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One of the major obstacles faced by quantum-enabled technology is the environmental noise that causes
decoherence in the quantum system, thereby destroying much of its quantum aspects and introducing errors
while the system undergoes quantum operations and processing. A number of techniques have been invented
to mitigate the environmental effects, and many of these techniques are specific to the environment and the
quantum tasks at hand. Here, we propose a protocol that makes arbitrary environments effectively noise-free
or transparent using an ancilla, which, in particular, is well suited to protect information stored in atoms. The
ancilla, which is the photons, is allowed to undergo restricted but a wide class of noisy operations. The protocol
transfers the information of the system onto the decoherence-free subspace and later retrieves it back to the
system. Consequently, it enables full protection of quantum information and entanglement in the atomic system
from decoherence. We propose experimental schemes to implement this protocol on atomic systems in an
optical cavity.

I. INTRODUCTION

Quantum-enabled technologies involve well-controlled systems to store information and processing, such as atomic and solid
state devices, and systems that are suitable for networking and communication, such as photonic systems. For information
processing, it is often necessary to protect coherence in the state of a quantum system for a long enough duration. However, a
quantum system cannot be fully isolated from its environment, and the latter induces decoherence in the system. These effects
thereby destroy much of its quantum aspects, e.g., quantum coherence, entanglement, etc., and introduces uncontrolled errors
in information processing [1–4]. Taking over environmental noise is thus one of the major challenges in quantum-enabled
technologies today.

Some of the well-known techniques to eliminate environmental effects include dynamical decoupling [5–7], weak measure-
ments, Zeno effect [8] and coherent feedback control [9] to suppress the decoherence, quantum error-correction [4, 10–13],
error-mitigating methods [14–19], and use of decoherence-free subspace [20–23] for quantum computation and simulations.

Dynamical decoupling is an open-loop quantum control technique. It is implemented by a periodic sequence of instantaneous
control pulses [5] and achieves decoherence suppression without increasing the Hilbert space dimension. Still, it cannot be
applied to non-Markovian processes [24, 25] (e.g., decoherence due to amplitude damping). In the decoherence-free subspace
approach, quantum information is encoded in a particular quantum state that does not experience a specific type of decoherence
[26, 27]. Both the quantum error correction and the decoherence-free subspace-based schemes use the Hilbert space dimension
larger than that of the system dimension. The quantum Zeno effect is also exploited to protect a quantum system [8]. There are
other interesting methods to protect a quantum state and entanglement distribution using weak measurement and their reversals
[28–40] and decoherence suppression via quantum measurement reversal [41]. In these schemes, the quantum state is firstly
transferred to more robust states by a weak measurement to resist decoherence. After that, another weak measurement is
performed that reverses the state back to the original state. Due to the failure rates of the weak measurements, however, these
schemes have limited success probabilities. Weak force sensing is also a technique to protect the quantum state, and this is
based on coherent quantum noise cancellation in a non-linear hybrid optomechanical system [42]. The optomechanical cavity
contains a movable mechanical mirror, a fixed semitransparent mirror, an ensemble of ultra-cold atoms, and an optical parametric
amplifier (OPA). Using the coherent quantum noise cancellation (CQNC) process, one can eliminate the back action noise at
all frequencies. Also, by tuning the OPA parameters, one can suppress the quantum shot noise at lower frequencies than the
resonant frequency. There are also techniques to suppress noise in an atomic system using a field in a squeezed coherent state
[43]. The interaction of a quantized electromagnetic field with a medium of three-level Λ atoms has been studied adequately in
the last several years [44–46]. The interaction of a quantized electromagnetic field in a squeezed coherent state with a three-level
Λ atom is studied numerically by the quantum Monte Carlo method and analytically by the Heisenberg-Langevin method in the
regime of electromagnetically induced transparency (EIT) [47].

Here we introduce a generic protocol that is particularly suitable for storing quantum information in an atomic system placed
inside an optical cavity. It makes arbitrary noisy environment noise-free for the atom using externally supplied photons. The
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Figure 1. Quantum circuit for QCT: The protocol uses two ancilla A and B in the initial state |++⟩AB. In the pre-processing phase, the non-
local unitary UABS is applied on the system S and the ancilla AB, which couples the three qubits before they are exposed to the environments.
Due to the environment, the system S undergoes an arbitrary noisy operation ΛS , while the ancilla AB may be exposed to a wide class of noise
given by the map ΦAB in Eq. (3). In the post-processing phase, we undo the operation UABS , i.e., apply U†ABS , followed by the non-local unitary
operation VABS , which neutralizes the effect of environmental noise on S .

protocol enables full protection of quantum information and entanglement from decoherence and environmental noise. We also
propose an experimentally realizable scheme for that.

To mitigate noise from a system, the protocol requires an ancilla. For instance, the system may be an atom, and the ancilla
may be two photons, as we shall consider later. The protocol exploits non-local evolutions on the system and ancilla. In the
process, the information stored in the system is transferred onto the decoherence-free subspace [21, 22] of the ancilla before the
system is exposed to environmental noise and retrieved back to the system at the end. The action of an arbitrary channel ΛS on
a state ρS of a d-dimensional system (qudit) S can be expressed as

ΛS (ρS ) =
∑

m

FS
m ρ

S FS †
m , (1)

where FS
ms are the Kraus operators satisfying

∑
m FS †

m FS
m = 1. Here, 1 is the d × d identity matrix. The protocol implements the

transformation of the operation on the system part from arbitrary noisy operation Λ to identity operation as,

ΛS → IS .

The protocol achieves a transformation in the system’s operation, transforming it from an arbitrary noisy operation ΛS to the
identity operation IS , where IS signifies the identity channel acting on the system. The goal of this paper is to introduce a protocol
implementing such a transformation on the system’s operations. The protocol relies on two ancilla and unitary operations on the
composite (see Fig. 1). We also introduce an experimentally implementable model based on an atom-cavity system. We discuss
all these in the following sections.

II. PROTECTION OF INFORMATION AGAINST NOISE

Let us denote two qudits A and B as ancilla. The system is in an arbitrary state ρS . A quantum circuit scheme to realize the
protocol is given in figure 1.
The noise mitigation protocol – Without loss of generality, we consider a qubit (d = 2) system, which is exposed to arbitrary
qubit noisy channels. The protocol can be extended to an arbitrary d-dimensional atom (see Appendix). For d = 2, the Kraus op-
erators in Eq. (1) can be expressed in terms of superposition in the orthonormal Hilbert-Schmidt bases, as FS

m =
∑

i=0,x,y,z cmi σ
S
i ,

where cmi ∈ C, σ0 = 1, and σS
x , σ

S
y , and σS

z are the Pauli x, y, and z matrices, respectively. Throughout the text we denote |0⟩ and
|1⟩ as the eigenstates of σS

z operator. The step-by-step description of the protocol is given below (see Appendix for more details).

