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Abstract
We consider the problem of deciding whether a given state preparation, i.e., a source
of quantum states, is accurate; namely, it produces states close to a target one within
a prescribed threshold. While most of the result in the literature considers the case in
which the measurement operators can be arbitrarily chosen depending on the target
state, obtaining favorable (Heisenberg) scaling, we focus on the case in which themea-
surements can be only chosen from a given set. We show that, in this case, the order
of measurements is critical for quickly assessing accuracy. We propose and compare
different strategies to compute optimal or suboptimal measurement sequences either
relying solely on a priori information, i.e., the target state for state preparation, or
actively adapting the sequence to the previously obtained measurements. Numerical
simulations show that the proposed algorithms reduce significantly the number ofmea-
surements needed for verification and indicate an advantage for the adaptive protocol
especially assessing faulty preparations.

Keywords Quantum state verification · Optimal measurement sequence · Off-line
and adaptive strategies · Optimization

1 Introduction

Due to the unavoidable errors, noise or decoherence, realistic quantum devices do not
always behave as expected. Variousmetrics can be used to characterize and benchmark
a quantum device [1]. In this work, we focus on devices expected to reliably produce
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some target state. Given an unknown quantum state in a d-dimensional Hilbert space
Hd ,d2−1measurements are necessary in general for a full tomographic reconstruction
of the corresponding density matrix [2].

However, in many situations, such as quantum telecommunication, quantum state
preparation and quantum computation, we are more concerned with whether some
experimentally accessible quantum state ρexp is accurate enough with respect to a
target state ρ0, representing the intended result of the preparation, processing or com-
munication task, rather than fully reconstructing it. This problem is referred to as
quantum state certification [3] and has been considered in the literature from multiple
viewpoint.

Most of the research on state verification builds upon an hypothesis-testing frame-
work [3, 4]. The main results show that the hypothesis “the unknown state is the target
state” can be answered using strategies that achieve a Heisenberg scaling between
the precision and the sample complexity. A key hypothesis to obtain these extremely
favorable scaling is that the measurement operators used to test need leave the target
state invariant, which directly translates in having false negatives with zero probabil-
ity, so the errors come only from false positive. Moreover, if the measurement can be
chosen depending on the state to be verified, these verification protocols only require
two measurement settings for assessing an arbitrary bipartite pure state (see, e.g., [5]).
The basic strategy can then be extended to include locality constraints, specific classes
of target states, adversarial choices in the states to be tested, classical communication
and more [4, 6–12].

In thiswork,we reconsider this task, in a different,more taxing scenario:We assume
that only a finite set of measurement is available and given, independently of the target
state. Under this assumption, the previously proposed optimal verification strategies
cannot be applied in general, as it is possible that no measurement in the set leaves the
target invariant. For this reason, we are going to need more measurements, and worse
scaling between accuracy and sample complexity than the situation.

Of course, oneway to tackle the problemwould be to proceedwith a full tomography
of ρ [2] and then decide accuracy consequently. This is in general, however, not
efficient as it requires to obtain averages for at least d2 − 1 independent observables,
and it does not leverage on prior information about the target state ρ0. For example, if
the target state is known to be pure, a smaller number of measurements are required
via compressed sensing techniques [13].

In order to improve the verification performance, we here propose procedures that
decidewhether the stateρ is accuratewithin a prescribed tolerance,without necessarily
obtaining a full tomography and thus still reducing the number of required observables.
The central idea is to order the measurement sequence using the a priori information,
so that the first measurements are the most informative when the state to be measured
is indeed ρ0. The procedure can also be seen as a way to optimize the order of the
measured observables in a tomography depending on the best available estimate of
the state at hand, in the spirit of [14].

The procedure we propose is of two types: The first ones compute the whole mea-
surement sequence off-line and then uses it choose which measurements to actually
perform, stopping as soon as verification can be decided. A crucial aspect, in prac-
tice, is in fact the computation of the optimal sequence. The latter is a nontrivial
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optimization problem that has to be solved in a number of instances that scale combi-
natorially with the number of measurements, which in turn grows at least quadratically
in the dimension of the space. For this reason, even off-line calculation becomes of
optimal sequences becomes rapidly impractical. In order to address this problem, we
propose iterative algorithms, which determine the best next measurements given the
previously chosen ones. Two versions are provided, where the second one relies on
a relaxation of the constraints that allows for an analytic treatment. These ways of
constructing the sequence, albeit suboptimal, are computationally treatable and offer
another advantage: They lend themselves to be used as adaptive strategies, which rely
on the previously obtained actual measurements rather than just the target state. In
fact, the second type of verification method we propose is an adaptive strategy, where
the next measurement is chosen based on the best available estimate given the actual
measurement performed to that point. The different methods are tested with a paradig-
matic example: a two-qubit state where only local Pauli measurements are available.
The results highlight the flexibility of the adaptive method, which performs well even
in the case of inaccurate priors.

2 Problem setting and verification criteria

We denote byB(H) the set of all linear operators on a finite-dimensional Hilbert space
H. Define B∗(H):={X ∈ B(H)|X = X†} and B>0(H):={X ∈ B(H)|X > 0}. Tr(A)

indicates the trace of A ∈ B(H).We defineS(Hd):={ρ ∈ B∗(Hd)| ρ ≥ 0,Tr(ρ) = 1}
as the set of all physical density matrices on Hd .

In order to precisely specify the verification task, we introduce the following defi-
nition, which depends on the choice of a relevant distance-like function.

Definition 1 ((ε, D, ρ0)-accurate) Given a target state ρ0 ∈ S(Hd) and a (pseudo-
)distance function D on S(Hd), the density matrix ρ ∈ S(Hd) is called (ε, D, ρ0)-
accurate if D(ρ, ρ0) ≤ ε with ε ≥ 0.

