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In this work, we show the ability to restore states of quantum systems from evo-

lution induced by quantum dynamical semigroups perturbed by covariant measures.

Our procedure describes reconstruction of quantum states transmitted via quantum

channels and as a particular example can be applied to reconstruction of photonic

states transmitted via optical fibers. For this, the concept of perturbation by co-

variant operator-valued measure in a Banach space is introduced and integral rep-

resentation of the perturbed semigroup is explicitly constructed. Various physically

meaningful examples are provided. In particular, a model of the perturbed dynamics

in the symmetric (boson) Fock space is developed as covariant measure for a semi-

flow of shifts and its perturbation in the symmetric Fock space, and its properties

are investigated. Another example may correspond to the Koopman-von Neumann

description of a classical oscillator with bounded phase space.

I. INTRODUCTION

Quantum dynamical semigroups describing open system dynamics play a crucial role

to understand the structure of evolution of quantum systems over time. Bounded gen-

erators of dynamical semigroups have the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)

form [1, 2]. This form, known also as Linbladian or standard, can be extended to unbounded

generators [3, 4]. Quantum master equations with unbounded dissipative generators were

treated in works [5, 6] and later studied in [7–9] for bosonic systems described by com-

pletely positive maps on CCR-algebras. Generator of the master equation for a damped
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harmonic oscillator was derived based on the quantum Langevin equation [10]. The analysis

of uniqueness and trace-preserving property of the minimal quantum dynamical semigroups

were studied [11, 12]. Criteria for the existence of stationary states for quantum dynami-

cal semigroups with generally unbounded generators illustrated by quantum optics physical

examples were found [13]. Analysis of singular perturbations of positive and substochastic

semigroups on the normal states and abstract spaces of states was conducted [14, 15]. Sin-

gular perturbation of quantum stochastic differential equation for a quantum system and

quantum oscillator described by unbounded operators and interacting with an environment

was rigorously studied [16]. Existence of uniquely determined minimal trace-preserving

strongly continuous dynamical semigroups on the space of density matrices for a dynami-

cal semigroup with unbounded repeated perturbation of an open system was proven [17].

Master equations with unbounded generators appear in the analysis of control of a quantum-

mechanical oscillator [18]. Gaussian solutions for GKSL-type equations with multi-modal

generators which are quadratic in bosonic or fermionic creation and annihilation operators

are discussed [19, 20].

There are examples of quantum dynamical semigroups having a physical meaning but

going beyond the standard form [21–23]. In [24] it was suggested to consider a perturbation

of quantum dynamical semigroup determined by the operator-valued measure on half-axis

covariant with respect to the action of semigroup. Following this idea, we introduce such

perturbations both at the level of Hilbert [26, 27] and Banach [28] spaces. In this framework

we suppose that all covariant measures can be divided into two classes. The first class

includes measures that are absolutely continuous with respect to the Lebesgue measure

on the half-axis. At the same time, the cases when the density consists of bounded and

unbounded operators are considered separately. The second class includes measures singular

with respect to the Lebesgue measure. In this situation, the domain of the generator changes

with perturbation. Note that our definition of a perturbation changing the domain of the

generator was partly inspired by the work [30]. Note that momentum-like operators defined

on half-axis do appear also in completely classical mechanics using Koopman-von Neumann

formalism for classical mechanical particles with a bounded phase space [29].

C0-semigroups acting on the Banach space of nuclear operators T(H) in a Hilbert space H

have the clearest physical meaning. With the requirement to preserve the positive cone, they

determine the dynamics of the states of the quantum system in the Schröedinger picture. In
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this case, conjugate semigroups acting on the algebra of all bounded operators B(H) in H

determine the dynamics in the Heisenberg picture. Then covariant operator-valued measures

should also be subject to the requirement of preserving the positive cone. The measure in this

case defines a completely positive instrument for measuring a certain moment of achievement

[24]. Perturbation by such a measure sometimes allows to restore the conservativeness of

the system [31].

