolution of the system is no longer given then
by a single equation but by a set of coupled equations [26–38]. To study the quantum
trajectories for the system interacting with non-classical states, several methods were
proposed. One can use the cascaded system approach [28, 36], a non-Markovian
embedding technique [29, 30, 32], or a temporal decomposition of the input field [35,
39]. All mentioned approaches were formulated by means of QSC. There exists also
a method based on a discrete model of repeated interactions and measurements, see
[34, 36, 37].

In this paper, we study the interaction of a quantum system with a traveling light
prepared in a continuous-mode squeezed number state [16]. This problemwas recently
analyzed byGross et. al. in the framework ofQSC in [39].We consider the electromag-
netic field of a finite time correlation. In the literature, there exist the filtering equations
formulated for the broadband squeezing bath [4, 5, 40–43]. Such field, called also the
squeezed white-noise field, has δ-time correlations and the infinite photon flux. Due
to this property, the stochastic equation for the broadband squeezing bath for photon
counting measurement cannot be defined. The interaction of the quantum system with
a finite and narrow-bandwidth squeezed field was studied, for instance in [44–50].

We define the interaction of open quantum system with the light making use of
the model of repeated interactions and measurements, called also a collision model
[51–63]. A detailed discussion on physical assumptions for the collision models in
quantum optics was given, for instance, in [59, 62, 64]. The main aim of our paper is
to show that the discrete approach provides a rigorous and intuitive way for studying
quantum conditioning and stochastic evolution for a quantum system coupled to the
field in the squeezed number state. We define the environment (a traveling unidirec-
tional field) by a chain of harmonic oscillator that is initially prepared in a state that
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is discrete analog of continuous-mode squeezed number state. We assume that the
quantum system undergoes a sequence of interactions ("collisions") with elements of
the environment. There are no initial correlations between the environment and the
system. The harmonics oscillators do not interact with each other, but they interact
with the system one by one, and they are subsequently monitored. Random results of
the measurements lead to random sequence of the system states. We derive discrete in
time set of stochastic recurrence equations describing the conditional evolution of the
system, and we display the analytical solution related to different realization of the
stochastic process connected to the measurement. Finally, we obtain the continuous in
time conditional and unconditional evolution of the quantum system. The set of filter-
ing and master equations derived in this papers agrees with the results given in [39].
We not only derive differential equations for conditional and unconditional evolution
of the system, but also determine the analytical formulae for the quantum trajectories
related to the continuous in time counting detection of the output field. And this allows
us to characterize the whole statistics of the output photons by the exclusive probabil-
ity densities [65, 66]. Finally, we show how to use conditional vectors to determine a
photon profile for an optimal transfer of photons from the wave packet into the cavity.

The paper has the following structure. Section 2 is devoted to presentation of the
model of repeated interactions. In Sect. 3, we define the squeezed number state for the
environment and describe some of its properties. In Sect. 4, we give a description of
quantum conditioning for the sequence of repeatedmeasurements. Section 4 is devoted
to determination of the sets of discrete filtering and master equations and their limit
for the continuous in time evolution of the system. In Sect. 5, we present the general
analytical formulae for quantum trajectories and use it to define the statistics of the
output photons. In Sect. 6, we give an example of usage of the conditional operators to
solve the problem of efficient transfer of photons. We summarize our results in Sect.
7.

2 Repeated interactionmodel

We consider a quantum system S, described by the Hilbert space HS , interacting
with an environment (a unidirectional field) E defined by a sequence of M harmonic
oscillators. We assume that the field harmonic oscillators do not interact with each
other, but they interact one by one with the system S each during a time τ . The Hilbert
space of the environment is given then by

HE =
M−1⊗

k=0

HE,k, (1)

where HE,k is the Hilbert space of the harmonic oscillator which interacts with S in
the time interval [kτ, (k + 1)τ ). Clearly, HE posses the following property: for each
j ≥ 1, we have

HE = H j−1]
E ⊗ H[ j

E , (2)
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where

H j−1]
E =

j−1⊗

k=0

HE,k, H[ j
E =

M−1⊗

k= j

HE,k . (3)

We can split theHilbert spaceHE into the input and output parts referring, respectively,
to the harmonic oscillators which have already interacted with S and those which will
interacts with S in the future. The total Hilbert space is HE ⊗ HS . We describe the
dynamics of the composed system E + S up to time T = Mτ . At a given moment,
S interacts with only one of the field harmonic oscillators. An interaction of the field
with S in time interval [kτ, (k + 1)τ ) is defined by the unitary operator:

V̂k = 1̂k−1]
E ⊗ V̂[k, (4)

where

V̂[k = exp
(
−iτ Ĥk

)
(5)

and

Ĥk = 1̂[k
E ⊗ ĤS + i√

τ

(
b̂†k ⊗ 1̂[k+1

E ⊗ L̂ − b̂k ⊗ 1̂[k+1
E ⊗ L̂†

)
. (6)

We set the Planck constant � = 1 throughout the paper. By b̂k and b̂†k , we denoted,
respectively, the annihilation and creation operators of the k-th harmonic oscillator
acting as

b̂k |n〉k = √
n|n − 1〉k, (7)

b̂†k |n〉k = √
(n + 1)|n + 1〉k, (8)

where |n〉k is the number state vector in HE,k . The operators b̂k and b̂†l satisfy the
standard canonical commutation relations (CCR):

[b̂k, b̂l ] = 0, [b̂†k , b̂†l ] = 0, [b̂k, b̂†l ] = δkl . (9)

The model is formulated in the framework of standard assumptions made in quantum
optics: a flat coupling constant, rotating wave-approximation, and the extension of the
lower limit of integration over frequency to minus infinity [59, 62, 64, 67]. Thus, we
assume that the bandwidth of the spectrum is much smaller than the central frequency
of the pulse. The Hamiltonian Ĥk is written in the interaction picture eliminating the
free evolution of the field. By ĤS we denoted theHamiltonian of the systemS. Further,
L̂ ∈ B(HS) and L̂ is called a jump or Lindblad operator. For S being a two-level atom
L̂ = √

�σ̂−, where � is a positive coupling constant, and σ̂− is a lowering operator
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of the atom. If S is a harmonic oscillator (a cavity mode), then L̂ = √
�â, where â is

the annihilation operator. We shall use for (5) the Fock representation such that

exp
(
−iτ Ĥk

)
=
∑

mm′
|m〉k〈m′|k ⊗ 1̂[k+1

E ⊗ V̂mm′ , (10)

where V̂mm′ ∈ B(HS) and m,m′ = 0, 1, 2, . . ..
The unitary operator describing the discrete time evolution of the composed system

from zero time up to τ j for j ≥ 1 is defined as

Û j = V̂ j−1V̂ j−2 . . . V̂0, Û0 = 1̂. (11)

Note that it acts non-trivially on the space H j]
E ⊗ HS and as an identity operator on

H[ j+1
E . After the j th first interactions, the state of the composed system defined in

HE ⊗ HS reads as

ρ → Û jρÛ
†
j . (12)

Taking the partial trace over E , we obtain the reduced state of S:

σ j = TrE [Û jρÛ
†
j ]. (13)

3 Squeezed number states of the environment

We start this section with the introduction of the creation wave-packet operator acting
in the Hilbert space H[ j

E :

B̂†
[ j [ξ ] =

M−1∑

k= j

√
τξk

ˆ̃b†k , (14)

where

ˆ̃b†k = 1̂k−1]
E ⊗ b̂†k ⊗ 1̂[k+1

E , (15)

ξk ∈ C, and
∑M−1

k=0 τ |ξk |2 = 1. The commutator of B̂†
[ j [ξ ] and itsHermitian-conjugate

operator B̂[ j [ξ ] is obtained, with the help of CCR (9), as

[B̂[ j [ξ ], B̂†
[ j [ξ ]] =

M−1∑

k= j

τ |ξk |2. (16)
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The creation operator (14) can be used to construct the number vectors

|mξ 〉[ j = 1√
m!