Consider a set of observables, represented by Hermitian matrices {Ai }Ri=1, where R
is a positive integer. This set of observables is called information-complete if {Ai }Ri=1
generate the set of all d-dimensional traceless Hermitian matrices. Note that a neces-
sary condition for the observables to be information-complete is R ≥ d2. If {Ai }Ri=1 is
information-complete and the measurement statistics {ŷi }Ri=1 are known exactly, i.e.,
ŷi = yi :=Tr(ρexpAi )with i ∈ {1, . . . , R}, then there is a unique state compatible with
the constraints, that is, the generated state ρexp. Throughout this paper, we suppose
that set of observables is finite, information-complete and fixed. The problem we will
be concerned with is the following,

Problem 1 Based on the a priori state ρ0 and available data {ŷi }Ki=1 with K ≤ R,
determine the optimal order of Ak to verify if the generated state ρexp is (ε, D, ρ0)-
accurate via as few measurements as possible.

In order to introduce the central idea of the work, let us assume for now that a
certain sequence of the available observables has been decided. There are two cases
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Fig. 1 Diagrams corresponding to the quantumstate verification criteriaC1 andC2. The gray area represents
S̄i ∩ S̄ j ∩ S̄k , i.e., the states compatible with the measurement data yi , y j and yk

in which the verification process can be terminated, establishing whether the generate
state is (ε, D, ρ0)-accurate or not with a minimum of measurements. Suppose that
the measurements are perfect, namely the available data yi satisfy yi = Tr(Aiρexp).
Denote by S̄i :={ρ ∈ S(Hd)|Tr(ρAi ) = yi } the set of states compatible with the
measurement data yi . Based on {yi }Ki=1, two criteria can be used to verify if the
generated state ρexp is (ε, D, ρ0)-accurate in each step:

C1. If min
ρ∈⋂K

i=1 S̄i
D(ρ, ρ0) > ε, ρexp is not (ε, D, ρ0)-accurate;

C2. If max
ρ∈⋂K

i=1 S̄i
D(ρ, ρ0) ≤ ε, ρexp is (ε, D, ρ0)-accurate.

Depictions of the situations corresponding to the above two criteria C1 and C2 are
shown in Figure 1.C1 guarantees that all states compatible with the measurement data
are outside of the ball of radius ε around the target state ρ0, while C2 ensures that the
same states are all inside.

In the following sections, we shall leverage the criteria above in order to devise
optimal measurement sequences, or suboptimal ones that present computational
advantages and can be adapted to the actual measurement outcomes.

3 Verification of quantum state based on the a priori state

In this section, we first introduce a strategy of determining the measurement sequence
M off-line based only on the a priori target stateρ0, i.e., without using themeasurement
data. We next use the sequence M to verify that the generated state ρexp is or is not
(ε, D, ρ0) accurate according to the criteria C1 and C2. The objective is to perform
as few measurements as possible to achieve verification.

3.1 Off-line construction of the optimal measurement sequence

From an experimental point of view, it is arguably easier to determine the whole
sequence of measurements before performing them. We shall start by exploring this
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approach, while the adaptive approach, in which the next measurement is chosen
depending on the outcome of the previous ones, will be treated in Section 4.

Denote by Si (ρ0):={ρ ∈ S(Hd)|Tr(ρAi ) = Tr(ρ0Ai )}, the set of density matrices
compatible with the measurement Ai that we would have if the state was actually
ρ0 ∈ S(Hd). While relying only on prior information, with no true measurements
data available, we use Si (ρ0) to replace the constraints S̄i in the criteria C1 and C2.
Note that Si (ρ0) = S̄i if the state is perfect generated, i.e., Tr(ρ0Ai ) = yi .

Obviously, since ρ0 ∈ Si (ρ0) for all i ∈ {1, . . . , R} by construction, then in this
scenario C1 can never be satisfied. Thus, we only exploit C2 to determine the order
of measurements. Suppose that the distance function D is continuous on S(Hd), e.g.,
any matrix norm, quantum relative entropy, etc., (see [15, Chapter 9, 11] for standard
options), due to the compactness of

⋂
i Si (ρ0), maxρ∈⋂

i Si (ρ0) D(ρ, ρ0) exists.
If the state was actually ρ0, the minimal amount of measurements that allow to

determine that the preparation was indeed accurate would correspond, according to
C2, to the minimum n for which there exists a set of measurements indexes Mn ⊂
{1, . . . , R} such that

max
ρ∈⋂

i∈Mn Si (ρ0)
D(ρ, ρ0) ≤ ε,

and the optimal sequence would be any permutation of the Mn .
The Algorithm OS could be used to generate one such optimal sequence.

Algorithm OS: Optimal verification Sequence based on ρ0

• Initialization: Define the set S = {1, . . . , R} and set k = 1.
• Step 1: Denote a k elements sequence by Mk :=(mk,1, . . . ,mk,k ) ∈ Sk . Compute

Mk ∈ argminMk∈Sk
(
maxρ∈⋂

i∈Mk
Si (ρ0) D(ρ, ρ0)

)
.

If maxρ∈⋂
i∈Mk

Si (ρ0) D(ρ, ρ0) ≤ ε stop the procedure. Otherwise, update k = k + 1.

• Step 2: Repeat Step 1 until k = d2.

Note that each step of above algorithm is independent, thus for some i < j , Mi �⊂
M j . At the end of process,we obtain a sequence ofmeasurementsMn containing n ≤ R
elements, whose corresponding observables are the optimal choice for the verification
of (ε, D, ρ0) accuracy of ρexp = ρ0. The order of the elements belonging to Mn is
not important. However, the computational complexity of the above algorithm is too

large; in order to determine Mn , it needs to solve
∑n

k=1(
n
k

) = 2n − 1 optimization

problems. Moreover, in practice, the generated state ρexp is usually different from
the target state ρ0, and thus, the generated measurement sequence Mn by Algorithm
OS with respect to ε may not be able to verify the accuracy of ρexp. To obtain a
tomographically complete sequence, one needs to add d2 − n linearly independent
measurements operators from the available set.
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3.2 Iterative construction of verification sequences

In order to address the above issues, we propose to construct the sequence of measure-
ments iteratively, based on the previous determined measurement indexes, which can
greatly reduce the computational complexity and allow to extend the procedure to the
full observable set. The resulting sequence will be in general suboptimal with respect
to ρ0, but still yields an advantage with respect to a random sequence of observables,
as shown in Section 5.

