
How Much Entanglement Does a Quantum Code Need?
Gaojun Luo1, Martianus Frederic Ezerman2, Markus Grassl3, and San Ling1

1School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
2School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore and
Sandhiguna, Suite 707 Graha Pena, Batam, Kepulauan Riau, 29461, Indonesia

3International Centre for Theory of Quantum Technologies, University of Gdansk, 80-309 Gdańsk, Poland
6 September 2022

In the setting of entanglement-assisted quan-
tum error-correcting codes (EAQECCs), the
sender and the receiver have access to pre-
shared entanglement. Such codes promise bet-
ter information rates or improved error han-
dling properties. Entanglement incurs costs
and must be judiciously calibrated in designing
quantum codes with good performance, rela-
tive to their deployment parameters.
Revisiting known constructions, we devise

tools from classical coding theory to better
understand how the amount of entanglement
can be varied. We present three new propaga-
tion rules and discuss how each of them affects
the error handling. Tables listing the param-
eters of the best performing qubit and qutrit
EAQECCs that we can explicitly construct are
supplied for reference and comparison.

1 Introduction
In quantum communication, the goal is to send as
much quantum information as possible over a noisy
quantum channel using a fixed number of quantum
bits (qubits) or higher-dimensional systems (qudits).
One aims at optimizing the transmission rate so that
it approaches the channel capacity asymptotically.
The communicating parties are assumed to be phys-
ically separated, but they might have access to addi-
tional resources, which may include access to classical
communication channels, pre-shared randomness, and
pre-shared entanglement. We focus on the use of en-
tanglement in the design of quantum error-correcting
codes (QECCs) to boost either their communication
rates or error-control capabilities.

1.1 Quantum Codes
A general quantum error-correcting code for qubits
that does not use additional resources is a K-
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dimensional subspace of the complex Hilbert space
of n qubits, which has dimension 2n. We use the no-
tation Jn, kK2 for a code Q of dimension K = 2k and
say that Q encodes k logical qubits into n physical
qubits. The encoding operation consists of two steps.
First, the sender appends n−k ancilla qubits in a fixed
state, typically |0〉⊗(n−k), to a state |ϕ〉 of k qubits.
Then an encoding unitary Uenc is applied:

|ϕ〉 7→ |ϕ〉 ⊗ |0〉⊗(n−k)

7→ |ΨL〉 := Uenc

(
|ϕ〉 ⊗ |0〉⊗(n−k)

)
. (1)

The state |ΨL〉 is called the encoded state or the logical
state. The unitary Uenc acts on the space formed by
the input state |ϕ〉 and the ancillas |0〉⊗(n−k).

In an entanglement-assisted setup [5], we replace
c of the ancillas by c pairs of maximally entangled
qubits (ebits in short), before applying Uenc. Let the
state |Ψ+〉AB be an EPR pair [14] shared between
the sender Alice and the receiver Bob. The encoding
operation performed on Alice’s qubits is given by

|ϕ〉 7→ |ϕ〉 ⊗ |0〉⊗(n−k−c) ⊗
∣∣Ψ+〉⊗c

AB

7→ (Uenc ⊗ IB)
(
|ϕ〉 ⊗ |0〉⊗(n−k−c) ⊗

∣∣Ψ+〉⊗c
AB

)
.

(2)

Here IB denotes the identity operator on the receiver’s
half of the c maximally entangled pairs, i. e., the en-
coded state consists of n + c qubits in total. The
notation |Ψ+〉⊗cAB should be understood as reordering
the qubits such that the first c qubits are with the
sender Alice. We assume that the noise only affects
the first n qubits sent over the channel, while the half
of the shared c ebits that is with the receiver Bob is
not affected.

The ebits are prepared ahead of time and are as-
sumed to be error-free, using, e. g., entanglement dis-
tillation or a similar procedure. For more details on
quantum entanglement, including its creation and de-
livery across quantum networks, one can consult the
survey in [25], the experiment reported in [29], or a
recent scheme to generate genuine multipartite entan-
glement of a large number of qubits in [37].

In teleportation, one perfect ebit is used in tandem
with noiseless classical communication to perfectly
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Figure 1: The basic structure of an entanglement-assisted
quantum error-correcting code. Alice and Bob share the
maximally entangled state |Φ〉AB of c maximally entangled
qudits. Alice uses her half of the maximally entangled state
and n − k − c ancillas in a fixed state |0〉 in the encoding
of her quantum information |ϕ〉 by the operator U := Uenc.
The resulting qn-dimensional state passes through the noisy
channel. Bob’s half of the initial c pairs of maximally entan-
gled states is assumed to be error-free. They will be used in
error diagnosis and recovery.

transmit one qubit. Entanglement-assisted quantum
error-correcting codes (EAQECCs) use some noiseless
ebits, without classical communication, to transmit
quantum information over a noisy quantum channel.

In superdense coding, the sender can apply an op-
eration to her half of a pair of maximally entangled
states such that, after sending this qubit, the receiver
can decode two classical bits of information. An an-
cilla in a standard QECC can be interpreted as a
placeholder for one bit of classical information about
any error that has occurred. Replacing an ancilla with
one half of an ebit can, in theory, enable the receiver
to extract two bits of classical information regarding
the errors. This enhances the error-handling capabil-
ities of EAQECCs over the standard counterparts.

One can execute some communication tasks with
fewer total resources or better error control by us-
ing an EAQECC instead of a combination of a stan-
dard QECC and teleportation. An asymptotic analy-
sis on the benefits of pre-shared entanglement in quan-
tum communication is available in [13]. We view an
EAQECC as a finite-length realization. It is in prin-
ciple possible to approach the entanglement-assisted
quantum capacity by building larger code blocks as
shown in [4].

Shared entanglement does not come for free. The
cost of sharing and purifying ebits means that
EAQECCs do not automatically outperform standard
quantum codes in all circumstances. One measure
to assess the advantage is the net rate, which sub-
tracts the number of ebits required from the number
of qubits transmitted. In terms of construction via
classical error-correcting codes, however, EAQECCs
have fewer restrictions, allowing us to use larger fam-
ilies of classical codes.

The notation Jn, κ, δ; cKq signifies that the quan-
tum code Q is a q-ary EAQECC that encodes κ log-
ical qudits (quantum systems of dimension q) into n

physical qudits, with the help of n − κ − c ancillas
and c pairs of maximally entangled qudits. A quan-
tum code with minimum distance δ can correct up to
b(δ − 1)/2c single-qudit errors. As shown in Figure 1,
Alice transmits the n qudits to Bob. He then performs
a syndrome measurement on them together with his
half of the c pairs of maximally entangled qudits to
correct errors and to retrieve the κ logical qudits. The
rate ρ and the net rate ρ̄ of Q are, respectively,

ρ := κ

n
and ρ̄ := κ− c

n
. (3)

The abbreviated form Jn, κ, δKq is used when c = 0.

1.2 Quantum Codes from Classical Codes
Let p be a prime and let s be a positive integer. Let
q be a prime power q = ps and let Fq be the finite
field with q elements. The multiplicative group of the
nonzero elements of Fq is denoted by F∗q . For a posi-
tive integer m, we denote by [m] the set {1, 2, . . . ,m}.
A code C of length n is a nonempty subset of Fnq . Its
codewords are vectors of length n with entries from Fq.
The weight of a vector is the number of its nonzero
entries. Given a nonempty S ⊆ Fnq , we denote by
wt(S) the number min{wt(v) : v ∈ S,v 6= 0}.

A code C is linear with parameters [n, k, d]q if it
is a k-dimensional subspace of Fnq and its minimum
distance, defined to be the smallest of the weights of
its nonzero codewords, is d. A k × n matrix G whose
rows form a basis for C is a generator matrix of C. If
G =

(
Ik A

)
, where Ik is the k× k identity matrix, we

say that G is in the standard form.
We equip Fnq and Fnq2 with the Euclidean and the

Hermitian inner products, respectively. Given an
arbitrary vector x = (x1, . . . , xn) and a codeword
c = (c1, . . . , cn) in C, the Euclidean dual C⊥ of C is

C⊥ =
{

x ∈ Fnq :
n∑
i=1

xici = 0, for all c ∈ C
}
. (4)

Analogously, the Hermitian dual C⊥H of C is

C⊥H =
{

x ∈ Fnq2 :
n∑
i=1

xic
q
i = 0, for all c ∈ C

}
. (5)

An [n, k, d]q-code with k ≤ bn2 c is self-orthogonal if
it is contained in its dual. If, moreover, n = 2k, then
the code is self-dual. The notion of the hull of a code
was introduced in [2] to define the intersection of the
code with its dual. Hence, the Hermitian hull of C is
the code HullH(C) = C∩C⊥H . A code whose hull is {0}
intersects trivially with its dual and is called a linear
complementary dual (LCD) code. Readers interested
to know more about classical codes may consult [28].

