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Abstract The hash function is an important branch of cryptology. Controlled
quantum walk based hash function is a kind of novel hash function, which is
safe, flexible, high-efficient, and compatible. All existing controlled quantum
walk based hash functions are controlled by one bit message in each step. To
process message in batch amounts, in this paper, controlled alternate quan-
tum walk based block hash function is presented by using the time-position-
dependent controlled quantum walks on complete graphs with self-loops. The
presented hash function accelerate the hash processing dramatically, so it is
more high-efficient.

Keywords block cipher · Hash Function

1 Introduction

The hash function is an important branch of cryptology. The Hash function
includes all irreversible functions that can be used to map arbitrary size data
onto fixed-size data. The values returned by a hash function are called hash
values. A hash function allows one to easily verify whether some input data
map onto a given hash value, but if the input data is unknown it is deliberately
difficult to reconstruct it by knowing the stored hash value. There are many
theoretical studies about classical hash functions and mature hash functions
such as MD5, SHA1, and SHA512. Furthermore, hash functions can be used in
message authentication code and public key infrastructure. These hash func-
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tions are generally constructed based on mathematics complexity and thus
they are computationally secure.

The rapid development of quantum computation brings a great challenge
to cryptology. Shor’s integer factorization algorithm collapses the security of
many public-key cryptography protocols. Grover search algorithm threatens
the security of all symmetric cryptography protocols. Therefore, how to de-
velop secure cryptology is very important. Except for post-quantum cryptogra-
phy, quantum cryptography [1] is the principal method, for instance, quantum
key distribution. Quantum computation plays an unignorable act in the field
of quantum cryptography.

Quantum walk, the quantum counterparts of classical random walks, is
an underlying mathematical model in realizing quantum computation. Alter-
nate quantum walks, quantum walks with memory, quantum walks on differ-
ent kinds of graphs are presented in Ref. [2,3,4,5,6] for different purposes.
Quantum walk has wide applications in quantum computation and quantum
communication, such as database searching, element distinctness, graph iso-
morphism testing, and quantum network communication.

In 2013, Li et. al. [7,8] presented the two-particle controlled interacting
quantum walk (CIQW) and CIQW-based quantum hash function. A compre-
hensive analysis of CIQW proved that it is suitable for designing quantum
hash functions. This quantum hash function guarantees the security of the
hash function by the irreversibility of measurement rather than hard mathe-
matic problems. This work opens the door to the research of the controlled
quantum walk (CQW)-based hash function.

In the next years, the CQW-based hash function attracts much atten-
tion from researchers. Many kinds of controlled quantum walk on diffident
graphs are introduced for building different CQW-based hash functions. Yang
et. al. [9] improved the CIQW-based quantum hash function and found its
applications in the privacy amplification process of quantum key distribution,
pseudo-random number generation, and image encryption. After that, Yang
et.al [10] present a quantum hash function based on the controlled quantum
walk on Johnson graphs, which has a lower collision rate and quantum resource
cost. The CQW-based hash function with a controlled quantum walk on cycles
is also presented by Yang et.al [11] in 2018. The CQW-based hash function
with a controlled quantum walk on cycles with two coins is presented by Yang
et.al [12] in 2019. Besides, the CQW-based hash function with a decoherent
quantum walk on a cycle is shown by Yang et.al [13] in 2021.

In 2018, Li et.al. [14] presented the controlled alternate quantum walk
(CAQW)-based quantum hash function. The controlled alternate quantum
walk saves quantum resource costs dramatically. Then, the controlled alter-
nate quantum walk is used in constructing pseudo-random number generator
and quantum color image encryption [15,16,17,18]. Zhou presented the hash
function based on controlled alternate quantum walks with memory in 2021
[19]. They claim that the proposed hash function has near-ideal statistical
performance.
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Although the research on CQW-based hash function thriving, how to im-
prove the efficiency is an important research orientation. In each step of the
existing CQW till now, the coin operator is controlled by a one-bit message.
That is not efficient enough especially when the controlled quantum walk is
executed on a quantum computer, due to the difficulties in implementing a
quantum computer.

To speed up the enforcement efficiency of the CQW-based hash function
further, in this paper, the time-position-dependent CAQW on complete graphs
with self-loops is introduced to build the controlled alternate quantum walk-
based block hash function (CAQWBH). CAQWBH could accelerate the hash
processing dramatically by processing a message in batch amounts. Complete
graphs with self-loops are chosen for constructing hash functions that satisfy
the avalanche characteristic.

