arXiv:2305.06063v2 [quant-ph] 11 May 2023

Enhancing Quantum Support Vector Machines through
Variational Kernel Training

N. INNAN®,L2 * MAZ. KHAN®,32* B. PANDA,* and M. BENNAI®L>

1Quuntum Physics and Magnetism Team, LPMC,

Faculty of Sciences Ben M’sick, Hassan Il University of Casablanca, Morocco.
2Quantum Formalism Fellow, Zaiku Group Ltd, Liverpool, United Kingdom.
3Robotics, Autonomous Intelligence, and Learning Laboratory (RAIL),
School of Computer Science and Applied Mathematics,

University of the Witwatersrand, 1 Jan Smuts Ave,
Braamfontein, Johannesburg 2000, Gauteng, South Africa
4Indian Institute of Science Education and Research (IISER), Berhampur, Odisha, India.
°Lab of High Energy Physics, Modeling, and Simulations,

Faculty of Sciences, University Mohammed V-Agdal, Rabat, Morocco.
(Dated: May 12, 2023)

Quantum machine learning (QML) has witnessed immense progress recently,
with quantum support vector machines (QSVMs) emerging as a promising model.
This paper focuses on the two existing QSVM methods: quantum kernel SVM (QK-
SVM) and quantum variational SVM (QV-SVM). While both have yielded impres-
sive results, we present a novel approach that synergizes the strengths of QK-SVM
and QV-SVM to enhance accuracy. Our proposed model, quantum variational ker-
nel SVM (QVK-SVM), leverages the quantum kernel and quantum variational algo-
rithm. We conducted extensive experiments on the Iris dataset and observed that
QVK-SVM outperforms both existing models in terms of accuracy, loss, and confu-
sion matrix indicators. Our results demonstrate that QVK-SVM holds tremendous
potential as a reliable and transformative tool for QML applications. Hence, we
recommend its adoption in future QML research endeavors.

Keywords: Quantum Machine Learning, Quantum Support Vector Machine, Kernel, Quan-

tum Variational Algorithm, Classification.

I. INTRODUCTION

Quantum computing is an exciting and quickly growing field that could change many
areas of science and technology. Machine learning (ML) is one of the most promising
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quantum computing applications, where quantum algorithms can potentially provide
exponential speedups over classical algorithms. This field is known as Quantum ma-
chine learning (QML). Quantum machine learning is an emerging field of research that
combines the principles of quantum computing and machine learning. QML algorithms
can solve complex problems more efficiently and cost-effectively than classical machine
learning algorithms. One of the most promising QML algorithms is the quantum support
vector machine (QSVM), an extension of the classical support vector machine (SVM) to
the quantum realm.

The classical SVMs are a powerful class of ML algorithms for classification and re-
gression analysis. The development of SVMs can be traced back to the early 1960s when
Vladimir Vapnik and his colleagues began working on a new approach to pattern recog-
nition [1, 2]. However, only in the 1990s did SVMs gain widespread attention in the
ML community [3], thanks to Corinna Cortes and Vladimir Vapnik’s pioneering work at
AT&T Bell Labs. They introduced the idea of maximum-margin hyperplanes, decision
boundaries that separate data points from different classes with the most significant pos-
sible margin [4].

This approach allowed SVMs to perform excellent generalization, even with small
training datasets. Since then, SVMs have become one of the most extensively used and
popular machine learning models and have been successfully applied to various fields,
including image recognition, text classification, and bioinformatics. However, as the size
of the dataset increases, the computational complexity of SVM also increases, making it
difficult to handle large datasets. Still, the QSVM aims to overcome this limitation by
leveraging the principles of quantum computing to accelerate the SVM algorithm. Over
the years, there has been significant research in the field of QSVM, exploring various
theoretical and practical aspects of the algorithm. Researchers have developed several
techniques to enhance the performance of QSVM, including the development of quan-
tum kernel methods, quantum feature maps, and quantum optimization techniques.