Gottesman formulated the stabilizer formalism for
QECCs in [19]. It was subsequently expressed in the
language of classical coding theory in [8], triggering

2



fruitful cross-pollination of ideas and results between
quantum error control and classical coding theory. A
general treatment over any finite field followed in [1].
A survey can be found in [30]. The main ingredients
are self-orthogonal classical (additive) codes under the
(trace) Hermitian inner product. The orthogonal-
ity condition imposes constraints on the parameters
of the corresponding quantum codes. Entanglement-
assisted schemes enlarge the pool of ingredients to in-
clude codes which are not self-orthogonal, but require
maximally entangled states as an additional resource.

We recall a general construction route of EAQECCs
via the non-commuting stabilizers as explained, with
illustrations, in [6]. For the qubit case, a formal
treatment is given in [7]. It links arbitrary classi-
cal codes over F4 as well as pairs of codes over F2 to
qubit EAQECCs. Extensions to the qudit case, where
q > 2, are given in [17, 18]. Using Fq2-linear codes, we
have the following construction (see [17, Theorem 3]).

Proposition 1 (Hermitian construction). Let C be an
[n, k]q2-code, and let C⊥H denote its Hermitian dual.
Then there exists an Jn, κ, δ; cKq-code Q with

c = k − dimFq2

(
C ∩ C⊥H

)
,

κ = n− 2k + c,

and δ =
{

wt
(
C⊥H

)
, if C⊥H ⊆ C;

wt
(
C⊥H \

(
C ∩ C⊥H

))
, otherwise.

We note that the construction includes the case that
C is contained in its Hermitian dual C⊥H , which im-
plies c = 0, i. e., the quantum codes do not require
entanglement assistance. The case C⊥H ⊆ C has not
been explicitly addressed in [17]. The resulting codes
have c = 2k−n and κ = 0. For codes with κ = 0 and
minimum distance δ, by definition the code has to be
pure, i .e., there is no error of weight less than δ that
acts trivially on the code.

Another construction uses a pair of Fq-linear codes
of equal length, yielding the so-called CSS-like family
of EAQECCs (see [17, Theorem 4]).

Proposition 2 (CSS-like construction). If Ci is
an [n, ki, di]q-code for i = 1, 2, then there is an
Jn, κ, δ; cKq-code Q with

c = k1 − dim
(
C1 ∩ C⊥2

)
,

κ = n− (k1 + k2) + c, and

δ =


min

{
wt
(
C⊥1
)
,wt
(
C⊥2
)}
, if C⊥1 ⊆ C2;

min
{

wt
(
C⊥1 \ (C2 ∩ C⊥1 )

)
,

wt
(
C⊥2 \ (C1 ∩ C⊥2 )

)}
, otherwise.

Again, when C⊥2 ⊆ C1, we have c = 0 and the re-
sulting code does not require entanglement assistance.
The case C⊥1 ⊆ C2, resulting in c = k1 + k2 − n and
κ = 0, has not been explicitly addressed in [17] either.

The code Q in Proposition 1 is pure or nondegener-
ate if δ = wt(C⊥H) = d(C⊥H). The code Q in Propo-
sition 2 is pure whenever δ = min{d(C⊥1 ), d(C⊥2 )}.

Otherwise, the code is said to be impure, and it is
pure to distance wt

(
C⊥H

)
or min{d(C⊥1 ), d(C⊥2 )}, re-

spectively.
Another extremal case of Proposition 1 that has

not been explicitly discussed in the literature arises
when one considers the trivial code C = [n, n, 1]q2 . In
this case, C⊥H is the trivial code that contains only
the zero codeword. We argue that the distance of the
resulting EAQECC with parameters c = n and κ = 0
is n + 1. As the code uses c = n maximally entan-
gled states, we are in a situation similar to superdense
coding. Performing a joint measurement on n qudits
received from the channel and the n qudits from the
pre-shared entanglement, the receiver can distinguish
q2n different unitary operations applied by the chan-
nel, corresponding to all errors of weight at most n.
For this, we do not require q to be a prime power. In
summary, we have the following proposition.

Proposition 3. For any q ≥ 2, not necessarily a
prime power, there exists an EAQECC Q = [[n, 0, n+
1;n]]q.

1.3 Our Contributions
1. We establish three propagation rules.

The first rule, given as Theorem 12, increases
c, signifying that more entanglement is required.
The derived quantum code can send more infor-
mation without losing anything in terms of error
handling.
Theorem 16 gives the second rule. It keeps c fixed
while lengthening the code, reducing its size. If
some conditions are met, then the quantum dis-
tance may increase.
The third rule is in Theorem 18. It decreases
c while lengthening the code. There may be a
price to pay in terms of smaller distances on some
occasions.
For the last two rules, we have less theoretical
control over the quantum distances and, there-
fore, searches are the next best option.

2. Our propagation rules are applicable to both sta-
bilizer QECCs and EAQECCs. Most prior prop-
agation rules were designed for stabilizer QECCs
whereas our propagation rules works on nontriv-
ial EAQECCs as well. It is in conducting searches
for EAQECCs with excellent parameters that the
main advantage of our propagation rules come to
the fore. They allow us to control either the dis-
tance or the number of ebits.

3. In the realm of classical coding theory, Theorem
7 provides a simple proof on the equivalence of
Fq2 -linear codes with diverse Hermitian hull di-
mensions for q > 2. For any [n, k, d]q2 -code C
with dim(HullH(C)) = `, there exists an equiva-
lent [n, k, d]q2-code C′ with dim(HullH(C′)) = `′

3



for each `′ ∈ {0, 1, . . . , `}. This generalizes the
result for Hermitian LCD codes in [9, Section V]
that considered only the case of `′ = 0.

Given an [n, k, d]q2-code C, Section 2 discusses three
linear algebraic approaches that derive codes whose
dimensions of Hermitian hulls vary. In the first two
approaches, the derived codes have fixed parameters
[n, k, d]q2 , while the dimension of the hull decreases.
In the third approach, k is fixed, while both n and the
dimension of the hull increase by 1, and the distance
d is either fixed or improved by 1. Section 3 discusses
upper bounds on the parameters of EAQECCs. They
are subsequently used collectively in Section 4 as a
measure of goodness to motivate our computational
process and results. The parameters of the resulting
qubit and qutrit EAQECCs are listed in the tables
after the concluding remarks in Section 5.

2 Three New Propagation Rules
This section presents three new propagation rules
based on their effects on c, which quantifies the
amount of entanglement. We start by devising tools
from the classical ingredients.

2.1 Tools from Classical Coding Theory
For any vector v := (v1, . . . , vn) ∈ Fnq2 , we denote by
vq the vector (vq1, . . . , vqn). Let C be an [n, k, d]q2-code
with generator matrix G, and let v1, . . . ,vk be the
rows ofG. We useG† to denote the n×k matrix whose
columns are vq1, . . . ,v

q
k. We call G† the Hermitian

transpose of G. As usual, x> and M> denote the
respective transposes of a vector x and a matrix M .

We recall the relation between a code’s generator
matrix and its Hermitian hull.

Lemma 4. The dimension of the Hermitian hull is

dim(HullH(C)) = k − rank(GG†). (6)

Proof. A vector v is an element of HullH(C) if it is
both a codeword of C and C⊥H . The first condition
requires that v is in the row span ofG, that is, v = uG
for some u ∈ Fkq2 . The second condition requires that
v is in the kernel of G†, i. e., vG† = 0. In combination
we have

HullH(C) = {v = uG : u ∈ Fkq and uGG† = 0}. (7)

This implies (6).

A monomial matrix is a square matrix with exactly
one nonzero entry in each row and each column and
zeros elsewhere. The matrix is a permutation matrix
if all of its nonzero entries are 1. Based on these two
families of matrices, two equivalence relations among
linear codes can be defined.

Definition 5. Let two linear codes C1 and C2 with re-
spective generator matrices G1 and G2 be given. Then
the following statements hold.

1. The codes C1 and C2 are permutation equivalent
if there exists a permutation matrix P such that
G1P is a generator matrix of C2.

2. The codes C1 and C2 are monomially equivalent
if there exists a monomial matrix M such that
G1M is a generator matrix of C2.