(
B̂†

[ j [ξ ]
)m |vac〉[ j , (17)

where |vac〉[ j = |0〉 j ⊗ |0〉 j+1 ⊗ . . . |0〉M−1 is the vacuum vector in H[ j
E and m =

0, 1, . . .. Clearly, |0ξ 〉[ j = |vac〉[ j . Let us observe that the number vectors aremutually
orthogonal:

[ j 〈m′
ξ ||mξ 〉[ j = δm′m

⎛

⎝
M−1∑

k= j

τ |ξk |2
⎞

⎠
m

(18)

and they possess the additive decomposition property [37]

|mξ 〉[ j =
m∑

m′=0

√(
m

m′

)
(
√

τξ j )
m′ |m′〉 j ⊗ |(m − m′)ξ 〉[ j+1. (19)

One can check that the action of the creation operator B̂†
[ j [ξ ] on the number vector

gives

B̂†
[ j [ξ ]|mξ 〉[ j = √

m + 1|(m + 1)ξ 〉[ j (20)

and for the annihilation operators, one finds

1̂
[ j,k−1]
E ⊗ b̂k ⊗ 1̂[k+1

E |mξ 〉[ j = √
mτξk |(m − 1)ξ 〉[ j , (21)

B̂[ j [ξ ]|mξ 〉[ j = √
m

M−1∑

k= j

τ |ξk |2|(m − 1)ξ 〉[ j . (22)

In this paper, we consider the number state defined by

|nξ 〉 = 1√
n!

(
B̂†[ξ ]

)n |vac〉, (23)

where |vac〉 = |0〉0 ⊗ |0〉1 ⊗ . . . |0〉M−1 is the vacuum vector in HE , and B̂†[ξ ] =
B̂†

[0[ξ ]. Clearly, the number state is an eigenvector of the photon number operator,
defined inHE by

n̂ =
M−1∑

k=0

ˆ̃b†k ˆ̃bk . (24)

Note that (23) is an entangled state of the bath harmonic oscillators and a degree of
this entanglement depends on ξ . Clearly, we deal here with n independent photons
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of the same profiles ξ . Let us notice that the state (23) is a discrete analogue of the
continuous-mode number state discussed, for instance, in [15–18].

We define the squeezed number state in HE by the formula

|nγ,ξ 〉 = Ŝ[γ, ξ ]|nξ 〉 (25)

with the squeeze operator

Ŝ[γ, ξ ] = exp
(
γ B̂2[ξ ] − γ ∗ B̂†2[ξ ]

)
, (26)

where γ = r
2e

−2iφ . Of course, the squeezed number states are mutually orthogonal:

〈n′
γ,ξ |n′′

γ,ξ 〉 = δn′n′′ , (27)

where n′, n′′ ∈ N. Using the squeeze operator (26), we obtain the Bogoliubov
transformation:

Ŝ†[γ, ξ ] ˆ̃bk Ŝ[γ, ξ ] = ˆ̃bk + √
τξk

(
(c − 1)B̂[ξ ] − se2iφ B̂†[ξ ]

)
(28)

where c = cosh r and s = sinh r . Thus, the unitary transformation of the wave-packet
annihilation operator is given as

Ŝ†[γ, ξ ]B̂[ξ ]S[γ, ξ ] = cB̂[ξ ] − se2iφ B̂†[ξ ]. (29)

By (28) and the properties (20)–(22), we get the mean value

〈nγ,ξ | ˆ̃bk |nγ,ξ 〉 = 0. (30)

Similar calculations allow us to find the two-time correlation functions for the field:

〈nγ,ξ | ˆ̃b†k ˆ̃bl |nγ,ξ 〉 = τξ∗
k ξl

(
c2n + s2(n + 1)

)
. (31)

Let us notice that it is a function depending on the times τk and τ l. The mean number
of photons in the field in the time interval [kτ, (k + 1)τ ) is given by

〈nγ,ξ | ˆ̃b†k ˆ̃bk |nγ,ξ 〉 = τ |ξk |2
(
c2n + s2(n + 1)

)
(32)

and for the whole wave-packet prepared in the squeezed number state, we have

〈nγ,ξ |n̂|nγ,ξ 〉 = c2n + s2(n + 1). (33)

One can easily check that the expectation values of the quadrature operators,

X̂ [ξ ] = 1√
2

(
B̂[ξ ]e−iφ + B̂[ξ ]eiφ

)
, (34)
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Ŷ [ξ ] = −i√
2

(
B̂[ξ ]e−iφ − B̂[ξ ]eiφ

)
, (35)

are equaled to zero for the squeezed number state while their variances for φ = 0 have
the form

〈nγ,ξ |(
X̂ [ξ ])2|nγ,ξ 〉 = (2n + 1) e−2r , (36)

〈nγ,ξ |(
Ŷ [ξ ])2|nγ,ξ 〉 = (2n + 1) e2r . (37)

Note that any squeezed Fock state |nγ,ξ 〉 can be expanded into the number states
[68]:

|nγ,ξ 〉 =
+∞∑

m=0

am(nγ )|mξ 〉. (38)

For instance, the squeezed vacuum state can be expressed as [68]

|0γ,ξ 〉 =
+∞∑

n=0

(−1)ne2iφn√
n! cosh r

(
tanh r

2

)n √
(−1)nH2n(0)|(2n)ξ 〉, (39)

where H2n(0) is the value for x = 0 of the Hermite polynomial

H2n(x) = (2n)!
n∑

m=0

(−1)m
(2x)2n−2m

m!(2n − 2m)! . (40)

The coefficients in the expansion of squeezed number states are connected by the
following relation

√
m + 1am+1(nγ ) = √

nc am((n − 1)γ ) − √
n + 1se2iφam((n + 1)γ ). (41)

To show the above equation, one needs to write down the action of wave-packet
annihilation operator B̂[ξ ] on the squeezed number state applying the transformation
(29), then expand both sides of the equality in the basis of number states, and compare
the coefficients for independent vectors on both sides.

Remark 1 An arbitrary photon number state vector inHE can be defined as

|nϕϕϕ〉 = 1

N
M−1∑

k1,k2,...,kn=0

τ n/2ϕkn ...k2k1
ˆ̃b†kn . . .

ˆ̃b†k2 ˆ̃b†k1 |vac〉, (42)

where N is the normalization factor. We do not assume any symmetry property for a
tensor ϕkn ...k2k1 . In particular situation

ϕkn ...k2k1 = ξ
(n)
kn

. . . ξ
(1)
k1

, (43)
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where ξ
(i)
ki

are the profiles of n photons. In this paper, we consider the case when all
profiles are the same, so the photons are indistinguishable.

Remark 2 In a general case, a squeeze operator inHE can be defined by

Ŝ[ζζζ ] = exp
(
P̂[ζζζ ] − P̂†[ζζζ ]

)
, (44)

where

P̂[ζζζ ] =
M−1∑

k1,k2=0

ζk2,k1
ˆ̃bk2 ˆ̃bk1 . (45)

We assume that the initial state of the composed E + S system has the form

|
0〉 = |nγ,ξ 〉 ⊗ |ψ0〉, (46)

where |ψ0〉 is the initial state of S.

4 Conditioning in a repeatedmeasurement model

The environment E can be considered as a measuring device providing information on
S. We describe in this section the conditional state of the compound system depending
on the results of the measurement performed on the elements of the output field. We
assume that after each interaction a measurement is performed on the last harmonic
oscillator which has interacted with the system S. We consider the measurement of
the field observable

n̂k = b̂†k b̂k = |n〉k〈n|k, k = 0, 1, . . . . (47)

We assume that a detector is perfect and it works instantaneously. To represent the
results of measurements performed up to time jτ , we use the stochastic vector ηηη j =
(η j , η j−1, . . . , η1).