Along these lines, we introduce the general concept of perturbation by covariant operator-

valued measure in a Banach space. We explicitly construct integral representation of the

perturbed semigroup and study various physically meaningful examples. As a practical

result, our procedure describes reconstruction of quantum states transmitted via quantum

channels. As a particular example, it can be applied to reconstruction of photonic states

transmitted via optical fibers. For this example, a model of the perturbed dynamics in the

symmetric (boson) Fock space is explicitly constructed as covariant measure for a semiflow of

shifts and its perturbation in the symmetric Fock space, and its properties are investigated.

Another example of the considered dynamics may correspond to the Koopman-von Neumann

description of a classical oscillator with bounded phase space.

In [23] the concept of no-event dynamical semigroup was introduced. Such a map trans-

forms pure states into pure ones. We show that the dynamics described by the GKSL

generator can be considered as a perturbation of a no-event semigroup. Moreover the class

of such perturbations associated with operator-valued measures is wider than the GKSL

dynamics. Every such perturbation gives rise to a new semigroup such that the initial and

perturbed dynamics are connected by an integral equation over some operator measure.

Thus, we can restore the perturbed state by means of the initial state presented by the

no-event semigroup.

The structure of this paper is the following. In Sec. II, we introduce the general concept

of perturbation by covariant operator-valued measure in a Banach space and provide various

examples. In Sec. III, we show that GKSL generators can be considered as perturbations

of so called no-event semigroups. In Sec. IV, the bosonic case is investigated in details, for

which a model of the perturbed dynamics in the symmetric (bosonic) Fock space is explicitly

constructed as covariant measure for a semiflow of shifts and its perturbation in this Fock

space. Conclusions Sec. V summarizes the results.

Throughout the paper we shall use the general statements from the theory of C0-
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semigroups [32, 33].

II. COVARIANT MEASURES IN A BANACH SPACE

Let X be a Banach space and Tt : X → X, t ∈ R+ be a semigroup in X , i.e.

Tt+s =TtTs, t, s ∈ R+,

T0 =I.

If orbits of T are continuous in t with respect to some topology τ , then Tt = exp(tL), where
L is a generator of T = {Tt, t ∈ R+} with the domain dom(L) dense in X in the same

topology τ . If a strong operator topology is taken as τ , then T is said to be a C0-semigroup.

Also important is the case when X = (X∗)
∗ for some Banach space X∗ and τ is w∗-topology.

Definition 1. Suppose that M(B) : dom(K) → X is a finitely additive function defined

on the σ-algebra B of measurable subsets of R+ such that

M(B1 ∪ B2) = M(B1) +M(B2),

for any disjoint B1, B2 ∈ B. Then, M = {M(B), B ∈ B} is said to be an (unbounded)

operator-valued measure on R+. If

TtM(B) = M(B + t), B ∈ B, t ∈ R+ (1)

holds true, then the measure M is said to be covariant with respect to T .

Definition 2. The covariant measure M is said to be absolutely continuous with respect

to the Lebesgue measure on R+ if there exists the density P (t) : dom(L) → X such that

M(dt) = P (t)dt.

In the opposite case, M is said to be singular with respect to the Lebesgue measure.

Example 1. Suppose that M is a bounded operator in X. It follows that

M([t, s)) =

s
∫

t

TrMdr, 0 ≤ t ≤ s,

is a covariant measure possessing the bounded density

P (t) = TtM, t ∈ R+.
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Example 2. Suppose that M is a bounded operator in X. It follows that

M([t, s)) = (Tt − Ts)M, 0 ≤ t ≤ s,

is a covariant measure possessing the (unbounded in general) density

P (t) = TtLM, t ∈ R+.

Example 3. Suppose that X = L2(R+) and T = S is the semigroup of right shifts acting

on any η ∈ L2(R+) by the formula

(Stη)(x) =











η(x− t), x > t,

0, 0 ≤ x ≤ t,

(2)

Denote χ[t,s) ∈ L2(R+) the characteristic function of the interval [t, s) and fix e ∈ L2(R+).