Equivalent codes have the same length, dimension,
and minimum distance. It can be shown (see, e. g.,
[27, Theorem 1.6.2]) that any linear code is permuta-
tion equivalent to a linear code whose generator ma-
trix is in the standard form. The next result shows
that the respective Hermitian hulls of two permuta-
tion equivalent codes have the same dimension.

Lemma 6. Any two permutation equivalent Fq2-
linear codes C1 and C2 have

dim(HullH(C1)) = dim(HullH(C2)).

Proof. Let C1 and C2 be permutation equivalent codes
with parameters [n, k, d]q2 . Let G1 be a generator
matrix of C1. Hence, there is a permutation matrix
P such that G2 = G1P is a generator matrix of C2.
This implies that

G2G
†
2 = G1P (G1P )† = G1PP

>G†1 = G1G
†
1.

In combination with Lemma 4, the conclusion follows.

Regarding monomially equivalent codes, Carlet et
al. in [9] demonstrated that Hermitian LCD codes
over Fq exist for all possible parameters when q >
2. The next result is a generalization of the results
for Hermitian LCD codes in [9, Section V]. In our
notation, only the case of `′ = 0 was considered in
the said reference.

Theorem 7. Let q > 2 be a prime power and
let C be an [n, k, d]q2-code with dim(HullH(C)) = `.
Then there exists an equivalent [n, k, d]q2-code C′ with
dim(HullH(C′)) = `′ for each `′ ∈ {0, 1, . . . , `}.

Proof. Without loss of generality, we can assume that
HullH(C) is an [n, `, d′]q2-code generated in the stan-
dard form by G1 =

(
I` A

)
. Moreover, we can choose

a generator matrix for C of the form

G =
(
I` A
0 B

)
(8)

and derive

GG† =
(
I` A
0 B

)(
I` 0
A† B†

)
=
(
I` +AA† AB†

BA† BB†

)
.

(9)
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The submatrices I` +AA† and AB† are zero since G1
generates the Hermitian hull, which is contained in
the Hermitian dual of C. We have rank(BB†) = k−`.
We now consider the generator matrix

G′ = G diag (a1, a2, . . . , a`−`′ , 1, . . . , 1) (10)

with aj ∈ F∗q2 and aq+1
j 6= 1 for 1 ≤ j ≤ `− `′. These

conditions can always be met for q > 2. Let

T =


aq+1

1 − 1 0 · · · 0
0 aq+1

2 − 1 · · · 0
...

...
. . .

...
0 0 · · · aq+1

`−`′ − 1

 .

We verify that G′G′† is the block-diagonal matrix

G′G′† =

T 0 0
0 0 0
0 0 BB†

 =

diag
(
aq+1

1 − 1, · · · , aq+1
`−`′ − 1, 0, · · · , 0, BB†

)
(11)

and that rank
(
G′G′†

)
= k − `′. This completes the

proof.

Remark 8. Independently and coming from a differ-
ent motivation, H. Chen derived a similar result to
Theorem 7 in [10, Corollary 2.2]. The said corollary
was added since version 2 of his pre-print following a
private communication with the first author.

We will need the following lemma (see [26, Theorem
6.32]) later.

Lemma 9. Let A be an n × n matrix with rank s
over Fq2 such that A = A†. Then A is Hermitian
congruent to

diag
(

1, · · · , 1︸ ︷︷ ︸
s

, 0, · · · , 0
)
.

Here two matrices A and B over Fq2 are Hermitian
congruent if there exists a nonsingular matrix D such
that B = DAD†.

Using Lemma 9, we derive the following result. It
enables an [n, k]q2-code with `-dimensional Hermitian
hull to generate an [n + 1, k]q2-code with (` + 1)-
dimensional Hermitian hull.

Proposition 10. Let 0 ≤ ` < min{k, n − k}. Given
an [n, k, d]q2-code C with dim(HullH(C)) = ` and gen-
erator matrix G, one can add one column to G such
that the Hermitian hull of the extended [n+1, k, d′]q2-
code C′ has dimension dim (HullH(C′)) = ` + 1 and
minimum distance d′, with d ≤ d′ ≤ d+ 1.

Proof. Let q = pm. Let G be a generator matrix of C.
Since dim(HullH(C)) = `, by Lemma 4, rank

(
GG†

)
=

s, where s = k − ` ≥ 1. By Lemma 9, there exists a
nonsingular k × k matrix D over Fq2 such that

DGG†D† = diag
(

1, · · · , 1︸ ︷︷ ︸
s

, 0, · · · , 0
)
. (12)

Since s ≥ 1, the first diagonal entry of the k×k diago-
nal matrix in (12) must be 1. Because D is nonsingu-
lar, DG is also a generator matrix of C. Let α ∈ Fq2

be such that αq+1 = −1. Such an α always exists
since αq+1 runs through Fq when α runs through Fq2 .
Let G′ be the k × (n+ 1) matrix defined by

G′ =

DG
α
0
...
0

 . (13)

Then G′ generates an [n+ 1, k, d′]q-code C′ with d ≤
d′ ≤ d+ 1. One then verifies that

G′G′† = DGG†G† + diag(αq+1, 0, · · · , 0) (14)

= diag
(

0, 1, · · · , 1︸ ︷︷ ︸
s−1

, 0, · · · , 0
)
, (15)

and, hence, rank(G′G′†) = s − 1. The claim about
the dimension of the hull follows from Lemma 4. As
D is invertible, the matrix

D−1G′ =

G D−1


α
0
...
0


 (16)

is a generator matrix for C′ in the desired form.

We note that the matrix D in (12) is not unique.
Moreover, there are q + 1 choices for the element α,
which can be at any of the first s positions. Hence,
there are many choices for the additional column in
Proposition 10.

In [32], Lisoněk and Singh proposed a modified
construction of quantum codes by relaxing the self-
orthogonality requirement. From a linear code C that
is not Hermitian self-orthogonal, one can obtain a
new linear code which is Hermitian self-orthogonal by
adding some rows and columns to a generator ma-
trix of C. Inspired by this result, we show that an
[n, k]q2-code with `-dimensional Hermitian hull gives
rise to an [n+1, k+1]q2-code with (`+1)-dimensional
Hermitian hull.

Proposition 11. Let C be an [n, k, d]q2-code with ba-
sis {a1, · · · ,ak} and dim(HullH(C)) = `, with 0 ≤
` < min{k, n − k}. Let c be a chosen codeword of
C⊥H\HullH(C) such that cc† 6= 0. Then there exists an
[n+1, k+1, d′]q2-code C′ with dim (HullH(C′)) = `+1
and d′ = min{d, d0 + 1}, where d0 is the minimum
distance of the code generated by {a1, · · · ,ak, c}.

5



Proof. Such a codeword c ∈ C⊥H \ HullH(C) with
cc† 6= 0 always exists since dim(HullH(C)) = ` with
0 ≤ ` < min{k, n − k}. Let G be a generator matrix
of C whose rows are {a1, · · · ,ak}. Let cc† = α. Since
α ∈ F∗q , there exists β ∈ F∗q2 such that βq+1 = −α.
Let G′ be the (k + 1)× (n+ 1) matrix defined by

G′ :=
(
G 0k×1
c β

)
. (17)

Then we obtain the code

C′ = {(x1, · · · , xk+1) ·G′ : xi ∈ Fq2 , i ∈ [1, · · · , k+1]}.

Putting xk+1 to be either zero or nonzero, we deduce
that the minimum distance of C′ is d′ = min{d, d0+1}.
It follows from (17) that

G′G′† =
(
GG† Gc†
cG† 0

)
. (18)

Since c ∈ C⊥H , the column Gc† is a zero vector. Thus,
dim (HullH(C′)) = k + 1− rank(GG†) = `+ 1.

2.2 Propagation Rules
The new propagation rules are presented based on
how they affect the variable c.

Theorem 12 (More Entanglement). For q > 2, the
existence of a pure Jn, κ, δ; cKq-code Q, constructed
by Proposition 1, implies the existence of an Jn, κ +
i, δ; c+ iKq-code Q′ that is pure to distance δ for each
i ∈ {1, . . . , `}, where ` is the dimension of the Hermi-
tian hull of the Fq2-linear code C that corresponds to
Q.

Proof. To confirm the assertion, we apply the Hermi-
tian construction in Proposition 1 on the codes from
Theorem 7 and use Lemma 4 to cover the stated range
of parameters.