Step 1: The ancilla AB is initiated in the state |++⟩ where |+⟩A/B = (|0⟩A/B + |1⟩A/B)/
√

2.
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Step 2: The composite ABS is evolved by a global unitary operation UABS , given by

UABS = |00⟩⟨00|AB ⊗ 1S + |01⟩⟨01|AB ⊗ σS
z

+ |10⟩⟨10|AB ⊗ σS
x − i|11⟩⟨11|AB ⊗ σS

y . (2)

Step 3: The system S undergoes an arbitrary (possibly unknown) qubit channel ΛS , as a result of its interaction with its environ-
ment. Similarly, the ancilla may be allowed to experience environmental noise resulting in a specific class of channels
ΦAB. The form of Kraus operators of the channels ΦAB =

∑
µ EAB

µ ρAB(EAB
µ )† are given by

EAB
µ = qµ01 ⊗ 1 + qµ1σx ⊗ 1 + qµ2σy ⊗ σx + qµ3σz ⊗ σx, (3)

where qµi ∈ C and
∑
µ EAB†

µ EAB
µ = 1

AB. The form the Kraus operators depend on the idea of decoherence-free subspace
which we shall discuss later and obvious example of the operation ΦAB is the identity operation.

Step 4: The composite ABS is evolved with the unitary U†ABS followed by another unitary VABS given by

VABS = | + +⟩⟨+ + |
AB ⊗ 1S + | + −⟩⟨+ − |AB ⊗ σS

x

+ i | − −⟩⟨− − |AB ⊗ σS
y + | − +⟩⟨− + |

AB ⊗ σS
z . (4)

On the level of channel, the Steps 1-4 implement a transformation that leads to

ΦAB ⊗ ΛS → ΨAB ⊗ IS , (5)

for an arbitrary noisy channel ΛS on S . Note that, in place of applying the unitary VABS in Step 4, we may also perform a
non-unitary operation with the Kraus operators {|++⟩⟨++ |AB ⊗1S , |+−⟩⟨+− |AB ⊗σS

x , | − −⟩⟨− − |
AB ⊗σS

y , | −+⟩⟨−+ |
AB ⊗σS

z }

to make the channel ΛS transparent.

Role of decoherence-free subspace – The protocol transfers the information of the initial system state to the ancilla after
Step 2, i.e., before the system is exposed to arbitrary local noise. And the information transferred to the ancilla does not alter
as it is encoded onto the decoherence-free subspace [21, 22] corresponding to the noise given by the Kraus operators (3). In
addition, arbitrary local noise on the system does not degrade the information stored in ancilla either. Step 4 only retrieves the
information from the ancilla to the system. Thus, the system recovers its initial state at the end of the protocol.

For a given set of channels Φ on some system with the Kraus operators Eµ satisfying
∑
µ E†µEµ = 1, we define a decoherence-

free subspaceHd if

ρ = Φ(ρ) =
∑
µ

EµρE†µ, (6)

where ρ is state that live in Hd. Note, this alternatively requires that [ρ, Eµ] = 0, ∀µ. This notion of the decoherence-free
subspace is similar to the one introduced in [21, 22] except that it is defined for a quantum channel without having an explicit
semi-group structure.

Now, we discuss how the protocol transfers the information about the initial state of the system S to the ancilla AB. The global
state after Step 2 (see above) is

ρABS
2 = UABS ρ

ABS
1 U†ABS ,

where ρABS
1 = | + +⟩⟨+ + |AB ⊗ ρS , and ρS is an arbitrary state of S . Now the reduced density matrix of AB is given by

ρAB =
1
4

[(
1 ⊗ 1

)
+ rz

(
1 ⊗ σx

)
− ry

(
σx ⊗ σy

)
+ rx

(
σx ⊗ σz

)]
, (7)

where ri = tr
(
ρSσi

)
with i = x, y, z. Note, all the information about ρS is transferred to AB in terms of {rx, ry, rz} and no

information remains in S as its reduced state becomes maximally mixed after the evolution.
In Step 3, the ancilla AB is exposed to the noise channels ΦAB with the Kraus operators EAB

µ =
∑1

i j=0 qµi jσ
i
zσ

j
x ⊗ σ

2−i
x . But the

interesting fact is that the reduced state ρAB does not alter by this evolution, i.e.,

ρAB = ΦAB(ρAB) =
∑
µ

EAB
µ ρABEAB†

µ . (8)
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It implies that the information about S , in terms of {rx, ry, rz}, is stored in a subspace of AB that is decoherence-free for the class
of noisy channels given by ΦAB. Further, an arbitrary local noisy evolution (ΛS ) on the system S cannot destroy or degrade the
information about S being stored in AB. After Step 4, the information about S is retrieved, which is how it is protected from
arbitrary local noises.

Clearly, arbitrary noisy channels on the system (S ) can be made transparent using the above protocol if the ancilla (AB) is
restricted to experiencing a particular class of noises. Not only that, but for a multipartite system, it can protect entanglement
while the subsystems are exposed to local environments. Beyond these restricted noises on ancilla, the protocol does not always
protect quantum information in the system in general. However, there are realistic cases where the ancilla (AB) does not
experience the same noise as the system does. For instance, the atoms and photons undergo different noisy evolutions when they
are exposed to the ‘same’ environment. Below we explore such a situation where an atom in a cavity is considered as the system
undergoing arbitrary noisy evolution, and photons act as the ancilla.

III. PROTECTING ATOMS IN OPTICAL CAVITIES

In quantum information processing tasks, it is often necessary to protect coherence in the state of a quantum system for a long
enough duration. But, the inevitable interaction with the environment makes the quantum coherence in a state to decay. The
environmental effects can be nullified using the noise mitigation protocol introduced above hence protecting the state and the
quantum information indefinitely. To demonstrate that, we present an experimental scheme in Figure 2, where the state of an
atom is protected for an indefinite time.

In this scheme, we consider a three-level atom with a two-fold degenerate ground state and an excited state trapped inside an
optical cavity. The system qubit (S ) consists of the state space spanned by the low-energy states |±1⟩ of the atom, whereas the
ancilla qubits (A and B) consist of two single-photons.

To implement the operation UABS we first notice that this operator can be decomposed as a product of two controlled two-qubit
operators as follows:

UABS =
(
1B ⊗CAS

x
)(
1A ⊗CBS

z
)
, (9)

where CAS
x = |0⟩⟨0|

A ⊗1S + |1⟩⟨1|A ⊗σS
x and CBS

z = |0⟩⟨0|
B⊗1S + |1⟩⟨1|B⊗σS

z are respectively the control-NOT and control-Phase
gates acting on one photon and the atom.

The control-Phase and the control-NOT operations between a photon and the atom can be performed using the technique
given in Ref. [48–51]. For this technique to work, the three-level atom should have the Λ-transition, where the transition is
allowed only between |±1⟩ ↔ |0⟩ and forbidden between |+1⟩ ↔ |−1⟩ levels. Due to the conservation of angular momentum,
the right-circular polarized light interacts with |+1⟩ ↔ |0⟩ transition and the left-circular with |−1⟩ ↔ |0⟩.