3.2.1 Optimization-based approach

The general algorithm we propose works as follows: It starts by evaluating, for each
measurement Ai , the maximal distance αi with respect to ρ0 of the states ρ belong-
ing to Si (ρ0), the set of states that are compatible with the measurement outcome
Tr(ρAi ) = Tr(ρ0Ai ). The measurement giving the minimum value of αi is selected
as first measurement Am1 , and the corresponding maximum distance is α1

m1
. Now, the

next measurement Ami+1 is chosen so that it is linearly independent on the previously
chosen ones and at the same time minimizes the maximum distance of the new com-
patible set with the measurement of all the previously selected Am1, . . . , Ami . The
minimum worst-case distance among compatible states αn

i , with n indicating the iter-
ation and i the selected measurement, is chosen as an indicator of how likely it is that
checkingC2will allow us to determine whether the actual state is (ε, D, ρ0)-accurate.

A more formal form of the above algorithm is summarized as Algorithm IOS.

Algorithm IOS: Iteratively Optimized Sequence based on ρ0

•Initialization: Define the sets M = ∅ and S = {1, . . . , R}. Set k = 0.
•Step 1: Define S̄ as the set of all i ∈ S such that Ai /∈ span{An}n∈M. Set k = k + 1. For all i ∈ S̄, compute
αki :=maxρ∈⋂

n∈M Sn (ρ0)∩Si (ρ0) D(ρ, ρ0).

If mini∈S̄αki = 0, set M = M ∪ S̄ and stop the process: In this case, ρ0 must belong to the span of the
selected measurements.

Otherwise, compute argmini∈S̄αki . If arg min output a single integer, set mk = argmini∈S̄αki . If arg min
output multiple integers, designate a unique mk in that set, according to some deterministic rule or at
random: In this case, the criteria we consider do not lead to a preferred choice.

Update M = M ∪ {mk }, S = S \ {mk }.
•Step 2: Repeat Step 1 until card(M) = d2

At the end of the procedure, M is a ordered sequence of measurements, from the
most to the less informative based on a priori state. Note that, at the end of Step 2, we
obtain a sequence of measurements containing n linearly independent observables,
from which the target state ρ0 can be reconstructed via tomography. By construction
α1
m1

≥ α2
m2

≥ · · · ≥ αn
mn

is a decreasing sequence of the maximum distance from ρ0
of the states compatible with themeasurement. However, in practice ρexp �= ρ0, for the
case of n < d2, the n observables may not be sufficient to verify the accuracy of ρexp.
Thus, we need to complete the sequence with additional d2 − n linearly independent
observables, which we can choose at random or according to other criteria.
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3.2.2 Analytic approach based on distance bound

The computational complexity of Algorithm IOS is still highly dependent on the
number of optimization problems to be solved that, albeit reduced with respect to
the optimal a priori sequence, still increases quadratically with the dimension of the
Hilbert space. To address this issue, we provide an approximation of Algorithm IOS
when the Hilbert–Schmidt distance is chosen as the distance function. In this case,
we are not ordering the measurements by evaluating the exact maximal distance of
the set of states compatible with the measurement (i.e., the αk

i values), but instead by
evaluating an upper bound of such distance that can be expressed analytically.

The Hilbert–Schmidt distance is defined as

dHS(ρ0, σ ):=
√
Tr(ρ0 − σ)2, ∀ ρ0, σ ∈ S(Hd),

In the following proposition, we provide an upper bound of the distance on the target
state ρ0 for states σ that are compatible with ρ0 according to a set of observables
{Ai }Ki=1 where K ≤ R.

Proposition 1 Given a state ρ0 ∈ S(Hd) and a set of observables Ai ∈ B∗(Hd) with
i ∈ {1, . . . , K }, for any σ ∈ ⋂K

i=1 Si (ρ0), then

dHS(ρ0, σ ) ≤
√
1 − Tr(�2

K ) +
√
Tr(ρ2

0 ) − Tr(�2
K ) (1)

where �K is the projection of ρ0 in the subspace spanned by the operators {Ai }Ki=1.

Proof The square of the Hilbert–Schmidt distance can be written as d2HS(σ, ρ0) =
Tr(ρ2

0 ) + Tr(σ 2) − 2Tr(σρ0) ≤ 1 + Tr(ρ2
0 ) − 2Tr(σρ0). Any state σ ∈ ⋂

i Si (ρ0)
satisfies Tr(σ Ai ) = Tr(ρ0Ai ) for all i ∈ {1, . . . , K }. Therefore, the orthogonal pro-
jection of ρ0 and σ on the space spanned by the operators {Ai }Ki=1 is the same: We
can defined it as �K . We can thus write ρ0 = �K + �⊥

K and σ = �K + ς⊥
K with

�⊥
K and ς⊥

K orthogonal to �K according to the Hilbert–Schmidt inner product, i.e.,
〈ρ, σ 〉HS = Tr(ρ∗σ). Therefore, Tr(ρ0σ) = Tr(�2

K ) + Tr(�⊥
Kς⊥

K ). Moreover, the
equations Tr(ρ2

0 ) = Tr(�2
K ) + Tr[(�⊥

K )2] and Tr(σ 2) = Tr(�2
K ) + Tr[(ς⊥

K )2] ≤ 1
imply that Tr[(�⊥

K )2] = Tr(ρ2
0 ) − Tr(�2

K ) and Tr[(ς⊥
K )2] ≤ 1 − Tr(�2

K ). From the

Cauchy–Schwarz inequality, we have that Tr(�⊥
Kς⊥

K ) ≥ −
√
Tr[(�⊥

K )2]Tr[(ς⊥
K )2] ≥

−
√
Tr(ρ2

0 ) − Tr(�2
K )