One of the early works in QSVM was proposed by Rebentrost ef al. in 2014 [5], which
introduced a quantum algorithm for SVM classification that provides an exponential
speedup over classical algorithms. Another essential aspect of QSVM is its robustness
to noise. In 2015, Li et al. demonstrated a QML algorithm for handwriting recognition on
a four-qubit nuclear magnetic resonance (NMR) test bench [6]; the authors argued that
quantum speedup would be highly attractive for tackling significant data challenges.
However, this algorithm was specific to NMR-based systems and could not be easily ap-
plied to other QML platforms.

And after different interesting works, in 2019, Havlicek et al. demonstrated that su-
pervised quantum machine learning models, including QSVM [7], can be robust to noise,
increasing their practicality for real-world applications. Subsequently, several studies
have been conducted to improve the performance of QSVM, including using quantum
feature maps for kernel-based learning, as proposed by Park et al. in 2020 [9]. Another
interesting research explores the potential use of quantum state encoding as a nonlinear
feature map, enabling efficient computations in a large Hilbert space efficiently and pro-



poses two approaches for building a quantum model for classification, illustrated with
mini-benchmark datasets [8].

In contrast, Liu et al. established a rigorous quantum speedup for supervised classifi-
cation using a general-purpose quantum learning algorithm that only requires classical
access to data. This algorithm represents a significant advancement [10]. In the same
year, Schuld et al. investigated the impact of quantum data encoding strategies on the ef-
ficacy of parametrized quantum circuits in approximating functions [11], and the authors
showed that quantum models could realize all possible sets of Fourier coefficients. There-
fore, if the accessible frequency spectrum is asymptotically rich enough, such models are
universal function approximators. This result has significant implications for developing
QML algorithms to tackle complex data challenges.

In another 2021 paper [12], Schuld, M explored the theoretical foundations of the link
between quantum computing and kernel methods in machine learning, systematically
rephrased supervised QML models as kernel methods, replacing many near-term and
fault-tolerant QML models with a general SVM whose kernel computes distances be-
tween data-encoding quantum states. This approach has the potential to significantly
reduce the complexity of QML algorithms and improve their performance.

In 2022, Zhang et al. proposed a new quantum optimization algorithm for QSVM
that can improve the efficiency and scalability of QSVM on large datasets [13]. These
advancements in QSVM and its related techniques have made it a promising candidate
for solving complex problems in various fields, including bioinformatics, finance, image
recognition, and material physics. One of the recent works in QSVM was proposed by
Jiang et al. in 2023 [14], which introduced a quantum algorithm for SVM classification
that leverages the quantum phase estimation algorithm to estimate the kernel matrix.
This approach leads to significant speedup compared to classical SVM algorithms, mak-
ing QSVM a more efficient choice for large-scale datasets.

In this paper, we build upon these studies and suggest a new QML model for clas-
sification that merges the two more accurate approaches identified by Schuld, M and
the different works mentioned above. Our model leverages the expressive power of
parametrized quantum circuits as function approximators and uses a kernel method to
compute distances between data-encoding quantum states. We present theoretical anal-
yses and numerical simulations to demonstrate the potential of our model for tackling
classification tasks. Our results suggest that our model outperforms existing QML algo-
rithms, highlighting its potential for future real-world problems and applications.

This paper is divided as follows:

In 8§11, We provide an overview of classical support vector machines, highlighting their
principal features and limitations that motivate the exploration of more accurate imple-
mentations in quantum machine learning.

In §III, we describe the quantum model for support vector machines and explain the
three implementations, including our proposed approach, the quantum variational ker-
nel SVM.

In §IV, we present the results obtained using Pennylane by comparing the accuracy,



loss, and confusion matrix indicators of the three quantum SVM models on the Iris
dataset.

In §V, we discuss our findings” implications and highlight future research directions
in this field.

II. CLASSICAL SUPPORT VECTOR MACHINE

In classical machine learning, SVMs are used in supervised models to analyze data
for classification and regression. By using this algorithm, we can also perform binary
classification and multi-classification. To understand this, we are taking an example. For
simplicity, we are taking a binary classification example. Suppose we have a collection of
circles and rectangles in a 2D plane. Our job is to classify the circles and rectangles. This
problem has two types, (a) linear and (b) non-linear, as shown in Fig.1.

Linear | Non Linear

(a) A linear problem (b) A Non-linear problem

FIG. 1: Graphical representation of linear and non-linear SVMs problems.