Then the formula

M([t, s))η = 〈e, η〉χ[t,s), η ∈ L2(R+), 0 ≤ t ≤ s,

determines a covariant measure for S that is singular with respect to the Lebesgue measure.

Suppose that X = (X∗)
∗ for some Banach space X∗ and T is a semigroup in X with

w∗-continuous orbits. Then one can define a preadjoint C0-semigroup T∗ acting on a Banach

space X∗ by the formula

x(T∗t(ω)) = Tt(x)(ω), x ∈ X, ω ∈ X∗, t ∈ R+.

Note that the continuities of orbits of a semigroup in the strong and weak topologies are

equivalent [33]. If M is a covariant measure for T , then there exists the preadjoint covariant

measure M∗ for T∗. The condition (1) results in

M∗(B)T∗t = M∗(B + t), B ∈ B, t ∈ R+.

III. LINDBLADIANS AS PERTURBATIONS OF NO-EVENT SEMIGROUPS

Now let X = T(H) be the Banach space of all nuclear operators in a separable Hilbert

space H . Suppose that K is a maximal dissipative operator with the domain dom(K) which
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is dense in H , then Tt = etK is a C0-semigroup of contractions in H . The C0-semigroup

T∗t : T(H) → T(H) is said to be no-event if it is defined by the formula [23]

T∗t(ω) = T ∗
t ωTt, ω ∈ T(H), t ∈ R+.

The meaning of the name is that such a semigroup translates rank-one operators into rank-

one operators. The domain of the generator L∗ of the semigroup T∗t = etL∗ is

dom(L∗) ∋ {|ψ〉 〈φ| , ψ, φ ∈ dom(K∗)}.

Suppose that (Lj) are some operators in H whose domain includes dom(K∗). Define map

Λ by the formula

Λ(|ψ〉 〈φ|) =
∑

j

|Ljψ〉 〈Ljφ| , ψ, φ ∈ dom(K∗). (3)

Suppose that the condition

∑

j

||Ljψ||2 ≤ −Re(ψ,Kψ), ψ ∈ dom(K∗),

is satisfied. Then, Λ(|ψ〉 〈χ|) ∈ dom(L∗) and the measure

M∗([t, s)) =

s
∫

t

ΛT∗rdr

is correctly defined and satisfies the condition

M∗([t, s))T∗r = M∗([t + r, s+ r)), 0 ≤ t < s, r ∈ R+.

The adjoint operator-valued measure M acting on the algebra of all bounded operators

B(H) = (T (H))∗ possesses the property (1) with respect to the semigroup

Tt(x) = TtxT
∗
t , x ∈ B(H), t ∈ R+.

Let us define the Lindbladian L̆ by the formula

L̆(x) = Kx+ xK∗ + 2
∑

j

L∗
jxLj .

Then, there exists a minimal solution to the GKSL equation of the form [24]

d

dt
T̆t(x) = L(T̆t(x)), t ∈ R+. (4)
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Equation (4) can be represented in the form of integral equation

T̆t −
t
∫

0

M(ds)T̆t−s = Tt, t ∈ R+. (5)

The following two examples were discussed in [25].

Example 4. Let H = L2(R+), K = d2

dx2 , dom(K) = {ψ : ψ′′ ∈ H, ψ(0) = 0} and

Tt = etK be a C0-semigroup of contractions describing the diffusion with extinction at the

point x = 0 with the self-adjoint generator K∗ = K < 0. The semigroup T = {Tt, t ∈ R+}
has an integral representation in the form

(Ttη)(x) =
1√
4πt

+∞
∫

0

(

exp

(

−(x− y)2

4t

)

− exp

(

−(x+ y)2

4t

))

η(y)dy, η ∈ H, t ∈ R+.

Let L = − d
dx
, dom(L) = {ψ : ψ′ ∈ H, ψ(0) = 0}, and define Λ by (3) and the measure

M∗([t, s))(|ψ〉 〈φ|) =
s
∫

t

ΛT∗rdr. (6)

Then, the solution to (5) describes the quantum diffusion with extinction.

The following example shows that not all covariant measures associated with no-event

semigroups are generated by operators (Lj).