For an atom trapped inside a cavity in the strong coupling regime (Purcell regime), in the steady state limit and at resonance,
the relation between the input ain and output aout light modes of the cavity can be written as

aout =
−κγ + 4g2

κγ + 4g2 ain, (10)

where κ is the decay rate of the cavity, g characterizes the coupling strength between the cavity and the atom and γ is the atomic
decay rate such that κ ≫ g ≫ γ. Therefore, if g2 ≫ κγ then aout ∼ ain whereas if g2 ≪ κγ then aout ∼ −ain.

If we choose the right-circular polarization as the normal mode of the optical cavity, then the transition |−1⟩ ↔ |0⟩ is always
decoupled, i.e, g = 0. Therefore, if the atom is prepared in the state |−1⟩ then it will reflect the photon with a π-phase, irrespective
of its polarization. However, if the atom is in the state |+1⟩ then the photon will experience a σz operation on its polarization
states, i.e., |L⟩ → − |L⟩ and |R⟩ → |R⟩. The general transformation can be written as

|L⟩ ⊗ |±1⟩ → − |L⟩ ⊗ |±1⟩ , |R⟩ ⊗ |±1⟩ → ± |R⟩ ⊗ |±1⟩ , (11)

which is exactly −Cz operation. The Cz operation can be converted into the Cx operation by applying the Hadamard operation
on the target qubit. It can be done efficiently on the atomic system by the optimized-STIRAP techniques where the excited state
|0⟩ is adiabatically eliminated [57, 58]. Optimized-STIRAP has duration around ∼ 100ns [59] and the typical errors are less
than 10−4 [60, 61]. To perform controlled operations, we use a single atom (Λ-system) trapped in a cavity. This Λ-system is
made up of three levels: |0⟩, |+1⟩, and |−1⟩. When transitioning from |0⟩ to |±1⟩, the coherence time is typically around (γ/2)−1,
approximately ∼ 1µs. As discussed above, our qubit (|+1⟩, |−1⟩) is created by eliminating the excited state |0⟩, making the
influence of decoherence (from γ) negligible on the overall operation time. To conduct controlled operations, we need light
pulses with widths much larger than κ/g2. Therefore, boosting the coupling strength g can speed up the execution of controlled
operations. However, in modern experiments with atoms in cavities, pulses lasting ∼ 1µs to ∼ 2µs are commonly used [62]. As
for UABS , it involves two reflections separated by an atomic rotation, and with current atom-cavity settings, the estimated time is
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Figure 2. Protecting quantum information in an atomic system: The atomic state space is spanned by the low-energy states |±1⟩ and the
excited state |0⟩. The ancilla consists of two single-photons (A and B) in circularly polarization basis {|R⟩ , |L⟩}. The photons are initiated in the
states (|R⟩ + |L⟩)/

√
2. In order to implement UABS operation, we make two photons A and B interact with the atom S inside the cavity. Let the

two photons be τ time apart where the photon B comes first. The interaction of the photon B with the atom results in the CBS
z operation. Then

applying Hadamard operation on the atom using STIRAP technique with the help of a classical laser pulses (Ω) followed by the interaction of
the photon A yields CAS

x operation. Both operations together result in UABS . Afterward, the two photons can be stored in an optical quantum
memory [52–54] to be used subsequently to implement U†ABS and VABS operations. Circulators [49] are used to direct the photons towards the
cavity and optical quantum memory. The electro-optic-modulator (EOM) [55, 56] is used to perform Hadamard operation on the photons in
order to convert UABS into VABS .

around ∼ 5µs. Additionally, atomic rotations are performed using STIRAP, a process that takes about ∼ 100ns [59]. It’s crucial
to highlight that the extended time required for controlled operations is mainly due to the input pulse width. Nevertheless, this
duration can be significantly shortened by increasing the coupling strength, bringing the total time to around a few ∼ 100ns [59].
Controlled operations between atoms and a cavity exhibit low fidelities. For instance, a CNOT operation is executed with an
86% fidelity [49]. This reduction in fidelity primarily arises from frequency fluctuations and scattering losses associated with
the cavity mirrors rather than cavity decay rates. Hence, by tuning the parameters (g, κ, γ), an atom-cavity system can perform
unitary operations with minimal losses, primarily due to photon loss via scattering from mirrors.

Therefore, the unitary UABS can be implemented by sequentially interacting the two photons with the atom-cavity system.
Similarly, we can implement the VABS operator between the atom and the photons by introducing UABS along with the Hadamard
operation on the polarization states of the photons using HWP and the atomic states using STIRAP technique.

As mentioned earlier, one of the advantages of photonic systems is that they experience less environmental noise than for
atomic systems. In fact, the major source of photonic noise is associated with the loss of the photon itself. However, recent
experiments demonstrate that, in atom-cavity systems, the photon loss can be restricted to less than 5% [63–65]. This, in turn,
implies there is a 0.05 probability with which a photon is lost. Now we shall study the impact of photon loss in the atom-cavity
system discussed above. There are several possibilities. For instance, photon-A may get lost in different stages of the protocol,
i.e., in step-2 or in step-4, and similarly for photon-B. Further, both the photons A and B may get lost in different stages.

Consider the photon-A is lost before step 2 takes place. Because of that, the effect of environmental noise on the atom
cannot be eliminated. Say, the atom undergoes an evolution given by the channel ΦS

2 . This channel will be different for different
environmental noises the atom is exposed to. For the cases where the photon is being lost with probability p, the overall evolution
of the atom is ES = (1− p)IS + pΦS

2 , where IS represents the identity operation when there is no photon loss (see Eq. (5)). Now,
it can be easily seen that the error incurred in the noise mitigation due to the photon loss for any given initial state of the atom is

||IS − ES ||^ = p||IS − ΦS
2 ||^ ≤ p, (12)

where || · ||^ is the diamond norm [66]. Similarly, for the case where a photon is lost in step 4 with a probability p, the error in
noise mitigation is bounded from above by p. This is also true when the photon-B is lost in either step 2 or 4. In the case where
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both the photon A and B are lost with probabilities p and q, respectively, the overall error in noise mitigation is upper bounded
by pq irrespective of the steps in which the photons are lost.

IV. DISCUSSION

Unlike the conventional noise-mitigating protocols that are, in general, specific to the system, and the nature of the envi-
ronment, our protocol can be applicable to an arbitrary channel on any system. Although, it requires the ancilla to undergo a
restricted class of noisy channels. If one allows arbitrary noise on the ancilla, the proposed protocol can only mitigate noise
in some specific class noises on the system and its initial states. The methods to improve coherence time using dynamical
decoupling and feedback control are particular to the nature of noise in the system. While these protect local coherence to an
extent, they are not suitable for preserving non-local coherence, such as quantum entanglement. In contrast, our protocol can
protect both local and global coherence for an indefinite time, irrespective of the nature of local noises on the systems. There
are techniques to protect quantum entanglement by creating it in a decoherence-free subspace. However, these are specific to a
small set of entangled states and do not work for arbitrary states. Instead, in our protocol, a decoherence-free subspace of the
ancilla is utilized to eliminate arbitrary local noise in the system. Another technique to mitigate the environmental effects is the
SWAP protocol, where one can transfer the noise effects from the system to the ancilla by swapping their states. However, this
requires the ancilla to be noise-free at all times. On the contrary, our protocol works even if the ancilla is allowed to interact with
a large but restricted class of noisy environments.

