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We propose a quantum circuit that emulates a delayed-choice quantum eraser via bipartite

entanglement with the extension that the degree of entanglement between the two paired

quantons is adjustable. This provides a broader setting to test complementarity relations be-

tween interference visibility and which-way distinguishability in the scenario that the which-

way information is obtained through entanglement without direct contact with the quantum

state for interference. The visibility-distinguishability relations are investigated from three

perspectives that differ in how the which-way information is taken into consideration. These

complementarity relations can be understood in terms of entropic uncertainty relations in

the information-theoretic framework and the triality relation that incorporates single-particle

and bipartite properties. We then perform experiments on the quantum computers provided

by the IBM Quantum platform to verify the theoretical predictions. We also apply the delay

gate to delay the measurement of the which-way information to affirm that the measurement

can be made truly in the “delayed-choice” manner.

I. INTRODUCTION

Wave-particle duality is a fundamental concept of quantum mechanics that is closely related to

Bohr’s complementarity principle [1, 2]. It holds that every quantum object possesses both wave

and particle properties, but the two properties cannot be observed or measured simultaneously.

For single quantons (e.g., photons) in a two-path Mach-Zehnder interferometer, the wave behavior

is quantified by interference visibility V, which indicates how sharp the interference fringe pattern

is, and the particle behavior is quantified by path distinguishability D, which indicates how much

the “which-way” information about which path the particle has travelled can be inferred. In terms

of V and D, an information-theoretic formulation developed by Jaeger at al. [3] and Englert [4]
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leads to a wave-particle duality relation

V2 +D2 ≤ 1, (1.1)

which quantitatively bounds the complementarity between the wave and particle behaviors.

The similar analysis has been generalized for more complicated settings, such as in multipath

interferometers [5] and in the context of quantum erasure [6, 7]. The duality relation for bipartite

systems has also been extended to a “triality” relation, which additionally takes into account

a quantitative measure of entanglement concurrence [8, 9]. The triality relation has also been

generalized to multipath scenarios [10].

It has been debated whether the duality relation V2 + D2 ≤ 1 can be understood in terms of

Heisenberg’s uncertainty principle, which gives an uncertainty relation for any two noncommuting

observables. Originally, it was argued that the two principles are independent [4]. Later, however,

it was demonstrated that they are related to each other [11–13]. The work of [13] developed a

new information-theoretic formulation, which casts Heisenberg’s uncertainty relations as entropic

uncertainty relations and therefore unifies Heisenberg’s uncertainty principle with the particle-

wave duality. This entropic formulation for wave-particle duality has been further established for

multipath interferometers [14–16]. Other wave-particle duality relations have also been introduced

in terms of different information-theoretic quantifiers [17, 18].

There are two very different scenarios for deducing the which-way information. One is to

directly probe the particle’s passage, whereas the other obtains the which-way information through

entanglement. The first scenario disturbs the particle’s passage, and thus it is not surprising

that the interference pattern is diminished if the which-way information is known. The second

scenario, by contrast, does not have any direct contact with the particle’s passage at all, and it

is somewhat counterintuitive that the interference pattern nevertheless depends on the deduced

which-way information. A typical example of the second scenario is a delayed-choice quantum

eraser (see [19] for a review), wherein, in a sense, the interference visibility can be “enhanced by

erasing the which-way information retroactively”. As the entropic framework proposed by [14]

is very generic and applicable to both scenarios, the visibility-distinguishability tradeoff in an

entanglement quantum eraser should still satisfy the inequality (1.1). However, there are some

features peculiar to the second scenario that are not addressed in [14] and have to be understood

from the triality relation proposed by [9]. It will shed new light on the wave-particle duality to

study the complementarity between V and D for entanglement quantum erasure. This paper aims

to investigate this aspect.
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The inequality (1.1) applies not only to interference of different paths in an interferometer but

also interference of any alternative states. Typically, one can emulate a two-path interference ex-

periment in a quantum circuit by considering the interference between the qubit states |0〉 and

|1〉. Reframing the delayed-choice experiment in a quantum circuit provides a higher level of ab-

straction that renders the information flow more transparent [20]. Today, IBM Quantum provides

an online platform that allows users to access the cloud services of quantum computing [21]. It

offers an accessible and easily manageable facility for performing interference experiments. The

IBM Quantum platform has been used to carry out various interference experiments and study

visibility-distinguishability duality relations [22–25]. Particularly, the recent work of [25] studies

the visibility-distinguishability complementarity for a quantum circuit, where the which-way infor-

mation is deduced via a minimum-error measurement and via a nondelayed quantum eraser, both

in the aforementioned first scenario.