Theorem 1 The conditional (a posteriori) state vector of the system S and the input
part of the environment (the part of the environment which has not interacted with S
up to jτ ) for the initial state (46) and the measurement of the observable (47) at time
jτ is given by

|
̃n
j |ηηη j

〉 =
|
n

j |ηηη j
〉

√
〈
n

j |ηηη j
|
n

j |ηηη j
〉
, (48)

where |
n
j |ηηη j

〉 is the unnormalized conditional vector from H[ j
E ⊗ HS having the

form

123

385Page 9 of 31



A. Dąbrowska, M. Marciniak

|
n
j |ηηη j

〉 =
+∞∑

m=0

|mξ 〉[ j ⊗ |ψn
j |ηηη j

(m)〉, (49)

where {|ψn
j |ηηη j

(m)〉}, m = 0, 1, . . . is the set of conditional vectors from HS which
satisfy the set of recurrence equations

|ψn
j+1|ηηη j+1

(m)〉 =
+∞∑

m′=0

√(
m + m′

m′

) (√
τξ j

)m′
V̂η j+1m′ |ψn

j |ηηη j
(m + m′)〉, (50)

The operators V̂η j+1r ∈ B(HS) are defined by (10), and initially, we have

|ψn
j=0(m)〉 = am(nγ )|ψ0〉. (51)

For the proof, see A.

Let us emphasize that the infinite set of conditional vectors {|ψn
j |ηηη j

(m)〉} with m =
0, 1, . . . depends on the initial state of the composed system and all results of the
measurements up to jτ . It is seen from the structure of (49) that the a posteriori state
(48) is an entangled state of the system S and the input part of environment. This
entanglement makes the evolution of the system S non-Markovian.

The conditional probability of detecting m photons at ( j + 1)τ given the results of
all measurements up to jτ is defined by

p j+1

(
m| |
̃n

j |ηηη j
〉
)

=
〈
n

j |ηηη j
|V̂†

[ j
(
|m〉 j 〈m| j ⊗ 1

[ j+1
E ⊗ 1S

)
V̂[ j |
n

j |ηηη j
〉

〈
n
j |ηηη j

|
n
j |ηηη j

〉 . (52)

By the property V̂mr = Ô(
√

τ
|m−r |

), we obtain for a detection of zero photons

p j+1

(
0| |
̃n

j |ηηη j
〉
)

= 1 + O(τ ), (53)

and for m ≥ 1 photons

p j+1

(
m| |
̃n

j |ηηη j
〉
)

= O(τm), (54)

where O(.) is the Landau symbol. Therefore, the probability of detecting more than
one photon in the output field in the time interval [kτ, (k + 1)τ ) is an expression of
order O(τ 2). The probability of such detection is equal to zero in the continuous-time
limit, and we ignore the such cases. Now, by neglecting in (50) all terms of order more
than one in τ and the terms associated with the processes of probability of O(τ 2), we
obtain from (50) the following the set of difference equations
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|ψn
j+1|ηηη j+1

(m)〉 = V̂η j+10|ψn
j |ηηη j

(m)〉 + √
(m + 1)τξ j V̂η j+11|ψn

j |ηηη j
(m + 1)〉

(55)

with the system operators

V̂00 = 1̂S − iτ ĤS − τ

2
L̂† L̂ + Ô(τ 2),

V̂10 = √
τ L̂ + Ô(τ 3/2),

V̂01 = −√
τ L̂† + Ô(τ 3/2),

V̂11 = 1̂S + Ô(τ ). (56)

Note that here the random vector ηηη j consists only of zeros and ones. Thus, the system
interacting with the field prepared in the state |nγ,ξ 〉 can absorb or emit at most one
photon in the interval of the length τ . The processes of absorption and emission ofmore
than one photon are not considered because their probabilities are of order O(τ 2).

5 Discrete and continuous evolution equations

We shall show that a recurrence recipe for the state of S is given by an infinite set of
coupled equations. A sequence of measurements performed on the output field gives
rise to the stochastic evolution of the system S. In this section, we describe conditional
as well as unconditional dynamics of S in a discrete and continuous in-time cases.

Let us start from establishing a set of stochastic discrete evolution equations for S.
To this aim, we take the partial trace of the random operator |
̃n

j |ηηη j
〉〈
̃n

j |ηηη j
| over the

environmental part. One can easily check that the reduced state of the system S at the
time jτ has the form

ρ̃ j |ηηη j = ρ j |ηηη j

TrSρ j |ηηη j

, (57)

where

ρ j |ηηη j =
+∞∑

m=0

|ψn
j |ηηη j

(m)〉〈ψn
j |ηηη j

(m)|
⎛

⎝
M−1∑

k= j

τ |ξk |2
⎞

⎠
m

. (58)

Initially, ρ j=0 = |ψ0〉〈ψ0|. Note that the quantum repeated interactions and mea-
surements provides a sequence of random states ρ̃ j |ηηη j , j = 1, 2, . . . of the system S
defining a discrete quantum trajectory on HS . The operator ρ̃ j |ηηη j is the conditional
state of S depending on the results of all measurements performed on the output field
up to time jτ , and the quantity

TrSρ j |ηηη j (59)
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is the probability of a given trajectory.
We shall derive a difference stochastic equation for ρ̃ j |ηηη j . It is a recurrence recipe

for the conditional state of S at the time ( j + 1)τ depending on the conditional state
of S at jτ and a result of the measurement at ( j + 1)τ . For this purpose, we introduce
operators

ρ
n′,n′′
j |ηηη j

=
+∞∑

m=0

|ψn′
j |ηηη j

(m)〉〈ψn′′
j |ηηη j

(m)|
⎛

⎝
M−1∑

k= j

τ |ξk |2
⎞

⎠
m

, (60)

where n′, n′′ ∈ N. Here, {|ψn′
j |ηηη j

(m)〉} for m = 0, 1, 2, . . . are the conditional
vectors from HS , satisfying the recurrence equations of type of (55) and initially
|ψn′

j=0(m)〉 = am(n′
γ )|ψ0〉 with the coefficients {am(n′

γ )} specified by the expansion

|n′
γ,ξ 〉 = ∑+∞

m=0 am(n′
γ )|mξ 〉. Note that we consider different sets of conditional vec-

tors related to different squeezed number states with a fixed parameter γ and function

ξ . One can check that ρn′,n′′
j |ηηη j

=
(
ρ
n′′,n′
j |ηηη j

)†
, ρn′,n′′

j=0 = δn′,n′′ |ψ0〉〈ψ0|, and ρ
n,n
j |ηηη j

= ρ j |ηηη j .

To simplify our notation, we drop the condition ηηη j from now on.
We first determine the recurrence equations for the operators (60) for the case when

the measurement gives us zero photons. If the result of measurement at time ( j + 1)τ
is η j+1 = 0, then referring to Eq. (55) and the relation

‖|mξ 〉[ j+1‖2 = ‖|mξ 〉[ j‖2 − mτ |ξ j |2‖|(m − 1)ξ 〉[ j‖2 + O(τ 2) (61)

following from (20), where ‖ · ‖ = √〈·〉, we obtain for the conditional operator at
( j + 1)τ the formula

ρ
n′,n′′
j+1 = ρ

n′,n′′
j − iτ [ĤS , ρ

n′,n′′
j ] − τ

2

{
L̂† L̂, ρ

n′,n′′
j

}

−τξ j L̂
†

+∞∑

m=0

√
m + 1|ψn′

j (m + 1)〉〈ψn′′
j (m)|

⎛

⎝
M−1∑

k= j

τ |ξk |2
⎞

⎠
m

−τξ∗
j

+∞∑

m=0

|ψn′
j (m)〉〈ψn′′

j (m + 1)|√m + 1

⎛

⎝
M−1∑

k= j

τ |ξk |2
⎞

⎠
m

L̂

−τ |ξ j |2
+∞∑

m=0

(m + 1)|ψn′
j (m + 1)〉〈ψn′′

j (m + 1)|
⎛

⎝
M−1∑

k= j

τ |ξk |2
⎞

⎠
m

+ Ô(τ 2)