Example 5. Put H = L2(R+), K = − d
dx
, dom(K) = {ψ | ψ′ ∈ H, ψ(0) = 0} and

Tt = etK is the semigroup of right shifts (2). Note that K∗ = d
dx
, dom(K∗) = {ψ | ψ′ ∈ H}.

Fix ω0 ∈ T(H) and put

Λ(|ψ〉 〈φ|) = ψ(0)φ(0)ω0, ψ, φ ∈ dom(K∗).

It defines the absolutely continuous measure in the following way

M∗([t, s))(|ψ〉 〈φ|) =
s
∫

t

ΛT∗r(|ψ〉 〈φ|)dr =
s
∫

t

ψ(r)φ(r)dr · ω0, ψ, φ ∈ dom(K∗). (7)

It implies that for the semigroup Tt(·) = Tt · T ∗
t acting on B(H) we obtain

TtM(B) = M(B + t), B ∈ B, t ∈ R+.

While the generator of evolution K = − d
dx

is less natural for quantum mechanics than

K = − d2

dx2 , such generator naturally appears as a Koopman operator in the Koopman-

von Neumann description of a classical oscillator with bounded phase space [29]. In the
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Koopman-von Neumann formalism, evolution of the probability distribution ρ of a classical

mechanical system with phase space P is represented via evolution of a vector ψ in the

Hilbert space H = L2(P, dµ) as ρ = |ψ|2, where vector ψ satisfies the Schrödinger like

equation ψ̇ = iKψ with Koopman operator K. For an oscillator (with unit frequency

ω = 1) in the action-agnle representation (J, θ), the Koopman operator formally has the

form K = −i ∂
∂θ
. Its domain is determined by the conditions for the system on the boundary

of the phase space [29].

IV. COVARIANT MEASURES IN THE SYMMETRIC FOCK SPACE

For a detailed discussion of the notion of a symmetric (bosonic) Fock space Γs(H) over

one-particle Hilbert space H, we refer the reader to the well-known monograph [34]. An

important for practical applications example of a bosonic Fock space describes photons in

quantum optics [35]. In this case, vectors of Γs(H) can be interpreted as multiphoton states

and in the particular case of H = L2(R+) the dynamics of the system can be considered as

transmission of light through optical fibers. As it was mention in Section III we can look

at the GKSL equation like on a perturbation of the no-event semigroup by some measure.

The GKSL equation can be embedded into the symmetric Fock space, where it becomes

a quantum stochastic differential equation. In this section we give the example in which

our measure is singular such that deriving the corresponding quantum stochastic differential

equation seems to be impossible. We will not touch here on the problem of unbounded

observables and measures, which is certainly of separate interest [36].

Let H = Γs(L
2(R+)) and set K to be the differential second quantisation of the operator

− d
dx

with domain {ψ : ψ′ ∈ L2(R+), ψ(0) = 0}. Then the semigroup Tt = etK acts on the

exponential vectors as

Tte(f) = e(Stf), f ∈ L2(R+), (8)

provided that S denotes the semigroup of right shifts (2). The semigroup T∗t describes the

left shifts in the Fock space along semi-axis with extinction. Physically, the particles moving

left through the point x = 0 are assumed to be destructed that is projected onto vacuum

state.
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Maps T∗t and Tt act on rank one operators made of exponential vectors as

T∗t |e(f)〉 〈e(g)| =T ∗
t |e(f)〉 〈e(g)|Tt = |e(S∗

t f)〉 〈e(S∗
t g)| ,

Tt |e(f)〉 〈e(g)| =Tt |e(f)〉 〈e(g)|T ∗
t = |e(Stf)〉 〈e(Stg)| ,

f, g ∈ f ∈ L2(R+). The adjoint semigroup T maps any operator x from B(H) onto tensor

product of the projector |Ω〉 〈Ω| in the space Γs(L
2(0, t)) and the copy of x in the space

Γs(L
2(t,+∞) ∼= H , where H is naturally identified with Γs(L

2(0, t))⊗ Γs(L
2(t,+∞)).