In this paper, we consider a quantum circuit in analogy to a delayed-choice quantum eraser and

investigate the visibility-distinguishability complementarity in the second scenario. The quantum

circuit of a delayed-choice quantum eraser not only is more easily implemented than an optical

experiment, but it also has the merit that the degree of entanglement between the two paired quan-

tons is adjustable, thus facilitating the analysis of a delayed-choice quantum eraser in a broader

setting with full or partial entanglement, which cannot be easily implemented in an optical exper-

iment. The complementarity relation between visibility and distinguishability is then investigated

in depth from three different perspectives: (i) in view of the total ensemble of all events, (ii) in

view of separate subensembles associated with different readouts of the entangled qubit, and (iii)

in view of average results averaged over subensembles. The analysis provides valuable insight into

the intricate interplay between visibility, distinguishability, and bipartite entanglement.

We then perform experiments on the quantum computers of IBM Quantum. The experimental

results agree very well with the theory. The deviations from theory are insignificant except in some

extreme cases where the error of the CNOT gate results in deviations that become considerable

only in perspective (ii). Moreover, we utilize the delay gate that instructs a qubit to idle for a

requested duration to fulfill a truly “delayed-choice” measurement. As a consequence of decoher-

ence over time, which corrupts the entanglement between the two qubits, the interference pattern

is “recovered” by the quantum eraser effect to a lesser extent compared to the nondelayed case,

and various visibility and distinguishability quantifiers are also diminished to a certain degree.

This paper is organized as follows. In Sec. II, we first propose a simple model of an entanglement

quantum eraser in an optical experiment. In Sec. III, we implement a quantum circuit in analogy to
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the entanglement quantum eraser with the extension that the degree of the bipartite entanglement

is adjustable. In Sec. IV, we calculate various quantifiers of visibility and distinguishability and

investigate the complementarity relations of them from three different perspectives. In Sec. V, we

compare these relations to those established in the literature. In Sec. VI, we present and analyze

the experimental results performed on IBM Quantum. Finally, the theoretical and experimental

results are summarized in Sec. VII. Various technical details and supplementary data are provided

in the appendices.

II. A SIMPLE MODEL OF A DELAYED-CHOICE QUANTUM ERASER

The idea of delayed-choice quantum erasure was first proposed by Scully and Drühl in 1982

[26]. Since then, many different scenarios framing the same concept have been conceived. The

first quantum eraser experiment was performed by Kim et al. in 1999 [27] in a double-slit inter-

ference experiment using entangled photons. A similar double-slit experiment involving photon

polarization was later performed by Walborn et al. in 2002 [28]. (See [19] for a comprehensive

review.)

To give a simple description of the quantum eraser, we reformulate the double-slit experiment

of [28] in terms of a Mach-Zehnder interferometer, which is conceptually more concise and draws a

close analogy implementable in a quantum circuit.1 As illustrated in Fig. 1, spontaneous parametric

down-conversion (SPDC) in a nonlinear optical crystal, such as beta barium borate (BBO), is

used to prepare a pair of entangled photons (γ1 and γ2) that are orthogonally polarized. The

photon γ1 is directed into a Mach-Zehnder interferometer with the detectors D1 and D2, while

the entangled partner γ2 is directed into the “delayed-choice” measuring device with the detectors

D′1 and D′2. The Mach-Zehnder interferometer is based on the setup of [31], which was originally

designed to realize Wheeler’s delayed-choice experiment. Initially, the pathway of γ1 is split by a

polarizing beam splitter (PBS) into two spatially separated paths (Path 1 and Path 2) associated

with vertical and horizontal polarizations, respectively. An adjustable phase-shift plate is inserted

to Path 2 to provide a relative phase shift θ between the two paths. The two paths pass through

a half-wave plate that rotates the photon polarization by 90◦, and are recombined by a second

1 The same idea of using a Mach-Zehnder interferometer for the delayed-choice quantum eraser has been considered

in the literature (see e.g., [29, 30]). Particularly, our setup in Fig. 1 is very similar to Figure 1 in [30], except that

the latter investigates a different issue and does not consider an adjustable phase shift.
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FIG. 1. Experimental setup for the delayed-choice quantum eraser. A pair of entangled photons γ1 and γ2

with orthogonal polarizations are created from a nonlinear optical crystal BBO. The photon γ1 is directed

into a Mach-Zehnder interferometer with the detectors D1 and D2. On the other hand, the entangled partner

γ2 is directed into the delayed-choice measuring device with the detectors D′1 and D′2.

polarizing beam splitter.2 The recombined path then enters an electro-optical modulator (EOM)

of which the optical axis is oriented at 22.5◦ from the direction of input polarization. Applied

with the half-wave voltage (Vπ), the EOM behaves as a half-wave plate that rotates the input

photon polarization by 45◦. Finally, a Wollaston prism is used to deflect horizontally polarized

photons to D1 and vertically polarized photons to D2. When the voltage Vπ is applied, the whole

interferometer functions as the “closed” configuration of the Wheeler’s delayed-choice experiment

(i.e., the two paths are recombined). On the other hand, if no voltage is applied, it effectively

functions as the “open” configuration (i.e., the two paths do not interfere at all; Path 1 and Path

2 arrive at D1, and D2 separately).3 The closed configuration is used for the quantum eraser

experiment.