The paper is structured as follows. In Sect.2 and Sect.3, a time-position-
dependent CAQW on complete graphs with self-loops and CAQWBH are
presented respectively. The security analysis and statistical performance of
CAQWBH are discussed in Sect.4 and Sect. 5. In Sect. 6, extensions of CAQWBH,
including message verification code and pseudo-random number generator are
presented. Finally, a discussion is given in Sect.7.

2 A Time-position-dependent Controlled Alternate Quantum walk
on complete graphs with self-loops

In this section, a time-position-dependent CAQW on a complete graph with
self-loops is introduced for the construction of CAQWBH. Complete graphs
with self-loops are chosen for the reason that CAQWBH must satisfy the
avalanche characteristic.

Suppose GN is the complete graph with N vertexes and N self-loops. Here
N = 2q. The time-position-dependent CAQW on GN takes place in the prod-
uct space Hp ⊗ Hc. Hp is spanned by {|x〉, x ∈ {0, · · · , N − 1}}. Further-
more, Hp can also be described as {|xq, · · · , x1〉, xi ∈ {0, 1}. Hc is spanned by
{|c〉, c ∈ {0, 1}}.

Let |x, c〉 or |xq, · · · , x1, c〉 be a basis state, where x and c represent the
position and the coin state of the walker respectively. In each step of the time-
position-dependent CAQW on GN , the evolution of the whole system can be
described by the global unitary operator, denoted by U ,

U(t) = S5CS4CS3CS2CS1C. (1)

The coin operator C = (
∑

x |x〉〈x| ⊗C2(x, t)) is a time-position-dependent
unitary operator. The 2-dimensional operator C2(x, t) is customarily described
as follows.

C2,i =

(
cos(θi) sin(θi)
sin(θi) −cos(θi)

)
(2)
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Two parameters θ0, θ1 are selected from (0, π/4)∪ (π/4, π/2) to construct two
unitary operators C2,0 and C2,1 respectively. For each t, C(t) is controlled by
a N -bit binary string, i.e. message.

The shift operators Si is defined by

Si =
∑
x,c

| xi + c(mod 2) 〉〈 xi| ⊗ |c 〉〈 c|. (3)

As a result, U(t) is controlled by a N -bit message for each t. If the length of
the message is not a multiple of N , the Hadmard matrix is the default choice
for C2,i.

Then, the final state can be expressed by

|ψt〉 = U(t)× · · · × U(1)|ψ0〉, (4)

where |ψ0〉 is the initial state of the total quantum system. Hence the proba-
bility of finding the walker at position x after t steps is

P (x, t) =
∑
c

| 〈x, c|U(t)× · · · × U(1)|ψ0〉 |2. (5)

Due to the evolution of quantum walks is obtained by taking the Kronecker
product of sparse matrices, being executed on a quantum computer or being
simulated on a classical computer are efficient and undemanding.

It needs to be emphasized that if the underlying graph is not a complete
graph, two different messages may lead to the same probability distribution
on purpose.

3 The Controlled Alternate Quantum Walk-Based Block Hash
Function

CAQWBH is constructed by running the time-position-dependent CAQW on
GN . The process of CAQWBH is described as follows:

1. Select the parameters (N, k, (θ1, θ2), αi). θ1, θ2 ∈ (0, π/2), i ∈ {0, · · · , N −
1} and

∑
i |αi|2 = 1. θ1, θ2 are the parameters of the two coin operators

respectively.
2. Initialize the quantum system. The initial state is |0〉(

∑
i αi|i〉). Then run

the time-position-dependent CAQW on GN one step under the control of
a binary string which is consisted of N 0s. The purpose of this step is to
make sure the quantum system begins with a superposition state that all
probability amplitudes are nonzero.

3. Run the time-position-dependent CAQW onGN to get the final state under
the control of the message. The default option for C2 is the Hamdmard
matrix, if the length of the message is not a multiple of N .

4. Post-processing of the probability distribution to get the hash value. Multi-
ply all values in the resulting pseudo-probability distribution by 10k. Then
retain the remainders of modulo 2k to form a binary string as the hash
value. The bit length of the hash value is N × k.
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Table 1 The relation between the parameters and the length of the hash value

Hash Instances N k message length at time t
CAQWBH-256 N = 32 k = 8 32t
CAQWBH-512 N = 64 k = 8 64t

As a hash function, apart from satisfying the basic requirements, CAQWBH
is flexible, high-efficient, and compatible. Concrete analysis is as follows.

Flexible: CAQWBH with the hash value of different lengths are easy to
construct by changing the parameters N and k rather than the structure of
CAQWBH. The relation between the parameters and the length of the hash
value is shown in Table. 1.