Example 13. Let ω be a root of x2 + 2x+ 2 ∈ F3[x]
and let F9 = F3(ω). The [29, 14, 12]9-code C generated
by G =

(
I14 A

)
, with A being the matrix

2 ω ω5 ω7 ω7 ω2 ω 0 0 ω5 ω6 ω3 ω3 ω ω5

ω5 ω 2 ω3 ω 0 ω6 ω 0 ω6 2 ω3 ω5 2 2
2 0 0 ω2 0 ω3 ω ω6 ω ω5 ω2 ω5 ω7 0 ω6

ω6 ω5 ω7 ω ω3 2 ω7 ω ω6 ω6 ω3 1 ω 0 ω7

ω7 ω3 ω3 ω5 ω3 ω2 1 ω7 ω ω5 2 ω ω5 ω7 1
1 2 1 ω7 ω2 ω 1 1 ω7 ω5 1 ω2 ω6 ω ω6

ω6 ω6 ω2 ω2 ω6 ω 1 1 1 ω3 ω3 ω3 1 ω ω6

ω6 ω 1 ω3 ω3 ω3 1 1 1 ω ω6 ω2 ω2 ω6 ω6

ω6 ω ω6 ω2 1 ω5 ω7 1 1 ω ω2 ω7 1 2 1
1 ω7 ω5 ω 2 ω5 ω ω7 1 ω2 ω3 ω5 ω3 ω3 ω7

ω7 0 ω 1 ω3 ω6 ω6 ω ω7 2 ω3 ω ω7 ω5 ω6

ω6 0 ω7 ω5 ω2 ω5 ω ω6 ω ω3 0 ω2 0 0 2
2 2 ω5 ω3 2 ω6 0 ω ω6 0 ω ω3 2 ω ω5

ω5 ω ω3 ω3 ω6 ω5 0 0 ω ω2 ω7 ω7 ω5 ω 2



,

is Hermitian self-orthogonal. The dual has parame-
ters [29, 15, 11]9. For their respective (n, k) values,

both C and C⊥H have the best-known minimum dis-
tances. We get a J29, 1, 11; 0K3-code by Proposition
1. The existence of a J29, 1 + i, 11; iK3-code for each
1 ≤ i ≤ 14 is guaranteed by Theorem 12.

Theorem 12 allows for the transmission of a larger
number of qudits when more pairs of maximally en-
tangled qudits are available, while preserving the min-
imum distance δ, the total number n of qudits to be
sent, as well as the net rate. The main idea is to
multiply the columns of the generator matrix by an
invertible diagonal matrix to decrease the dimension
of the Hermitian hull.

We can use the same approach to try to increase
the dimension of the Hermitian hull. This yields the
following generalization of the Hermitian construction
in Proposition 1.

Theorem 14. Let C be an [n, k]q2-code whose Her-
mitian dual is C⊥H . Then there exists an Jn, κ, δ; cKq-
code Q with

c = min
{

rank
(
Gdiag(b1, · · · , bn)G†

)
: bi ∈ F∗q

}
,

(19)
κ = n− 2k + c,

and δ ≥

{
wt
(
C⊥H \

(
C ∩ C⊥H

))
, if c > 2k − n;

wt
(
C⊥H

)
, if c = 2k − n.

(20)

Proof. Consider the code C′ generated by a matrix
G′ := Gdiag(a1, · · · , an), with ai ∈ F∗q2 . By Lemma
4, dim(HullH(C′)) = k − rank(G′G′†), where

rank(G′G′†) =

rank
(
G diag(aq+1

1 , · · · , aq+1
n )G†

)
. (21)

As aq+1
i ∈ Fq, it suffices to minimize (21) over all in-

vertible diagonal matrices over Fq. By the surjectivity
of the norm, given bi ∈ Fq, there exists bi ∈ Fq2 with
bq+1
i = ai.
Concerning the minimum distance δ, first we note

that multiplying the coordinates of the code C with
non-zero elements ai does not change its distance or
that of its Hermitian dual C⊥H . Moreover, the Hermi-
tian hull HullH(C′) contains the transformed vectors
of HullH(C). Since the Hermitian hull of C′ might be
a larger set than that of C, we have

wt
(
C′⊥H \

(
C′ ∩ C′⊥H

))
≥ wt

(
C⊥H \

(
C ∩ C⊥H

))
.

The second part of (20) applies in the extremal case
when C′⊥H ⊆ C′, c = 2k − n, and κ = 0.

We do not have an efficient method to determine
an equivalent code C′ that minimizes (19).

In the extremal case of c = 0, we obtain a Hermitian
self-orthogonal code by finding particular solutions to
a linear system.
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Theorem 15. A given [n, k, d]q2-code C is equivalent
to a Hermitian self-orthogonal code if and only if there
is a vector b ∈ Fnq , with bi 6= 0, such that

n∑
i=1

bixiy
q
i = 0 for all x,y ∈ C. (22)

Proof. Let C be equivalent to a Hermitian self-
orthogonal code C′. Without loss of generality, we can
assume that C′ is obtained from C via multiplication
of the coordinates by ai ∈ F∗q2 . Setting bi = aq+1

i ∈ F∗q
implies (22). On the other hand, if (22) has a solution,
then, by the surjectivity of the norm, we find ai ∈ F∗q2

with bi = aq+1
i . Multiplying the coordinates of C by

bi yields an equivalent Hermitian self-orthogonal code,
provided that ai and bi are nonzero for all i.

The linear space of all solutions b ∈ Fnq of (22)
(i.e., allowing zero-coordinates as well) is known as a
punctured code [35].

Swapping the roles of C and C⊥H in Proposition 1
enables us to better control the quantum distance.
We use this approach in the proof of the next result.

Theorem 16 (Same Entanglement). If there exists
a pure Jn, κ, δ; cKq-code Q with κ > 0, c > 0 obtained
by the Hermitian construction in Proposition 1, then
there exists an Jn+1, κ−1, δ′; cKq-code Q′ that is pure
to distance δ′ with δ ≤ δ′ ≤ δ + 1.

Proof. Let C⊥H be the linear code with parameters
[n, n − k, δ]q2 used in the Hermitian construction of
Q. The dimension of the Hermitian hull is

dim(C ∩ C⊥H) = ` = n− k − c.

Applying Proposition 10 to C⊥H yields an [n+ 1, n−
k, δ′]q2 -code C′⊥H . The dimension of its Hermitian
hull is `+ 1. Applying the Hermitian construction to
C′ gives us an Jn+ 1, κ− 1, δ′; cKq-code Q′.

Applying the Hermitian construction on the [n +
1, k, d′]q2-code C′ from Proposition 10 produces an
Jn+ 1, κ− 1, δ′; cKq-code Q′. On the original classical
code C, the outcome is an Jn, κ, δ; cKq-code Q. The
minimum distance δ′ of Q′ depends on how the ex-
tended code C′ is built, as illustrated in the following
example.

Example 17. Let ω be a root of x2 + 2x+ 2 ∈ F3[x]
and let F9 = F3(ω). Let C be the [5, 4, 2]9-code gener-
ated by G =

(
I4 B

)
with B =

(
2 2 2 2

)>. Extending
the matrix G by the column

(
1 w3 w2 w7)>, we obtain

a [6, 4, 3]9-code C′ with dim Hull(C′) = 1. Since C′ is
an MDS code, its Hermitian dual C′⊥H has parame-
ters [6, 2, 5]9. Using the code C′ in Proposition 1 re-
sults in a pure J6, 1, 5; 3K3-code which is optimal by the
bounds in the next section. Its net rate is −1/3 and it
improves on the distance of the distance-optimal quan-
tum code J6, 1, 3K3 by 2.

Based on the derived [n + 1, k + 1, d′]q2 -code in
Proposition 11, we have the following result which
allows for the transmission of the same amount of
quantum information using a smaller number of pairs
of maximally entangled qudits.

Theorem 18 (Less Entanglement). The existence of
a pure Jn, κ, δ; cKq-code Q, constructed from an Fq2-
linear code C based on Proposition 1, implies the ex-
istence of an Jn+ 1, κ, δ′; c− 1Kq-code Q′ with δ′ ≤ δ.

Proof. The desired result follows from Proposition 11
by a method analogous to the one in the proof of
Theorem 16.

In Theorem 18, the pure minimum distance of the
resulting EAQECC is determined by the choice of the
codeword c, which was defined earlier in Proposition
11. To construct a new EAQECC with good mini-
mum distance, one can try all such codewords and
then select an EAQECC with the largest minimum
distance from all resulting EAQECCs. The next ex-
ample illustrates such an implementation.