If we shed the single photon γ1 into the interferometer and repeat the experiment many times,

we obtain the detection probabilities of D1 and D2 from the accumulated counts of individual

signals. Because γ1 and γ2 are maximally entangled, γ1 itself is completely unpolarized and thus

its polarization is described by the density matrix ργ1 = 1
212×2. As ργ1 can be interpreted as

having either horizontal or vertical polarization by a fifty-fifty chance, for each individual event of

the accumulated ensemble, the photon γ1 can be said to travel either Path 1 or Path 2 with equal

2 The adjustable phase shift θ can also be realized by tilting the second beam splitter.
3 The main merit of using the EOM is that the switch between the closed and open configurations can be made very

fast, which is crucial for Wheeler’s delayed-choice experiment. If the switch speed is not a concern, one can simply

replace the EOM with a half-wave plate that rotates the input polarization by 45◦ for the closed configurations,

and remove the half-wave plate for the open configuration. The arrangement devised to recombine the two paths

can alternatively be replaced by the method proposed in Figure 1 in [30].



6

probability. As a result of the interpretation that Path 1 and Path 2 are travelled separately, the

detection probabilities of D1 and D2 are 50% for each, showing no interference between the two

paths (i.e., independent of the relative phase shift θ).4

Meanwhile, as shown in the lower part of Fig. 1, the entangled partner γ2 is directed into a

Wollaston prism that splits two mutually orthogonal polarizations into the detectors D′1 and D′2

separately. The orientation of the Wollaston prism can be adjusted by an angle φ′ so that the linear

polarization at the angle φ′ from the horizontal direction enters D′1 while the linear polarization

at the angle π/2 + φ′ enters D′2. The polarization of γ2 can be determined by whether it registers

a signal at D′1 or D′2. Because γ1 and γ2 are entangled in the way that their polarizations are

orthogonal to each other, the polarization of γ1 can be inferred from knowing the polarization

of γ2. If we adjust φ′ = 0, the events that click D′1 correspond to horizontal polarization, and

those that click D′2 correspond to vertical polarization. The accumulated events of γ1 measured

by D1 and D2 can be grouped into two subensembles according to whether γ2 clicks D′1 or D′2.

Each individual event of γ1 in the subensembles associated with D′1 and D′2 is said to travel along

Path 1 and Path 2, respectively. As the “which-way” information of whether each individual γ1

travels along Path 1 or Path2 has been “marked” by the associated D′1 or D′2 outcome, within each

subensemble the detection probabilities of D1 and D2 remains 50% for each, showing no two-path

interference.

On the other hand, if we adjust φ′ = π/4, the events that click D′1 correspond to the 45◦ di-

agonal polarization, and those that click D′2 correspond to the 135◦ diagonal polarization. In the

subensembles associated with D′1 and D′2, the photon γ1 is in the 135◦ and 45◦ diagonal polariza-

tions, respectively, both of which are linear superpositions of horizontal and vertical polarizations.

Consequently, the which-way information of each individual γ1 is completely unmarked by the

associated D′1 or D′2 outcome, and the photon is said to travel both paths simultaneously. Cor-

respondingly, within the confines of either subensemble associated with D′1 or D′2, the detection

probabilities of D1 and D2 appear as cos2(θ/2) or sin2(θ/2) in response to the adjustable phase

4 However, because of the unitary freedom for density matrices, ργ1 also admits infinitely many different interpre-

tations. For example, 1
2
12×2 can be alternatively interpreted as having an arbitrarily specific polarization (e.g.,

clockwise polarized) by 50% probability and having the orthogonal polarization (e.g, counterclockwise polarized)

by the other 50%. The resulting detection probabilities of D1 and D2 nevertheless are independent of the inter-

pretation. If a different interpretation is adopted, each individual photon γ1 may not be said to travel either of

the two paths and thus the two paths still interference to a certain degree depending on the interpretation, but

the probabilistic nature of 1
2
12×2 turns out to “conceal” the two-path interference of each individual event in the

accumulated result.
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shift θ, manifesting the two-path interference.

