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Abstract

In this article, we consider a spin-spin interaction network governed by XX+Y Y Hamiltonian. The vertices
and edges of the network represent the spin objects and their interactions, respectively. We take a privilege to
switch on or off any interaction, that assists us to perform multiple perfect state transfers in a graph simulta-
neously. We also build up a salable network allowing quantum communication between two arbitrary vertices.
Later we utilize the combinatorial characteristics of hypercube graphs to propose a static routing schema to
communicate simultaneously between a set of senders and a set of receivers in a planar network. Our construc-
tion is new and significantly powerful. We elaborate multiple examples of planar graphs supporting quantum
routing where classical routing is not possible.

Keywords Perfect state transfer, quantum routing, scalable quantum communication network, hypercube.

1 Introduction

In the theory of quantum information processing [1–3], we perform different communication tasks using quantum
networks, for example, quantum state transfer, routing, switching and splitting of quantum signals, etc [4–8]. We
encode the information to be communicated onto quantum states. The elementary unit of quantum information is
the qubit, which is a well-defined physical system to store the logical 0 and 1 as well as their arbitrary superpositions.
A quantum network is a combination of a number of physical objects generating the qubits. The vertices of the
network correspond to the qubits. We built up a larger network by linking a number of nodes together. Similarly,
a quantum computing device consists of qubits, which are essentially static entities. We link distinct quantum
processors effectively to transfer quantum information with high fidelity between different processors of quantum
computing hardware. It supports the DiVincenzo criteria for scalable quantum architecture [9].

Instead of moving the qubits physically between different parts of a quantum architecture, we can realize buses
for quantum states to travel between different locations. The quantum state will be transferred from qubit to
qubit due to the interactions between spin objects, which neglects the necessity of moving entities. An example of
such a system is a spin chain that consists of many permanently coupled qubits. In this article, we will use the
terms qubits and spins interchangeably. Therefore, we may use a spin chain of static qubits to transport arbitrary
quantum states from one place to another [10, 11]. This strategy enables us to fabricate “all solid-state” chips
containing only a single species of qubits for information processing and transport. The interaction between spins
is modelled by different types of spin-spin interaction Hamiltonians. The dynamics of XX + Y Y Hamiltonian are
utilized to connect remote registers of a scalable quantum architecture, in this work. This spin chain architecture
provides the idea of data buses and entanglers between two extreme ends of the spin chain [12].

Another motivation behind the present work comes from superconducting quantum devices. The supercon-
ducting qubits can be treated as the vertices in a network. The edges correspond to microwave buses joining the
qubits. The effective Hamiltonian [13] representing two qubits of frequency ω1,2 interacting with a transmission line
resonator with resonance frequency ωr, modeling the cavity, is given by

Heff =
~ω1

2
σz
1 +

~ω2

2
σz
2 + ~(ωr + ξ1σ

z
1 + ξ2σ

z
2)a

†a+ ~J(σ−
1 σ+

2 + σ−
2 σ

+
1 ). (1)

The above Hamiltonian is obtained for the qubits strongly detuned from the resonator and after an adiabatically
elimination of the resonant Jaynes-Cummings interaction. Here ξ1,2 are the frequency shifts which can be calculated
from the detunings and the coupling strength of the resonator to the qubits. This can be generalized for an arbitrary
number of qubits coupled to the same mode of the cavity resonator. The last term in the above Hamiltonian
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~J(σ−
1 σ+