Example 19. Let ω be a root of x2 + 2x+ 2 ∈ F3[x]
and let F9 = F3(ω). Let C be the [16, 5, 8]9-code with
generator matrix G given by

1 0 0 0 ω6 1 ω6 ω5 0 ω6 ω6 1 ω7 1 ω 1
0 1 0 0 ω7 2 ω ω2 0 ω 0 0 1 ω5 ω2 ω3

0 0 1 0 2 1 1 1 0 ω5 ω3 ω 2 ω2 ω2 ω3

0 0 0 1 ω2 1 ω7 ω2 0 2 ω ω2 ω ω6 ω 1
0 0 0 0 0 0 0 0 1 2 1 2 1 2 1 2

 .

The Hermitian dual code C⊥H has parameters
[16, 11, 5]9 and the Hermitian hull HullH(C) is a
[16, 3, 12]9-code. Following the proof of Proposition
11, we select a codeword

c :=
(
1 ω7 ω ω5 ω6 ω2 0 ω5 ω3 2 ω2 1 ω2 ω5 ω3 ω2)

(23)
of weight 15 in C⊥H \ HullH(C) such that cc† = 1 to
obtain the [17, 6, 8]-code C′ whose generator matrix is

G′ =
(
G 05×1
c ω

)
.

The Hermitian dual C′⊥H has parameters [17, 11, 5]9
and HullH(C′) is a [17, 4, 10]9-code.
We now switch perspective and use the [16, 5, 8]9-

code as the C⊥H , instead of as the C, in Proposition
1 to construct a pure J16, 2, 8; 8K3-code Q. Using the
derived [17, 6, 8]-code C′ as the C⊥H in Proposition 1
leads to a pure J17, 2, 8; 7K3-code Q′.
If we have chosen as our codeword c the vector

c :=
(
ω7 ω5 ω 0 ω5 ω5 0 2 ω7 ω6 ω2 2 ω 2 ω2 ω3)

of weight 14, instead of the one in (23), then the re-
sulting C′ would have parameters [17, 6, 7]9. The con-
structed pure quantum codes Q and Q′ would have
parameters J16, 2, 7; 8K3 and J17, 2, 7; 7K3, respectively.
This highlights the importance of choosing c such that
d′ = d, that is, d0 ≥ d− 1, in Proposition 11.
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The idea of Lisoněk and Singh in [32] is to start with
a length n classical code with a large hull. One then
carefully selects a codeword so that it can be used
to extend the length by 1 and prevent the quantum
distance from deteriorating. Our idea here is similar.
The advantage is that we have more freedom in choos-
ing the codeword that may lead to a better quantum
distance. The two approaches coincide when the clas-
sical ingredient C is k-dimensional over Fq2 and its
hull has dimension k − 1.

3 Upper Bounds
There is a vast literature on EAQECCs constructed
via classical maximum distance separable (MDS) code
and (Hermitian) LCD codes. Their parameters and
excellent properties allow for a straightforward deriva-
tion of the parameters of the corresponding quantum
codes. The length of MDS codes, however, are con-
strained by the cardinality of the underlying finite
fields. Using classical MDS codes over F4 for the qubit
case and F9 for the qutrit case offer limited insights
beyond very small lengths.

The Singleton bound for an Jn, κ, δ; cKq-code Q in
[22, Corollary 9] reads

κ ≤ c+ max{0, n− 2δ + 2}, (24)
κ ≤ n− δ + 1, (25)

κ ≤ (n− δ + 1)(c+ 2δ − 2− n)
3δ − 3− n , if δ − 1 ≥ n

2 . (26)

Codes attaining the bound (24) for δ − 1 ≤ n
2 or the

bound (26) for δ−1 ≥ n
2 with equality are called MDS

EAQECCs. We note that without the bound (25),
the upper bound on the dimension κ would be linear
in the a priori unbounded number c of maximally
entangled pairs of qudits.

To our knowledge, most known families of MDS
EAQECCs, e. g., those presented in [11, 12, 16, 24,
33], were built by applying Propositions 1 and 2
on suitably chosen classical MDS codes. In [24],
an [n, k, d]q2-code C, whose Hermitian dual is an
[n, n − k, d′]q2 -code, is used in Proposition 1 to yield
two EAQECCs with parameters

Jn, k − dim(HullH(C)), d;n− k − dim(HullH(C))Kq,
(27)

Jn, n− k − dim(HullH(C)), d′; k − dim(HullH(C))Kq.
(28)

From an [n, k, n−k+1]q2 -MDS code C and its [n, n−
k, k+ 1]q2 -Hermitian dual C⊥H with dim(HullH(C)) =
dim(HullH(C⊥H)) = `, one obtains EAQECCs with
parameters

Jn, k − `, n− k + 1;n− k − `Kq and (29)
Jn, n− k − `, k + 1; k − `Kq. (30)

In general, only the code with distance d ≤ n
2 is an

MDS EAQECC, whereas, for d > n
2 and κ ≤ c < n−k,

the bound (26) cannot be achieved with equality.
As shown by Grassl, Huber, andWinter in [22, The-

orem 7], any pure Jn, κ, δ; cKq-code obeys the bounds

2δ ≤ n+ c− κ+ 2. (31)

We show that this bound also applies to EAQECCs
that can be obtained by Propositions 1 and 2.

Theorem 20. For any Jn, κ, δ; cKq-code Q obtained
by the Hermitian construction in Proposition 1, we
have

2δ ≤ n+ c− κ+ 2. (32)

Proof. Corresponding to the Jn, κ, δ; cKq-code Q,
there exists an [n, n− κ− `]q2-code C such that
dimFq2 (HullH (C)) = `. If HullH(C) has generator ma-
trix

(
I` R

)
, then C⊥H has generator matrix(

I` R
Oκ×` A

)
.

The code generated by(
Oκ×` A

)
is a subset of C⊥H \ HullH(C) and has parameters
[n, κ,≥ δ]q2 . Hence, the linear code generated by the
matrix A has parameters

[n− `, κ,≥ δ]q2 .

By the classical Singleton bound, we arrive at

δ ≤ n− `− κ+ 1.

Since c = n− κ− 2`, we have

δ ≤ n− n− κ− c
2 − κ+ 1 ⇐⇒ 2δ ≤ n+ c− κ+ 2.

The codes in the CSS-like subfamily obeys the
bound (31) as well.

Theorem 21. For i = 1, 2, let Ci be an [n, ki]q-code.
Let κ = n − (k1 + k2) + c. For any Jn, κ, δ; cKq-code
Q obtained by the CSS-like construction in Proposi-
tion 2, we have

2δ ≤ n+ c− κ+ 2. (33)

Proof. By Proposition 2, there exist two linear codes
C1 and C2 with respective parameters [n, k1]q and
[n, k2]q, where k2 = n − κ + c − k1. We denote by
∆ the code C1 ∩ C⊥2 and let ` = dimFq

(∆). Let ∆ be
generated by

(
I` R

)
. Let(
I` R

O(n−κ2−`)×` A

)
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generate C⊥2 . The [n, n− k2 − `,≥ δ]q-code generated
by
(
O(n−k2−`)×` A

)
is a subset of C⊥2 \ ∆. Hence,

there exists an [n− `, n− k2− `,≥ δ]q-code generated
by the matrix A. By the Singleton bound, we infer
that δ ≤ k2+1. In a similar manner, starting from the
β-dimensional code Γ = C2 ∩ C⊥1 , one derives an [n−
β, n− k1−β,≥ δ]q-code, with δ ≤ k1 + 1. Combining
the two inequalities gives us 2δ ≤ k1 + k2 + 2 = n +
c− κ+ 2, as promised.

All these Singleton-type bounds are independent of
the alphabet size q. The classical bound of Griesmer
from [23] leads to a sharper upper bound for lengths
n > q2 + 1.

Theorem 22. For any Jn, κ, δ; cKq-code Q obtained
by the CSS-like construction in Proposition 2, we have

n+ κ+ c

2 ≥
κ−1∑
i=0

⌈
δ

qi

⌉
.

Proof. Let k2 = n − κ + c − k1. By the proof of
Theorem 21, there exist two linear codes A and B
with respective parameters [n − `, n − k2 − `,≥ δ]q
and [n − β, n − k1 − β,≥ δ]q, where ` and β are the
Fq-dimensions of C1∩C⊥2 and C2∩C⊥1 . Let G1 and G2
be generator matrices of C1 and C2, respectively. Then
the dimension of the solution space of G1G

>
2 x> = 0

is k2 − rank(G1G
>
2 ). Since

G1G
>
2 x> = G1(xG2)> = 0,

we have k2 − rank(G1G
>
2 ) = β. Employing the

method analogous to the one we have just used, we
arrive at

k1 − rank(G2G
>
1 ) = ` =⇒ k2 − β = k1 − `.