Furthermore, If we adjust φ′ to some angle between 0 and 45◦, the which-way information of

each individual γ1 is partially (but not completely) marked to a certain degree. Accordingly, within

each subensemble associated with D′1 or D′2, the detection probabilities of D1 and D2 appear as

partially modulated in response to the adjustable phase shift θ. That is, each subensemble does

manifest the two-path interference, but the visibility of the interference pattern is diminished to a

certain degree compared to that of the case of φ′ = 45◦. The detection probabilities for the total

ensemble remains the same regardless of the value of φ′.

Before the state of γ2 is measured by D′1 and D′2, the way how each individual γ1 travels the

two paths is unknown, or, more precisely, the interpretation of how it travels remains ambiguous.

After the measurement of D′1 and D′2, however, this ambiguity is removed, and the way how γ1

travels become ascertained.5 In a sense, the which-way information of each individual γ1, which

originally can be innocuously presupposed to be either Path 1 or Path 2, can be “erased” to a

certain degree depending on φ′ by the outcome of the measurement of D′1 and D′2.
6 Note that

whether the measurement of D′1 and D′2 is performed before or after the measurement of D1 and

D2 is irrelevant. This gives a rather astonishing implication: apparently, the behavior of γ1 in

the past can be retroactively affected by the measurement of γ2 performed in the future. What

this really means is a matter of philosophy that has sparked intense debate. In this paper, we

leave the philosophical question aside but focus on the implementation of a quantum eraser in a

quantum circuit, whereby we can investigate the issues of complementarity between visibility of

the interference pattern and distinguishability of the which-way information in more depth.

5 The fact that the D′1 and D′2 outcome deduces how γ1 travels the two paths can be empirically verified by the

concurrence counts between D1/D2 and D′1/D
′
2 in the open configuration (i.e., the applied voltage for the EOM

is turned off).
6 Rigorously speaking, as commented in Footnote 4, the which-way information is neither marked in the first place

nor erased in a later time. Rather, it is the ambiguity of interpretations that is removed upon the delayed-choice

measurement. It has been argued that no information is erased at all in a quantum eraser and the term “quantum

eraser” is a misleading misnomer (see e.g., [29, 32]).
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Di

Dd

|0⟩i H P (θ) H

|0⟩d Ry(ϕ) Ry(ϕ
′) delayed

1 2 3 4 5 6

FIG. 2. Implementation of a delayed-choice quantum eraser in a quantum circuit. The upper right grouped

block is analogous to the Mach-Zehnder interferometer in Fig. 1. The lower right grouped block is analogous

to the delayed-choice measuring device. The left grouped block is analogous to the BBO module.

III. IMPLEMENTATION IN A QUANTUM CIRCUIT

The delayed-choice quantum eraser experiment as illustrated in Fig. 1 can be emulated in a

quantum circuit as shown in Fig. 2, where the phase gate P (θ) is given by

P (θ) =

 1 0

0 eiθ

 , (3.1)

and the Ry(φ) gate is given by

Ry(φ) ≡ e−iφY/2 = cos
φ

2
I − i sin

φ

2
Y =

 cos φ2 − sin φ
2

sin φ
2 cos φ2

 . (3.2)

The grouped block in the upper right of Fig. 2 as a whole emulates the Mach-Zehnder inter-

ferometer in the upper part of Fig. 1. If we send a qubit state |0〉 or |1〉 into this block, the first

Hadamard (H) gate transforms it to 1/
√

2 (|0〉 ± |1〉). After this H gate, the states |0〉 and |1〉 can

be viewed as analogous to Path 1 and Path 2, respectively. Accordingly, the H gate is analogous

to the first PBS in Fig. 1, which splits the incoming photon into two paths. The P (θ) gate is

analogous to the adjustable phase-shift plate θ, which adds a relative phase eiθ to Path 2 (i.e.,

|1〉 by analogy). The second (dashed) H gate is analogous to the module composed of the second

PBS, the half-wave plate, and the EOM, in Fig. 1, which recombines the states of Path 1 (i.e., |0〉)
and Path 2 (i.e., |1〉). Finally, the meter Di is analogous to the Wollaston prism together with the

detectors D1 and D2.
7 The 0/1 readouts of Di are analogous to the signals registered in D1 and

7 We label the objects associated in the upper quantum wire with the superscript or subscript “i” for “interference”

and those in the lower wire with “d” for “delayed-choice”.
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D2, respectively.8 Furthermore, if the dashed H gate is removed, the whole block then emulates

the open configuration of the Mach-Zehnder interferometer.