A. Linear SVMs

First of all, we are discussing linear SVMs. We take a dataset of n points of the form
(x1,y1), (x2,Y2), ..(xn, y»). Here y; are either 1 or —1, and each x; is a p-dimensional real
vector. We have to draw the positive hyperplane (H.), negative hyperplane (H_), and
margin as shown in Fig.2. We can find the margin using the formula = H + H_.

Given a D-dimensional vector Xy € RP*!, and a (D — 1)-dimensional linear hyper-
plane H : WIX+B—-Y =0, where W = (wq,wo, ..., wy,) is the weights vector, B is the
bias vector, and ®(X,,) is the projection of the point X,, into the nonlinear feature space.
The goal is to ascertain the hyperplane that optimally separates the vectorial points into



classes while maximizing the margin between the hyperplane and the closest datapoints
from each class. Mathematically, we translate this as a quadratic programming problem
with linear constraints, whereby our goal is to determine the value of the weights that
will maximize the margin

W* = arg max 1 {min Y, [WTCD(Xn) + B} } , (1)
w W2

1/2
where ||W]|, = < " wlz) . Mathematically, we can translate this into the primal form

SVM optimization problem min 3||W/||> subject to Y, [WTCD(Xn) + B} > 1 for every n.
n
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FIG. 2: Geometric components of support vector machines.

B. Non-linear SVMs

As shown in Fig.2, the support vectors are the vectors utilized to generate both the
positive and negative hyperplanes. Maximizing the margin length in this specific model
is imperative to achieve precise classification and high accuracy.

In order to effectively tackle the non-linear problem we are facing, the kernel trick
presents a compelling solution. This technique involves using a kernel function with
data points, acquiring higher-dimensional vector points in our feature space. A plethora
of kernel functions exists, each tailored to solve different problems. Below, we present a
comprehensive list of some of these kernel functions:

* Polynomial (Homogeneous): denoted as K(a;,a;) = (a; - a]-)d, where d is a positive
integer that determines the degree of the polynomial. By setting d to 1, it becomes
a linear kernel that is particularly useful for linearly separable data.



* Polynomial (Inhomogeneous): which incorporates a constant term r to the dot
product of the input vectors, resulting in K(a;,a;) = (a; - a; + r)?. This kernel is
well-suited for capturing nonlinear relationships between the data.

¢ Sigmoid function (Hyperbolic tangent): based on the hyperbolic tangent function,
takes the form K(a;,a;) = tanh(ka; - a; + c)?, where k and c are kernel parameters.
This kernel can be used to model data that exhibits sigmoidal behavior and has
been applied in various applications such as image classification and text mining.

After applying the kernel function to our data points, we have to do the same op-
eration as in linear. Then we can complete the classification successfully. We modify
the primal form of the linear SVM to include the slack variables & > 0 min |[W||, +

n

CY.,¢, subjectto Y, [WT(ID(XH) + B} > 1—¢, forevery n. In addition to quadratic
programming, numerous alternative techniques exist for resolving this problem. These
include the approaches of Lagrange multipliers, sequential minimal optimization, inte-
rior point methods, gradient descent (GD), stochastic gradient descent (SGD), and kernel
methods.

C. Disadvantages of Classical SVMs

Despite the popularity of classical SVMs, they have certain limitations that con-
strain their optimal performance. One of the significant limitations is handling high-
dimensional feature spaces, which can result in slow training times and overfitting prob-
lems. Another area for improvement is the dependence on kernel functions, which may
not effectively capture complex data relationships. Furthermore, classical SVMs are not
easily scalable to large datasets and demand extensive parameter tuning for accurate
results. Researchers have turned to quantum machine learning to overcome these limita-
tions and explore more precise and efficient alternatives. In the next section, we examine
how quantum support vector machines can effectively tackle these challenges and pro-
vide a promising solution for enhancing classification performance.

