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The compiling of quantum gates is crucial for the successful quantum algorithm implementations.
The environmental noise as well as the bandwidth of control pulses pose a challenge to precise and
fast qubit control, especially in a weakly anharmonic system. In this work, we propose an algorithm
to approximately compile single-qubit gates with arbitrary accuracy. Evaluation results show that
the overall rotation distance generated by our algorithm is significantly shorter than the commonly
used U3 gate, then the gate time can be effectively shortened. The requisite number of pulses
and the runtime of scheme design scale up as O[Log(1/ǫ)] with very small prefactors, indicating low
overhead costs. Moreover, we explore the trade-off between effectiveness and cost, and find a balance
point. In short, our work opens a new avenue for efficient quantum algorithm implementations with
contemporary quantum technology.

I. INTRODUCTION

Owing to the intrinsic properties afforded by
quantum mechanics, the quantum algorithms permit
superpolynomial or even exponential speedups relative
to their classical counterparts in solving some important
problems as the input size scales up [1–3]. The global
race to build quantum computing prototypes is in full
swing now, which is evident by several impressive
demonstrations of this quantum computational
advantage successively during the past few years [4–9].
The full power of quantum computation is supposed
to be based on the universal quantum computer with
large scale and error corrected logical qubits, such as the
surface code [10].
Nevertheless, before the extravagant hardware

resources for quantum error corrected technology within
reach, it would take years or even decades in the noisy
intermediate-scale quantum (NISQ) era [11], in which
the actual qubits are not immune to noises and the
size of quantum processor could be faithfully controlled
is also relatively limited. The various sources of noise
will impose deleterious impact to the delicate qubits,
then the quantum device fails to produce results with
sufficient fidelity [12]. Normally the effects of these
noises become worse over time [13].
To achieve an improved performance in NISQ device,

except for the effort to eliminate the sources of noise
and the endeavor to advance qubit with reduced noise
susceptibility, the optimal control search is also an active
topic [14, 15]. In particular, the emergence of circuit-
approximation schemes has attracted a lot of attention.
These schemes do not aim to faithfully execute a given
algorithm circuit, but explore an approximated version
with fewer gates and shorter circuit depth, such as in
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Refs. [13, 16]. These works prove that the approximate
circuits could be possible to outperform the theoretically
ideal but deeper circuits on contemporary devices.

However, with too much attention being paid to the
circuits optimization, the approximation to arbitrary
unitary gate has been neglected, which may bring new
surprises for further improvement. This provide a
promising approach for exploiting the potential of NISQ
devices, especially in the control over qubit made from
a weakly anharmonic oscillator, where the unwanted
leakage transitions to higher states pose another threat
to the implementation of fast and precise quantum
gate. For example, in transmon-type qubit carried by
superconducting circuits, spectroscopically, the non-zero
overlaps between the drive and the leakage transition
frequencies arising from finite pulse duration will drive
the qubit out of the Hilbert subspace spanned by the |0〉
and |1〉. The scheme of derivative reduction by adiabatic
gate (DRAG) [17, 18] is proposed as a typically approach
to reduce this population leakage by modifying the
quadrature amplitudes of the microwave drive. While,
in practice, the crucial optimal value of the scaling
parameter λ in DRAG is sensitive to the pulse distortions
and has to be identified and calibrated repeatedly in the
experiments [19, 20].

Considering the spectral content of the leakage
frequency decays exponentially with respect to the
pulse duration, a naturally alternative to the DRAG
for the prevention of the leakage is using a slower
operation with more gentle control pulses, resulting
in the control bandwidth being much less than the
anharmonicity. Generally speaking, this strategy will
extend gate execution time and hence limit the reliable
circuit depth due to the given decoherence time. While,
if the unitary transform is compiled cute enough, it is
possible to reduce the overall gate time by finding a
short path to compensate the extended time spent in unit
rotation distance. In this paper, we provide a feasible
route, namely the self-navigation (SN) algorithm, to
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access the approximated gate compiling. We show that
any accuracy can be obtained relative to the desired
precise gate, and the overall distance of the rotation
route is shorter than the commonly used today, such
as the U3 gate [21–23]. The SN algorithm delivers the
number of elementary-rotations and the run time both in
O[Log(1/ǫ)]. This is a significant enhancement compared
to the polylogarithmic in Solovay-Kitaev algorithm [24],
which outputs a sequence of O[Log3.97(1/ǫ)] elementary-
rotations and runs in O[Log2.71(1/ǫ)] time with the
specified accuracy ǫ to the target gate.