On the other hand, the grouped block in the lower right of Fig. 2 as a whole emulates the delayed-

choice measuring device in the lower part of Fig. 1. Tuning φ′ for the Ry(φ
′) gate is analogous to

adjusting the orientation angle φ′ for the Wollaston prism WP(φ′).9 The 0/1 readouts of the meter

Dd are analogous to the signals registered in D′1 and D′2, respectively. We also inserted a delayed

gate to ensure that the measurement by Dd is performed after the measurement by Di.
10

Meanwhile, the grouped block in the left of Fig. 2 as a whole emulates the BBO module in Fig. 1,

which provides a pair of entangled photons. Feeding |0〉 to the two quantum wires, the grouped

block provides the state |ψ2〉 given by (3.3b). If we set φ = π/2, |ψ2〉 = 1/
√

2 (|00〉+ |11〉) gives

a pair of fully entangled qubits, analogous to the entangled photons produced the BBO module.

Furthermore, we can adjust φ to any value and thus provide a pair of qubits with any arbitrary

degree of entanglement. This adjustment enables us to investigate consequences of the delayed-

choice eraser in a broader setting with adjustable entanglement between the two paired quantons,

which cannot be easily implemented in an optical experiment.

In the quantum circuit implemented in Fig. 2, the quantum state at each slice can be straight-

8 Prior to the first H gate, the qubit states |0〉i and |1〉i are analogous to the photon states of 45◦ and 135◦ diagonal

polarizations, which become 1/
√

2 (|Path 1〉 ± |Path 2〉) after entering the first PBS. After the second H gate, the

qubit states |0〉i and |1〉i are analogous to the photon states of horizontal and vertical polarizations, which enter

D1 and D2, respectively. In the Mach-Zehnder interferometer as shown in Fig. 1, an entering beam is split into

two beams, which are recombined and strike either D1 or D2 in the end. By contrast, in the quantum circuit

analogy, there is only one qubit throughout the whole “interferometer”, which is measured with the 0/1 readouts

by Di in the end.
9 However, the value of φ′ in Ry(φ′) is not to be directly identified with the value of φ′ in WP(φ′) by the analogy.

In accordance with the comment in Footnote 8, the qubit states |0〉 and |1〉 before the Ry(φ′) gate are analogous

to the photon states of 45◦ and 135◦ diagonal polarizations. Consequently, in particular, Ry(φ′ = 0) corresponds

to WP(φ′ = π/4), and Ry(φ′ = π/2) corresponds to WP(φ′ = 0).
10 Note that the upper right and lower right grouped blocks do not touch each other at all. Therefore, the exact

position of the Ry(φ′) gate relative to the gates of the upper grouped block is not important. In fact, the Ry(φ′)

gate can be positioned even after the delayed gate. It is only convenient for illustration and calculation that the

Ry(φ′) gate is depicted in this particular position.
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forwardly calculated as

|ψ1〉 = |0〉i
(

cos
φ

2
|0〉d + sin

φ

2
|1〉d

)
, (3.3a)

|ψ2〉 = cos
φ

2
|0〉i|0〉d + sin

φ

2
|1〉i|1〉d, (3.3b)

|ψ3〉 =
cos(φ/2)√

2
(|0〉i + |1〉i)|0〉d +

sin(φ/2)√
2

(|0〉i − |1〉i)|1〉d, (3.3c)

|ψ4〉 =
cos(φ/2)√

2
(|0〉i + eiθ|1〉i)|0〉d +

sin(φ/2)√
2

(|0〉i − eiθ|1〉i)|1〉d, (3.3d)

|ψ5〉 =
1√
2

(
cos

φ+ φ′

2
|0〉i + eiθ cos

φ− φ′
2
|1〉i
)
|0〉d

+
1√
2

(
sin

φ+ φ′

2
|0〉i − eiθ sin

φ− φ′
2
|1〉i
)
|1〉d, (3.3e)

|ψ6〉 =
1

2

([
cos

φ+ φ′

2
+ eiθ cos

φ− φ′
2

]
|0〉i +

[
cos

φ+ φ′

2
− eiθ cos

φ− φ′
2

]
|1〉i
)
|0〉d

+
1

2

([
sin

φ+ φ′

2
− eiθ sin

φ− φ′
2

]
|0〉i +

[
sin

φ+ φ′

2
+ eiθ sin

φ− φ′
2

]
|1〉i
)
|1〉d. (3.3f)

If we focus on the qubit |q〉i of the upper (“i”) quantum wire, it is described by the reduced

density matrix ρ
(i)
n := Tr|q〉d(|ψn〉〈ψn|) traced out over the qubit |q〉d of the lower (“d”) quantum

wire. The reduced density matrix ρ
(i)
n at each slice is given by

ρ
(i)
2 =

 cos2 φ2 0

0 sin2 φ
2

 , (3.4a)