(62)

where n′, n′′ ∈ N. Now, it is worth to observe that for any n′ ∈ N the conditional
vectors satisfy the relation

√
m + 1|ψn′

j (m + 1)〉 = √
n′c |ψn′−1

j (m)〉 − √
n′ + 1se2iφ |ψn′+1

j (m)〉. (63)
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To prove it, one can use the general solution to the set of Eq. (55), given in the next
section, and the property (41). With the help of (63), Eq. (62) can be rewritten in the
form

ρ
n′,n′′
j+1 = ρ

n′,n′′
j − iτ [ĤS , ρ j (n

′, n′′)] − τ

2

{
L̂† L̂, ρ j (n

′, n′′)
}

−τξ j L̂
†
(√

n′cρn′−1,n′′
j − √

n′ + 1se2iφρ
n′+1,n′′
j

)

−τξ∗
j

(√
n′′cρn′,n′′−1

j − √
n′′ + 1se−2iφρ

n′,n′′+1
j

)
L̂

−τ |ξ j |2
(√

n′n′′c2ρn′−1,n′′−1
j + √

(n′ + 1)(n′′ + 1)s2ρn′+1,n′′+1
j

)

+τ |ξ j |2
√

(n′ + 1)n′′cse2iφρ
n′+1,n′′−1
j

+τ |ξ j |2
√
n′(n′′ + 1)cse−2iφρ

n′−1,n′′+1
j + Ô(τ 2). (64)

The conditional probability of detecting zero photons at the moment ( j +1)τ given
the a posteriori state of S at jτ was ρ̃ j is defined as

p j+1(0|ρ̃ j ) = TrSρ j+1

TrSρ j
(65)

with ρ j+1 stated by Eq. (64). One then finds that

p j+1(0|ρ̃ j ) = 1 − k jτ + O(τ 2), (66)

where

k j = TrS
{
L̂† L̂ρ̃

n,n
j + ξ j L̂

†
(√

ncρ̃n−1,n
j − √

n + 1se2iφρ̃
n+1,n
j

)

+ξ∗
j L̂

(√
ncρ̃n,n−1

j − √
n + 1se−2iφρ̃

n,n+1
j

)

+|ξ j |2
(
nc2ρ̃n−1,n−1

j + (n + 1)s2ρ̃n+1,n+1
j

)

−|ξ j |2
√
n(n + 1)cs

(
e2iφρ̃

n+1,n−1
j + e2iφρ̃

n−1,n+1
j

)}
(67)

and

ρ̃
n′,n′′
j = ρ

n′,n′′
j

TrSρ j
. (68)

Clearly, ρ̃n,n
j is the conditional state of S at jτ . Now, by

1

TrSρ j+1
= 1

TrSρ j

(
1 + k jτ

) + O(τ 2), (69)
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we finally obtain from (64) the infinite set of difference equations:

ρ̃
n′,n′′
j+1 = ρ̃ j

n′,n′′ + τ

(
k j ρ̃ j

n′,n′′ − i[ĤS , ρ̃
n′,n′′
j ] − 1

2

{
L̂† L̂, ρ̃

n′,n′′
j

})

−τξ j L̂
†
(√

n′cρ̃n′−1,n′′
j − √

n′ + 1se2iφρ̃
n′+1,n′′
j

)

−τξ∗
j

(√
n′′cρ̃n′,n′′−1

j − √
n′′ + 1se−2iφρ̃

n′,n′′+1
j

)
L̂

−τ |ξ j |2
(√

n′n′′c2ρ̃n′−1,n′′−1
j + √

(n′ + 1)(n′′ + 1)s2ρ̃n′+1,n′′+1
j

)

+τ |ξ j |2cs
(√

(n′ + 1)n′′e2iφρ̃
n′+1,n′′−1
j

+√
n′(n′′ + 1)e−2iφρ̃

n′−1,n′′+1
j

)
+ Ô(τ 2) (70)

for n′, n′′ ∈ N.
Now, we have to study the situation when at time ( j + 1)τ a detector registers

a photon. If η j+1 = 1, then from Eqs. (55) and (61), we obtain for the conditional
operators the recurrence formula

ρ
n′,n′′
j+1 = τ

⎡

⎣L̂ρ
n′,n′′
j L̂† + ξ j

+∞∑

m=0

√
m + 1|ψn′

j (m + 1)〉〈ψn′′
j (m)|

M−1∑

k= j

τ |ξk |2 L̂†

+ξ∗
j L̂

+∞∑

m=0

|ψn′
j (m)〉〈ψn′′

j (m + 1)|√m + 1
M−1∑

k= j

τ |ξk |2

+|ξ j |2
+∞∑

m=0

(m + 1)|ψn′
j (m + 1)〉〈ψn′′

j (m + 1)|
M−1∑

k= j

τ |ξk |2
⎤

⎦ + Ô(τ 2).

(71)

Making use of (63), we obtain the equation

ρ
n′,n′′
j+1 = τ

[
L̂ρ

n′,n′′
j L̂† + ξ∗

j L̂
(√

n′′cρn′,n′′−1
j − √

n′′ + 1se−2iφρ
n′,n′′+1
j

)

+ξ j

(√
n′cρn′−1,n′′

j − √
n′ + 1se2iφρ

n′+1,n′′
j

)
L̂†

+|ξ j |2
(√

n′n′′c2ρn′−1,n′′−1
j + √

(n′ + 1)(n′′ + 1)s2ρn′+1,n′′+1
j

)

−|ξ j |2cs
(√

n′(n′′ + 1)e−2iφρ
n′−1,n′′+1
j

+√
(n′ + 1)n′′e2iφρ

n′+1,n′′−1
j

)]
+ Ô(τ 2). (72)
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The conditional probability of detecting a photon at time ( j + 1)τ given the
conditional state of S at jτ was ρ̃ j is defined by

p j+1(1|ρ̃ j ) = TrSρ j+1

TrSρ j
(73)

with ρ j+1 = ρ
n,n
j+1 given by Eq. (71), and one can find that

p j+1(1|ρ̃ j ) = k jτ. (74)

Hence, for the case of detecting a photon at ( j+1)τ , we get for the difference equation
of the form

ρ̃
n′,n′′
j+1 = k−1

j

[
L̂ρ̃

n′,n′′
j L̂† + ξ∗

j L̂
(√

n′′cρ̃n′,n′′−1
j − √

n′′ + 1se−2iφρ̃
n′,n′′+1
j

)

+ξ j

(√
n′cρ̃n′−1,n′′

j − √
n′ + 1se2iφρ̃

n′+1,n′′
j

)
L̂†

+|ξ j |2
(√

n′n′′c2ρ̃n′−1,n′′−1
j + √

(n′ + 1)(n′′ + 1)s2ρ̃n′+1,n′′+1
j

)

−|ξ j |2cs
(√

n′(n′′ + 1)e−2iφρ̃
n′−1,n′′+1
j

+√
(n′ + 1)n′′e2iφρ̃

n′+1,n′′−1
j

)]
, (75)

where n′, n′′ ∈ N.
Let us introduce the stochastic discrete process

N j =
j∑

k=1

ηk, (76)

with the increment defined as


N j = N j+1 − N j = η j+1. (77)

One check, using (66) and (74), that the conditional mean value of 
N j has the form

E[
N j |ρ̃ j ] = k jτ + O(τ 2). (78)

Finally, by combining Eqs. (64) and (75) we obtain the set of filtering difference
equations for the conditional operators ρ̃

n′,n′′
j , where n′, n′′ ∈ N.