2 + σ−
2 σ

+
1 ) is the flip-flop interaction through virtual interaction with the resonator. Note that, this term

can be converted into an XX + Y Y Hamiltonian.
In this work, we first propose a method to construct a scalable quantum network, where we can communicate

between two arbitrary vertices using Perfect State Transfer (PST). Then, we build up a quantum routing schema.
In classical communication, routing is a process for finding paths in a network to communicate between a set of
senders and a set of receivers [14]. There have been many attempts to utilize the idea of state transfer in quantum
routing [15–20]. These proposals allow state transfer between two vertices of a network with a probability of less
than 1. Our idea is significantly different, in this context. We apply PST in every step of our communication
protocol. Moreover, all of our networks are planar. The motivation behind considering planar graphs is building
a quantum architecture which can be designed on a planar chip. The senders and receivers are the nodes at the
infinite face of the network. The senders transmit quantum information to the receivers using a number of PST
via a sequence of subgraphs. In classical routing, we find out a number of edge-disjoint paths between the senders
and the receivers. This is not essential in the case of quantum routing. One subgraph may support communication
between two pairs of senders and receivers, which may be considered an advantage of quantum communication.

This article is distributed as follows. The next section describes a number of preliminary ideas on quantum
state transfer and graph theory. In section 3, we establish a mathematical foundation which makes multiple state
transfer in a network possible. In section 4, we construct a number of scalable quantum communication networks
where we can communicate between any two vertices. Section 5 is dedicated to quantum routing. We propose a
static routing protocol on arbitrary planar graphs.

2 Preliminary ideas

A graph G = (V (G), E(G)) is a combination of a vertex set V (G) and an edge set E(G) ⊂ V (G)× V (G) [21]. We
represent a spin-spin interaction with a graph. The vertices correspond to the qubits or spin objects. If two spins
are allowed to interact, we join the corresponding vertices by exactly one edge and vice versa. In this article, we
consider the interaction Hamiltonian as

HXY =
1

2

∑

(u,v)∈E(G)

Ju,v(σ
u
xσ

v
x + σu

yσ
v
y). (2)

Here, Ju,v is the coupling strength between two spin objects located at the vertices u and v. Also, σu
p = I2 ⊗ I2 ⊗

. . . σp(u-th position) ⊗ · · · ⊗ I2, where σp = σx and σy, are the Pauli x and y operators, respectively. Here, we
assume that all possible coupling strength are equal to 1, which makes G a simple graph.

The adjacency matrix of a graph G with n vertices is defined by A(G) = (ai,j)n×n, where ai,j = 1 if (i, j) ∈ E(G)
and ; ai,j = 0 otherwise. It is proved that action of HXY on C2n is equivalent to the action of exp(−ιA(G)t) on
Cn when Ju,v = 1 for all (u, v) ∈ E(G) [22]. Now, corresponding to every vertex u ∈ V (G) we assign a basis vector
of Cn, which is denoted by |u〉. There is a Perfect State Transfer (PST) between the vertices u and v at time
t = τ if 〈v| exp(−ιA(G)τ)|u〉 = 1. For PST u and v must belong to the same connected component. PST is a rare
phenomenon [23–25]. There is no PST between two vertices if G contains no edge.

As mentioned above, we will limit ourselves to planar graphs in this work. We can embed a planar graph on
a plane in such a way that its edges intersect only at their endpoints. When a planar graph is depicted without
edges crossing, the vertices and edges divide the plane into regions or faces. The infinite face surrounds all other
regions. A number of well-known planar graphs allowing PST are depicted in the figure 1. They are path graphs
with 2 and 3 vertices as well as the hypercube graphs of 4 and 8 vertices [26]. Note that, a hypercube graph with
more than 8 vertices is not a planar graph.

Given two graphs G1 = (V (G1), E(G1)) and G2 = (V (G2), E(G2)) we write G1 = G2 if V (G1) = V (G2),
E(G1) = E(G2) and they have same vertex labeling. A graph G1 is said to be a subgraph of a graph G2 if V (G1) ⊂
V (G2) and E(G1) ⊂ E(G2). The union of two graphs G1 and G2 is a new graph G = G1∪G2 = (V (G), E(G)), such
that, V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2). Note that, G1 and G2 are subgraphs of G1 ∪ G2. In a
similar fashion we can define G = G1∪G2∪. . . Gm for m subgraphs G1, G2, . . . Gm. If A(Gi) is the adjacency matrix
of Gi, then the adjacency matrix of G is given by a block diagonal matrix A(G) = diag{A(G1), A(G2), . . . , A(Gm)}.
It is easy to prove that

exp(−ιA(G)τ) = diag{exp(−ιA(G1)τ), exp(−ιA(G2)τ), . . . , exp(−ιA(Gm)τ)}. (3)