II. MODEL

The transmon qubit [25] is one of the most
common qubit modalities formed by weakly anharmonic
oscillators, whose effective Hamiltonian in the rotating
frame reads [12, 26]

Hq = −~

2
∆σz , (1)

where ∆ denotes the qubit detuning from the frame
frequency. When the qubit resonates with the frame, i.e.,
∆ = 0, the rotation around the axis in the XY -plane can
be realized by adding microwave drive to the qubit for a
certain amount of time. The corresponding Hamiltonian
under the rotating wave approximation reads

Hd =
~

2
A(cosφσx + sinφσy), (2)

where A refers to the drive amplitude, and σi (i = x, y, z)
is the Pauli matrice. The phase of the microwave φ
determines the rotation axis. For simplicity, we set ~ = 1
and take 1/~ as the time-scale throughout.
The shift of the qubit frequency ∆ in Eq. (1) leads to

a rotation rate around the z-axis and can be tailored by
modulating the flux bias of the SQUID (superconducting
quantum interference device) [27]. However, this is
not necessary in the experiments and can be accessed
alternatively by leveraging the so-called “virtual Z gate”
technique [21]. This technique can be done by simply
applying a specific phase offset φ to the microwave signals
for subsequent rotation about axis in the X-Y plane. For
example,

exp(−i
θ

2
[cosφσx + sinφσy ]) = Z−φXθZφ, (3)

exp(−i
θ

2
[cos(

π

2
+φ)σx+sin(

π

2
+φ)σy ]) = Z−φYθZφ. (4)

Note that they leave an extra Z−φ which does not change
the outcome of measurement along Z. The implemented
virtual Z gate is “perfect”, because it requires no
additional control pulse and therefore taking zero-time
and having unity gate fidelity nominally. By leveraging

the virtual Z gate technology, one could effectively reduce
the number of overall pulses for the implementation of a
quantum gate.
A generic single-qubit gate (ignoring the overall phase)

can be realized by three successive rotations around
the x- and z-axes. These are both native operation in
superconducting circuits model [21, 23, 28]

U(θ, φ, λ) = ZφXθZλ =

[

cos(θ/2) −eiλ sin(θ/2)
eiφ sin(θ/2) ei(λ+φ) cos(θ/2)

]

,

(5)
where θ, φ and λ represent 3 Euler angles. Combined
with the identity,

Xθ = Z−π/2Xπ/2Zπ−θXπ/2Z−π/2, (6)

Eq. (5) can be reexpressed as

U(θ, φ, λ) = Zφ−π/2Xπ/2Zπ−θXπ/2Zλ−π/2. (7)

The above is the so-called U3 gate technology, a
commonly used strategy to compile single-qubit logical
operations in the experiments [22, 23]. As mentioned
above, the rotations around z-axis can be included into
the microwaves used for the Xπ/2 as an additional phase.
That is to say, the requisite total time is always that
used to implement two Xπ/2 pulse. Can we find a short
rotation path, thereby reduce the gate time and suppress
the debilitating decoherence effects over time? In this
paper, by using the SN algorithm a shorter rotation
distance has been obtained compared to the U3 gate.

III. THE ALGORITHM

Arbitrary single-qubit gate can be represented by a
rotation around a particular axis −→n with a certain angle
θ,

R−→n (θ) = cos(
θ

2
)− isin(

θ

2
)(nxσx + nyσy + nzσz). (8)

We firstly consider the rotations around a fixed axis −→n .
Assume the target rotation angle is θT and the current
angle is θt. Here the pulse amplitude and duration
are included into the rotation angle. To determine the
appropriate next rotation angle, we define the fidelity
F between the two unitaries using the Hilbert-Schmidt
distance [29, 30]

F =

∣

∣

∣

∣

∣

∣

Tr
[

R†
−→n
(θT )R−→n (θt)

]

2

∣

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

cos(
△θ

2
)

∣

∣

∣

∣

2

.

. (9)

Here △θ = θT − θt. Apparently, we can get the following
relation

△θ = 2arccos(
√
F ). (10)
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FIG. 1. (Color online) Workflow of using SN algorithm for
approximately compiling arbitrary single-qubit gates.

Then we can obtain the required subsequent rotation
angle △θ via the current fidelity in the coaxial case.
However, the presumed rotations around the axis −→n

in Eq. (8) may not be experimentally accessible in the
underlying platform. Our strategy for this problem is
to substitute an experimentally permitted approximate
axis for this theoretical one, where the approximation
behaves with the best fidelity among rotations about all
possible axes with the same angle △θ. Then with the
corresponding unitary obtained, a new rotation angle and
approximate axis can be performed again in the same
way, until the gate error ǫ = 1 − F is smaller than a
desired target value ǫT . All of these approximate rotation
operations eventually form a sequence in order. Then the
adjacent and commutable rotations in the sequence can
be merged together to reduce the redundant pulses. At
last, the Z rotations are absorbed into the subsequent
X-Y operations by taking advantage of the virtual Z
technology. The workflow of this algorithm is shown
in Fig. 1. We point out that the appropriate rotation
axes and angles can be determined by this algorithm,
then arbitrary single-qubit unitary operator is compiled
dynamically and automatically. We call it the self-
navigation (SN) algorithm.
To evaluate our algorithm, as an example we explore its