III. QUANTUM SUPPORT VECTOR MACHINE

Quantum Support Vector Machine is a burgeoning area of research in quantum ma-
chine learning that offers promising potential for enhanced computational performance
in classification and regression tasks. While classical SVM has been widely utilized in
machine learning, QSVM exploits the unique properties of quantum mechanics to out-
perform classical SVM in specific applications. The QSVM algorithm involves mapping
input data onto a quantum state, which is subsequently subjected to quantum circuit
processing to generate the classification outcome. The described circuit comprises a se-
quence of quantum gates that manipulate the quantum state and execute the SVM algo-
rithm. The classification outcome is obtained by measuring the circuit’s output.



In previous works, as mentioned in the introduction sections (I), QSVMs have been
implemented using various approaches, such as the quantum kernel method, the quan-
tum matrix inversion method, and the quantum feature mapping method. Neverthe-
less, these methodologies possess certain constraints, such as high error rates, enormous
computational resources, and scalability issues. This section will focus on three recent
approaches to QSVM: the quantum kernel approach, the quantum variational approach,
and a novel hybrid approach that combines the quantum kernel approach with the quan-
tum variational circuit. These approaches have shown promising results and offer poten-
tial accuracy, scalability, and robustness improvements. The following subsections will
describe each approach, highlighting the steps and circuits used to develop the QSVM
models.

In each approach, the first step in our methodology involves the conversion of our
classical datapoints into quantum states. To achieve this, we begin by encoding the data
points using a quantum circuit, as depicted in Fig.3. Subsequently, we establish our data
set and opt for the iris data set for simplicity. Our selection of qubits is based on the
features outlined in our data set. We utilize a quantum model represented as follows:

f(x) = (o(x)[M]g(x)). 2)

Here |¢(x)) is prepared using an encoding circuit, and M is the measurement operator.
M is observable that is defined as:

M(8) = GT(8)c0G(8). (3)
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FIG. 3: Quantum circuit architecture for QSVMS: Generalized model description.



A. Quantum Kernel Support Vector Machine

We propose implementing support vector machines with a kernel computed by a
quantum circuit in this approach. Specifically, we utilize the angle-embedding template
in conjunction with a SWAP test to evaluate the quantum kernel; this method reduces the
number of required qubits by half, rendering it more viable for real-world implementa-
tions.

The kernel function is a central concept in SVMs, which are a popular class of ML al-
gorithms for classification and regression tasks; this kernel function is a measure of sim-
ilarity between two data points in a high-dimensional feature space and is used to map
the data into a space where a linear classifier can separate the classes. This method can
be used with any kernel function, like the linear kernel and radial basis function (RBF)
kernel, computed using a quantum circuit, and we call it the quantum kernel. Mathemat-
ically, the quantum kernel is represented by the following equation:

k(xy, x2) = [(@(x1)|9(x2)) 2, (4)

Where x; and x; are the input feature vectors, and ¢(x;);—1» denotes the quantum em-
bedding of x into a quantum state with the angle encoding routines S(x1) and S(x2), we
then apply the inverse embedding to one of the states and compute the overlap between
the two states using a SWAP test, and the SWAP test is a simple quantum protocol that
measures the overlap between two quantum states, we can represent this step by the
following equation:

(SWAP) = [{¢(x1) ® ¢p(x2)|SWAP|P(x1) @ $p(x2)) |, )

SWAP is the swap gate, and |{(SWAP)|? represents the probability of measuring the two
quantum embeddings in the same state. Finally, we use the Hermitian observable to
measure the projector onto the initial state |0...0) (0...0|, and Fig.4 present this circuit.

|o) - -7

S&) S(x) |0...0)(0...0|

FIG. 4: QK-SVM circuit.

The advantage of this approach is that it has the potential to scale to larger datasets by
utilizing quantum hardware with more qubits. As we mentioned, it also requires only
half the number of qubits as the number of features, and this is because we can prepare



the two data points on the same set of qubits using the angle-embedding template and
then apply the inverse embedding to one of the states, as shown in Fig.5 using Pennylane
[15].
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FIG. 5: QK-SVM circuit using Pennlyne.