A path of length p is a sequence of distinct vertices and edges {v1, e1, v2, e2, . . . ep, vp+1}, such that ei = (vi, vi+1)
for i = 1, 2, . . . p. Two paths are said to be edge-disjoint if there is no edge belonging to both the paths. Two
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Figure 1: Examples of well-known planar graphs with PST [11].

subgraphs G1 and G2 are said to be disjoint if V (G1) ∩ V (G2) = ∅ and E(G1) ∩E(G2) = ∅. A graph is said to be
connected if there is a path between any two vertices. Connectivity between two vertices is an equivalence relation.
The equivalence classes are called the connected components of a graph. The distance between two vertices u and v

is denoted by d(u, v) and defined by the length of the shortest path between them. The diameter of a graph is d =
maxu,v∈V (G) d(u, v), that is the maximum distance between any two vertices in it. The eccentricity ǫ(v) of a vertex
v is the greatest distance between v and any other vertex in the graph. Symbolically, ǫ(v) = maxu∈V (G) d(v, u).
The radius of a graph is r, which is the minimum eccentricity of the vertices in G. A central vertex in a graph of
radius r is a vertex with eccentricity r. The set of all central vertices in G is denoted by C(G), which is called the
centre of G.

3 Hamiltonian engineering

Hamiltonian engineering was utilized in NMR for achieving NMR diffraction in solid [27,28]. We turn on couplings
between a number of selective excitations [29] and decouple then dynamically. We can accomplish simultaneous
tunability of the coupling strengths by exploiting the magnetic-field gradients. The goals of Hamiltonian engineering
is summarized as follows [30, 31]:

1. The cancellation of unwanted couplings, that is Ju,v = 0 if the edge (u, v) is not involved in PST.

2. Performing a PST with the remaining couplings with Ju,v = 1.

In this work, we compare the coupling between qubits with the edges between the nodes. Therefore, switching on
or off a particular edge is equivalent to coupling and decoupling the interactions. Here, we mathematically justify
how PST holds in a graph after switching on or off a number of edges.

Lemma 1. Let G be a graph with n vertices allowing PST between u and v at time τ . Then there is a state transfer

between u and v at time τ in the graph G′ = G ∪ v1 ∪ v2 ∪ · · · ∪ vm, where v1, v2, . . . vm are isolated vertices of any

number m.

Proof. As there is a PST between u and v at time t = τ , there are vectors |u〉 = [0, 0, . . . 1(u-th position), . . . 0]†

and |v〉 = [0, 0, . . . 1(v-th position), . . . 0]† in C
n, such that, 〈v| exp(−ιA(G)τ)|u〉 = 1. Note that, A(G′) is a block

diagonal matrix given by A(G′) = diag{A(G), 0, 0, . . . 0(m- times)}. Corresponding to the vertices u and v define
new vectors |U〉 and |V 〉 in Cn+m such that |U〉 = [〈u| , 0, 0, . . . 0(m- times)]†, and |V 〉 = [〈v| , 0, 0, . . .0(m- times)]†.
Now,

exp(−ιA(G′)τ) = diag{exp(−ιA(G)τ),−ιτ,−ιτ, · · · − ιτ(m- times)}
or 〈V | exp(−ιA(G′)τ)|U 〉 = 〈V | diag{exp(−ιA(G)τ),−ιτ,−ιτ, · · · − ιτ(m- times)}|U〉

= 〈v| exp(−ιA(G)τ)|u〉 − ιτ × 0− ιτ × 0 · · · − ιτ × 0(m- times) = 1

(4)

Therefore, there is a state transfer from vertex u to v in the new graph G′.
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(a) Original graph. We want to
transfer the state from vertex 1 to
vertex 4.
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2

3
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(b) First PST from vertex 1 to 3
at time τ = π

√

2
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0.
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(c) Second PST from vertex 3 to 4
at time τ = π

2
, by keeping J1,2 =

J2,3 = 0.