We note that

c = rank(G1G
>
2 ) = k1 − ` = k2 − β. (34)

Applying the Griesmer bound to A and B gives us

n− ` ≥
n−k2−`−1∑

i=0

⌈
δ

qi

⌉
=
n−(k1+k2)+c−1∑

i=0

⌈
δ

qi

⌉
and

(35)

n− β ≥
n−k1−β−1∑

i=0

⌈
δ

qi

⌉
=
n−(k1+k2)+c−1∑

i=0

⌈
δ

qi

⌉
. (36)

Since ` = k1 − c and β = k2 − c, it follows from (35)
and (36) that

2n− `− β = 2n− (k1 + k2) + 2c =

≥ 2
n−(k1+k2)+c−1∑

i=0

⌈
δ

qi

⌉
.

The conclusion follows from k2 = n− κ+ c− k1.

Theorem 23. [31] For any Jn, κ, δ; cKq-EAQECC ob-
tained by the Hermitian construction of Proposition 1,
we have

n+ κ+ c

2 ≥
κ−1∑
i=0

⌈
δ

q2i

⌉
. (37)

Proof. We have an [n − `, κ,≥ δ]q2 -code with ` =
n−κ−c

2 from the proof of Theorem 20. By the Gries-
mer bound,

n− ` = n+ κ+ c

2 ≥
k−1∑
i=0

⌈
δ

q2i

⌉
.

4 Computational Results
The results we have derived as well as previously
available tools can now be used to search for good
entanglement-assisted (EA) qubits and qutrit.

The simplest approach would have been to apply
Proposition 1 on F4 and F9-linear codes in the current
MAGMA BKLC database of codes with best-known min-
imum distances [3, 20]. Most codes in the database
are LCD codes or codes with small Hermitian hulls.
For qutrit codes, in light of Theorems 7 and 12, we
prefer codes with large Hermitian hulls, e. g., spe-
cially crafted quasi-cyclic codes with large Hermitian
hulls based on the construction method in [15, Sec-
tion III]. Such classical codes yield EAQECCs with
a wider range of parameters. The parameters also
depend on the minimum distances of their respective
dual codes. The choice of classical codes to record in
the said database does not take the above into con-
sideration. One can switch the role of the code and
its dual in Proposition 1 so that the code from the
database provide information on the minimum dis-
tance.

Theorem 16 yields good codes on numerous occa-
sions. Determining the matrix D, however, is time
consuming and the resulting parameters are often al-
ready covered by the other construction approaches.
Computational evidences indicate that the benefit
from applying Theorem 16 occurs when d′ = d + 1.
Replacing the diagonal matrix on the right hand side
of (12) by a matrix of rank s sometimes allows for a
more efficient randomized procedure to find a suitable
matrix D that eventually leads to a good qutrit code.

For qutrit codes, we use Theorem 14 to determine
the minimum number of maximally entangled pairs
cmin, e. g., by exhaustive search, or use a randomized
search to find a smaller value.

We provide the parameters of the best-performing
qubit, for lengths 3 ≤ n ≤ 64, and qutrit, for lengths
3 ≤ n ≤ 36, of EAQECCs that we can explicitly
construct in Tables 1 and 2. Among the parame-
ters Jn, κ, δ; cKq, all other parameters being equal, we
record the smallest n, the largest κ, the largest δ, and
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the smallest c for q ∈ {2, 3}. The tables are com-
pressed using the propagation rules in this paper and
those given in [17, 18, 22]. For ease of reference we list
the following eight propagation rules. The first four
rules are trivial. Rule (5) is obtained by erasing one
position of the original code. Rules (6) to (8) come
from Theorem 12, [34, Theorem 7], and [34, Theorem
8], respectively.

(1) length extension: [[n, κ, δ; c]]q −→ [[n+ 1, κ, δ; c]]q.

(2) subcode: [[n, κ, δ; c]]q −→ [[n, κ− 1, δ; c]]q.

(3) smaller distance: [[n, κ, δ; c]]q −→ [[n, κ, δ − 1; c]]q.

(4) requiring more entanglement:
[[n, κ, δ; c]]q −→ [[n, κ, δ; c+ 1]]q.

(5) puncturing, assuming δ > 1 and c < n− κ:
[[n, κ, δ; c]]q −→ [[n− 1, κ, δ − 1; c]]q.

(6) increasing the dimension of a pure q-ary quantum
code with q > 2 by using extra entanglement,
provided that c ≤ n− κ− 2:
[[n, κ, δ; c]]q −→ [[n, κ+ 1, δ; c+ 1]]q.

(7) reducing the length by using extra entanglement,
provided that c ≤ n− κ− 2:
[[n, κ, δ; c]]q −→ [[n− 1, κ, δ; c+ 1]]q.

(8) shortening pure quantum code:
[[n, κ, δ; c]]q −→ [[n− 1, κ+ 1, δ − 1; c]]q.

The parameters that we have determined in this
work can be found in the online record of the bounds
on the minimum distance of entanglement-assisted
quantum codes [21].

5 Concluding Remarks
The use of pre-shared entanglement in quantum er-
ror control raises questions. How do entanglement-
assisted QECCs compare to other QECCs that draw
on different resources? In what setups can they be
more useful than the others? The enhanced rate or
better error-handling capability offered by EAQECCs
must be paid for by the additional cost of pre-shared
entanglement. On the more practical front, one asks
how to best share ebits and how many of them to
share.

It is possible for the net rate ρ̄(Q) to be zero or neg-
ative. Can such a code be useful in practice? Since
shared entanglement |φ〉AB is independent of the mes-
sage |ϕ〉, it can be prepared ahead of time and stored
to be used as and when needed. In a quantum net-
work, where usage varies over time, Alice and Bob
can use periods of low usage to accumulate ebits.
These can then be utilized to increase the transmis-
sion rate without trading off on the error-correcting
power when the network usage grows higher.

Codes with positive net rate can be used as building
blocks in the construction of catalytic quantum codes,
leading to the quantum analogue of highly-efficient
classical codes such as Turbo and LDPC codes [36].

The quantum setup provides a rich ground for cod-
ing theorists of the more classical mould to venture
into topics hitherto less explored. Instead of focus-
ing on quantum codes that meet the analogue of the
Singleton bound, for example, constructing qubit and
qutrit codes that have better chances of being imple-
mented in actual quantum devices and networks could
take a more focal position.

We identify the following open directions for further
investigation.

1. Establish sharper lower and upper bounds on
the parameters of best EAQECCs, especially for
qubit and qutrit codes.

2. Find the quantum code with the largest rate for
a specified quantum distance and hull dimension.
The duality can be chosen among suitable choices
of inner products, depending on the construction
routes.

3. In the classical setting, given a length n and di-
mension k, construct a code with the largest hull
and optimal dual distance.
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Table 1: A Concise Version of the Parameters of Good Qubit EAQECCs with 3 ≤ n ≤ 64. To obtain the full table, one applies
the propagation rules in Section 4. We exclude the entries with c = 0 since a large database for such codes is already available
in [20].