Consider the other semigroup T̆ in B(H) whose action on x differs from T by the tensor

multiplier in Γs(L
2(0, t)) that is I instead of |Ω〉 〈Ω|. In particular,

T̆t |e(f)〉 〈e(g)| = I⊗ |e(Stf)〉 〈e(Stg)| ,

where the latter tensor factorisation is with respect to Γs(L
2(0, t))⊗ Γs(L

2(t,+∞).

Proposition 1. The preadjoint semigroup T̆∗t acts on exponential rank one operators as

T̆∗t |e(f)〉 〈e(g)| = exp

(
∫ t

0

g(x)f(x) dx

)

|e(S∗
t f)〉 〈e(S∗

t g)| , f, g ∈ L2(R+)

Proof. We have for f, g, h1, h2 ∈ L2(R+) that

〈

e(h1),
(

T̆∗t |e(f)〉 〈e(g)|
)

e(h2)
〉

=
〈

e(g),
(

T̆t |e(h2)〉 〈e(h1)|
)

e(f)
〉

= 〈e(g), (I ⊗ | e(Sth2)〉 〈e(Sth1) | ) e(f)〉

=exp

(
∫ t

0

g(x)f(x) dx+ 〈g, Sth2〉+ 〈Sth1, f〉
)

=

〈

e(h1),

[

exp

(
∫ t

0

g(x)f(x) dx

)

|e(S∗
t f)〉 〈e(S∗

t g)|
]

e(h2)

〉

,

Physically, preadjoint semigroup T̆∗t corresponds to left shifts with forgetting, i.e. the

particles moving left through the point x = 0 are considered as passing from the system to

the environment. To show this, note that T̆∗t takes the partial trace of the density matrix

over (0, t).

Notice that T∗t is no-event semigroup while T̆∗t is conservative.

Now we construct an operator-valued measure M on R+ covariant with respect to T that

perturbs T to T̆ via equation (5). The same problem in case of anti-symmetric Fock space
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was considered in [31]. In fact, we will map H onto another Hilbert space H∧ via some

isometric isomorphism W and deal with semigroups in H∧.

Denote χ([t, s)) the operator of multiplication on characteristic function of [t, s) in

L2(R+). Then χ(dt) is projector-valued measure. Define the operator

W : H → H∧ := {CΩ} ⊕H ⊗ L2(R+)

initially by its action on the exponential vectors,

We(f) = Ω⊕
(
∫ +∞

0

e(S∗
t f)⊗ χ(dt)f

)

, f ∈ L2(R+). (9)

Proposition 2. W preserves inner product of exponential vectors.

Proof. Indeed,
〈

Ω⊕
(
∫ +∞

0

e(S∗
t f)⊗ χ(dt)f

)

,Ω⊕
(
∫ +∞

0

e(S∗
t g)⊗ χ(dt)g

)〉

= 1 +

∫ +∞

0

e〈S
∗

t
f,S∗

t
g〉f(t)g(t) dt

= 1 +

∫ +∞

0

e〈S
∗

t
f,S∗

t
g〉

(

− d

dt
〈S∗

t f, S
∗
t g〉
)

dt = 1 + e〈f,g〉 − 1 = 〈e(f), e(g)〉 , f, g ∈ L2(R+).

Hence the operator W can be continued to an isometric operator on H .

Proposition 3. All possible values of the expression J(g) :=
∫ +∞

0
e(S∗

t g) ⊗ χ(dt)g span a

dense subspace in H ⊗ L2(R+).

Proof. Fix an interval [b, c) ⊂ R+ and a smooth bounded function f ∈ L2(R+) such that

f(0) 6= 0, f ′(0) 6= 0, t ∈ R+. Take points {xi}ni=0, b = x0 < x1 < . . . < xn = c dividing [b, c]

into n equal parts. Then

J(Sxk
f)− J(χ[xk+1,+∞)Sxk

f) =

∫ xk+1

xk

e(S∗
t Sxk

f)⊗ χ(dt)Sxk
f.