Figure 2: A path graph of length 4 does not support PST between vertices 1 and 4. But, we can communication
between them using two PST.

Lemma 2. Let G1, G2, . . .Gm be the graphs allowing PSTs between the vertices ui and vi at time τi, where ui and

vi ∈ V (Gi) for i = 1, 2, . . .m. Then, there are PSTs between ui and vi at time τi in the graph G = G1∪G2∪· · ·∪Gm.

Proof. Let the graph Gi has ni vertices for i = 1, 2, . . .m. Then G has n = n1+n2+ . . . nm vertices. Corresponding
to the vertices ui and vi we define the vectors of dimension ni such that |ui〉 = [0, 0, . . .1(ui-th position), . . . 0]† and
|vi〉 = [0, 0, . . . 1(vi-th position), . . . 0]† ∈ Cni . As there is a PST from ui to vi we can write 〈vi| exp(−ιA(Gi)τi)|ui〉 =
1. Corresponding to a vector |ui〉 ∈ C

ni construct a new vector |Ui〉 ∈ C
n where |Ui〉 = [〈01| , 〈02| , . . . 〈ui| , . . . 〈0m|]†,

where 〈0j| is all zero vector of dimension nj. Now

〈Vi| exp(−ιA(G)τi)|Ui〉 = 〈Vi| exp(−ιdiag{A(G1), A(G2), . . . A(Gi) . . . A(Gm)}τi)|Ui〉
= 〈Vi| diag{exp(−ιA(G1)τi), exp(−ιA(G2)τi), . . . , exp(−ιA(Gi)τi), . . . exp(−ιA(Gm)τi)}|Ui〉
= 〈01| exp(−ιA(G1)τi)|01〉+ 〈02| exp(−ιA(G2)τi)|02〉+ · · ·+ 〈vi| exp(−ιA(Gi)τi)|ui〉

+ · · ·+ 〈0m| exp(−ιA(Gm)τi)|0m〉
= 0 + 0 + · · ·+ 1 + · · ·+ 0 = 1.

(5)

Therefore, there is a PST between vertices ui and vi in the graph G.

Lemma 2 suggests that perfect state transfer is possible simultaneously between two vertices in a connected
component of G. Let G1, G2, . . . Gm be the graphs allowing PSTs between the vertices ui and vi ∈ V (Gi) at
time τ for all i = 1, 2, . . .m. Then, there are simultaneous PSTs between ui and vi at time τ in the graph
G = G1 ∪ G2 ∪ · · · ∪ Gm. Therefore, switching off a number of interactions we can generate multiple connected
components allowing PSTs between vertices simultaneously. This process modifies the interaction Hamiltonian.

It is practically difficult to keep the coupling strengths equal throughout the PST process. Therefore, the state
transfer cost is proportional to the number of edges in the subgraph. To reduce the state transfer cost, we should
construct the subgraphs with the minimum number of edges. Among the graphs performing PST at time π√

2
at a

distance 2 depicted in the the figure 1 path graph of length 2 has minimum number of edges.
Now we discuss how to use Hamiltonian engineering to transfer information from a sender to a receiver located

at the vertices s and r, respectively. For simplicity, we assume that this switching operation on the edges is not time
consuming. Consider a sequence of vertices s = s0, s1, s2, . . . sp = r and a sequence of subgraphs G0, G1, . . . Gp−1