performance in the context of superconducting transmon.
We exemplarily take ±z-axes and several axes located
in the XY -plane as the approximate rotation axes. All
these axes are accessible on the platform. And they can
be parameterized by modifying the phase offset φ in Eq.
(2). As we can take any rotation around the ±z and
axes in XY -plane as the approximate operations by use
of Eqs. (1) and (2), we study the performance of the
SN algorithm with different number of allowed rotation
axes. Specifically, we take Naxes = 6, 10, 18 or 34 as
an example. In each case, the Naxes − 2 axes which
is distributed uniformly on the XY -plane and the ±z
axes are embraced. The Naxes − 2 axes are characterized
by the phase offset φ ∈ [0, 2π) in Eq. (2). Then the
rotation axes ±x and ±y will always exist. It is easy to
see that the algorithm can easily compile typical single-
rotation gates around these axes, i.e., Xθ, Yθ and Zθ. The
evaluation dataset consisting of 128 single-qubit target
gates is formed by two successive rotations around the x-
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FIG. 2. (Color online) The average actual accuracies ǭ (a),
averaged overall rotation distances d̄ (b), averaged numbers
of pulses n̄, and the averaged time t̄ (d) versus the desired
target accuracy ǫT for different allowed rotation axes. The
evaluation is achieved by the SN algorithm. The auxiliary
dashed line in (a) indicates the threshold ǭ = ǫT . The solid
curves in (c) and (d) are the fitting functions based on the
corresponding actual data.
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and z-axes with θ and ϕ angles respectively. θ ∈ [0, π]
and ϕ ∈ [0, 2π). 8 θ and 16 ϕ angles are uniformly
sampled from their respective domains.

In Fig. 2 (a)-(d), we plot the average actual accuracies
ǭ, overall rotation distances d̄, numbers of pulses n̄, and
runtime t̄ as functions of the desired target accuracy
ǫT for different allowed axes. The evaluations are all
obtained by our SN algorithm. The dashed line indicates
the threshold ǭ = ǫT in Fig. 2 (a). Obviously, Fig. 2
(a) shows that any given approximate accuracy can be
achieved when the SN algorithm terminates for all cases.
From Fig. 2 (b) we can easily conclude that d̄ varies
with different Naxes and tends to converge to certain
values as ǫT decreases, e.g., 2.2 for Naxes = 18. This
value is significantly smaller than the fixed π obtained
by the U3 gates [21–23]. In addition, we find that
the performance of the SN algorithm is enhanced with
increasing Naxes, and this trend gradually weakens and
disappears when Naxes > 18. Thus it is enough to
use 18 allowed axes in this compiling task, and more
axes yield only negligible returns. Fig. 2 (c) clearly
shows that n̄ scales up with O[Log(1/ǫ)] as ǫT decreases.
In addition, as expected the more allowed axes can be
performed, the less pulses is required. Notably, Naxes =
18 is sufficient for the implementation. The efficiency
is also an important metric to evaluate an algorithm.
Fig. 2 (d) shows that more axes will result in longer
average runtime t̄. t̄ roughly scales up with O[Log(1/ǫ)]
with very small prefactors (about 10−3 ∼ 10−2) as
ǫT decreases for all cases. In short, comparing the
polylogarithmic (O[Logc(1/ǫ)], c ∼ 3) overhead cost with
Solovay-Kitaev algorithm [24], our SN algorithm can
approximate arbitrary single-qubit gate to any accuracy
with logarithmic cost both in terms of the required pulse
number and the total design time.

Given the limitations of quantum computing hardware
presently accessible, we simulate quantum computing
on a classical computer and generate the corresponding
data. Our algorithms are implemented with PYTHON
3.7.9 and run on a computer with four-core 1.80 GHz
CPU and 8 GB memory. The source code and detailed
data supporting this work can be found in Ref. [31].

IV. CONCLUSIONS AND DISCUSSIONS

In practical quantum computing, the physical qubits
will inevitalbly suffer from external noises, causing the
population leakage and limiting the coherence time.
One strategy to protect the qubit is utilizing gentle
pulses, whose spectrum components on leakage are highly
suppressed. Simultaneously, the gate time is shortened
by taking a short rotation path. The approximate
quantum gate compiling is a promising approach to get a
better performance with contemporary NISQ device. In
this work, we propose a SN algorithm to approximately
compile arbitrary single-qubit gate with rotations all
natively available in the experiments. The evaluation
results show that the overall rotation distance generated
by our SN algorithm is significantly shorter than the
commonly used U3 gate. In addtion, any accuracy to
the target gate can be achieved by our SN algorithm at
the expense of the increasement of the pulse number and
design time of the scheme. Combined with the virtual Z
gate technology, we find that both the two above values
are modest and only logarithmic in 1/ǫ with very small
prefactors, denoting low overhead costs. We also show
that, with 18 allowed rotation axes, the SN algorithm is
“just enough” to balance the gate performance and the
control cost. We emphasize that although our discussions
focus mainly on the superconducting transmon qubit, the
techniques introduced here can be applicable to a wide
array of physical systems.
We only consider the single qubit gate compiling in

this paper. We expect our work could promote the
further research of multi-qubit gates. For example, in
error correction coding of taking the factoring a large
number into its primes, a faster gate operation offered by
the shortened control path means smaller qubit overhead.
This demanded to generate and purify the special ancilla
states which are used to construct the Toffoli gate. In
addition, due to the highly sensitivity to the error rate in
physical qubits, the improved quantum control over the
physical qubit will further significantly reduce the size of
the circuit.
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