Proposition 2 The a posteriori evolution of the system S interacting with the environ-
ment prepared in the state (25) for the measurement of (47) is given by an infinite set
of the coupled difference stochastic equations of the form
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ρ̃
n′,n′′
j+1 = ρ̃

n′,n′′
j + Lρ̃

n′,n′′
j τ + [√n′cρ̃n′−1,n′′

j − √
n′ + 1se2iφρ̃

n′+1,n′′
j , L̂†]ξ jτ

+[L̂,
√
n′′cρ̃n′,n′′−1

j − √
n′′ + 1se−2iφρ̃

n′,n′′+1
j ]ξ∗

j τ

+
{
1

k j

[
L̂ρ̃

n′,n′′
j L̂† + ξ∗

j L̂
(√

n′′cρ̃n′,n′′−1
j − √

n′′ + 1se−2iφρ̃
n′,n′′+1
j

)

+ξ j

(√
n′cρ̃n′−1,n′′

j − √
n′ + 1se2iφρ̃

n′+1,n′′
j

)
L̂†

+|ξ j |2
(√

n′n′′c2ρ̃n′−1,n′′−1
j + √

(n′ + 1)(n′′ + 1)s2ρ̃n′+1,n′′+1
j

)

−|ξ j |2cs
√
n′(n′′ + 1)e−2iφρ̃

n′−1,n′′+1
j

−|ξ j |2cs
√

(n′ + 1)n′′e2iφρ̃
n′+1,n′′−1
j

]
− ρ̃

n′,n′′
j

} (

N j − k jτ

)
, (79)

where

Lρ̃ = −i[ĤS , ρ̃] − 1

2

{
L̂† L̂, ρ̃

}
+ L̂ρ̃ L̂† (80)

and the initial conditions: ρ̃
n′,n′′
j=0 = δn′,n′′ |ψ0〉〈ψ0| for n′, n′′ ∈ N. Here, {â, b̂} =

âb̂+ b̂â. The a posteriori state of S at time jτ is given by ρ̃
n,n
j . The discrete stochastic

process N j characterizing photon counts defined by the observable (47) is uniquely
determined by (66) and (74)

The filtering equations (79) are nonlinear. If a photon was not registered at ( j + 1)τ ,
then 
N j = 0 and (79) reduces to (64), and if a photon was detected at ( j +1)τ , then

N j = 1, all terms proportional to τ in (79) are negligible and (79) is equivalent to
(75). We omitted in Eq. (79) all terms that do not give contribution to the continuous
situation when τ → dt .

Now, taking the average over all trajectories we obtain from (79) the unconditional
(a priori) dynamics of the system S. The a priori state of S at time jτ for j > 0 can be
obtained by taking the mean value of ρ̃ j with respect to the measure defined by (59):

σ
n,n
j = 〈ρ̃n,n

j 〉st . (81)

We take the stochastic mean of (79) in the two steps. First, we use the conditional
mean of the increment
N j and then, we take the mean value of all the other elements
on the past.

Proposition 3 The a priori dynamics of S is given by the infinite set of difference
master equations

σ
n′,n′′
j+1 = σ

n′,n′′
j + Lσ

n′,n′′
j τ + [√n′cσ n′−1,n′′

j − √
n′ + 1se2iφσ

n′+1,n′′
j , L̂†]ξ jτ

+[L̂,
√
n′′cσ n′,n′′−1

j − √
n′′ + 1se−2iφσ

n′,n′′+1
j ]ξ∗

j τ (82)
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where

σ
n′,n′′
j = 〈ρ̃n′,n′′

j 〉st (83)

with the initial condition σ
n′,n′′
j=0 = δn′,n′′ |ψ0〉〈ψ0| for n′, n′′ ∈ N.

We end up this section with the results for the continuous in-time dynamics. We
take the limit of τ → 0 and M → ∞ such that T = Mτ is fixed. In this case, we
obtain from (79) the infinite set of the coupled differential stochastic equations of the
form

dρ̃
n′,n′′
t = Lρ̃

n′,n′′
t dt + [√n′cρ̃n′−1,n′′

t − √
n′ + 1se2iφρ̃

n′+1,n′′
t , L̂†]ξtdt

+[L̂,
√
n′′cρ̃n′,n′′−1

t − √
n′′ + 1se−2iφρ̃

n′,n′′+1
t ]ξ∗

t dt

+
{
1

kt

[
L̂ρ̃

n′,n′′
t L̂† + ξ∗

t L̂
(√

n′′cρ̃n′,n′′−1
t − √

n′′ + 1se−2iφρ̃
n′,n′′+1
t

)

+ξt

(√
n′cρ̃n′−1,n′′

t − √
n′ + 1se2iφρ̃

n′+1,n′′
t

)
L̂†

+|ξt |2
(√

n′n′′c2ρ̃n′−1,n′′−1
t + √

(n′ + 1)(n′′ + 1)s2ρ̃n′+1,n′′+1
t

)

−|ξt |2cs
√
n′(n′′ + 1)e−2iφρ̃

n′−1,n′′+1
t

−|ξt |2cs
√

(n′ + 1)n′′e2iφρ̃
n′+1,n′′−1
t

]
− ρ̃

n′,n′′
t

}
(dNt − ktdt) (84)

with

kt = TrS
{
L̂† L̂ρ̃

n,n
t + ξ∗

t L̂
(√

ncρ̃n,n−1
t − √

n + 1se−2iφρ̃
n,n+1
t

)

+ξt L̂
†
(√

ncρ̃n−1,n
t − √

n + 1se2iφρ̃
n+1,n
t

)

+|ξt |2
(
nc2ρ̃n−1,n−1

t + (n + 1)s2ρ̃n+1,n+1
t

)

−|ξt |2
√
n(n + 1)cs

(
e2iφρ̃

n+1,n−1
t + e2iφρ̃

n−1,n+1
t

)}
(85)

and the initial condition of the form ρ̃
n′,n′′
t=0 = δn′,n′′ |ψ0〉〈ψ0|. Here, Nt is the stochastic

counting process with the increment dNt = Nt+dt − Nt having the conditional mean
value

E[dNt |ρ̃t ] = ktdt . (86)

For the process Nt we get the relation (dNt )
2 = dNt , reflecting the fact that we can

detect at most one photon in time interval [t, t + dt). Note that kt is the intensity of
Nt and ktdt is the conditional mean number of photons detected from t to t + dt . If
we put s = 0 and c = 1, which means that we take γ = 0, then (84) reduce to the set
of stochastic equations for the number photon state derived in [35, 37]. We would like
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to emphasize that the set of filtering equations (84) agrees with the results published
in [39].

Clearly, taking finally the limit of T → +∞, we get for ξ ∈ L2[0,∞) the
normalization condition

∫ ∞

0
|ξt |2dt = 1. (87)

By taking the mean of (84), we obtain the set of master differential equations
describing the a priori dynamics of S. The reduced dynamics of S is given by the
infinite set of differential equations

d

dt
σ
n′,n′′
t = Lσ

n′,n′′
t + [√n′cσ n′−1,n′′

t − √
n′ + 1se2iφσ

n′+1,n′′
t , L̂†]ξt

+[L̂,
√
n′′cσ n′,n′′−1

t − √
n′′ + 1se−2iφσ

n′,n′′+1
t ]ξ∗

t (88)

with the initial condition σ
n′,n′′
t=0 = δn′,n′′ |ψ0〉〈ψ0|. The a priori state of S is given by

σt = σ
n,n
t . It is clear that for the parameters s = 0 and c = 1 the infinite set of master

equations (88) gives the set of (n+ 1)2 equations for the number photon state [27, 35,
37]. The set of master equations (88) one can derive directly from the set of master
equations for the input field prepared in the number photon state, see B.

6 Quantum trajectories and photon statistics

In this section, we present the solution to the set of stochastic master equations for
discrete as well as continuous in-time dynamics. We display moreover the a priori
state of the system by means of the quantum trajectories. The starting point in our
discussion is the solution to the set of discrete stochastic equations (55). We return in
this section to the notation with conditional subscripts.