such that s0 ∈ V (G0); sj ∈ V (Gj−1) ∩ V (Gj) for j = 1, 2, . . . (p − 1); and sp ∈ Gp−1. In addition, Gj allows PST
from sj to sj+1 for j = 0, 1, 2, . . . p− 1. During PST in the subgraph Gj all the edges in E(G)−E(Gj) will remain
switched off. This operation converts the graph G to another graph G′ which is Gj union a number of isolated
vertices. Lemma 1 suggests that a PST is possible in G′ from sj to sj+1. In the next step, we switched off the edges
in Gj and switched on the edges in Gj+1, which makes the next PST possible. Therefore, we need p number of
PSTs to transfer the information from s to r using the sequence of subgraphs {Gj}. We describe this process with
an example in figure 2. These ideas influence the development of quantum routing and procedures for generating
scalable quantum communication network, which we shall discuss in the next two sections.

4



4 Construction of scalable network allowing communication between

any two vertices

Our objective for constructing a network is twofold. We place a sender and a receiver at two distinct vertices of a
graph. First, we want to enable them to communicate using a sequence of PSTs. Next, we can increase the number
of nodes in the graph to make the network scalable.

Definition 1. We define a graph as p-PST if we can communicate between any two vertices in it using at most p

number of perfect state transfers.

A few examples of 1-PST graphs are available in figure 1. They need no switching operation for information
transfer. All complete graphs, complete bipartite graphs, star graphs, wheel graphs, friendship graphs, and Petersen
graphs are 1-PST. Examples of 2 PST graphs are path graphs with 4 or 5 vertices and cycle graphs with 6 to 9
vertices. The following lemma relates the diameter of the graph and the number of required PSTs to communicate
between any two vertices.

Lemma 3. Any planar graph with a diameter at most 2p is p-PST. Also, the state transfer time between any two

vertices representing a sender and a receiver is at most pπ√
2
.

Proof. The diameter of the graph is 2p. Therefore, three are at least two vertices u and v, such that d(u, v) = 2p
and a path consists of the vertices u = u0, u1, u2, . . . u2p = v. Now break the path from u to v into paths of length
2, which are G0 = {u0, u1, u2}, G1 = {u2, u3, u4}, . . . , Gp−1 = {u2p−2, u2p−1, u2p}. Using the graph Gi we perform
a PST from u2i to u2i+2 at time τ = π√

2
by keeping all edges in E(G)−E(Gi) switched off. In this way, we transfer

the state from u to v using at most p PSTs at time pπ√
2
.

The above lemma suggests that if the planar graph G has diameter d then we need at most d
2 PST if d is an

even number. Here, state transfer time is dπ√
2
. If d is an odd number then we need at most

[

d
2

]

+ 1 PSTs. The

state transfer time is
[

d
2

]

π√
2
+ π

2 , where
[

d
2

]

denotes the greatest integer not greater than d
2 . In this case, we do

[

d
2

]

PSTs of length 2. Each of them takes time π√
2
and 1 PST with length 1 that takes time π

2 .

Now, we describe two procedures to build up an infinitely scalable network supporting PST between any two
vertices. We start the process with an initial graph G0 with a fixed planar embedding. From G0 we create an infinite
sequence of planar graphs Gi supporting quantum communication between any two of its vertices. The construction
of infinite families of planar graphs with fixed diameter is studied in [32]. To discuss the first procedure we introduce
the idea of the glued graph, which is a new graph G generated from two given graphs G1 and G2 by glueing a vertex
of G1 with a vertex of G2 [33, 34].

Definition 2. Glued graph: Let G1 and G2 be two graphs such that V (G1) = {v1,1, v1,2, . . . v1,n1
} and V (G2) =

{v2,1, v2,2, . . . v2,n2
}. We glue v1,n1

and v2,1 two build up a new graph G with V (G) = {vi : i = 1, 2, . . . (n1+n2−1)}
where vi = v1,i for 1 ≤ i ≤ n1 and vi = v2,i−n1+1 where n1 ≤ i ≤ (n1+n2−1). Also, E(G) = {(vi, vj) : (v1,i, v1,j) ∈
E(G1) and 1 ≤ i, j ≤ n1} ∪ {(vi, vj) : (v2,i−n1+1, v2,j−n1+1) ∈ E(G2) and n1 ≤ i, j ≤ (n1 + n2 − 1)}. We denote

G = G1 f
1,n1

2,1 G2.