Our protocol is particularly suitable for various practical situations where different kinds of systems (or degrees of freedom)
experience different noises while in the same physical environment. For instance, a photon experiences different noises than an
atom. We exploit this advantage to construct an experimental proposal where an atom in a cavity is made noise-free with the use
of photons.

In summary, we have introduced a protocol that makes an arbitrary quantum channel transparent for an arbitrary dimensional
quantum system. Specifically, we have given the implementation scheme to protect quantum information in an atomic system
inside a cavity. The protocol may open new avenues to protect quantum information and correlations against environmental
noise.

Acknowledgments – R.G. thanks the Council of Scientific and Industrial Research (CSIR), Government of India, for
financial support through a fellowship (File No. 09/947(0233)/2019-EMR-I). S.K.G. acknowledges the financial sup-
port from Inter-disciplinary Cyber Physical Systems(ICPS) program of the Department of Science and Technology, In-
dia, (Grant No. DST/ICPS/QuST/Theme-1/2019/12). M.N.B. gratefully acknowledges financial supports from SERB-DST
(CRG/2019/002199), Government of India. M.L.B. thankfully acknowledges supports from ERC AdG NOQIA, Agen-
cia Estatal de Investigación (“Severo Ochoa” Center of Excellence CEX2019-000910-S, Plan National FIDEUA PID2019-
106901GB-I00/10.13039/501100011033, FPI), Fundació Privada Cellex, Fundació Mir-Puig, and from Generalitat de Catalunya
(AGAUR Grant No. 2017 SGR 1341, CERCA program, QuantumCAT_U16-011424, co-funded by ERDF Operational Pro-
gram of Catalonia 2014-2020), MINECO-EU QUANTERA MAQS (funded by State Research Agency (AEI) PCI2019-111828-
2/10.13039/501100011033), EU Horizon 2020 FET-OPEN OPTOLogic (Grant No 899794), and the National Science Centre,
Poland-Symfonia Grant No. 2016/20/W/ST4/00314.

Competing interests - The authors declare no competing interests.
Data and materials availability - Data sharing not applicable to this article, as no datasets were generated or analyzed during

the current study.

[1] W. G. Unruh, Maintaining coherence in quantum computers, Phys. Rev. A 51, 992 (1995).
[2] H. P. Breuer and F. Petruccione, The theory of open quantum systems (Oxford University Press, Great Clarendon Street, 2002).
[3] W. H. Zurek, Decoherence, einselection, and the quantum origins of the classical, Rev. Mod. Phys. 75, 715 (2003).
[4] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University

Press, 2010).
[5] L. Viola, E. Knill, and S. Lloyd, Dynamical decoupling of open quantum systems, Phys. Rev. Lett. 82, 2417 (1999).
[6] K. Khodjasteh and D. A. Lidar, Fault-tolerant quantum dynamical decoupling, Phys. Rev. Lett. 95, 180501 (2005).
[7] G.-Q. Liu, H. C. Po, J. Du, R.-B. Liu, and X.-Y. Pan, Noise-resilient quantum evolution steered by dynamical decoupling, Nat. Commun.

4, 2254 (2013).
[8] Y. Kondo, Y. Matsuzaki, K. Matsushima, and J. G. Filgueiras, Using the quantum zeno effect for suppression of decoherence, New J.

Phys. 18, 013033 (2016).
[9] H. Bluhm, S. Foletti, D. Mahalu, V. Umansky, and A. Yacoby, Enhancing the coherence of a spin qubit by operating it as a feedback loop

that controls its nuclear spin bath, Phys. Rev. Lett. 105, 216803 (2010).

https://doi.org/10.1103/PhysRevA.51.992
https://doi.org/10.1093/acprof:oso/9780199213900.001.0001
https://doi.org/10.1103/RevModPhys.75.715
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1103/PhysRevLett.82.2417
https://doi.org/10.1103/PhysRevLett.95.180501
https://doi.org/10.1038/ncomms3254
https://doi.org/10.1038/ncomms3254
https://doi.org/10.1088/1367-2630/18/1/013033
https://doi.org/10.1088/1367-2630/18/1/013033
https://doi.org/10.1103/PhysRevLett.105.216803


7

[10] D. Gottesman, Stabilizer Codes and Quantum Error Correction, Ph.D. thesis (1997).
[11] T. Aoki, G. Takahashi, T. Kajiya, J.-i. Yoshikawa, S. L. Braunstein, P. van Loock, and A. Furusawa, Quantum error correction beyond

qubits, Nat. Phys. 5, 541 (2009).
[12] X.-C. Yao, T.-X. Wang, H.-Z. Chen, W.-B. Gao, A. G. Fowler, R. Raussendorf, Z.-B. Chen, N.-L. Liu, C.-Y. Lu, Y.-J. Deng, and J.-W.

Chen, Yu-Aoand Pan, Experimental demonstration of topological error correction, Nature 482, 489 (2012).
[13] B. M. Terhal, Quantum error correction for quantum memories, Rev. Mod. Phys. 87, 307 (2015).
[14] K. Temme, S. Bravyi, and J. M. Gambetta, Error mitigation for short-depth quantum circuits, Phys. Rev. Lett. 119, 180509 (2017).
[15] S. Endo, S. C. Benjamin, and Y. Li, Practical quantum error mitigation for near-future applications, Phys. Rev. X 8, 031027 (2018).
[16] S. McArdle, X. Yuan, and S. Benjamin, Error-mitigated digital quantum simulation, Phys. Rev. Lett. 122, 180501 (2019).
[17] A. Kandala, K. Temme, A. D. Córcoles, A. Mezzacapo, J. M. Chow, and J. M. Gambetta, Error mitigation extends the computational

reach of a noisy quantum processor, Nature 567, 491 (2019).
[18] P. G. Kwiat, A. J. Berglund, J. B. Altepeter, and A. G. White, Experimental verification of decoherence-free subspaces, Science 290, 498

(2000).
[19] R. Blume-Kohout, H. K. Ng, D. Poulin, and L. Viola, Characterizing the structure of preserved information in quantum processes, Phys.

Rev. Lett. 100, 030501 (2008).
[20] P. Zanardi and M. Rasetti, Noiseless quantum codes, Phys. Rev. Lett. 79, 3306 (1997).
[21] D. A. Lidar, I. L. Chuang, and K. B. Whaley, Decoherence-free subspaces for quantum computation, Phys. Rev. Lett. 81, 2594 (1998).
[22] D. Bacon, J. Kempe, D. A. Lidar, and K. B. Whaley, Universal fault-tolerant quantum computation on decoherence-free subspaces, Phys.