6.1 Discrete case

The general solution to the set of Eqs. (55) can be written in the form

|ψn
j |ηηη j

(m)〉 =
[
V̂η j0V̂η j−10 . . . V̂η10am(nγ )

+
j∑

k=1

√
(m + k)!

m!
∑

rrr∈N j :∑l rl=k

←−
j−1∏

l=0

√
τ
rl
ξ
rl
l V̂ηηηl+1rl am+k(nγ ) ]|ψ0〉,

(89)

where m = 0, 1, 2, . . ., the vector rrr consists only zeros and ones, and the arrow
denotes time-ordered products. Let us stress that we get an infinite set of conditional
vectors which depend on the initial state of the composed system and on all results of
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the measurement performed on the output field up to time jτ . One can write down it
for some explicit scenarios of detection. Instead of writing the whole sequence of all
results from0 to jτ , we indicate onlymoments of counts in the realization of stochastic
vector ηηη j = (η j , . . . , η1). Thus, the string (ls, . . . , l1), where 0 < l1 < . . . < ls ≤ j ,
means that we detected exactly s photons at moments τi = liτ (i = 1, . . . , s) and no
other photons from time 0 to jτ . Of course, any li ≥ 1. Let us introduce the operators:

Âi = V̂−i−1
00

√
τξi V̂01V̂

i
00, (90)

Êl = V̂−l
00 V̂10V̂

l−1
00 , (91)

D̂l = V̂−l
00

√
τξl−1V̂11V̂

l−1
00 , (92)

where i = 0, 1, 2, . . . and l = 1, 2, . . .. Note that Âi is associated with an absorption
of a photon by S at time iτ , Êl with an emission of a photon by S at time lτ , and
D̂l with a detection of a photon coming directly from the input field at time lτ . Using
these operators, we can express the conditional vectors at time jτ for m = 0, 1, 2, . . .
as follows:

1. for detecting no photons from 0 to jτ , we obtain

|ψn
j |0(m)〉 = V̂ j

00

⎡

⎣am(nγ ) +
j∑

k=1

√
(m + k)!

m!
j−1∑

ik= j−1

ik−1∑

ik−1= j−2

. . .

i2−1∑

i1=0

Âik Âik−1 . . . Âi1am+k(nγ )

⎤

⎦ |ψ0〉, (93)

2. for a detection of a photon at time lτ and no other photons from 0 to jτ , we get:

|ψn
j |l(m)〉 =

j∑

k=0

√
(m + k)!

m! R̂ j |l(k)am+k(nγ )|ψ0〉, (94)

where

R̂ j |l(0) = V̂ j
00 Êl , (95)

R̂ j |l(1) = V̂ j
00

⎛

⎝D̂l + Êl

l−2∑

i=0

Âi +
j−1∑

i=l

Âi Êl

⎞

⎠ (96)

R̂ j |l(2) = V̂ j
00

⎛

⎝D̂l

l−2∑

i=0

Âi +
j−1∑

i=l

Âi D̂l + Êl

l−2∑

i2=1

i2−1∑

i1=0

Âi2 Âi1

+
j−1∑

i2=l

Âi2 Êl

l−2∑

i1=0

Âi1 +
j−1∑

i2=l+1

i2−1∑

i1=l

Âi2 Âi1 Êl

⎞

⎠ , (97)
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R̂ j |l(3) = V̂ j
00

⎛

⎝D̂l

l−2∑

i2=1

i2−1∑

i1=0

Âi2 Âi1 +
j−1∑

i2=l

Âi2 D̂l

l−2∑

i1=0

Âi1

+
j−1∑

i2=l+1

i2−1∑

i1=l

Âi2 Âi1 D̂l + Êl

l−2∑

i3=3

i3−1∑

i2=2

i2−1∑

i1=0

Âi3 Âi2 Âi1

+
j−1∑

i3=l

Âi3 Êl

l−2∑

i2=1

i2−1∑

i1=0

Âi2 Âi1 +
j−1∑

i2=l+1

i2−1∑

i1=l

Âi2 Âi1 Êl

l−2∑

i=0

Âi

+
j−1∑

i3=l+3

i3−1∑

i2=l+2

i2−1∑

i1=l

Âi3 Âi2 Âi1 Êl

⎞

⎠ , (98)

and so on. In a general case, for detection of s photons at times l1τ, l2τ, . . . , lsτ , where
l1 < l2 < . . . < ls , and no other photons from 0 to jτ , the conditional vectors can be
expressed as

|ψn
j |ls ,...,l2,l1(m)〉 =

j∑

k=0

√
(m + k)!

m! R̂ j |ls ,...,l2,l1(k)am+k(nγ )|ψ0〉 (99)

The formula for the conditional operator R̂ j |ls ,...,l2,l1(k) becomes more and more com-
plicated with increasing numbers k and s, but all expressions in this formula follow
two simple rules:

1. the number of photons emitted by S plus the number of detected photons which
came directly from the input field is equaled to s:

nE + nD = s, (100)

2. the number of photons absorbed by S plus the number of detected photons which
came directly from the input field is equaled to k:

nA + nD = k. (101)

The physical interpretations of the terms in the formula for R̂ j |ls ,...,l2,l1(k) are not so
complex. One can easily recognize there two sources of the detected photons: the
input field and system S. These two kinds of photons are indistinguishable for the
observer. Clearly, for a particular system S not all terms give nonzero contribution
to the conditional vector |ψn

j |ls ,...,l2,l1(m)〉. For instance, if S is a two-level atom, all
terms with the two or more successive absorptions disappear.

6.2 Continuous case

We would like to provide analytical formulae for the conditional as well as uncondi-
tional state of S and characterize the statistics of the output photons by means of the
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exclusive probability densities [65]. Let us notice that all realization of the counting
stochastic process Nt may be divided into disjoint sectors: Cs containing trajecto-
ries with exactly s detected photons in the nonoverlapping intervals [t1, t1 + dt1),
[t2, t2 + dt2), . . ., [ts, ts + dts) lying in the interval (0, t], where t1 < t2 < . . . < ts .
In order to write down the conditional vectors in compact forms, we introduce the
operators

T̂t = e−i Ĝt , (102)

where Ĝ = ĤS − i
2 L̂

† L̂ is a non-Hermitian Hamiltonian,

Ât = −T̂−tξt L̂
†T̂t , (103)

Êt = T̂−t L̂ T̂t . (104)

Let us notice that T̂t describes free propagation of S up to time t , Ât corresponds to
an absorption of a photon by S at t , and Êt to an emission of a photon by S at time t .

In the continuous time limit, we obtain the conditional vectors at time t of the form:

1. from (93) for zero photons from 0 to t :

|ψn
t |0(m)〉 = T̂t

[
am(nγ ) +

+∞∑

k=1

√
(m + k)!

m!
∫ t

0
dtk

∫ tk

0
dtk−1

. . .

∫ t3

0
dt2

∫ t2

0
dt1 Âtk Âtk−1 . . . Ât2 Ât1am+k(nγ )

]
|ψ0〉, (105)

2. from (94) for one photon detected at the time t1 and no other counts in the interval
(0, t]:

|ψn
t |t1(m)〉 =

+∞∑

k=0

√
(m + k)!

m! R̂t |t1(k)am+k(nγ )|ψ0〉, (106)

where from the expressions (95)–(97), respectively, we get

R̂t |t1(0) = √
dt1T̂t Êt1 , (107)

R̂t |t1(1) = √
dt1 T̂t

[
ξt1 + Êt1

∫ t1

0
ds Âs +

∫ t

t1
ds Âs Êt1

]
, (108)

Rt |t1(2) = √
dt1 T̂t

[
ξt1

∫ t1

0
ds Âs +

∫ t

t1
ds Âs ξt1

+Êt1

∫ t1

0
ds′

∫ s′

0
ds Âs′ Âs +

∫ t

t1
ds′ Âs′ Êt1

∫ t1

0
ds Âs

+
∫ t

t1
ds′

∫ s′

t1
ds Âs′ Âs Êt1

]
, (109)
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R̂t |t1(3) = √
dt1 T̂t

[
ξt1

∫ t1

0
ds′

∫ s′

0
ds Âs′ Âs

+ξt1

∫ t

t1
ds′

∫ t1

0
ds Âs′ Âs + ξt1

∫ t

t1
ds′

∫ s′

t1
ds Âs′ Âs

+Êt1

∫ t1

0
ds′′

∫ s′′

0
ds′

∫ s′

0
ds Âs′′ Âs′ Âs

+
∫ t

t1
ds Âs Êt1

∫ t1

0
ds′′

∫ s′′

0
ds′ Âs′′ Âs′

+
∫ t

t1
ds′′

∫ s′′

t1
ds′ Âs′′ Âs′ Êt1

∫ t1

0
ds Âs

+
∫ t

t1
ds′′

∫ s′′

t1
ds′

∫ s′

t1
ds Âs′′ Âs′ Âs Êt1

]
, (110)

and so on.