√
1 − Tr(�2

K ). We have therefore proved that

Tr(ρ0σ) ≥ Tr(�2
K ) −

√
Tr(ρ2

0 ) − Tr(�2
K )

√
1 − Tr(�2

K ) (2)

and the main proposition follows. ��
Remark 1 Wewould like to point out that if the target state ρ0 is pure (i.e., Tr(ρ2

0 ) = 1),
the upper bound given in (1) simplifies to

dHS(ρ0, σ ) ≤ 2
√
1 − Tr(�2

K ). (3)
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Moreover, a similar bound also holds when the Bures metric is employed and the
target state ρ0 is pure. Indeed, when ρ0 is pure, the Bures distance is written as
dB(ρ0, σ ) =

√
2(1 − √

Tr(ρ0σ). Therefore, by following similar step it is possible to
demonstrate that, for pure ρ0 for which Tr(�2

K ) ≥ 1/2 we have

d2B(ρ0, σ ) ≤ 2(1 −
√
2Tr(�2

K ) − 1). (4)

Lastly, the bound (1) can be interpreted geometrically. The states σ are written
as σ = �K + ς⊥

K with fixed �K . Therefore, the states σ are contained within a

ball centered in �K and radius RK = max
√
Tr[(ς⊥

K )2] =
√
1 − Tr(�2

K ). The state

ρ0 = �K + �⊥
K also belongs to such ball, but its distance from the center is given by

dK = dHS(ρ0, �K ) =
√
Tr[(�⊥

K )2] =
√
Tr(ρ2

0 ) − Tr(�2
K ). Therefore, the maximum

distance between ρ0 and σ is indeed bounded by RK + dK , as in (1). Notice that, by
starting from a set of linear independent observables {Ai }, adding an extra observable
A j will improve the bound.

Proposition 2 Assume we have fixed the first {Ai }Ki=1 and we add a further measure-
ment operator AK+1. Let {�i } be an orthonormal basis of the space spanned by
the {Ai }Ki=1. Define A⊥

K+1 = AK+1 − ∑
i Tr(�i AK+1)�i . Then, the projected state

becomes:

�K+1 = �K + Tr(ρ0A⊥
K+1)

Tr[(A⊥
K+1)

2] A
⊥
K+1 (5)

The latter also implies ‖�K+1‖2HS = ‖�K ‖2HS + Tr2(ρ0A⊥
K+1)

‖A⊥
K+1‖2HS

.

Proof We can write ρ0 = �K + αA⊥
K+1 + τ⊥

K+1, with A⊥
K+1 orthogonal to all Ai ’s

and τ⊥
K+1 orthogonal to both �K and A⊥

K+1. Since Tr(ρ0AK+1) = Tr(�K AK+1) +
αTr(AK+1A⊥

K+1),we candetermineα = Tr[(ρ0−�K )AK+1]/Tr(AK+1A⊥
K+1). Thus,

the projection of ρ0 into the subspace spanned by the {Ai } and AK+1 is given by:

�K+1 = �K + Tr[(ρ0 − �K )AK+1]
Tr(A2

K+1) − ∑
i [Tr(AK+1�i )]2

A⊥
K+1. (6)

More in detail, write �K := ∑
n Tr(ρ0�n)�n and AK+1 = A⊥

K+1 + 
K+1 with

K+1:= ∑

n Tr(AK+1�n)�n , where Tr(�n�m) = δn,m . We have Tr(�K A⊥
K+1) = 0,

Tr(ρ0
K+1) = ∑
n Tr(AK+1�n)Tr(ρ0�n) and

Tr(�K
K+1) = ∑
n Tr(ρ0�n)Tr(
K+1�n)

= ∑
n Tr(ρ0�n)Tr

( ∑
m Tr(AK+1�m)�m�n

)

= ∑
n,m Tr(ρ0�n)Tr(AK+1�m)Tr(�m�n)

= ∑
n Tr(ρ0�n)Tr(AK+1�n) = Tr(ρ0
K+1).
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From the latter, we have that:

Tr
(
(ρ0 − �K )AK+1

) = Tr
(
(ρ0 − �K )(A⊥

K+1 + 
K+1)
)

= Tr(ρ0A
⊥
K+1) − Tr(�K A⊥

K+1) + Tr(ρ0
K+1) − Tr(�K
K+1)

= Tr(ρ0A
⊥
K+1).

Hence,

�K+1 = �K + Tr[(ρ0 − �K )AK+1]
Tr(A2

K+1) − ∑
i [Tr(AK+1�i )]2

A⊥
K+1 = �K + Tr(ρ0A⊥

K+1)A
⊥
K+1

‖A⊥
K+1‖2HS

.

��

Notice that the rhs of (1) represents an upper bound on the parameter αk
i defined

in Algorithm IOS. Since ‖�K ‖HS =
√
Tr(�2

K ), according to Proposition 1, the norm
‖�K ‖HS of the projection �K of ρ0 over the subspace spanned by a subset of observ-
ables {Ai } is an useful parameter to optimize the sequence of the measurements. The
larger is ‖�K ‖HS , the lower the upper bound on dHS(ρ0, σ ). Therefore, the measure-
ment sequence should be chosen in order to maximize the norm of such projection at
each step, since the upper bound (1) is monotonically non-increasing with respect to
the norm of the projection. To this aim, it is sufficient to select an observable AK+1

which maximizes the value of
Tr2(ρ0A⊥

K+1)

‖A⊥
K+1‖2HS

at each step.

A more formal form of the above algorithm is summarized as Algorithm IAS.

Algorithm IAS: Iterative Sequence based on ρ0 and the Analytic bound

• Initialization: Define the sets M = ∅ and S = {1, . . . , R}. Set k = 1.