B. Quantum Variational Support Vector Machine

In this method, we propose a novel approach for training data directly by utilizing
an ansatz for the variational circuit. This ansatz, a quantum operation applied in mul-
tiple layers, enhances expressivity. Although the variational circuit cannot optimize the
exact cost, similar to SVMs, we have incorporated a bias term termed hinge loss in our
quantum model to minimize the gap between the two. And in the quantum node, we
explicitly apply the parameter shift differentiation method. The variational quantum
circuit is given in Fig.3. We have given our method’s encoding, processing, and measure-
ment steps in this circuit. The quantum variational method is a key concept in quantum
machine learning, a rapidly growing field that aims to leverage quantum computing to
develop robust machine learning algorithms. This answer will discuss the quantum vari-
ational method and its applications in quantum machine learning.

Mathematically, the quantum variational method can be described as follows:
Suppose we have a parameterized quantum circuit that can be represented by the unitary
operator U(0), where 6 is a vector of parameters. Given a set of training data (x1, y1), (x2,
y2), -, (Xn, Yn), where x; is an input and y; is the desired output. We want to find the
values of 6 that minimize the cost function:

n

£(0) = 5 - Ly U(0)x). ©

i=1
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Here, L(y,y’) measures the difference between the desired output y and the actual
output y’ produced by the quantum circuit. This cost function is typically chosen to be
a function that can be efficiently computed on a classical computer. We use an iterative
optimization algorithm such as gradient descent to find the optimal values of 6 that min-
imize the cost function. Starting from an initial guess for 6, we compute the gradient of
the cost function concerning each parameter and update the parameters in the direction
of the negative gradient. This process is repeated until the cost function converges to a
minimum. The circuit structure is given below in Fig.6.
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FIG. 6: QV-SVM circuit using Pennlyne.

C. Quantum Variational Kernel Support Vector Machine

This study proposes a new approach for quantum support vector machines, which we
call Quantum Variational Kernel Support Vector Machine (QVK-SVM). It combines two
distinct methods to enhance the performance of quantum kernels and variational circuits.
The first method utilizes the angle-embedding template to prepare the quantum states
used to compute the kernel, as we explained in subsection III A. The overlap between the
two states is measured using a SWAP test, which requires only half the qubits.

The second method involves utilizing a variational circuit trained through the varia-
tional training principle, as outlined in Subsection III B. The ansatz of the circuit can be
improved by adding more layers, thereby enhancing its ability to express itself. Addi-
tionally, a bias term is incorporated into the quantum model to facilitate training on the
hinge loss. The quantum node utilizes the parameter-shift differentiation method, which
is very efficient on hardware.

The proposed circuit of the new approach consists of three main components: An-
gleEmbedding, the adjoint of AngleEmbedding, and StronglyEntanglingLayers, as shown
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in Fig.7.

The AngleEmbedding is used to prepare the quantum states of the data points, which
are then fed into the adjoint of the AngleEmbedding to prepare the inverse embedding.
The StronglyEntanglinglayers component is used to apply the variational circuit, which
is trained using the hinge loss.

The proposed approach has several advantages. First, it combines the strengths of
both methods to enhance the performance of QSVMs. Second, it utilizes the variational
training principle, allowing greater control over the training process. Third, it uses the
parameter-shift differentiation method, which works well on hardware. Finally, the pro-
posed circuit is simple and easy to implement, making it suitable for practical applica-
tions.

The proposed approach for quantum SVMs combines the angle-embedding kernel and
the variational circuit to enhance the performance of QSVMs. The proposed approach has
several advantages over the existing methods, including greater control over the train-
ing process, better hardware compatibility, and ease of implementation. Future research
could explore the application of the proposed approach to other datasets and investigate
the potential of the approach for solving more complex problems.

1@
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FIG. 7: QVK-SVM circuit using Pennlyne.
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IV. RESULTS AND DISCUSSION

The results and discussion of the three models in this research demonstrate the poten-
tial of quantum machine learning in enhancing binary classification tasks, particularly
the quantum support vector machine. The first model, QK-SVM, employed a quantum
kernel approach and delivered an impressive overall accuracy of 96.34% on the test set.
The second model, QV-SVM, utilized variational training with a quantum support vector
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machine and achieved a maximum accuracy of 95.43% on the test set. The third and final
model, QVK-SVM, combined quantum kernel and variational training to yield the most
promising results, with an accuracy of 98.48% on the test set, as evidenced by the data
presented in Table I.