Rev. Lett. 85, 1758 (2000).
[23] Q.-C. Wu, Y.-H. Zhou, B.-L. Ye, T. Liu, and C.-P. Yang, Nonadiabatic quantum state engineering by time-dependent decoherence-free

subspaces in open quantum systems, New J. Phys. 23, 113005 (2021).
[24] C. Addis, F. Ciccarello, M. Cascio, G. M. Palma, and S. Maniscalco, Dynamical decoupling efficiency versus quantum non-markovianity,

New J. Phys. 17, 123004 (2015).
[25] D. Burgarth, P. Facchi, M. Fraas, and R. Hillier, Non-Markovian noise that cannot be dynamically decoupled by periodic spin echo pulses,

SciPost Phys. 11, 027 (2021).
[26] D. A. Lidar, I. L. Chuang, and K. B. Whaley, Decoherence-free subspaces for quantum computation, Phys. Rev. Lett. 81, 2594 (1998).
[27] P. G. Kwiat, A. J. Berglund, J. B. Altepeter, and A. G. White, Experimental verification of decoherence-free subspaces, Science 290, 498

(2000).
[28] Z. He, C. Yao, and J. Zou, Robust state transfer in the quantum spin channel via weak measurement and quantum measurement reversal,

Phys. Rev. A 88, 044304 (2013).
[29] N. Doustimotlagh, S. Wang, C. You, and G.-L. Long, Enhancement of quantum correlations between two particles under decoherence in

finite-temperature environment, EPL (Europhysics Letters) 106, 60003 (2014).
[30] Y.-S. Kim, Y.-W. Cho, Y.-S. Ra, and Y.-H. Kim, Reversing the weak quantum measurement for a photonic qubit, Opt. Express 17, 11978

(2009).
[31] H.-T. Lim, J.-C. Lee, K.-H. Hong, and Y.-H. Kim, Avoiding entanglement sudden death using single-qubit quantum measurement reversal,

Opt. Express 22, 19055 (2014).
[32] Y.-S. Kim, J.-C. Lee, O. Kwon, and Y.-H. Kim, Protecting entanglement from decoherence using weak measurement and quantum

measurement reversal, Nat. Phys. 8, 117 (2012).
[33] Q. Sun, M. Al-Amri, L. Davidovich, and M. S. Zubairy, Reversing entanglement change by a weak measurement, Phys. Rev. A 82,

052323 (2010).
[34] X.-L. Zong, C.-Q. Du, M. Yang, Q. Yang, and Z.-L. Cao, Protecting remote bipartite entanglement against amplitude damping by local

unitary operations, Phys. Rev. A 90, 062345 (2014).
[35] C. Yao, Z.-H. Ma, Z.-H. Chen, and A. Serafini, Robust tripartite-to-bipartite entanglement localization by weak measurements and

reversal, Phys. Rev. A 86, 022312 (2012).
[36] Z.-X. Man, Y.-J. Xia, and N. B. An, Manipulating entanglement of two qubits in a common environment by means of weak measurements

and quantum measurement reversals, Phys. Rev. A 86, 012325 (2012).
[37] D. J. Starling and N. S. Williams, Efficacy of measurement reversal for stochastic disturbances, Phys. Rev. A 88, 024304 (2013).
[38] A. Royer, Reversible quantum measurements on a spin 1/2 and measuring the state of a single system, Phys. Rev. Lett. 73, 913 (1994).
[39] A. N. Korotkov and A. N. Jordan, Undoing a weak quantum measurement of a solid-state qubit, Phys. Rev. Lett. 97, 166805 (2006).
[40] Q. Sun, M. Al-Amri, and M. S. Zubairy, Reversing the weak measurement of an arbitrary field with finite photon number, Phys. Rev. A

80, 033838 (2009).
[41] J.-C. Lee, Y.-C. Jeong, Y.-S. Kim, and Y.-H. Kim, Experimental demonstration of decoherence suppression via quantum measurement

reversal, Opt. Express 19, 16309 (2011).
[42] S. Singh, M. Mazaheri, J.-X. Peng, A. Sohail, M. Khalid, and M. Asjad, Enhanced weak force sensing based on atom-based coherent

quantum noise cancellation in a hybrid cavity optomechanical system, Front. Phys. 11, 245 (2023).
[43] A. Gelman and V. Mironov, Noise suppression in an atomic system under the action of a field in a squeezed coherent state, J. Exp. Theor.

Phys. 110, 551 (2010).
[44] A. Dantan and M. Pinard, Quantum-state transfer between fields and atoms in electromagnetically induced transparency, Phys. Rev. A

69, 043810 (2004).
[45] A. Dantan, A. Bramati, and M. Pinard, Atomic quantum memory: Cavity versus single-pass schemes, Phys. Rev. A 71, 043801 (2005).
[46] P. Barberis-Blostein and M. Bienert, Opacity of electromagnetically induced transparency for quantum fluctuations, Phys. Rev. Lett. 98,

033602 (2007).
[47] J. P. Marangos, Electromagnetically induced transparency, J. Mod. Opt. 45, 471 (1998).
[48] A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, A quantum gate between a flying optical photon and a single trapped atom, Nature 508,

https://doi.org/doi:10.7907/rzr7-dt72
https://doi.org/10.1038/nphys1309
https://doi.org/10.1038/nature10770
https://doi.org/10.1103/RevModPhys.87.307
https://doi.org/10.1103/PhysRevLett.119.180509
https://doi.org/10.1103/PhysRevX.8.031027
https://doi.org/10.1103/PhysRevLett.122.180501
https://doi.org/10.1038/s41586-019-1040-7
https://doi.org/10.1126/science.290.5491.498
https://doi.org/10.1126/science.290.5491.498
https://doi.org/10.1103/PhysRevLett.100.030501
https://doi.org/10.1103/PhysRevLett.100.030501
https://doi.org/10.1103/PhysRevLett.79.3306
https://doi.org/10.1103/PhysRevLett.81.2594
https://doi.org/10.1103/PhysRevLett.85.1758
https://doi.org/10.1103/PhysRevLett.85.1758
https://doi.org/10.1088/1367-2630/ac309d
https://doi.org/10.1088/1367-2630/17/12/123004
https://doi.org/10.21468/SciPostPhys.11.2.027
https://doi.org/10.1103/PhysRevLett.81.2594
https://doi.org/10.1126/science.290.5491.498
https://doi.org/10.1126/science.290.5491.498
https://doi.org/10.1103/PhysRevA.88.044304
https://doi.org/10.1209/0295-5075/106/60003
https://doi.org/10.1364/OE.17.011978
https://doi.org/10.1364/OE.17.011978
https://doi.org/10.1364/OE.22.019055
https://doi.org/10.1038/nphys2178
https://doi.org/10.1103/PhysRevA.82.052323
https://doi.org/10.1103/PhysRevA.82.052323
https://doi.org/10.1103/PhysRevA.90.062345
https://doi.org/10.1103/PhysRevA.86.022312
https://doi.org/10.1103/PhysRevA.86.012325
https://doi.org/10.1103/PhysRevA.88.024304
https://doi.org/10.1103/PhysRevLett.73.913
https://doi.org/10.1103/PhysRevLett.97.166805
https://doi.org/10.1103/PhysRevA.80.033838
https://doi.org/10.1103/PhysRevA.80.033838
https://doi.org/10.1364/OE.19.016309
https://doi.org/https://doi.org/10.3389/fphy.2023.1142452
https://doi.org/10.1134/S1063776110040011
https://doi.org/10.1134/S1063776110040011
https://doi.org/10.1103/PhysRevA.69.043810
https://doi.org/10.1103/PhysRevA.69.043810
https://doi.org/10.1103/PhysRevA.71.043801
https://doi.org/10.1103/PhysRevLett.98.033602
https://doi.org/10.1103/PhysRevLett.98.033602
https://doi.org/10.1080/09500349808231909
https://doi.org/https://doi.org/10.1038/nature13177