• Step 1: For all j ∈ S, compute A⊥
j = A j − ∑

i∈M Tr(A j�i )�i , and ω
(k)
j = Tr2(ρ0A

⊥
j )

‖A⊥
j ‖2HS

for all

j ∈ S. Then, define the index mk ∈ argmax j∈Sω(k)
j , and the matrix �mk = A⊥

mk
‖A⊥

mk ‖HS
. Update

M = M ∪ {mk }, S = S \ {mk }. Set k = k + 1.
• Step 2: Repeat Step 1 until card(M) = d2.

Note that if ω
(k)
j = 0, then ρ0 ∈ span{�m1, . . . , �mk−1}. If the argmax in the

algorithm above produces more than a single index, one is chosen at random in the
set. The sequence is generated by increasing as much as possible in each cycle the
value of ‖�k‖HS . At the end of the procedure, M corresponds to an ordered sequence
of d2 linearly independent measurement operators based on the upper bound on the
distance from ρ0 provided above.
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3.3 Verification algorithm based on themeasurement sequence

Once we obtained the measurement sequenceM using one of the algorithms above, we
can perform theAlgorithmVM to verify whether the generated state ρexp is (ε, D, ρ0)-
accurate according to C1 and C2.

Algorithm VM: Verification of the quantum state based on M

• Initialization: Set N = {m1} and k = 1.
• Step 1: Perform the measurements of Amk and collect the sampled average output ymk . Compute

γk :=min
ρ∈⋂

n∈N S̄n
D(ρ, ρ0), �k :=max

ρ∈⋂
n∈N S̄n

D(ρ, ρ0).

– If γk > ε, then ρexp is not (ε, D, ρ0)-accurate and stop the procedure;
– If �k ≤ ε, then ρexp is (ε, D, ρ0)-accurate and stop the procedure;
– Otherwise, update k = k + 1 and N = N ∪ {mk }.

• Step 2: Repeat Step 1 until k = d2.

Remark 2 At the end of the above algorithm, if the procedure ends with k = d2, we
can reconstruct the generated state ρexp = ∑

i∈N ci Ai where {ci }i∈N can be computed,
for example, by

⎡

⎢
⎣

c1
...

cK

⎤

⎥
⎦ =

⎡

⎢
⎣

Tr(A1A1) . . . Tr(A1AK )
...

. . .
...

Tr(AK A1) . . . Tr(AK AK )

⎤

⎥
⎦

−1 ⎡

⎢
⎣

y1
...

yK

⎤

⎥
⎦ . (7)

While all measurements need to be performed in this case, and there is no advantage
in having ordered them, it is of course not possible to know in advanced that this
will be the case. Moreover, the computational overhead from ordering measurements
becomes negligible if the verification task has to be performed many times.

4 Adaptive quantum state verification

In the previously proposed algorithms, themeasurement sequencewas determined off-
line (i.e., without performing any measurement) by only leveraging the information
on the a priori state ρ0. Here, we optimize the verification procedure Algorithm IOS
and Algorithm IAS by also exploiting the measurement data at each step in addition
to the a priori state to determine the next measurement and then verify the state. We
call such protocol adaptive verification.

For now, suppose that the measurements are perfect: Namely the sampled output
averages correspond to the true expected values for the actual state. We initialize the
algorithm as same as in Algorithm IOS, since before perform the measurements, the
a priori state is the only accessible information. Compute α1

i :=maxρ∈Si (ρ0) D(ρ, ρ0)

for all i ∈ {1, . . . , R} and m1 ∈ arg mini∈{1,...,R}α1
i . If arg min cannot assign an

unique m1, then we consider the following rule: select an observable at random
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among those indicated by the criterion of Algorithm IAS, namely those maximiz-
ing Tr2(ρ0A⊥

j )/‖A⊥
j ‖2HS . Then, we perform the measurement Am1 and obtain an

empirical estimate of ym1 = Tr(ρexpAm1). For the sake of simplicity in presenting the
algorithm, we shall here assume we actually obtain the exact value ym1 . The case of
imperfect estimates can be treated along the same lines. In order to test both criteria
C1 and C2, we compute

ω1:=minρ∈S̄m1
D(ρ, ρ0), 
1:= max

ρ∈S̄m1

D(ρ, ρ0).

If ω1 > ε, then ρexp is not (ε, D, ρ0)-accurate and if 
1 ≤ ε, then ρexp is (ε, D, ρ0)-
accurate. Otherwise, we determine an estimate of ρexp based on the measurement data
ym1 by ρ1 = arg minρ∈S̄m1

fρ0(ρ), where fρ0(ρ) is a continuous function such that
ρ0 = arg minρ∈S(Hd ) fρ0(ρ), quantifying information distance between ρ ∈ S(Hd)

and ρ0 ∈ S(Hd). Common choices for f can be the quantum relative entropy [14], or
any distance function on S(Hd) [15, Chapter 9]. Strictly convex functions guarantee
the uniqueness of the minimum. For all i ∈ {1, . . . , R}\{m1}, according to the criteria
C1 and C2, we compute

δ1i :=minρ∈Si (ρ1)∩S̄m1
D(ρ, ρ0), �1

i := max
ρ∈Si (ρ1)∩S̄m1

D(ρ, ρ0),

where �1
i ≥ δ1i ≥ 0 and Si (ρ1) = {ρ ∈ S(Hd)|Tr(ρAi ) = Tr(ρ1Ai )}. Notice that

the constrained set now is computed for ρ1,which depends on the actual measurement
outcomes. Intuitively, the smaller ε − δ1i (resp. �1

i − ε) is, the more likely C1 (resp.
C2) is verified (see Figure 2).