ρ
(i)
3 =

1

2

 1 cosφ

cosφ 1

 , (3.4b)

ρ
(i)
4 ≡ ρ

(i)
5 = P (θ)ρ

(i)
3 P (θ)† =

1

2

 1 cosφ e−iθ

cosφ eiθ 1

 , (3.4c)

ρ
(i)
6 = Hρ

(i)
5 H =

1

2

 1 + cosφ cos θ i cosφ sin θ

−i cosφ sin θ 1− cosφ cos θ

 . (3.4d)

By adjusting φ, the reduced density matrix can provide any degree of entanglement, quantified by

the entropy of entanglement

S(ρ(i)) ≡ −Tr(ρ(i) log ρ(i)) = − cos2
φ

2
log

(
cos2

φ

2

)
− sin2 φ

2
log

(
sin2 φ

2

)
. (3.5)

Alternatively, ρ(i) is said to have the degree of purity

Tr (ρ(i))2 =
1 + cos2 φ

2
(3.6)

for any arbitrary value. The entropy of entanglement increases as the degree of purity decreases.
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On the other hand, if we focus on the “d” qubit |q〉d, it is described by the reduced density

matrix ρ
(d)
n := Tr|q〉i(|ψn〉〈ψn|) traced out over the “i” qubit. The reduced density matrix ρ

(d)
n at

each slice is given by

ρ
(d)
2 ≡ ρ

(d)
3 ≡ ρ

(d)
4 =

 cos2 φ2 0

0 sin2 φ
2

 , (3.7a)

ρ
(d)
5 = Ry(φ

′)ρ(d)4 Ry(φ
′)† =

1

2

 cos2 φ+φ
′

2 + cos2 φ−φ
′

2 cosφ sinφ′

cosφ sinφ′ sin2 φ+φ′

2 + sin2 φ−φ′
2


=

1

2

 1 + cosφ cosφ′ cosφ sinφ′

cosφ sinφ′ 1− cosφ cosφ′

 . (3.7b)

Note that the entropy of entanglement S(ρ(d)) and the degree of purity Tr (ρ(d))2 are the same as

those of ρ(i).11

IV. VISIBILITY AND DISTINGUISHABILITY

The states and density matrices at each slice in Fig. 2 have been calculated in the previous sec-

tion, we can now study visibility of the interference pattern measured by Di, and distinguishability

of the which-way information inferred from the outcome measured by Dd. We will investigate

complementarity relations between visibility and distinguishability from three different perspec-

tives: (i) in view of the total ensemble of all events, (ii) in view of the subensembles respectively

associated with the readouts 0 and 1 in Dd, and (iii) in view of the average results averaged over

the two subensembles.

A. Total ensemble perspective

By repeating the experiment many times (for a given phase shift θ), we obtain an ensemble of

accumulated counts of individual readouts. Among the ensemble, the probability p(0i) of having

the readout 0 in Di in Fig. 2 and the probability p(1i) of having the readout 1 are respectively

given by

p(0i) = Tr
(
|0i〉〈0i|ρ(i)6

)
=

1

2
(1 + cosφ cos θ) , (4.1a)

p(1i) = Tr
(
|1i〉〈1i|ρ(i)6

)
=

1

2
(1− cosφ cos θ) . (4.1b)

11 If a composite AB system is in a pure state, the Schmidt decomposition implies that the density matrices ρA and

ρB for the A and B subsystems, respectively, have the same eigenvalues.



12

Similarly, the probability p(0d) of having the readout 0 in Dd and the probability p(1d) of having

the readout 1 are respectively given by

p(0d) = Tr
(
|0d〉〈0d|ρ(d)5

)
=

1

2

(
1 + cosφ cosφ′

)
, (4.2a)

p(1d) = Tr
(
|1d〉〈1d|ρ(d)5

)
=

1

2

(
1− cosφ cosφ′

)
. (4.2b)

Generally, the detection probabilities in (4.1) manifest the two-path interference as modulated

in response to the phase shift θ. However, the interference pattern is less significant when | cosφ|
becomes smaller. To quantify the visibility of the interference pattern, we first define the contrast

of the interference pattern as

C := p(0i)− p(1i) ≡ 2p(0i)− 1 = cosφ cos θ. (4.3)

The visibility of the interference is then defined as

V :=
maxθ p(0i)−minθ p(0i)

maxθ p(0i) + minθ p(0i)
≡ maxθ C −minθ C

2 + maxθ C + minθ C
= | cosφ|. (4.4)

This tells that the visibility of interference increases as the purity of ρ(i) increases.