Consider planar graphs G1 and G2, such that v1,n1
∈ C(G1) and v2,1 ∈ C(G2). It is easy to observe that if v2,1

lies at the boundary of the infinite face of G2, then the glued graph G1 f
1,n1

2,1 G2 is a planar graph. Let ri and di

be the radius and diameter of the graphs Gi, respectively for i = 1 and 2. Then, the diameter of G1 f
1,n1

2,1 G2 will
be max{d1, d2, r1 + r2}.

Procedure 1. Let the initial graph G0 has n0 vertices and v0,n0
∈ C(G0). Consider the planar graphs Gi such

that vi,1 ∈ C(Gi) and vi,1 lies at the boundary of infinite face of Gi for i = 1, 2, . . . . Define G′
0 = G0. In the i-th

iteration generate a new graph G′
i = G′

i−1 f
0,n0

i,1 Gi for i = 1, 2, 3, . . . .

In procedure 1, if Gi contains ni vertices for i = 0, 1, 2, . . . , then number of vertices in G′
k will be

∑k

i=0 nj − k.
Clearly, Gi is a subgraph of G′

k for all i = 0, 1, 2, . . . k. Let the radius and diameter of Gi are ri and di, respectively.
Consider any two vertices u and v of G′

k. If u and v in V (Gi) for some i, then we can communicate between them
using at most

[

di

2

]

+ 1 PSTs. If u and v belong to Gi and Gj , respectively, for i 6= j, then we can construct a path
between u and v via v0,n0

. Length of the path is at most ri + rj , as v0,n0
is a central vertex of both Gi and Gj .

The number of required PSTs is
[

ri+rj
2

]

+ 1.
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v0,1

(a) Example of procedure 1: The initial graph G0 con-
sists of a single vertex a. We add C4 graphs with it. All
the new graphs are 2-PST.

u

v

. . . . . .

(b) Example of procedure 2: The graph G0 = C4. We
add new vertices in the graph and join that with u and v

to construct G1, G2, . . . . All the new graphs are 1-PST.

Figure 3: Construction of scalable planar graphs allowing communication using PSTs

For example, let G0 be a graph with only one vertex v0,1 and Gi = C4, the cycle graph with 4 vertices for
i = 1, 2, . . . . Note that, the single vertex in G0 is trivially a central vertex. Any vertex of C4 is a central vertex and
all of them lies at the boundary of the infinite face. We glue a vertex of C4 with v0,1 in every step of the iteration.
The new graph is depicted in figure 3a. Here, we need at most two PSTs to transfer information between any two
vertices. Also, the maximum state transfer time is

√
2π.

This procedure increases the degree of vertex v0,n1
in every step which acts as a hub in the communication

network. This may be considered a drawback of this procedure. Removing this vertex will generate a large number
of disjoint subgraphs and which will reduce the efficiency of the communication network.

Procedure 2. Let u and v be any two vertices on the boundary of infinite face of the graph G0. Construct new

graphs Gi = (V (Gi), E(Gi)) where V (Gi) = V (Gi−1)∪{vi} and E(Gi) = E(Gi−1)∪{(u, vi), (v, vi)} for i = 1, 2, . . . .

Procedure 2 is advantageous as compared to procedure 1. If di is diameter of the sequence of graphsGi generated
by procedure 2 then we can prove di+1 ≥ di for i = 0, 1, 2, . . . . It reduces the number of PSTs when the size of
network increases and di+1 > di for some i. Moreover, it generates two hubs u and v. An example of procedure 2
is depicted in figure 3b. Here, G0 = C4. In every step, we add new vertices with two particular vertices u and v in
G0.