High-efficient: In each step of the time-position-dependent CAQW on GN ,
the coin operator is controlled by a N -bit message. Therefore, CAQWBH can
process message in batch amount, which could accelerate the hash processing
dramatically compare to other CQW-based hash functions.

Compatible: CQW-based hash function is compatible to be executed on a
quantum computer or a classical computer. So is CAQWBH. To get the accu-
rate probability distribution, the time-position-dependent CAQW needs to be
executed many times on a quantum computer. At the same time, CAQWBH
is safe and even more high-efficient on a classical computer for the present.
Taking the difficulty of the commercialization of the quantum computer into
consideration. CAQWBH is practical in current hardware technology.

4 Security analysis

The security of CAQWBH is based on the irreversibility of measurement and
the modulo arithmetic.

1. By using the modulo operator, the probability distribution is transformed
to the hash value. This process is irreversible because it is a many-to-one
relationship. The probability of transforming the hash value back to the
right probability distribution is approximately 0. It is the first shield to
protect the message from unauthorized persons.

2. The second shield of CAQWBH is the irreversibility of measurement. The
final state of the time-position-dependent CAQW is in the following form
|ψt〉 =

∑
x,c λx,c| x, c 〉. This state is a pure state and is linear with the

initial state. The probability distribution is the sum of squares of the prob-
ability amplitudes, i.e. P (x) =

∑
c | λx,c |2. As a result, the final state is

easy to obtain by a quantum computer or a classical computer. However,
the measurement processing breaks the linearity between the final state
and the initial state. And the chance of decomposing the probability as the
sum of squares of probability amplitudes is 0.

Above two irreversible computational processes guarantee that it is impos-
sible to backtrack the final state from the hash value. Therefore, it is impossible
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to obtain the message, let alone find another message who can generate the
same hash value, even though the initial state is public.

5 Statistical Performance Analysis

In this section, we performed several hash tests to evaluate the performance
of CAQWWBH. N = 8, k = 8, cos(θ1) = 3/5, cos(θ2) = 8/17 are chosen
in this part. The initial state is |0〉p|0〉c. And the hash value we consider
here is 256 bits. The results show that CAQWBH have outstanding statistical
performance.

5.1 Sensitivity of hash value to message

Let Mes1 be the original message. Mes2, Mes3, Mes4 represent the mes-
sages with tiny modifications of Mes1. The results listed below show the high
sensitivity to the message and the tiny changes.

Condition 1: Random choose an original message Mes1;
Condition 2: Flip a bit of Mes1 at a random position and then obtain the

modified message Mes2;
Condition 3: Delete a bit from Mes1 at a random position and then obtain

the modified message Mes3;
Condition 4: Insert a random bit into Mes1 at a random position and then

obtain the modified message Mes4;
The sensitivity of the hash value to message is assessed by comparing the

hash values of the modified messages with that of the original one. And the
corresponding 256-bit hash values in the hexadecimal format are given by:

Condition 1: B267FDFA71168265F4AF9B71FFDB446F
51C116F2D74B2DBC3CF53C0A16E2821E;
Condition 2: 199F165B52D947673372A5EB2516F061
BD3CD821C0D00DC348FEDED083BDC4DF;
Condition 3: 58E54047F19DA2459BE3B39809B04586
33C189DE0492068665CB6B8D29B28367;
Condition 4: 086B23C50D8D9E2E5931A08F3E0D2D88
112EE1663C403D7D1E68142BDE7A8B0F.
The plots of the hash values in the binary format are shown in Fig.1.

It clearly indicates that any tiny modification to the message will cause a
substantial change in the final hash value. A similar result can be obtained
using any other instances of CAQWBH. Therefore, the output hash value of
CAQWBH is highly sensitive to its input message.

5.2 Statistical analysis of diffusion and confusion

The diffusion and confusion tests are performed as follows:
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Fig. 1 Plots of the 256-bit Hash Value C1, C2, C3 and C4

(1) Random choose an original message Mes1 and generate the correspond-
ing hash value;

(2) Flip a bit of Mes1 at a random position to obtain Mes2 and generate
a new hash value;

(3) Compare the two hash values and count the number of changed bits at
the same location called Bi;

(4) Repeat steps (1) to (3) T times.
The diffusion and confusion properties of CAQWBH are assessed based on

the following indicators:
Minimum changed bit number Bmin = min({Bi}T1 );
Maximum changed bit number Bmax = max({Bi}T1 );

Mean changed bit number B =
∑T

i=1Bi/T ;
Mean changed probability P = (B/128)× 100%;

Standard deviation of the changed bit number4B =
√

1
T−1

∑T
i=1(Bi −B)2;