If for some i we have that�1
i ≥ δ1i > ε or ε > �1

i ≥ δ1i , it means that choosing the
corresponding measurement is expected to bring the compatible set closer to verify
criteria C1 or C2, respectively. However, if there exists i such that δ1i = 0, it implies
that min{ε − δ1i ,�

1
i − ε} = ε and ρ0 ∈ Si (ρ1) ∩ S̄m1 , which means that C1 cannot

yield the conclusion. Thus, if δ1i = 0 for all i , only �1
i provides the information for

the selection of the next measurement. Therefore, in order to maximize the possibility
of the successful verification, we set

m2 ∈
{
arg mini∈S�1

i , δ1i = 0,∀i
arg mini∈S

{
min{ε − δ1i ,�

1
i − ε}}, else.

If arg min cannot assign an uniquem2, then we can select one by employing the idea of
Algorithm IAS, that is to select an observable at random among those whichmaximize
Tr2(ρ1A⊥

j )/‖A⊥
j ‖2HS .

Then, the whole procedure of verification can be defined recursively.

Remark 3 Note that, at each step, determining an estimate ρk of ρexp solves the quan-
tum state tomography [2] based on the partial information, the obtained sequence
{ρk}Rk=1 converges to ρexp, since ρR = ⋂R

i=1 S̄i = ρexp and the measurements are
supposed to be perfect.
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Fig. 2 Diagrams corresponding
to the option of quantum state
verification criteria C1 and C2.
The gray area represents
S̄i ∩ S̄ j ∩ S̄k , i.e., the states
compatible with the
measurement data yi , y j and yk

We summarize the algorithm of adaptive verification with perfect measurements as
Algorithm AV.

Algorithm AV: Adaptive Verification

• Initialization: Define the sets M = ∅ and S = {1, . . . , R}, and compute
α1i :=maxρ∈Si (ρ0) D(ρ, ρ0)

for all i ∈ S and arg mini∈Sα1i .
If arg min output a single integer, set m1 = argmini∈Sα1i . If arg min output multiple integers, choose

at random a m1 ∈ argmini∈STr2(ρ0A⊥
i )/‖A⊥

i ‖2HS . Set �m1 = Am1/‖Am1‖HS and k = 1.
• Step 1: Perform the measurements corresponding to Amk and collect the sampled average output

ymk . Update M = M ∪ {mk } and S = S \ {mk }. Compute
ωk :=min

ρ∈⋂
n∈M S̄n

D(ρ, ρ0), 
k :=max
ρ∈⋂

n∈M S̄n
D(ρ, ρ0).

− If ωk > ε, then ρexp is not (ε, D, ρ0)-accurate and stop the procedure;
− If 
k ≤ ε, then ρexp is (ε, D, ρ0)-accurate and stop the procedure;
− Otherwise, set ρk ∈ argmin

ρ∈⋂
n∈M S̄n

fρ0 (ρ).

• Step 2: Collect all i ∈ S such that Ai /∈ span{Ai }i∈M in S̄. For all i ∈ S̄, compute
δki :=min

ρ∈Si (ρk )∩
⋂

n∈M S̄n
D(ρ, ρ0),

�k
i :=max

ρ∈Si (ρk )∩
⋂

n∈M S̄n
D(ρ, ρ0),

where Si (ρk ) = {ρ ∈ S(Hd )|Tr(ρAi ) = Tr(ρk Ai )}.
If δki = 0 for all i ∈ S, compute argmini∈S̄�k

i .
− If arg min outputs a single integer, set mk+1 = argmini∈S̄�k

i ;
− If arg min outputs multiple integers, compute A⊥

j = A j − ∑
i∈M Tr(A j�i )�i for all j ∈ S̄ and

choose at random mk ∈ argmax j∈S̄Tr2(ρ0A⊥
j )/‖A⊥

j ‖2HS . Set �mk = A⊥
mk

/‖A⊥
mk

‖HS .

Otherwise, compute
argmini∈S̄

{
min{ε − δki , �k

i − ε}}.
− If arg min outputs a single integer, set mk+1 = argmini∈S̄

{
min{ε − δki , �k

i − ε}};
− If arg min outputs multiple integers, compute A⊥

j = A j − ∑
i∈M Tr(A j�i )�i for all j ∈ S̄ and

choose at random mk ∈ argmax j∈S̄Tr2(ρ0A⊥
j )/‖A⊥

j ‖2HS . Set �mk = A⊥
mk

/‖A⊥
mk

‖HS .

Update k = k + 1.
• Step 3: Repeat Step 1 and Step 2 until card(M) = d2.

Due to the perfectmeasurements, we can always obtain the verification results when
the above algorithm ends. In Step 2, we specifically consider the case δki = 0 for all i ∈
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S, in which ρ0 belongs to the compatible sets, i.e.,C1 is always verified. Thus, we can
only applyC2 to determine the nextmeasurement. If ρexp = ρ0, in Step 1 ofAlgorithm
4, we have ρk ≡ ρ0 for any k ∈ {1, . . . , R} since ρ0 = arg minρ∈S(Hd ) fρ0(ρ), which
implies δki ≡ 0. Thus, in this case, Algorithm 4 is equivalent to the combination of
Algorithm IOS and Algorithm IAS.

Note that Algorithm AV can also be applied to the imperfect measurement case.
However, if the sample size is not big enough or there are errors and bias, one may
obtain

⋂K
i=1 Ŝmi = ∅. In this case, we need to stop the verification process and re-

measure ρexp.

5 Application: two-qubit systems

In the following, we test the proposed algorithm simulating measurements to verify
the accuracy of preparation of randomized pure states in a two-qubit system. We
summarize the key elements of the numerical experiments we ran.

Target states: According to the normal distribution, we pick 100 sets of 4
independent complex random numbers with real and imaginary parts belonging to
[−100, 100], i.e., |ψi 〉 ∈ C

4 with i = 1, . . . , 100. Then, we generate 100 pure target
states by ρ0,i = |ψi 〉〈ψi |

Tr(|ψi 〉〈ψi |) .
Bures distance: The distance we employ is the Bures distance, which reduces to

dB(ρ, ρ0) =
√
2(1 − √

F(ρ, ρ0)) =
√
2(1 − √

Tr(ρρ0)) for the case of ρ0 being a
pure state. Obviously, dB(ρ, ρ0) is strictly monotonically decreasing with respect to
Tr(ρρ0). Due to the linearity, we can apply the convex optimization (CVX-SDP [16])
in the simulation for searching the minimum and maximum value of Tr(ρρ0) under
constraints.