Jn, κ, δ; cK2 Jn, κ, δ; cK2 Jn, κ, δ; cK2 Jn, κ, δ; cK2 Jn, κ, δ; cK2 Jn, κ, δ; cK2
J3, 1, 3; 2K2 J5, 4, 2; 1K2 J5, 0, 4; 1K2 J6, 0, 6; 4K2 J7, 6, 2; 1K2 J7, 4, 3; 3K2
J8, 5, 3; 3K2 J8, 4, 4; 4K2 J8, 2, 5; 4K2 J8, 0, 8; 6K2 J9, 8, 2; 1K2 J9, 6, 3; 3K2
J9, 4, 5; 5K2 J9, 2, 6; 5K2 J10, 6, 4; 4K2 J10, 4, 5; 4K2 J10, 4, 6; 6K2 J10, 0, 10; 8K2
J11, 10, 2; 1K2 J11, 7, 3; 2K2 J11, 6, 4; 3K2 J11, 5, 6; 6K2 J12, 9, 3; 3K2 J12, 8, 4; 4K2
J12, 5, 6; 5K2 J12, 0, 12; 10K2 J13, 12, 2; 1K2 J13, 10, 3; 3K2 J13, 9, 4; 4K2 J14, 0, 14; 12K2
J15, 14, 2; 1K2 J15, 9, 5; 6K2 J16, 13, 3; 3K2 J16, 9, 4; 1K2 J16, 9, 6; 7K2 J16, 0, 16; 14K2
J17, 16, 2; 1K2 J17, 13, 3; 2K2 J17, 9, 6; 6K2 J17, 0, 8; 1K2 J17, 0, 12; 9K2 J18, 15, 3; 3K2
J18, 10, 5; 4K2 J18, 7, 9; 11K2 J18, 0, 10; 6K2 J18, 0, 18; 16K2 J19, 18, 2; 1K2 J19, 13, 4; 4K2
J20, 15, 3; 1K2 J20, 15, 4; 5K2 J20, 14, 5; 6K2 J20, 10, 6; 4K2 J20, 9, 8; 9K2 J20, 0, 20; 18K2
J21, 20, 2; 1K2 J21, 16, 4; 5K2 J21, 15, 5; 6K2 J21, 9, 7; 6K2 J22, 16, 4; 4K2 J22, 12, 5; 4K2
J22, 0, 22; 20K2 J23, 22, 2; 1K2 J23, 18, 4; 5K2 J23, 14, 5; 5K2 J23, 14, 6; 7K2 J24, 18, 4; 4K2
J24, 16, 5; 6K2 J24, 16, 6; 8K2 J24, 0, 24; 22K2 J25, 24, 2; 1K2 J25, 20, 3; 3K2 J25, 19, 4; 4K2
J25, 11, 7; 6K2 J25, 0, 14; 11K2 J26, 22, 3; 4K2 J26, 21, 4; 5K2 J26, 13, 7; 7K2 J26, 0, 26; 24K2
J27, 26, 2; 1K2 J27, 23, 3; 4K2 J27, 22, 4; 5K2 J28, 23, 3; 3K2 J28, 23, 4; 5K2 J28, 0, 28; 26K2
J29, 28, 2; 1K2 J29, 25, 3; 4K2 J29, 23, 4; 4K2 J29, 0, 12; 1K2 J30, 26, 3; 4K2 J30, 25, 4; 5K2
J30, 0, 16; 12K2 J30, 0, 30; 28K2 J31, 30, 2; 1K2 J31, 26, 4; 5K2 J31, 22, 5; 5K2 J31, 16, 6; 1K2
J31, 16, 9; 13K2 J31, 9, 13; 16K2 J31, 2, 14; 11K2 J32, 27, 3; 3K2 J32, 26, 4; 4K2 J32, 24, 5; 6K2
J32, 0, 32; 30K2 J33, 32, 2; 1K2 J33, 28, 4; 5K2 J33, 26, 5; 7K2 J34, 29, 3; 3K2 J34, 28, 4; 4K2
J34, 26, 5; 6K2 J34, 24, 6; 8K2 J34, 0, 14; 8K2 J34, 0, 34; 32K2 J35, 34, 2; 1K2 J35, 30, 4; 5K2
J35, 28, 5; 7K2 J35, 26, 6; 9K2 J35, 12, 8; 1K2 J35, 4, 14; 11K2 J36, 32, 3; 4K2 J36, 30, 4; 4K2
J36, 28, 5; 6K2 J36, 26, 6; 8K2 J36, 17, 10; 13K2 J36, 9, 17; 23K2 J36, 0, 36; 34K2 J37, 36, 2; 1K2
J37, 30, 5; 7K2 J37, 28, 6; 9K2 J37, 14, 13; 19K2 J38, 28, 6; 8K2 J38, 16, 13; 20K2 J38, 16, 14; 22K2
J38, 14, 8; 2K2 J38, 0, 38; 36K2 J39, 38, 2; 1K2 J39, 30, 6; 9K2 J39, 22, 10; 17K2 J39, 16, 8; 3K2
J39, 15, 11; 12K2 J39, 13, 17; 26K2 J39, 12, 9; 3K2 J39, 0, 18; 15K2 J40, 36, 3; 4K2 J40, 31, 4; 1K2
J40, 30, 5; 4K2 J40, 30, 6; 8K2 J40, 22, 10; 16K2 J40, 20, 12; 20K2 J40, 18, 13; 20K2 J40, 16, 14; 20K2
J40, 0, 40; 38K2 J41, 40, 2; 1K2 J41, 36, 3; 3K2 J41, 32, 5; 5K2 J41, 32, 6; 9K2 J41, 20, 7; 1K2
J41, 20, 13; 21K2 J41, 18, 14; 21K2 J42, 38, 3; 4K2 J42, 34, 5; 6K2 J42, 33, 6; 9K2 J42, 28, 8; 14K2
J42, 22, 12; 20K2 J42, 20, 11; 16K2 J42, 20, 13; 20K2 J42, 20, 14; 22K2 J42, 16, 9; 6K2 J42, 0, 16; 8K2
J42, 0, 42; 40K2 J43, 42, 2; 1K2 J43, 39, 3; 4K2 J43, 36, 5; 7K2 J43, 34, 4; 3K2 J43, 34, 6; 9K2
J43, 31, 6; 8K2 J43, 29, 8; 14K2 J43, 21, 14; 22K2 J43, 0, 18; 13K2 J44, 39, 3; 3K2 J44, 36, 4; 4K2
J44, 29, 8; 13K2 J44, 21, 14; 21K2 J44, 0, 44; 42K2 J45, 44, 2; 1K2 J45, 41, 3; 4K2 J45, 31, 8; 14K2
J45, 24, 12; 21K2 J45, 22, 7; 1K2 J46, 41, 3; 3K2 J46, 38, 4; 4K2 J46, 38, 5; 8K2 J46, 34, 6; 6K2
J46, 28, 8; 12K2 J46, 32, 8; 14K2 J46, 19, 9; 5K2 J46, 17, 10; 7K2 J46, 25, 11; 19K2 J46, 24, 12; 20K2
J46, 1, 15; 7K2 J46, 1, 19; 17K2 J46, 0, 46; 44K2 J47, 46, 2; 1K2 J47, 41, 3; 2K2 J47, 40, 4; 5K2
J47, 33, 8; 14K2 J48, 43, 3; 3K2 J48, 42, 4; 6K2 J48, 35, 7; 13K2 J48, 33, 8; 13K2 J48, 23, 13; 21K2
J48, 16, 17; 26K2 J48, 0, 20; 16K2 J48, 0, 48; 46K2 J49, 48, 2; 1K2 J49, 45, 3; 4K2 J49, 43, 4; 6K2
J49, 35, 8; 14K2 J50, 46, 3; 4K2 J50, 43, 4; 5K2 J50, 36, 7; 12K2 J50, 35, 8; 13K2 J50, 19, 9; 1K2
J50, 0, 50; 48K2 J51, 50, 2; 1K2 J51, 46, 3; 3K2 J51, 45, 4; 6K2 J51, 43, 5; 8K2 J51, 34, 6; 1K2
J51, 38, 7; 13K2 J51, 37, 8; 14K2 J51, 9, 12; 2K2 J52, 48, 3; 4K2 J52, 46, 4; 6K2 J52, 44, 5; 8K2
J52, 17, 10; 1K2 J52, 0, 22; 18K2 J52, 0, 52; 50K2 J53, 52, 2; 1K2 J53, 48, 3; 3K2 J53, 47, 4; 6K2
J53, 44, 5; 7K2 J53, 19, 10; 2K2 J53, 0, 16; 1K2 J54, 50, 3; 4K2 J54, 46, 5; 8K2 J54, 44, 6; 10K2
J54, 0, 54; 52K2 J55, 54, 2; 1K2 J55, 51, 3; 4K2 J55, 47, 4; 4K2 J55, 47, 5; 8K2 J56, 52, 3; 4K2
J56, 48, 5; 8K2 J56, 0, 24; 20K2 J56, 0, 56; 54K2 J57, 56, 2; 1K2 J57, 52, 3; 3K2 J57, 49, 4; 4K2
J57, 49, 5; 8K2 J58, 54, 3; 4K2 J58, 0, 58; 56K2 J59, 58, 2; 1K2 J59, 55, 3; 4K2 J60, 55, 3; 3K2
J60, 0, 60; 58K2 J61, 60, 2; 1K2 J61, 57, 3; 4K2 J61, 0, 18; 1K2 J62, 58, 3; 4K2 J62, 51, 4; 1K2
J62, 0, 62; 60K2 J63, 62, 2; 1K2 J63, 58, 3; 3K2 J63, 44, 6; 1K2 J63, 17, 13; 4K2 J63, 16, 14; 5K2
J64, 60, 3; 4K2 J64, 53, 4; 1K2 J64, 49, 5; 1K2 J64, 40, 10; 14K2 J64, 37, 8; 1K2 J64, 31, 9; 1K2
J64, 25, 11; 1K2 J64, 24, 12; 2K2 J64, 21, 16; 17K2 J64, 17, 15; 9K2 J64, 16, 16; 14K2 J64, 12, 14; 2K2
J64, 2, 22; 12K2 J64, 1, 20; 9K2 J64, 1, 23; 13K2 J64, 1, 27; 25K2 J64, 0, 24; 14K2 J64, 0, 64; 62K2
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Table 2: A Concise Version of the Parameters of Good Qutrit EAQECCs with 3 ≤ n ≤ 36. To obtain the full table, one applies
the propagation rules in Section 4. We include entries with c = 0 since a large database for such codes is not yet currently
available online.