Accordingly to the complementarity principle, the more significant the interference pattern is,

the less certain the which-way information can be inferred. To quantify how much the which-

way information is deducible, we first compute the probability of correctly identifying which-way

information based on the readout measured by Dd. The which-way information of the “i” qubit

can be explicitly measured in the open configuration where the dashed H gate in Fig. 2 is removed.

In the open configuration, the two “paths” |0〉 and |1〉 register the readouts 0 and 1 separately in

Di, so the readout of Di completely tells the which-way information. In the closed configuration,

on the other hand, the which-way information cannot be determined from the readout of Di, but it

can be indirectly inferred with a certain degree of certainty from the readout of Dd. Let us adopt

an identifying strategy as follows: the which-way information of |q〉i is guessed to be |0〉 if Dd yields

0, and |1〉 if Dd yields 1. The probability of successfully guessing the which-way information can

be empirically computed from the concurrence counts between the readouts of Di and Dd in the

open configuration (recall Footnote 5). Mathematically, the probability of success is computed as

psucc = p(0d) p(0i|0d) + p(1d) p(1i|1d) ≡ p(0i, 0d) + p(1i, 1d)

=
∣∣〈(|0〉i|0〉d)|ψ5〉

∣∣2 +
∣∣〈(|1〉i|1〉d)|ψ5〉

∣∣2
=

1

2

(
cos2

φ+ φ′

2
+ sin2 φ− φ′

2

)
=

1

2
− 1

2
sinφ sinφ′. (4.5)
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If psucc = 1/2, the strategy just provides a random guess. If 1/2 < psucc ≤ 1, the which-way

information can be inferred with a certain certainty. If 0 ≤ psucc < 1/2, it just means that we

should have adopted the strategy the other way around (i.e., |q〉i is identified to be |1〉 if Dd yields

0, and |0〉 if Dd yields 1). Correspondingly, the distinguishability by the strategy is defined as

2 psucc − 1 and given by

D := 2 psucc − 1 = − sinφ sinφ′. (4.6)

Again, if D < 0, it means that the strategy should have been the other way around. In the closed

configuration, the certainty of deducing the which-way information of |q〉i from the readout of Dd

is said to be described by the distinguishability D.12

From (4.4) and (4.6), we obtain the complementarity relation

V2 +D2 = cos2 φ+ sin2 φ sin2 φ′ ≤ 1, (4.7)

which is in agreement with (1.1). This inequality can be saturated by choosing φ′ = ±π/2, at

which |D| gives the optimal value | sinφ| for a given φ. We will discuss (4.7) in more depth in

Sec. V.

B. Subensemble perspective

On the other hand, instead of the total ensemble, we can consider the subensemble of the

events associated with the readout 0 in Dd and the subensemble associated with the readout 1 in

Dd separately. Within either of the two subensembles (labeled with “0d” and “1d” respectively), the

which-way information of |q〉i can be partially or completely erased. Accordingly, the interference

pattern of |q〉i within the confines of either subensemble could exhibit higher visibility than that

of the total ensemble.

According to (3.3f), for the events corresponding to 0d, the wavefunction of |q〉i is collapsed into

|ψ〉i ∝
(

cos
φ+ φ′

2
+ eiθ cos

φ− φ′
2

)
|0〉i +

(
cos

φ+ φ′

2
− eiθ cos

φ− φ′
2

)
|1〉i. (4.8)

12 In the special case that cosφ cosφ′ = 1, we have p(0d) = 1 and p(1d) = 0, and thus p(0i|1d) and p(1i|1d) appearing

in (4.5) are ill defined. Similarly, in the special case that cosφ cosφ′ = −1, we have p(0d) = 0 and p(1d) = 1,

and thus p(0i|0d) and p(1i|0d) are ill defined. Nevertheless, for both special cases, psucc in (4.5) and thus D in

(4.6) are still well defined, as psucc simply reduces to p(1d)p(1i|1d) or p(0d)p(0i|0d), respectively, when p(0d) = 0

or p(1d) = 0.



14

Within the 0d subensemble, the probability of having the readout 0 in Di and the probability of

having the readout 1 are given respectively by

p(0i|0d) =

∣∣〈0|ψ〉∣∣2∣∣〈ψ|ψ〉∣∣2 =
1 + cosφ cosφ′ + (cosφ+ cosφ′) cos θ

2 (1 + cosφ cosφ′)
, (4.9a)

p(1i|0d) =

∣∣〈1|ψ〉∣∣2∣∣〈ψ|ψ〉∣∣2 =
1 + cosφ cosφ′ − (cosφ+ cosφ′) cos θ

2 (1 + cosφ cosφ′)
. (4.9b)

Compared with (4.1) for the interference pattern of the total ensemble, where the modulation in

response to θ vanishes if cosφ = 0, the modulation can be restored in (4.9) by tuning φ′. The

contrast of the interference pattern for the 0d subensemble is defined and given by