Accuracy: ε =
√

2(1 − √
ε̃), where ε̃ is the desired precision for the fidelity

Tr(ρρ0). We consider ε̃ = 0.95 so that ε = 0.2250.
Measurements: We apply projective measurements into Pauli eigenstates. Let

�1 . . . �6 be the eigenprojectors of Pauli matrices corresponding to the eigenvalue 1
and −1, respectively, i.e., σx�1 = �1, σx�2 = −�2, . . . , σz�6 = −�6. We denote
by A6(i−1)+ j = �i ⊗ � j with i, j ∈ {1, . . . , 6} the 36 observables for the two-qubit
system. The set of observables {Ai }36i=1 is information-complete.

Generated state: We generate 100 full rank (ε, dB , ρ0,k)-accurate states ρa
exp,k and

100 full rank (ε, dB, ρ0,k)-non-accurate states ρn
exp,k by perturbing the target state ρ0,k

with k ∈ 1, . . . , 100 as

ρexp,k = eiηHk
(
(1 − λ)ρ0,k + λ

4
14

)
e−iηHk , (8)

where λ ∈ (0, 1), η > 0 and Hk are random Hermitian matrix. We generate the
random Hk ∈ B∗(C4) in the following way and express Hk = ∑15

j=0 h j,k�n where

�0 = 14 and {� j }15j=1 are generators of the Lie algebra SU(4) satisfying Tr(� j ) = 0

and Tr(�m� j ) = 2δ jm with j,m ∈ {1, . . . , 15}, {h j,k}16n=0 are random scalars drawn
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from the uniform distribution in the intervals (−1, 1). We set η = 0.1, λ = 0.0001
for the accurate case and λ = 0.1 for the non-accurate case.

5.1 Beforemeasurements: Algorithm IOS versus Algorithm IAS

Algorithm IOS: We use CVX-SDP mode to apply semidefinite programming, and
obtain 100 measurement sequences, Mk = [mk, j ] j≤16 for k ∈ {1, . . . , 100}.

Algorithm IAS: We obtain 100 measurement sequences, Rk = [rk, j ] j≤16 for k ∈
{1, . . . , 100}.

Comparison: Based on the measurement sequences Rk generated by Algorithm
IOS,we apply semidefinite programming (CVX-SDPmode) to compute the following

βk,l = max
ρ∈⋂

j∈[Rk ]l S j (ρ0,k)
dB(ρ, ρ0,k),

where [Rk]l denotes the first l elements of Rk . The value βk can be considered as an
indicator of how well Algorithm IAS approximates Algorithm IOS. The upper dia-
gram of Figure 3 draws error bars of βk − αk which represents the mean value and
standard deviation, where αk are defined in Algorithm IOS; the lower diagram draws
the number of measurements required by Algorithm IAS minus the one required by
Algorithm IOS for reconstructing ρ0,k . Taking the machine precision into account,
reconstruction of ρ0,k means dB(ρ, ρ0,k) ≤ 10−6 for ρ belonging to the compati-
ble set. For 100 target states ρ0,k , the mean values and the standard deviations of the
number ofmeasurements required byAlgorithm IOS andAlgorithm IAS for the recon-
struction are (5.69, 0.5449) and (6.47, 0.6884), respectively. It is worth noting that
more measurements are required by Algorithm IOS than Algorithm IAS in few cases,
since Algorithm IOS does not always provide the optimal measurement sequence,
being itself an approximation of Algorithm OS.

5.2 Accurate�exp: Algorithm IOS versus Algorithm IAS versus AlgorithmAV versus
control groups

Control groups: Since the set of measurements considered here is information-
overcomplete, we generate 5 random measurement sequences for each accurate
generated state ρa

exp,k , and every sequence contains 16 linearly independent observ-
ables.

Numerical Test: We apply the verification protocol (Algorithm VM) on the
measurement sequences generated off-line by Algorithm IOS, Algorithm IAS and
randomized control groups and run the adaptive protocol (Algorithm AV) with
fρ0(ρ) = dB(ρ, ρ0).

Remark 4 In the case of multiple measurements with the same index of merit, Algo-
rithm IAS selects one measurement at random, while Algorithms IOS and AV use the
following rule, inspired by Algorithm IAS: Select an observable at random among
those which maximize Tr2(ρ1A⊥

j )/‖A⊥
j ‖2HS . The further optimization step is based
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Fig. 3 ComparisonofAlgorithm IOSandAlgorithm IASon the reconstructionofρ0,k with k ∈ {1, . . . , 100}

on analytic formulas so it is not computationally intensive. The same rule will be used
in the next set of simulations as well.

The main results are summarized in Figure 4 and Table 1. The first diagram of
Figure 4 shows the histogram of the number of measurements required for the ver-
ification of accuracy by Algorithm IOS, Algorithm IAS, Algorithm AV and control
groups. This diagram and Table 1 confirm the efficiency of our algorithms in verifica-
tion of accuracy. The rest diagrams show the histogram of difference of the number
of measurements required by different algorithms. In this situation, Algorithm IOS
exhibits an advantage with respect to Algorithm IAS. In this case, the performance of
AlgorithmAV is almost equal to Algorithm IOS. This results are not surprising:When
the state to be verified is indeed close to the target one, Algorithm IOS is expected to
provide the best iteratively built sequence. Nonetheless, Algorithm IAS performance
is fairly close (one extra measurement operator is needed on average) and has the
advantage of avoiding iterated optimization procedures as it relies only on analytic
formulas.

Remark 5 It is worth noticing that the performance of Algorithm AV strongly depends
on the choice of the function fρ0 . Here, we only consider the basic choice fρ0(ρ) =
dB(ρ, ρ0): The optimization of fρ0 will be the focus of the future work.