Standard deviation of the changed probability4P =
√

1
T−1

∑T
i=1(Bi/128− P )2×

100%.
The diffusion and confusion tests are perforemed T = 10000 times as shown

in Table 2. We concluded from the tests that the mean changed bit number
B and the mean changed probability P are close to the ideal value 64 and
50% respectively. 4B and 4P are very little, Bmin and Bmax are around 64,
so that it demonstrates the stability of diffusion and confusion. The excellent
statistical effect ensures that it is impossible to forge plaintext-cipher pairs
given known plaintext-cipher pairs.
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Table 2 Static Number of Changed Bit B

T=10000 B P (%) 4B 4P Bmin Bmax

CAQWBH-256 128.11 50.05 7.90 3.09 99 156

5.3 Uniform distribution on hash space

In order to check the distribution capacity in hash space, we generated two
hash values according to the method described in previous subsection and
then counted the number of the changed bits at each location. The statistical
results for T = 10, 000 are shown in Fig.2. The mean of the changed bit number
5004.58 is very close to the ideal value 5000, which accounts for half of the
test times. It can be concluded that the hash value is distributed uniformly
in the hash space as all the changed bit numbers are around the ideal value.
Obviously, this demonstrates the resistance against statistical attack.

Fig. 2 Uniform Distribution on Hash Space.

5.4 Collision analysis

It is hard to provide a mathematical proof on the capability of collision re-
sistance of chaotic hash functions. Thus, we performed tests for analyzing
collision resistance. Let WT (ω) the number of draws on which the hash values
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of the original and modified message contain ω bytes with the same value at
the same location. It is a common indicator of the collision resistance property.
If the experimental result of WT (ω) is very close to the theoretical value, then
the hash function could be regarded as having a good property of collision
resistance.

The collision tests are performed as follows:
(1) Random choose an original message Mes1 and generate the correspond-

ing hash value in byte format;
(2) Flip a bit of Mes1 at a random position to obtain Mes2 and generate

a new hash value in byte format;
(3) Compare the two hash values and count the number of same bytes at

the same location called ω;
(4) Repeat steps (1) to (3) T times.
From the meaning of ω,

ω =

T∑
i=1

δ(ei − e′i) (6)

where δ(x) is the Dirac delta function. ei and e′i are the ith entries of the
original and the new hash value in byte format respectively.

Then, through T = 10000 independent tests, WT (ω) can be computed
according to the following formulas:

WT (ω) = T × Prob{ω} = T
n!

ω!(n− ω)!

(
1

28

)ω (
1− 1

28

)n−ω

(7)

where ω = 0, 1, · · · , n. And n = 128/8 = 16 in CAQWBH. After running the
above tests, the experimental values and the experimental values of WN (ω) in
the proposed hash function are shown in Table 3. The experimental values of
WN (ω) are similar to the theoretical values.

Table 3 Comparison of Experimental Values and Theoretical Values of WN (ω)

ω = 0 ω = 1 ω = 2 ω = 3 ω = 4 ω = 5 · · · 25
Experimental Values of WN (ω) 8823 1101 72 4 0 0

Theoretical Values of WN (ω) 8822.81 1107.18 67.30 2.64 0.08 0

5.5 Resistance to birthday attack

Birthday attack implies a lower bound of the length of hash value. The length
of the hash value we considered here is 256 = 32× 8 bits. Therefore, it needs
2n/2 = 2128 ≈ 3.4028 × 1038 trials (n is the size of hash value) to find two
messages with identical hash values with a probability of 1/2. Furthermore,
CAQWBH-256 can be easily extended to be 512 bits or more. Therefore, the
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results of the tests, the size of the hash value, and the collision resistance of
the proposed CAQWBH suggest that the birthday attack is almost impossible
and that the proposed algorithm is resistant against this type of attack.

In conclusion, CAQWBH has outstanding statistical performance. Com-
pare with other CQW-based hash functions, there is no apparent distinction
between them. If the differences of statistical performance have to be taken
into account, the most important factor to the statistical performance is the
length of hash value rather than the varieties of CQW-based hash function.

6 Extensions of CAQWBH

The structure of CAQWBH could also be used in designing message authenti-
cation code(MAC) or pseudo-random number generator(PRNG). The kernel of
the corresponding MAC and PRNG is CAQWBH. The security and efficiency
of CAQWBH makes sure that the corresponding CAQWBH-based MAC and
CAQWBH-based PRNG are safe enough. Furthermore, the CAQWBH-based
MAC and CAQWBH-based PRNG could be used in designing cryptographic
protocols.