5 Routing in arbitrary planar graph

In classical communication, a planar routing problem is defined on a planar graph G with n vertices and a fixed
embedding in a plane [35]. A net Ni is a pair of vertices (si, ri) on the boundary of the infinite face of G. Here si
and ri denotes the i-th sender and receiver in the graph. The set containing all considered nets is Ne = {Ni : i =
1, 2, . . . q}. The classical routing problem is to find a set of pairwise edge-disjoint paths Pi corresponding to the net
Ni ∈ Ne, such that Pi connects the two terminals si and ri of Ni, simultaneously for all i [36]. Here, the solver
wants to find the shortest paths joining the two ends of the nets. In static routing, we can not add or remove any
vertex or edge throughout the communication process.

We reformulate the routing problem to solve it in the domain of quantum communication. Here also, we cannot
add or remove any vertex or an edge in the graph permanently. But, to perform a sequence of PSTs we keep a
number of edges switched off in a particular time interval. Given a planar graph and a set of nets Ne the quantum
routing problem is to communicate between the terminals of the nets using PSTs. The solution of this problem
contains a sequences of subgraphs {Gj}j=0,1,...p supporting PST with the following characteristics:

1. For every net corresponding to i = 1, 2, . . . q there is a sequence of vertices si = si,0, si,1, si,2, . . . si,p = ri and
a sequence of subgraphs G0, G1, . . .Gp−1 such that si,0 ∈ G0; si,j ∈ Gj−1 ∩ Gj for j = 1, 2, . . . (p − 1); and
si,p ∈ Gp.

2. The subgraph Gj either allows PST from si,j to si,j+1 or keeps the state unmoved at si,j .

3. In Gj we have si,j 6= sk,j and si,(j+1) 6= sk,(j+1). Note that Gj allows PST from si,j to si,(j+1), and from sk,j
to sk,(j+1) simultaneously. Either si,j = sk,j , or si,(j+1) = sk,(j+1) will make PST impossible.
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We represent the quantum routing process with a routing table. Corresponding to every net we make a row where
we register the sequence of vertices from sender to the receiver. We use the subgraphs Gj to perform j-th PST,
which correspond a column in the routing table. If the subgraph Gj allows PST from si,j to si,j+1, we denote
(si,j , si,j+1) in i-th row and j-th column. If Gj keeps the state at si,j unmoved we mark {si,j} in i-th row and j-th
column. Note that G0 and Gp are the subgraphs without any edge.

Now, we present the examples to demonstrate that quantum routing is more efficient than its classical coun-
terpart. Consider the graph in figure 4a with two nets N1 = (1, 5) and N2 = (6, 4). Note that, there are no
edge-disjoint paths P1 and P2 joining the terminals points of N1 and N2, respectively. Therefore, simultaneous
classical communication between the terminals of N1 and N2 is not possible for the graph in 4a. We can transfer
information using PST from 1 to 2 and 6 to 7 simultaneously keeping all edges switched off except (1, 2) and (6, 7).
Then, we switched off the edges (1, 2) and (6, 7) and switched on the edges in the hypercube which is the induced
subgraph generated by the vertices {2, 3, 7, 8}. Simultaneous PST is possible from 2 to 8 and 7 to 3, in this hyper-
cube. Next, we switched off the hypercube and switched on the edges (3, 4) and (8, 5) to perform PST from 3 to 4
and from 8 to 5. Therefore, this graph supports simultaneous quantum communications between the terminals of
N1 and N2. The quantum routing is described in the following routing table:

Subgraphs for PSTs
Net G0 G1 G2 G3 G4

i = 1 (1, 5) {1} (1, 2) (2, 8) (8, 5) {5}
i = 2 (6, 4) {6} (6, 7) (7, 3) (3, 4) {4}

Here, G1 is a subgraph with two edges (1, 2) and (6, 7) as well as isolated vertices 3, 4, 8 and 5. Also, G2 is the
hypercube consists of four vertices {2, 3, 7, 8} as well as four isolated vertices 1, 4, 5 and 6. For the final PST we
use the subgraph G3. It has edges (3, 4) and (8, 5) and isolated vertices 1, 2, 6 and 7. The initial and final graphs
G0 and G4 have no edge in them.