Notice that
∥

∥

∥

∥

∫ xk+1

xk

e(S∗
t Sxk

f)⊗ χ(dt)Sxk
f −

∫ xk+1

xk

e(f)⊗ χ(dt)Sxk
f

∥

∥

∥

∥

≤ max
τ∈[0, c−b

n
]
‖e(Sτf)− e(f)‖ · max

τ∈[0, c−b

n
]
|f(τ)| ·

√

c− b

n

≤ max
τ∈[0, c−b

n
]
‖e(Sτf)− e(f)‖ · 2|f(0)| ·

√

c− b

n
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provided that n is large enough. Next,

∥

∥

∥

∥

∫ xk+1

xk

e(f)⊗ χ(dt)f − f(0)e(f)⊗ χ[xk, xk+1)

∥

∥

∥

∥

≤ ‖e(f)‖ · max
τ∈[0, c−b

n
]
|f(τ)− f(0)| ·

√

c− b

n

≤ ‖e(f)‖ · 2|f ′(0)| ·
(

c− b

n

)3/2

provided that n is large enough.

Hence,

∥

∥

∥

∥

∥

n−1
∑

k=1

(J(Sxk
f)− J(χ[xk+1,+∞)Sxk

f))− e(f)⊗ χ[b, c)

∥

∥

∥

∥

∥

2

≤

≤ n ·
(

max
τ∈[0, c−b

n
]
‖e(Sτf)− e(f)‖ · 2|f(0)| ·

√

c− b

n
+ ‖e(f)‖ · 2|f ′(0)| ·

(

c− b

n

)3/2
)2

→ 0 as n→ ∞.

Therefore f ⊗ χ[b, c) belongs to the closure of Span {J(g) : g ∈ L2(R+)} and thus this

closure coincides with H ⊗ L2(R+).

Hence we obtain W to be an isometric isomorphism. For an object (vector, operator or

superoperator) h ∈ H we denote h∧ its isomorphic (with respect to W ) object in H∧. The

inverse correspondence for an object h′ from H∧ will be referred to as h′∨.

Proposition 4. The semigroups T ∧
t and T̆ ∧

t isomorphic to the above ones act on X ∈
B(H∧) as

T ∧
t X =

(

1⊕ (I ⊗ St)
)

X
(

1⊕ (I ⊗ S∗
t )
)

,

T̆ ∧
t X = T ∧

t X + 0⊕
(
∫ t

0

T̆t−sX
∨ ⊗ χ(ds)

)

.

Proof. First statement follows from the equalities

T ∧
t |e(f)∧〉 〈e(g)∧| = |e(Stf)

∧〉 〈e(Stg)
∧|

=

∣

∣

∣

∣

Ω⊕
(
∫ +∞

0

e(S∗
τStf)⊗ χ(dτ)Stf

)〉〈

Ω⊕
(
∫ +∞

0

e(S∗
τStg)⊗ χ(dτ)Stg

)
∣

∣

∣

∣

=

∣

∣

∣

∣

Ω⊕
(
∫ +∞

t

e(StS
∗
τf)⊗ χ(dτ)Stf

)〉〈

Ω⊕
(
∫ +∞

t

e(StS
∗
τg)⊗ χ(dτ)Stg

)
∣

∣

∣

∣

=
(

1⊕ (I ⊗ St)
)

|e(f)∧〉 〈e(g)∧|
(

1⊕ (I ⊗ S∗
t )
)

.
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In order to prove the second statement, compute the matrix element of the right side with

respect to exponential vectors:

〈

e(f)∧,

(

T ∧
t X + 0⊕

(
∫ t

0

T̆t−sX
∨ ⊗ χ(ds)

))

e(g)∧
〉

= 〈e(f), TtX
∨e(g)〉

+

∫ t

0

〈

e(S∗
sf), T̆t−sX

∨e(S∗
sg)
〉

f(s)g(s) ds

= 〈e(S∗
t f), X

∨e(S∗
t g)〉+

∫ t

0

exp

(
∫ t

s

f(τ)g(τ) dτ

)

〈e(S∗
t f), X

∨e(S∗
t g)〉 f(s)g(s) ds

= 〈e(S∗
t f), X

∨e(S∗
t g)〉

(

1 + exp

(
∫ t

0

f(τ)g(τ) dτ

)

− 1

)

=
〈

e(f), T̆tX
∨e(g)

〉

.