6.1 The CAQWBH-based Message Authentication Code

MAC needs the key to control the generating process. In order to construct a
hash-based MAC, the existing hash-based MAC uses the key to build the new
message for hash processing.

Nevertheless, the initial state of CAQW naturally can be considered as the
key to the CAQWBH-based MAC. What we need to do is set the initial state
as |0〉(

∑
i αi|i〉), which is private. Then CAQWBH becomes CAQWBH-based

MAC. The process of CAQWBH-based MAC is shown as follows.

1. Select the parameters (N, k, (θ1, θ2), αi). θ1, θ2 ∈ (0, π/2), i ∈ {0, · · · , N −
1} and

∑
i |αi|2 = 1. θ1, θ2 are the parameters of the two coin operators

respectively. Among the parameters, αis can be set as private, which is the
key1.

2. Initialize the quantum system. The initial state is |0〉(
∑

i αi|i〉). Then run
the time-position-dependent CAQW on GN under the control of a binary
string, which is the key2.

3. Run the time-position-dependent CAQW on GN under the control of the
message. The default option for C2 is the Hamdmard matrix, if the length
of the message is not a multiple of N .

4. Post-processing of the pseudo-probability distribution to get MAC. Multi-
ply all values in the resulting pseudo-probability distribution by 10k. Then
retain the remainders of modulo 2k to form a binary string as MAC. The
bit length of MAC is N × k.
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CAQWBH is secure and efficient. The CAQWBH-based MAC does not
only reserve the advantages of the corresponding CAQWBH but also be resis-
tant to the brute force search of a quantum computer, because the selectable
space for key1 is infinite and Aleph one. Therefore, the CAQWBH-based MAC
executed on a quantum computer is resistant to attacks from a quantum com-
puter.

Even it is executed on a classical computer, i.e. the selectable space for
key1 and key2 is finite, the CAQWBH-based MAC is so flexible that we can
enlarge the keyspace to guarantee its security in current computing power.

6.2 The CAQWBH-based Pseudo-random Number Generator

Due to the uniform distribution and randomness of the hash value in the
hash space, the hash value of the CAQWBH satisfies the requirements of
the pseudo-random number. Hence CAQWBH can be modified as a pseudo-
random number generator.

The generating process is described as follows:

1. Select the parameters (N, k, (θ1, θ2), αi). θ1, θ2 ∈ (0, π/2), i ∈ {0, · · · , N −
1} and

∑
i |αi|2 = 1. θ1, θ2 are the parameters of the two coin operators

respectively. Let the initial state be |0〉(
∑

i αi|i〉).
2. Then run the CAQW onGN one step to get the final state under the control

of a N -bit binary string, i.e. message. Then post-process the probability
distribution to get a pseudo-random number string. Multiply all values in
the resulting probability distribution by 10k, then retain the remainders
of modulo 2k to form a binary string, which is a Nk-bit pseudo-random
number string.

3. If the pseudo-random number string is no longer enough, pick the last N
bits of the pseudo-random number string as the new message. Set the final
state as the new initial state. Repeat step 4 and stick the new pseudo-
random number string to the end of the existing pseudo-random number
string sequentially until the pseudo-random number string is long enough.

7 Discussion

CQW-based hash function is a kind of novel hash function, which is based on
the quantum computation model quantum walk. They are safe, flexible, high-
efficient. Furthermore, CQW-based hash function is compatible to be executed
on a quantum computer or a classical computer.

In this paper, we focus on how to improve the efficiency of the CQW-based
hash function further. All existing CQW-based hash functions are controlled by
one bit message in each step. To process message in batch amounts, CAQWBH
is presented by using the timpe-position dependent controlled quantum walks
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on complete graphs with self-loops, which accelerate the hash processing dra-
matically. Besides, CAQWBH inherit all advantages of CQW-based hash func-
tion. The irreversible measurement and the modular arithmetic make sure
that CAQWBH is extremely safe. Statistical analysis prove the claim too.
CAQWBH is flexible so that the hash value of different lengths is easy to at-
tain by changing the parameters of the graph and the post-processing, i.e. N
and k. Furthermore, CAQWBH is a compatible hash function that it can be
executed on a quantum computer or a classical computer. Taking the difficulty
of the commercialization of quantum computers into consideration, CAQWBH
is practical in current hardware technology.

In addition, extensions of CAQWBH, including CAQWBH-based message
authentication code and CAQWBH-based pseudo-random number generator
are introduced.

In summary, CAQWBH retains the superiorities of CQW-based hash func-
tion in security, flexibility, and compatibility, while speeding up the efficiency.
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