Similarly, in the graph of figure 4b consider nets N1 = (8, 12), N2 = (9, 13), N3 = (15, 10) and N4 = (14, 11).
Edge disjoint paths joining the terminals of these nets are impossible. Therefore, we can not perform classical
communication between the terminals of these nets simultaneously. Hence, classical routing in planar graph is
impossible for the graph in 4b. But, we can do quantum routing similarly, as enunciated in the table below:

Subgraphs for PSTs
Net G0 G1 G2 G3 G4 G5 G6

i = 1 (8, 12) {8} (8, 3) {3} (3, 6) (6, 12) {12} {12}
i = 2 (9, 13) {9} {9} (9, 4) (4, 1) {1} (1, 13) {13}
i = 3 (15, 10) {15} (15, 7) {7} (7, 0) (0, 10) {10} {10}
i = 4 (14, 11) {14} {14} (14, 2) (2, 5) {5} (5, 11) {11}

Note that, the subgraphG3 is the hypercube with 8 vertices depicted in 1d along with the isolated vertices 8, 9, . . .15.
Here, we utilize PSTs on hypercube for simultaneous quantum communication between distinct senders and receivers
in nets. The other Gjs are subgraphs consists of paths of lengths 1 or 2 for making state transfer between the
indicated vertices in the table.

6 Conclusion and discussions

In this work, we develop a method for quantum communication between any two vertices of a planar graph using
multiple PSTs. The foundation of multiple PSTs in a graph is Hamiltonian engineering which allows us to remove
unwanted couplings between spin objects to perform a particular PST. In the language of graph theory, it is a
graph switching method which switch on and off a number of edges to build up a particular subgraph allowing PST
between two selected vertices. We discuss two methods to build up a scalable network where we can communicate
between two arbitrarily chosen vertices using multiple PSTs. We then illustrate an idea of quantum routing on a
planar graph where we keep multiple senders and receivers on the boundary of the infinite face of the graph. Our
examples show that quantum routing is more efficient than their classical counterparts.

Quantum routing based on PST is a well-studied topic in literature. It is proved in [37] that routing with a
single state transfer between many different recipients is impossible. Therefore, multiple PST is essential for routing
which we explain in this article. Performance of multiple PST needs control over the interactions. This could be
experimentally challenging. In addition, it has been demonstrated that very modest controls on the interactions
achieve routing with a high transfer rate [18,38]. In [15], a PST based routing protocol is developed. It is proved that
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(a) Consider two nets (1, 5) and (6, 4). There is no two
edge disjoint paths from 1 to 5 and from 6 to 4. Therefore,
classical routing is not possible. But, we can communicate
simultaneously from 1 to 5 and from 6 to 4 using a sequence
of PSTs.

0

12

3

5

67

4
8

9

11

10

13

1215

14

(b) Classical routing is not possible when the nets are (8, 12),
(9, 13), (15, 10) and (14, 11). But quantum communication
is possible using a sequence of PSTs.

Figure 4: In figure 4a and 4b the hypercubes are the induced subgraphs generated by the vertex sets {2, 3, 7, 8} and
{0, 1, 2, 3, 4, 5, 6, 7}, respectively. A hypercube graph allows PST between its antipodal vertices. It facilitates us to
perform quantum routing using all nets.

PST is possible between any two vertices u and v in the graph K −{(u, v)}, which is the complete graph excluding

the particular edge (u, v). If the graph K − {(u, v)} has n vertices then it has (n+1)(n−2)
2 edges. Our procedure

allows all to all communication where the graph consists of any number of edges which can be considerably less

than (n+1)(n−2)
2 . Although a complete solution to the quantum routing problem in the plane will be a challenging

task.
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