8

237 (2014).
[49] B. Hacker, S. Welte, G. Rempe, and S. Ritter, A photon–photon quantum gate based on a single atom in an optical resonator, Nature 536,

193 (2016).
[50] H. Kim, R. Bose, T. C. Shen, G. S. Solomon, and E. Waks, A quantum logic gate between a solid-state quantum bit and a photon, Nat.

Photon. 7, 373 (2013).
[51] L.-M. Duan and H. J. Kimble, Scalable photonic quantum computation through cavity-assisted interactions, Phys. Rev. Lett. 92, 127902

(2004).
[52] Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S.-L. Zhu, Efficient quantum memory for single-photon polarization

qubits, Nat. Photon. 13, 346 (2019).
[53] J. Guo, X. Feng, P. Yang, Z. Yu, L. Chen, C.-H. Yuan, and W. Zhang, High-performance raman quantum memory with optimal control in

room temperature atoms, Nat. Commun. 10, 148 (2019).
[54] M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, High efficiency coherent optical memory with warm rubidium

vapour, Nat. Commun. 2, 174 (2011).
[55] S. Luo, Y. Wang, X. Tong, and Z. Wang, Graphene-based optical modulators, Nanoscale Res. Lett. 10, 1 (2015).
[56] R. Amin, J. B. Khurgin, and V. J. Sorger, Waveguide-based electro-absorption modulator performance: comparative analysis, Opt. Express

26, 15445 (2018).
[57] A. Baksic, H. Ribeiro, and A. A. Clerk, Speeding up adiabatic quantum state transfer by using dressed states, Phys. Rev. Lett. 116, 230503

(2016).
[58] X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, Shortcut to adiabatic passage in two- and three-level atoms, Phys.

Rev. Lett. 105, 123003 (2010).
[59] B. B. Zhou, A. Baksic, H. Ribeiro, C. G. Yale, F. J. Heremans, P. C. Jerger, A. Auer, G. Burkard, A. A. Clerk, and D. D. Awschalom,

Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system, Nat. Phys. 13, 330 (2017).
[60] N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann, Stimulated raman adiabatic passage in physics, chemistry, and beyond,

Rev. Mod. Phys. 89, 015006 (2017).
[61] Q.-C. Wu, Y.-H. Zhou, B.-L. Ye, T. Liu, J.-L. Zhao, D.-X. Chen, and C.-P. Yang, Generation of an enhanced multi-mode optomechanical-

like quantum system and its application in creating hybrid entangled states, Ann. Phys. 534, 2100393 (2022).
[62] B. Hacker, S. Welte, S. Daiss, A. Shaukat, S. Ritter, L. Li, and G. Rempe, Deterministic creation of entangled atom-light schrödinger-cat

states, Nat. Photon. 13, 110 (2019).
[63] A. Reiserer, N. Kalb, G. Rempe, and S. Ritter, Photon-mediated quantum gate between two neutral atoms in an optical cavity, Nature

508, 237 (2014).
[64] B. Hacker, S. Welte, G. Rempe, and S. Ritter, A photon-photon quantum gate based on a single atom in an optical resonator, Nature 536,

193 (2016).
[65] S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, Photon-mediated quantum gate between two neutral atoms in an optical cavity,

Phys. Rev. X 8, 011018 (2018).
[66] G. Benenti and G. Strini, Computing the distance between quantum channels: usefulness of the fano representation, J. Phys. B: At. Mol.

Opt. Phys. 43, 215508 (2010).

Appendix A: The protocol for qubit channels

Detailed derivation of the protocol for arbitrary qubit channels. The protocol is implemented in five steps, to make arbitrary
qubit channel ΛS transparent, i.e., ΛS → 1S , where 1S is an identity channel. The protocol uses two qubit ancilla AB with is
also allowed to undergo a wide class of noisy operation during the protocol, as discussed below.

Step 1: To start with we attach the ancilla AB with the system S in an initial state

ρABS
1 = | + +⟩⟨+ + |AB ⊗ ρS , (A1)

where |±⟩X = 1
√

2

(
|0⟩X ± |1⟩X

)
with X = A, B, and ρS is any state of S .

Step 2: Initial state evolve with a global unitary (acausal operation) UABS .

ρABS
2 = UABS ρ

ABS
1 U†ABS , (A2)

where UABS = |00⟩⟨00|AB ⊗ 1S + |01⟩⟨01|AB ⊗ σS
z + |10⟩⟨10|AB ⊗ σS

x − i|11⟩⟨11|AB ⊗ σS
y . Here {σx, σy, σz} are the Pauli

matrices.

Step 3: System S passes through a noisy channel implementing an arbitrary quantum noisy channel (CPTP map) ΛS that we want
to eliminate, given by ΛS (ρS ) =

∑
m FS

mρS FS
m
†, with Kraus operators FS

m =
∑3

i=0 cmiσi where cmi ∈ C can take arbitrary
values satisfying

∑
m FS †

mFS
m = 1

S . Here we assume σ0 = 1. The ancilla AB may experience a class of environmental
noise, given by the channels ΦAB(ρAB) =

∑
µ EAB

µ ρABEAB
µ
†, where the Karus operators are EAB

µ =
∑1

j,k=0 qµ jkσ
j
zσ

k
x ⊗σ

2− j
x =
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qµ001⊗1+ qµ01σx ⊗1+ qµ10σz ⊗σx + qµ11σzσx ⊗σx, satisfying
∑
µ EAB

µ
†EAB

µ = 1
AB. As a consequence, the overall state

evolves as

ρABS
3 = ΦAB ⊗ ΛS

(
ρABS

2

)
, (A3)

The we choose EAB
µ , because of decoherence free subspace as discussed in the main text.