5.3 Non-accurate�exp: Algorithm IOS versus Algorithm IAS versus Algorithm AV
versus control groups

Control groups:Wegenerate 5 randommeasurement sequences for each non-accurate
generated state ρn

exp,k , and every sequence contains 16 linearly independent observ-
ables.
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Table 1 Verification of accuracy

Alg. IOS Alg. IAS Alg. AV Control gr. 1

(4.76,1.46) (5.73,1.42) (4.83,1.10) (8.68,1.38)

Control gr. 2 Control gr. 3 Control gr. 4 Control gr. 5

(8.74,1.52) (8.82, 1.38) (8.75,1.38) (8.71,1.37)

Themean value and the standard deviation (m, σ ) of the number of measurements are required for verifying
the accuracy of ρaexp,k for k = 1, . . . , 100

Fig. 4 The first histogram displays the distribution of the number of measurements required to verify the
accuracy of ρaexp,k for k = 1, . . . , 100. The other three show the distribution of the difference between the
lengths of the sequences of two algorithms for the same set of generated measurements: For example, if
the displayed N (Alg. X) − N (Alg. Y) is negative, it indicates an advantage for (Alg. X)

Numerical Test: We apply the verification protocol (Algorithm VM) on the
measurement sequences generated off-line by Algorithm IOS, Algorithm IAS and
randomized control groups and also run the adaptive protocol (Algorithm AV) with
fρ0(ρ) = dB(ρ, ρ0).
The main results are summarized in Figure 5 and Table 2. The first diagram of

Figure 5 shows the histogram of the number of measurements required for the verifi-
cation of non-accuracy by Algorithm IOS, Algorithm IAS, Algorithm AV and control
groups. This diagram and Table 2 confirm the efficiency of our algorithms in verifica-
tion of non-accuracy with respect to random sequences. The rest diagrams show the
histogram of difference of the number of measurements required by different algo-
rithms. We can observe that the performance is similar, with a slight advantage for the
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Table 2 Verification of non-accuracy

Alg. IOS Alg. IAS Alg. AV Contr. gr. 1

(5.14,1.65) (5.28,1.25) (5.06,1.11) (8.38,1.80)

Contr. gr. 2 Contr. gr. 3 Contr. gr. 4 Contr. gr. 5

(8.34,1.72) (8.71,1.73) (8.48, 1.8504) (8.57,1.83)

The mean value and the standard deviation of the number of measurements are required for verifying the
non-accuracy of ρnexp,k for k = 1, . . . , 100

Fig. 5 The first histogram displays the distribution of the number of measurements required to verify the
non-accuracy of ρ

n,1
exp,k for k = 1, . . . , 100. The other three show the distribution of the difference between

the lengths of the sequences of two algorithms for the same set of generated measurements

adaptive protocol, Algorithm AV. Other numerical experiments indicate that the dif-
ference in performance becomes more relevant if the needed number of measurements
grows.

6 Conclusions

In this work, we define and study quantum state verification, a key task to test the effec-
tiveness of quantum state preparation procedures, quantum communication channels,
quantum memories and a variety of quantum control algorithms.
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Assuming that i.i.d. copies of the system can be produced, the resulting state can be
identified by tomographic techniques: Sampled averages of a basis of observables are
sufficient to determine an estimate of the state and thus to decide if it is compatiblewith
given accuracy requirements.We propose improved strategies to select the observables
to be measured, so that a decision on the accuracy of the preparation can be reached
well before the full set of measurement is completed. The protocols rely on prior
information about the target state and either provide a full ordered list of observables
to be performed or adaptively decide the next observable based on the previously
obtained ones.

Let us briefly compare the sample complexity of our method with the verification
techniques that optimize the measurements with respect to the target state. In [3], by
tuning the measurements for a specific target state ρ0, Proposition 16 and Proposi-
tion 20 established that we need sample complexity m > 1/ε to guarantee:

Prob{“accept′′|F(ρexp, ρ0) ≤ 1 − ε} ≤ δ, Prob{“reject′′|ρexp = ρ0} = 0

In our strategy, the errors in the algorithms emerge from the substitution of the exact
expected output for measuring the observable Amk , namely ymk with the empirical

mean estimation using n-measurements, expressed as Ymk :=1/n
∑n

i=1 A
(i)
mk , where

A(i)
mk represents the outcome of the i-th measurement of Amk in the state ρexp. Con-

sequently, the primary errors in our paper come from |Ymk − ymk |, whose scaling can
be characterized as in Proposition 10 of [3]: The latter states that

Prob{|Ymk − ymk | ≤ ε} ≥ 1 − δ,

for sample size m > k/ε2 log(2/δ). In our scheme, these errors may sum over a finite
number of measurements, thus maintaining the 1/ε2 scaling.

Note that in the first case ε denotes the distance with respect to perfect fidelity,
while in our case is the distance between true and estimated averages. However, the
two can be related using standard quantum information bounds, obtaining the same
scaling.

While our approach unfavorably scales as a linear function of 1/ε2, all strategies
obtaining 1/ε scaling rely on the ability of tuning the measurements for the specific
target. Here, on the other hand, we are limited to a fixed, finite set of general measure-
ments, a situation motivated by typical experimentally-available setups.

Numerical tests indicate that, for example, a fidelity of 0.95 can be tested on a
qubit system with just 5 measurement of joint Pauli operators, when using random-
ized sequences requires at least 8. While the solution of the problem leads to solve
and compare multiple optimization problems, we also propose an iterative, subopti-
mal algorithm whose solution can be computed analytically, based on a geometric
approximation of the set of states compatible with given measurement outcomes. The
adaptive strategy holds an advantage, especially when the needed number of measure-
ments grows, albeit it requires a more involved implementation. Further work will
address the use of optimized measurement sequences for fast tomography, the use of
different distance functions for the adaptive strategies and the application to real data
from experimental systems of interest.
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