Now define the operator-valued measure M on B(H) by the formula

M
(

[a, b)
)

Y =
[

0⊕
(

Y ⊗ χ[a, b)
)]∨

, Y ∈ B(H). (10)

The isomorphic measure in H∧ equals

M
∧
(

[a, b)
)

Y = 0⊕
(

Y ∨ ⊗ χ[a, b)
)

, Y ∈ B(H∧).

Proposition 5. The preadjoint measure M∗ acts on exponential rank one operators as

M∗

(

[a, b)
)

|e(f)〉 〈e(g)| =
∫ b

a

|e(S∗
t f)〉 〈e(S∗

t g)| g(t)f(t) dt.

Proof. Take Y ∈ B(H). Then

〈

e(g),M
(

[a, b)
)

Y e(f)
〉

=
〈

e(g)∧,
[

M
(

[a, b)
)

Y
]∧
e(f)∧

〉

=

〈
∫ +∞

0

e(S∗
t g)⊗ χ(dt)g,

(

Y ⊗ χ[a, b)
)

∫ +∞

0

e(S∗
t f)⊗ χ(dt)f

〉

=

〈
∫ +∞

0

e(S∗
t g)⊗ χ(dt)g,

∫ b

a

Y e(S∗
t f)⊗ χ(dt)f

〉

=

∫ b

a

〈e(S∗
t g), Y e(S

∗
t f)〉 g(t)f(t) dt

=TrY

∫ b

a

|e(S∗
t f)〉 〈e(S∗

t g)| g(t)f(t) dt.

Proposition 6. M satisfies the covariant property with respect to Tt.



13

Proof. Indeed,

T ∧
t M

∧
(

[a, b)
)

Y = 0⊕ (Y ∨ ⊗ Stχ[a, b)S
∗
t ) = 0⊕ (Y ∨ ⊗ χ[a + t, b+ t))

= M
∧
(

[a+ t, b+ t)
)

Y, Y ∈ B(H∧).

Proposition 7. The measure M and the semigroup T̆t satisfy the equation (5) up to iso-

morphism W .

Proof. Indeed,

T̆ ∧
t X −

∫ t

0

M
∧(ds)T̆ ∧

t−sX = T ∧
t X + 0⊕

(
∫ t

0

T̆t−sX
∨ ⊗ χ(ds)

)

− 0⊕
(
∫ t

0

T̆t−sX
∨ ⊗ χ(ds)

)

= T ∧X, X ∈ B(H∧).

V. CONCLUSION

In this work, we have studied the problem of restoring states of quantum systems from the

dynamics induced by quantum dynamical semigroups perturbed by covariant measures. We

introduce definitions of an (unbounded) covariant operator-valued measure on the half-axis

and divide the set of all such measures into two subclasses. The first subclass consists of

measures having (at least unbounded) density with respect to the Lebesgue measure on the

half-axis, and the second subclass consists of measures singular with respect to the Lebesgue

measure. Examples of measures belonging to both subclasses are given. Next we consider

perturbations of no-event quantum dynamical semigroups by means of measures. It is shown

that the Lindbladian form of the generator fits into the concept of perturbation, but the

class under consideration contains a broader class of semigroups. In the last section of the

paper, an operator-valued measure is constructed in the symmetric Fock space, covariant

with respect to the semiflow of shifts. Various physically meaningful examples are provided,

including that in the single particle case corresponds to the Koopman-von Neumann dynam-

ics of a classical oscillator with bounded phase space [29] and the model of the perturbed

dynamics in the symmetric (boson) Fock space. This model, which as an example describes

quantum optics processes like photon transmittance along fibers, is explicitly constructed as
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covariant measure for a semiflow of shifts and its perturbation in the symmetric Fock space,

and its properties are investigated.
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