Step 4: Now, ρABS
3 is evolved with hermitian conjugate on the global unitary (acausal operation) U†ABS . Thus,

ρABS
4 = U†ABS ρ

ABS
3 UABS , (A4)

where U†ABS = |00⟩⟨00|AB ⊗ 1S + |01⟩⟨01|AB ⊗ σS
z + |10⟩⟨10|AB ⊗ σS

x + i|11⟩⟨11|AB ⊗ σS
y . The state ρABS

4 can explicitly be
expressed as,

ρABS
4 =

∑
m

∑
µ

[[
U†ABS

(
EAB
µ ⊗ FS

m

)
UABS

]
ρABS

1

[
U†ABS

(
EAB
µ ⊗ FS

m

)
UABS

]†]
. (A5)

Let’s consider a KABS
µm = U†ABS

(
EAB
µ ⊗ FS

m

)
UABS , which is the kraus operator applied on the initial state (ρABS

1 ). Then, we
can re-write the state ρABS

4 as,

ρABS
4 =

∑
µm

KABS
µm ρABS

1 KABS
µm

†
. (A6)

The explicit form of the kraus operator KABS
µm is,

KABS
µm = U†ABS

 1∑
j,k=0

qµ jk

(
σ

j
zσ

k
x

)A
⊗
(
σ

2− j
x

)B
⊗

3∑
i=0

cmiσ
S
i

UABS . (A7)

The explicit form of KABS
µm is,

KABS
µm =

[
qµ00

(
1A ⊗ 1B ⊗ cm01

S + 1A ⊗ σB
z ⊗ cm1σ

S
x + σ

A
z ⊗ σ

B
z ⊗ cm2σ

S
y + σ

A
z ⊗ 1

B ⊗ cm3σ
S
z

)
+

qµ01

(
σA

x ⊗ σ
B
z ⊗ cm0σ

S
x + σ

A
x ⊗ 1

B ⊗ cm11
S + σA

y ⊗ 1
B ⊗ cm2σ

S
z − σ

A
y ⊗ σ

B
z ⊗ cm3σ

S
y

)
+

qµ10

(
σA

z ⊗ σ
B
x ⊗ cm0σ

S
z + σ

A
z ⊗ σ

B
y ⊗ cm1σ

S
y − 1

A ⊗ σB
y ⊗ cm2σ

S
x + 1

A ⊗ σB
x ⊗ cm31

S
)
+

qµ11

(
σA

y ⊗ σ
B
y ⊗ cm0σ

S
y + σ

A
y ⊗ σ

B
x ⊗ cm1σ

S
z − σ

A
x ⊗ σ

B
x ⊗ cm21

S − σA
x ⊗ σ

B
y ⊗ cm3σ

S
x

)]
Without loss of generality, we may consider the initial system state to be a pure state ρS = |ψ⟩⟨ψ|S . Then the overall
transformation becomes

ρ4
ABS =

∑
µm

(
KABS
µm

)
| + +⟩⟨+ + |AB ⊗ |ψ⟩⟨ψ|S

(
KABS
µm

)†
(A8)

To simply understand, we write the effect of each Kraus operator on the global initial state as,

KABS
µm

(
|++⟩AB ⊗

∣∣∣ψS
〉)
=
(
qµ00cm0 + qµ01cm1 + qµ10cm3 − qµ11cm2

)
|++⟩ ⊗ 1 |ψs⟩+(

qµ00cm1 + qµ01cm0 + iqµ10cm2 + iqµ11cm3

)
|+−⟩ ⊗ σx |ψs⟩+(

qµ00cm3 − iqµ01cm2 + qµ10cm0 − iqµ11cm1

)
|−+⟩ ⊗ σz |ψs⟩+(

qµ00cm2 + iqµ01cm3 − iqµ10cm1 − qµ11cm0

)
|−−⟩ ⊗ σy |ψs⟩ .

Step 5: Finally the state ρ4
ABS is evolved with the acausal unitary VABS given by

VABS = HA ⊗ HB ⊗ HS

(
UABS

)
H†A ⊗ H†B ⊗ H†S (A9)

= | + +⟩⟨+ + |AB ⊗ 1S + | + −⟩⟨+ − |AB ⊗ σS
x + | − +⟩⟨− + |

AB ⊗ σS
z + i| − −⟩⟨− − |AB ⊗ σS

y , (A10)
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where HX with X= A,B,S is the Hadamard unitary. As a result, the final state becomes

ρ5
ABS = VABS ρ

4
ABS V†ABS = Ψ

AB
(
|++⟩⟨++|AB

)
⊗ ρS , (A11)

where ΨAB
(
|++⟩⟨++|AB

)
=
∑
µ FAB

µm |++⟩⟨++|
AB FAB†

µm is a channel implemented on the ancilla AB, with the Kraus operators

FAB
µm = qµ00

(
cm01 ⊗ 1 + cm11 ⊗ σz + cm2σz ⊗ σz + cm3σz ⊗ 1

)
+qµ01

(
cm0σx ⊗ σz + cm1σx ⊗ 1 + cm2σy ⊗ 1 − cm3σy ⊗ σz

)
+qµ10

(
cm0σz ⊗ σx + cm1σz ⊗ σy − cm21 ⊗ σy + cm31 ⊗ σx

)
+qµ11

(
cm0σy ⊗ σy + cm1σy ⊗ σx − cm2σx ⊗ σx − cm3σx ⊗ σy

)
. (A12)

Thus, the arbitrary system state is fully recovered, as if the system is passed through a transparent environment. On the level
of operation the transformation leads to, after all the steps of protocol.

ΦAB ⊗ ΛS → ΨAB ⊗ 1S . (A13)

The same transparency can be attained by applying a non-unitary (semi-causal) CPTP operation on ABS with the Kraus operators
{| + +⟩⟨+ + |AB ⊗ 1S , | + −⟩⟨+ − |AB ⊗ σS

x , | − −⟩⟨− − |
AB ⊗ σS

y , | − +⟩⟨− + |
AB ⊗ σS

z } in Step 5, instead of VABS .

Appendix B: The protocol for qudit channels

The protocol for qudit channels (d ⩾ 3) – The protocol for a d-dimensional system (S ) follows similar to the qubit systems,
where an arbitrary qudit channel ΛS

d is made transparent with the help of two d-dimensional ancillary systems A and B. In
Step 1, the ancilla state is prepared in |ψ0⟩

A ⊗ |ψ0⟩
B where |ψ0⟩ =

1
√

d

∑d−1
k=0 |k⟩. In Step 2, the tri-partite unitary operation

U(d)
ABS = (1B ⊗CAS

X )(1A ⊗CBS
Z ) is applied. Here the control operations CAS

X and CBS
Z are defined as

CBS
Z =

d−1∑
k=0

|k⟩⟨k|B ⊗ Zk, CAS
X =

d−1∑
k=0

|k⟩⟨k|A ⊗ Xk, (B1)

where Z =
∑d−1

k=0 e(i2kπ/d)|k⟩⟨k| and X =
∑d−1

k=0 |(k + 1) mod d⟩ ⟨k|. In Step 3, the system is exposed to an arbitrary environment and
undergoes a noisy operation ΛS

d . The ancilla AB may also undergo noisy operation ΦAB
d with the corresponding Kraus operators

EAB
µ =

∑
i, j

cµi jZiX j ⊗ Xd−i. (B2)

In Step 4, the ABS composite is evolved with the unitary U(d)†
ABS and followed by V (d)

ABS , where

V (d)
ABS =

∑
m,n

|ψm⟩⟨ψm|
A ⊗ |ψn⟩⟨ψn|

B ⊗ (ZmXn)†, (B3)

with |ψm⟩
A = Zm |ψ0⟩

A and |ψn⟩
B = Z[n(d−1) mod d] |ψ0⟩

B. The Steps 1-4 result in the overall transformation on the level of channel
as

ΦAB
d ⊗ Λ

S
d → Ψ

AB
d ⊗ 1

S , (B4)

where the local channel on the system S becomes transparent (see Appendix for more details).