The a priori state of S at time t can be expressed by the conditional operators as

σt = ρt |0 +
+∞∑

s=1

∫ t

0
dts

∫ ts

0
dts−1 . . .

∫ t2

0
dt1ρt |ts ,ts−1,...,t2,t1 (111)

where

ρt |0 =
+∞∑

m=0

umt |ψn
t |0(m)〉〈ψn

t |0(m)| (112)

with

ut =
∫ +∞

t
dt ′|ξt ′ |2 (113)

and

dtsdts−1 . . . dt1ρt |ts ,ts−1,...,t2,t1

=
+∞∑

m=0

umt |ψn
t |ts ,ts−1,...,t2,t1(m)〉〈ψn

t |ts ,ts−1...,t2,t1(m)|.

(114)

We have here the sum over all photons detection pathways that might take place
from 0 to time t . They could involve s detections where s could change from 0 to
∞. The operators under integrals are interpreted as the unnormalized conditioned
density operator of S associated with different scenarios of photon detections. For
instance, ρt |0 refers to the situation when we do not observe any photons up to t while
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ρt |ts ,ts−1,...,t2,t1 to the case when s photons were registered in the intervals [t1, t1+dt1),
[t2, t2 + dt2), . . ., [ts, ts + dts), where t1 < t2 < . . . < ts . The formula (111) is a
decomposition of the reduced state of S by means of quantum trajectories associated
with the counting process Nt . We would like to emphasis that this solution is not
unique, i.e., considering homodyne or heterodyne measurement schemes, we would
get different stochastic representation of σt .

One can use the conditional vectors to find the statistics of the counting of the output
photons. The probability of not observing any photons up to time t is given as

Pt
0(0) =

+∞∑

m=0

〈ψn
t |0(m)||ψn

t |0(m)〉
(∫ +∞

t
dt ′|ξt ′ |2

)m

. (115)

The exclusive probability density pt0(ts, ts−1, . . . , t2, t1) for a trajectory corresponding
to s detections in the interval from 0 to t in the intervals [t1, t1 + dt1), [t2, t2 + dt2),
. . ., [ts, ts + dts), where 0 < t1 < t2 < . . . < ts is given as

pt0(ts, ts−1, . . . , t2, t1)dtsdts−1 . . . dt1

=
+∞∑

m=0

〈ψn
t |ts ,ts−1,...,t2,t1(m)||ψn

t |ts ,ts−1,...,t2,t1(m)〉
(∫ +∞

t
dt ′|ξt ′ |2

)m

(116)

Hence, the probability of registering exactly s photons up to time t is

Pt
0(s)=

∫ t

0
dts

∫ ts

0
dts−1. . .

∫ t2

0
dt1 p

t
0(ts,ts−1,. . .,t2, t1). (117)

7 Example: the photon profile for themost efficient transfer of the
field photons into the cavity

Let us assume that a quantum system interactingwith awave packet is a cavitymode—
a harmonic oscillator. In this section, we study the problem of choosing an optimal
photon profile that gives the most efficient transfer of photons from the wave packet
into the cavity. First, we assume that the traveling field is prepared in the number state,
and then, we consider the case of the input field in the squeezed number state. We
write down the Hamiltonian of the system in the rotating frame, that is

ĤS = 
â†â, (118)

where 
 = ω0 − ωc, where ω0 is the frequency of the cavity mode and ωc stands for
the central frequency of the input wave packet. We take the coupling operator of the
form

L̂ = √
�â, (119)
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where � > 0. Let us emphasize that ξt is a slowly varying envelop of the pulse [62,
69]. Let us assume that the harmonic oscillator is initially in the vacuum state |0〉.
The probability that there are n photons inside cavity at time t is given by Pnξ (t) =
‖|ψn

t |0(0)〉‖2. The conditional vector |ψn
t |0(0)〉 refers to the case when we do not detect

any photons up to t and the input field after t is in the vacuum state. Clearly, it means
that all photons from the wave packet were absorbed by the cavity and stayed there
up to t . One can check that then

Pnξ (t) = �nn!e−n�t

∣∣∣∣∣

∫ t

t0
dtn

∫ tn

t0
dtn−1 . . .

∫ t3

t0
dt2

∫ t2

t0
dt1

n∏

i=1

ξti e

(
i
+ �

2

)
ti

∣∣∣∣∣

2

,(120)

which can be expressed as

Pnξ (t) = �ne−n�t
∣∣∣∣
∫ t

t0
dsξse

(
i
+ �

2

)
s
∣∣∣∣
2n

. (121)

We have assumed here that the interaction between the systems starts in an arbitrary
moment t0.

Proposition 4 The maximum value of the probability of n excitations at time t > t0
for the cavity mode prepared in the vacuum state and the input field in |nξ 〉 reads as

Pmax
nξ

(t) := max
ξ

Pnξ (t) = e−n�t (e�t − e�t0
)n

, (122)

and is realized only at the resonance (i.e., 
 = 0) by the pulse of the profile

ξs =
√

�

e�t − e�t0
e

�
2 s (123)

for s ∈ [t0, t], and ξs = 0 elsewhere.

Thus, we obtain a perfect transfer, i.e., Pn(t) = 1, for an exponential pulse rising in
the interval (−∞, t]. If the input field is prepared in the squeezed number state |nγ,ξ 〉,
then the probability that the mean number of photons inside the cavity at time t is
equal to c2n + s2(n + 1) is given by

Pnγ,ξ (t) =
+∞∑

k=0

�kk!e−k�t
∣∣∣∣
∫ t

t0
dsξse

(
i
+ �

2

)
s
∣∣∣∣
2k

|ak(nγ )|2. (124)

Proposition 5 The maximum value of the probability of the transfer of the wave packet
photons into the cavity at time t > t0 for the cavity mode prepared in the vacuum state
and the input field in |nγ,ξ 〉 is
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Pmax
nγ,ξ

(t) := max
ξ

Pnγ,ξ (t) =
+∞∑

k=0

e−k�t (e�t − e�t0
)k |ak(nγ )|2 (125)

and is realized only at the resonance (i.e., 
 = 0) by the pulse of the profile

ξs =
√

�

e�t − e�t0
e

�
2 s (126)

for s ∈ [t0, t], and ξs = 0 elsewhere.

The proofs for (4) and (5) are given in C.