TABLE I: Comparison of confusion matrix indicators for QK-SVM, QV-SVM, and
QVK-SVM models.

Model Accuracy Precision Recall Specificity F1 Score
QK-SVM  96.34%  93.77% 89.64% 9511%  91.64%
QV-SVM  9543%  90.89% 89.11% 92.88%  89.99%

QVK-SVM 98.48%  96.27% 92.35% 97.85%  94.24%

Table I displays the performance metrics for the three models: QK-SVM, QV-SVM,
and QVK-SVM. Our findings indicate that QK-SVM achieved high precision and recall
rates, indicating the robustness of the model in correctly identifying the different classes
of Iris flowers. QV-SVM achieved high specificity and F1 score values, further validating
the effectiveness of the quantum support vector machine using the variational algorithm.
QVK-SVM achieved high precision, recall, and specificity; these results confirm the effi-
cacy of QVK-SVM and highlight its potential as a reliable tool for ML applications.

The QK-SVM model achieved a maximum accuracy of 96.34%, high precision and
recall rates, and a corresponding specificity and F1 score. Fig.8 and Fig.9 illustrate the
loss and accuracy curves for both the training and testing sets, demonstrating a clear
improvement in the model’s performance during training.
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FIG. 8: Graph of loss function of the FIG. 9: Accuracy line graph of the QK-SVM.
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The QV-SVM model achieved a steady improvement in performance as the number
of iterations increased, with training losses ranging from 1.00 to 0.49 and testing losses
ranging from 0.98 to 0.47. The model achieved an absolute accuracy of 95.43%, with
high precision and recall rates. Fig.10 and Fig.11 illustrate the loss and accuracy plots,
respectively, highlighting the model’s optimization over the iterations.
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FIG. 10: Graph of loss function of the FIG. 11: Accuracy line graph of the
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Our suggested model represents a novel approach that combines the quantum kernel
and variational algorithm used in QV-SVM and QK-SVM, respectively. The results of
our QVK-SVM model indicate that this combined approach is highly effective for solving
classification problems, even on relatively small datasets.

The proposed QVK-SVM model achieved an impressive accuracy of 98.48% on the test
set, with a corresponding F1 score of 91.64%. Fig.12 shows the convergence of the train-
ing and testing losses throughout the experiment, demonstrating that the model could
optimize the loss function to achieve high accuracy. Fig.13 displays the corresponding
training and testing accuracies, showing that the model’s accuracy improved steadily
throughout the experiment, reaching a peak of 98% accuracy on the test set.

Furthermore, the superior performance of QVK-SVM, compared to QV-SVM and QK-
SVM, suggests that the combination of these approaches can provide a more robust and
reliable solution to binary classification tasks.

The results show the potential of quantum machine learning in enhancing binary clas-
sification tasks, especially the quantum support vector machine. As demonstrated in
our novel method, combining the quantum kernel and variational algorithm represents a
promising approach that could be extended to other datasets and classification problems.
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V. CONCLUSION

This study delved into applying quantum support vector machines for binary classi-
tication tasks. Specifically, two pre-existing methods, the quantum kernel support vector
machine and the quantum variational support vector machine, were compared and eval-
uated for their respective strengths and limitations. In addition, a novel approach was
developed by combining these two methods, resulting in the quantum variational kernel
support vector machine. The proposed QVK-SVM approach demonstrated exceptional
accuracy and loss reduction performance, offering a promising solution for binary classi-
fication tasks in quantum machine learning. These findings hold significant potential for
advancing the field of quantum machine learning and its diverse applications. The QVK-
SVM approach represents a noteworthy contribution to this field’s development and has
clear implications for future research endeavors.

The proposed method presents an opportunity for further research to explore its ef-
ficacy in resolving intricate issues across various datasets. Advanced optimization tech-
niques and the development of new quantum algorithms can enhance the efficiency and
scalability of the approach. Furthermore, the potential of quantum machine learning
can be investigated by extending the proposed method to other machine learning mod-
els, such as neural networks and decision trees. Through these efforts, the proposed
approach can advance the field of quantum machine learning and unlock new opportu-
nities for addressing complex real-world problems. Its potential to do so is significant
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and warrants further academic investigation.
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