Suppose, an arbitrary noisy quantum channel applied on a d-dimensional quantum system S in the state ηS , given byΛS
d (ηS ) =∑

i Fi(ηS )F†i . Now, we extend the protocol to that makes the channel transparent, i.e., ΛS
d → 1S . Note, any Karus operator can

be expressed as Fi =
∑

m,n cmniS mn, where S mn are the complete set of Schwinger unitary operators, given by S mn = ZmXn with
Z =

∑d−1
k=0 ξ

k |k⟩⟨k|, X =
∑d−1

k=0 |(k + 1) mod d⟩ ⟨k|. Here {|k⟩} represents a complete set orthonormal bases in the system Hilbert
space.

For the protocol, we attach two d-dimensional anilla AB with the system S , and the ancilla allowed to interact with a wide
class of environment. Similar to the qubit case, the protocol is implemented in five steps, as follows.
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Step 1: Initially, we attach ancilla AB with system state S .

ηABS
1 = |ψ0⟩⟨ψ0|

A ⊗ |ψ0⟩⟨ψ0|
B ⊗ ηs, (B5)

where |ψ0⟩A/B =
1
√

d

∑d−1
k=0 |k⟩A/B and ηS can be arbitrary state for the system. Here {|k⟩A/B} is a complete set of orthonormal

bases on the Hilbert space of A/B.

Step 2: The Initial state ηABS
1 is evolved with global (acausal) unitary UABS , given by

UABS = UX
AS UZ

BS =

d2−1∑
kk′
|kk′⟩⟨kk′| ⊗ XkZk′ , (B6)

where where UX
AS =

∑d−1
k=0 |k⟩⟨k|

B ⊗ Xk, UZ
BS =

∑d−1
k′=0 |k

′⟩⟨k′|A ⊗ Zk′ . As a consequence, the initial state is transformed to
ηABS

2 = UABS η
ABS
1 U†ABS .

Step 3: Now, the system S is passed through an arbitrary noisy environment implementing a CPTP map ΛS
d . The ancilla may also

undergo a wide class of noisy channel ΦAB
d due to interaction with its environment. As a result,

ηABS
3 = ΦAB

d ⊗ Λ
S
d (ηABS

2 ), (B7)

where the kraus operators of the maps ΦAB
d and ΛS

d are EAB
µ =

∑
α,β pµαβZαXβ⊗Xd−α and FS

i =
∑

mn cimnZmXn respectively,

with pµαβ ∈ C and cimn ∈ C. Note, the Kraus operators satisfy the trace preserving condition
∑
µ EAB

µ
†EAB

µ = 1AB and

similarly
∑

i FS
i
†FS

i = 1
S .

Step 4: The global unitary U†ABS is applied on ηABS
3 , to give

ηABS
4 = U†ABS η

ABS
3 UABS . (B8)

Note, it is equivalent to write

ηABS
4 =

∑
µi

[
U†ABS

(
EAB
µ ⊗ FS

i

)
UABS

]
ηABS

1

[
U†ABS

(
EAB
µ ⊗ FS

i

)
UABS

]†
=
∑
µi

KABS
µi η1KABS

µi
† (B9)

where Kraus operators KABS
µi are applied on the initial state ηABS

1 . The Kraus operators are

KABS
µi = U†ABS

d−1∑
α,β

pµαβ
(
ZαXβ

)A
⊗
(
Xd−α
)B
⊗

d−1∑
m,n

cimnS mn

UABS (B10)

One can simplify KABS
µi by expressing the UABS and S mn in terms of Z and X. For simplicity, we consider that the ancilla

goes through a identity channel (ΦAB
d = 1). In that case, KABS

µi ≡ KABS
i . However, the protocol still works even after the

ancilla still undergoes a wide class if noisy channels, as mentioned above. Now,

KABS
i =

d2−1∑
k,k′=0

d−1∑
m,n=0

cmni|kk′⟩⟨kk′|AB ⊗ Zk′†Xk†ZmXnXkZk′ =

d2−1∑
k,k′=0

d−1∑
m,n=0

(
cmni|kk′⟩⟨kk′|AB ⊗ ei2π(km−k′n)/dS mn

)
. (B11)

Here we have used the relations

Zk′Xk = ei2πkk′/dXkZk′ , Zk′†Xk† = ei2πkk′/dXk†Zk′†, Xα†Zβ = ei2παβ/dZβXα†, Zβ†Xα = e−i2παβ/dXαZβ†. (B12)

Upon rearrangements, the KABS
i further reduces to

KABS
i =

d−1∑
m,n=0

cmni

[
Zm ⊗ Zn(d−1)mod d ⊗ S m,n

]
. (B13)

Now to understand the action of these Kraus operators, we assume that the system S is initially in an arbitrary pure state
|ϕ⟩S . Note, any mixed state can purified in a larger Hilbert space. Then,

|Ψ4⟩
ABS = KABS

i

(
|ψ0⟩

A ⊗ |ψ0⟩
B ⊗ |ϕ⟩S

)
=

d−1∑
m,n=0

cimn |ψm⟩
A ⊗ |ψn⟩

B ⊗ S mn |ψ⟩
S ,

where
〈
ψi

∣∣∣ψ j

〉
A/B
= δi j and |ψm⟩

A = Zm |ψ0⟩
A and |ψn⟩

B = Zn(d−1)mod d |ψ0⟩
B.
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Step 5: In the last step, we apply a global unitary V (d)
ABS , given by

V (d)
ABS =

∑
m,n

|ψm⟩⟨ψm| ⊗ |ψn⟩⟨ψn| ⊗ S †mn, (B14)

and, as a result, the overall transformation becomes

V (d)
ABS η

ABS
4 V (d)†

ABS = Ψ
AB
d

(
|ψ0⟩⟨ψ0|

A ⊗ |ψ0⟩⟨ψ0|
B
)
⊗ ηS , (B15)

where the Kraus operators corresponding to the CPTP map ΨAB
d can easily found.

Thus on the level quantum channels, the protocol implements the transformation

ΦAB
d ⊗ Λ

S
d → Ψ

AB
d ⊗ 1, (B16)

for arbitrary quantum channel of system S and a wide class of noisy channel on the ancilla AB.
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