8 Summary

We have derived the sets of filtering and master equations for an open quantum system
coupled to the continuous-mode field prepared in the squeezed number state. We have
shown that the quantum system becomes then entangled with the input and output
parts of the field and the conditional and unconditional evolutions of the system are
given by infinite sets of coupled equations. We have determined the evolution of the
quantum system starting from the discrete in-time model where the traveling field
is defined by a sequence of harmonic oscillators that interact one by one with the
quantum system. The harmonic oscillators are subsequentlymonitored. The procedure
of determining the conditional state of the system for discrete measurements is based
on von Neumann’s projection postulate. Clearly, random results of the measurements
lead to random sequence of the system states. The discrete model gives an intuitive
picture to interaction of the wave packet in the squeezed state with the quantum system
and to the stochastic evolution. We have finally obtained the results for the continuous
in-time measurement and evolution of the system. Our sets of differential stochastic
equations and master equations agree with the results determined by means of QSC in
[39]. We have not only determined the filtering equations, but we have also found the
analytical formulae for quantum trajectories associatedwith the countingmeasurement
performed on the output field and we have given the physical interpretation to the
quantum trajectories. In this paper, one can find, moreover, a decomposition of the a
priori state by means of conditional operators associated with the stochastic counting
process. It is a generalization of the famous formula for unraveling of the reduced
evolution of an open quantum system coupled to the vacuum field [2]. The conditional
operators were also applied to obtain the formula for the probability of zero counts
up to t and the expressions for exclusive probability densities which allow to fully
characterize the photon statistics in the output field. In simple illustrative example, we
have shown how to use the conditional vectors to solve the problem of the transfer of
the photons from the wave packet to the cavity. By choosing the rising profile for the
photons, the probability of a perfect transfer could be arbitrary close to unity.
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Appendix A: Proof of Theorem (1)

We proof Theorem (1) using an induction. Thus, we will show that if (49) holds for j ,
then it also holds for j + 1. We start from an observation that the conditional vector
|
 j |ηηη j 〉 fromH[ j

E ⊗ HS can be rewritten in the form

|
n
j |ηηη j

〉 =
+∞∑

m=0

m∑

m′=0

√(
m

m′

)
(
√

τξ j )
m′ |m′〉 j ⊗ |(m − m′)ξ 〉[ j+1 ⊗ |ψn

j |ηηη j
(m)〉(A1)

which follows from the fact that

|mξ 〉[ j+1 =
m∑

m′=0

√(
m

m′

)
(
√

τξ j )
m′ |m′〉 j ⊗ |(m − m′)ξ 〉[ j+1. (A2)

From an action of the unitary operator V̂[k on |
 j |ηηη j 〉, we have
V̂[k |
n

j |ηηη j
〉 =

=
+∞∑

m=0

m∑

m′=0

√(
m

m′

)
(
√

τξ j )
m′

+∞∑

i=0

|i〉 j ⊗ |(m − m′)ξ 〉[ j+1

⊗Vim′ |ψn
j |ηηη j

(m)〉. (A3)

The conditional vector |
n
j+1|ηηη j+1

〉 from H[ j+1
E ⊗ HS is defined by

(
|η j+1〉 j 〈η j+1| ⊗ 1

[ j+1
E ⊗ 1S

)
V̂[k |
n

j |ηηη j
〉 = |η j+1〉 j ⊗ |
n

j+1|ηηη j+1
〉, (A4)

where η j+1 ∈ N is the random result of the measurement of (47) at the time τ( j + 1).
Hence, we obtain the formula

|
n
j+1|ηηη j+1

〉 =
+∞∑

m=0

m∑

m′=0

√(
m

m′

)
(
√

τξ j )
m′ |(m − m′)ξ 〉[ j+1 ⊗ Vη j+1m′ |ψn

j |ηηη j
(m)〉.
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(A5)

To get the recurrence formulae (50), we change the index of summation by inserting
s = m − m′ such that

|
 j+1|ηηη j+1〉 =
+∞∑

s=0

|sξ 〉[ j+1 ⊗
+∞∑

m′=0

√(
s + m′
m′

)
(
√

τξ j )
m′
Vη j+1m′ |ψ s+m′

j |ηηη j
〉. (A6)

And this ends the proof. ��
Appendix B: Master equations

In order to derive the set of master equations describing the evolution of the system
S, we can use the representation of the squeezed number states {|nγ,ξ 〉} in the basis
of the photon number states {|mξ 〉} and the fact that evolution operator is linear. Thus,
for the system operator

σ
n′,n′′
j = TrE (Û j |n′

γ,ξ 〉〈n′′
γ,ξ | ⊗ |ψ0〉〈ψ0|Û †

j ). (B7)

by the expansion

|n′
γ,ξ 〉〈n′′

γ,ξ | =
+∞∑

m′,m′′=0

am′(n′
γ )a∗

m′′(n′′
γ )|m′

ξ 〉〈m′′
ξ | (B8)

we obtain

σ
n′,n′′
j =

+∞∑

m′,m′′=0

am′(n′
γ )am′′(n′′

γ )�m′m′′
j , (B9)

where

�
m′,m′′
j = TrE (Û j |m′

ξ 〉〈m′′
ξ | ⊗ |ψ0〉〈ψ0|Û †

j ). (B10)

The a priori state of S for the initial state of the composed system defined by (46) is
given by

σ
n,n
j =

+∞∑

m′,m′′=0

am′(nγ )a∗
m′′(nγ )�

m′,m′′
j . (B11)

It was shown in [27, 35, 37] that the system operator �
m′,m′′
j satisfy the equation

�
m′,m′′
j+1 = �

m′,m′′
j + L�

m′,m′′
j + √

m′[�m′−1,m′′
j , L̂†]ξ j

+[L̂, �
m′,m′′−1
j ]√m′′ξ∗

j , (B12)
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where L is the superoperator in the form of (80). We have here an infinite number of
coupled equations. Making use of (41), we obtain

+∞∑

m′=1

+∞∑

m′′=0

√
m′am′(n′

γ )a∗
m′′(n′′

γ )�
m′−1,m′′
j

=
+∞∑

m′,m′′=0

√
m′ + 1am′+1(n

′
γ )a∗

m′′(n′′
γ )�

m′,m′′
j

= √
n′cσ n′−1,n′′

j − √
n′ + 1se2iφσ

n′+1,n′′
j . (B13)

Using this result, one can easily check that from (B12) we obtain for the operator
σ
n′,n′′
t the master equation (82).
It is worth to notice that one can use the photon number representation and the set of

equations (B12) to find approximate solution defining the reduced state of S. It is clear
that according to the convergence of (B11) the contribution to (B9) of expressions for
m′,m′ → ∞ goes to zero.

Appendix C: Proof to 4 and 5

Let us introduce ξ̃s = e−iωcsξs ∈ C. To maximize the probabilities (121) and (124),
one has to maximize the expression

∣∣∣∣
∫ t

t0
dsξ̃se

(
iω0+ �

2

)
s
∣∣∣∣
2

= |〈ξ̃ | f 〉t0,t |2 (C14)

where fs = e

(
−iω0+ �

2

)
s
, and we have introduced an inner product

〈ξ̃ | f 〉t0,t :=
∫ t

t0
ξ̃s f

∗
s ds. (C15)

The maximum value of (C15) we obtain for the profile ξ̃s parallel to fs , that is,
ξ̃s = c(t0, t) fs , where c(t0, t) is a constant (depending on fixed times t0 and t), such
that

〈ξ̃ |ξ̃〉 = 1. (C16)

These conditions allow to calculate

ξ̃s =
√

�

e�t − e�t0
e

(
−iω0+ �

2

)
s

(C17)

for s ∈ [t0, t], and ξs = 0 for s > t and s < t0. Clearly, the maximum excitation is
realized at resonance ωc = ω0, i.e., 
0 = 0. �
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38. Dąbrowska, A.: From a posteriori to a priori solutions for a two-level system interacting with a single-
photonwavepacket. J. Opt. Soc. Am.B 37, 1240–1248 (2020). https://doi.org/10.1364/JOSAB.383561

39. Gross, J.A., Baragiola, B.Q., Stace, T.M., Combes, J.: Master equations and quantum trajectories
for squeezed wave packets. Phys. Rev. A 105, 023721-1–023721-32 (2022). https://doi.org/10.1103/
PhysRevA.105.023721

40. Gough, J.: Quantum white noises and the master equation for Gaussian reference states. Russ. J. Math.
Phys. 10, 142–148 (2003)

41. Filtering and Control in Quantum Optics. arXiv:quant-ph/0410080
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