Jn, κ, δ; cK3 Jn, κ, δ; cK3 Jn, κ, δ; cK3 Jn, κ, δ; cK3 Jn, κ, δ; cK3 Jn, κ, δ; cK3
J3, 0, 3; 1K3 J5, 4, 2; 1K3 J5, 2, 3; 1K3 J5, 0, 4; 1K3 J5, 0, 5; 3K3 J6, 2, 4; 2K3
J7, 3, 3; 0K3 J7, 0, 6; 3K3 J8, 4, 3; 0K3 J8, 0, 7; 4K3 J10, 6, 3; 0K3 J10, 4, 4; 0K3
J10, 4, 5; 2K3 J10, 1, 6; 1K3 J10, 2, 7; 4K3 J10, 0, 8; 4K3 J10, 0, 9; 6K3 J10, 0, 10; 8K3
J11, 0, 11; 9K3 J12, 0, 12; 10K3 J13, 4, 7; 5K3 J13, 1, 10; 8K3 J13, 0, 13; 11K3 J14, 8, 3; 0K3
J14, 5, 6; 3K3 J14, 2, 9; 6K3 J14, 0, 14; 12K3 J15, 9, 3; 0K3 J15, 5, 5; 0K3 J15, 5, 7; 4K3
J15, 4, 8; 5K3 J15, 0, 12; 9K3 J15, 0, 15; 13K3 J16, 10, 3; 0K3 J16, 9, 4; 1K3 J16, 7, 5; 1K3
J16, 6, 6; 2K3 J16, 6, 7; 4K3 J16, 5, 8; 5K3 J16, 4, 9; 6K3 J16, 2, 10; 6K3 J16, 1, 11; 7K3
J16, 1, 12; 9K3 J16, 0, 13; 10K3 J16, 0, 16; 14K3 J17, 11, 3; 0K3 J17, 10, 4; 1K3 J17, 9, 5; 2K3
J17, 8, 6; 3K3 J17, 0, 14; 11K3 J17, 0, 17; 15K3 J18, 12, 3; 0K3 J18, 11, 4; 1K3 J18, 10, 5; 2K3
J18, 6, 8; 4K3 J18, 6, 9; 6K3 J18, 4, 10; 6K3 J18, 0, 18; 16K3 J19, 13, 3; 0K3 J19, 12, 4; 1K3
J19, 11, 5; 2K3 J19, 2, 13; 11K3 J19, 0, 19; 17K3 J19, 0, 20, 19K3 J20, 12, 5; 2K3 J20, 10, 6; 4K3
J20, 9, 7; 5K3 J20, 6, 10; 6K3 J20, 5, 11; 9K3 J20, 3, 12; 9K3 J20, 0, 15; 12K3 J20, 0, 20; 18K3
J21, 15, 3; 0K3 J21, 13, 4; 0K3 J21, 11, 6; 4K3 J21, 10, 7; 5K3 J21, 2, 14; 11K3 J21, 2, 15; 13K3
J21, 1, 16; 14K3 J21, 0, 21; 19K3 J22, 16, 3; 0K3 J22, 15, 4; 1K3 J22, 12, 6; 4K3 J22, 11, 7; 5K3
J22, 1, 17; 15K3 J22, 0, 22; 20K3 J23, 17, 3; 0K3 J23, 16, 4; 1K3 J23, 9, 8; 6K3 J23, 4, 13; 11K3
J23, 0, 23; 21K3 J24, 13, 6; 3K3 J24, 11, 8; 7K3 J24, 6, 11; 8K3 J24, 6, 12; 10K3 J24, 0, 19; 16K3
J24, 0, 24; 22K3 J25, 17, 4; 0K3 J25, 15, 5; 2K3 J25, 9, 10; 8K3 J25, 5, 14; 12K3 J25, 3, 16; 14K3
J25, 2, 17; 15K3 J25, 0, 25; 23K3 J26, 18, 4; 0K3 J26, 13, 7; 5K3 J26, 12, 8; 6K3 J26, 11, 9; 7K3
J26, 10, 10; 8K3 J26, 7, 12; 9K3 J26, 6, 14; 12K3 J26, 3, 17; 15K3 J26, 2, 18; 16K3 J26, 0, 26; 24K3
J27, 19, 4; 0K3 J27, 17, 5; 2K3 J27, 15, 6; 2K3 J27, 14, 7; 5K3 J27, 13, 8; 6K3 J27, 12, 9; 7K3
J27, 11, 10; 8K3 J27, 8, 12; 9K3 J27, 8, 13; 11K3 J27, 7, 14; 12K3 J27, 4, 16; 13K3 J27, 3, 18; 16K3
J27, 2, 19; 17K3 J27, 1, 20; 18K3 J27, 0, 27, 25K3 J28, 20, 4; 0K3 J28, 14, 8; 6K3 J28, 13, 9; 7K3
J28, 12, 10; 8K3 J28, 11, 11; 9K3 J28, 10, 13; 12K3 J28, 9, 12; 9K3 J28, 8, 14; 12K3 J28, 5, 16; 13K3
J28, 4, 17; 14K3 J28, 4, 18; 16K3 J28, 4, 19; 18K3 J28, 2, 20; 18K3 J28, 1, 21; 19K3 J28, 0, 28; 26K3
J29, 23, 3; 0K3 J29, 21, 4; 0K3 J29, 19, 5; 2K3 J29, 17, 6; 2K3 J29, 16, 7; 5K3 J29, 0, 29; 27K3
J30, 23, 4; 1K3 J30, 21, 6; 5K3 J30, 18, 7; 6K3 J30, 10, 15; 16K3 J30, 0, 12; 0K3 J30, 0, 30; 28K3
J31, 25, 3; 0K3 J31, 25, 4; 2K3 J31, 22, 5; 3K3 J31, 22, 6; 5K3 J31, 0, 31; 29K3 J32, 26, 4; 2K3
J32, 23, 5; 3K3 J32, 23, 6; 5K3 J32, 0, 32; 30K3 J33, 27, 3; 0K3 J33, 27, 4; 2K3 J33, 25, 5; 4K3
J33, 24, 6; 5K3 J33, 14, 10; 9K3 J33, 13, 13; 14K3 J33, 13, 14; 16K3 J33, 12, 15; 17K3 J33, 11, 16; 18K3
J33, 10, 17; 19K3 J33, 8, 18; 19K3 J33, 8, 19; 21K3 J33, 7, 20; 22K3 J33, 0, 33; 31K3 J34, 28, 3; 0K3
J34, 26, 5; 4K3 J34, 25, 6; 5K3 J34, 12, 12; 10K3 J34, 0, 22; 18K3 J34, 4, 23; 24K3 J34, 0, 34; 32K3
J35, 30, 3; 1K3 J35, 28, 4; 1K3 J35, 26, 6; 5K3 J35, 15, 10; 8K3 J35, 0, 35; 33K3 J36, 31, 3; 1K3
J36, 30, 4; 2K3 J36, 27, 5; 3K3 J36, 27, 6; 5K3 J36, 20, 7; 2K3 J36, 19, 10; 11K3 J36, 18, 8; 4K3
J36, 17, 9; 5K3 J36, 15, 11; 9K3 J36, 15, 14; 17K3 J36, 14, 13; 14K3 J36, 14, 15; 18K3 J36, 13, 12; 9K3
J36, 11, 16; 17K3 J36, 11, 18; 21K3 J36, 10, 17; 18K3 J36, 10, 19; 22K3 J36, 8, 20; 22K3 J36, 8, 21; 24K3
J36, 0, 36; 34K3
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