C0d := p(0i|0d)− p(1i|0d) =
cosφ+ cosφ′

1 + cosφ cosφ′
cos θ. (4.10)

The visibility of the interference corresponding to 0d is then defined and given by

V0d :=
maxθ p(0i|0d)−minθ p(0i|0d)
maxθ p(0i|0d) + minθ p(0i|0d)

≡ maxθ C0d −minθ C0d
2 + maxθ C0d + minθ C0d

=
| cosφ+ cosφ′|
1 + cosφ cosφ′

. (4.11)

Similarly, for the events corresponding to 1d, the wavefunction of |q〉i is collapsed into

|ψ〉i ∝
(

sin
φ+ φ′

2
+ eiθ sin

φ− φ′
2

)
|0〉i +

(
sin

φ+ φ′

2
− eiθ sin

φ− φ′
2

)
|1〉i. (4.12)

Within the 1d subensemble, the probability of having the readout 0 in Di and the probability of

having the readout 1 are given respectively by

p(0i|1d) =

∣∣〈0|ψ〉∣∣2∣∣〈ψ|ψ〉∣∣2 =
1− cosφ cosφ′ + (cosφ′ − cosφ) cos θ

2 (1− cosφ cosφ′)
, (4.13a)

p(1i|1d) =

∣∣〈1|ψ〉∣∣2∣∣〈ψ|ψ〉∣∣2 =
1− cosφ cosφ′ − (cosφ′ − cosφ) cos θ

2 (1− cosφ cosφ′)
. (4.13b)

The contrast of the interference pattern for the 1d subensemble is defined and given by

C1d = p(0i|1d)− p(1i|1d) =
cosφ′ − cosφ

1− cosφ cosφ′
cos θ. (4.14)

The visibility of the interference corresponding to 0d is then defined and given by

V1d :=
maxθ p(0i|1d)−minθ p(0i|1d)
maxθ p(0i|1d) + minθ p(0i|1d)

≡ maxθ C1d −minθ C1d
2 + maxθ C1d + minθ C1d

=
| cosφ′ − cosφ|
1− cosφ cosφ′

. (4.15)

We can also consider and define the distinguishabilities D0d and D1d within the 0d subensemble

and the 1d subensemble, respectively. Computing p(0i|0d) and p(1i|ad) from |ψ5〉 given in (3.3e),

we have

D0d := 2 p(0d)succ − 1 = 2 p(0i|0d)− 1 =
− sinφ sinφ′

1 + cosφ cosφ′
, (4.16a)

D1d := 2 p(1d)succ − 1 = 2 p(1i|1d)− 1 =
sinφ sinφ′

1− cosφ cosφ′
, (4.16b)
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where p
(0d)
succ and p

(1d)
succ are the probabilities of successfully identifying the which-way information of

|q〉i within the 0d subensemble and the 1d subensemble, respectively.13

Given (4.11), (4.15), and (4.16), it is easy to show that

V20d +D2
0d

= 1, (4.17a)

V21d +D2
1d

= 1. (4.17b)

It is rather curious that, within either of the two subensemble, the complementarity relation (1.1)

is saturated. This aspect will be further discussed in Sec. V.

For a typical delayed-choice quantum eraser with full entanglement (such as the optical experi-

ment in Fig. 1), we have φ = ±π/2 or equivalently cosφ = 0. Correspondingly, V = 0 in (4.4), and

both Vd0 and Vd1 are greater than V unless cosφ′ = 0. The visibility is said to be “recovered” to a

certain degree as long as |Dd0 | and |Dd1 | remain less than 1 (i.e., cosφ′ 6= 0). In a generic case of

partial entanglement (i.e., φ 6= ±π/2 or equivalently cosφ 6= 0), it is possible that one of Vd0 and

Vd1 becomes smaller than V. Nevertheless, on average, the average visibility is always greater than

or equal to the visibility V for the total ensemble as will be shown in the next subsection. In the

case of φ′ = 0, the visibility is restored to unity, i.e., V0d = V1d = 1, while the distinguishability

completely vanishes, i.e., D0d = D1d = 0, regardless of φ.

C. Average perspective

With reference to the two subensembles, we can define and compute the average visibility as

Vavg := p(0d)V0d + p(1d)V1d
=

1

2
| cosφ+ cosφ′|+ 1

2
| cosφ− cosφ′|

= max
(
| cosφ|, | cosφ′|

)
, (4.18)

13 As remarked in Footnote 12, we have to pay special attention to the two special cases. In the case that cosφ cosφ′ =

1, there are no events in the 1d subensemble (i.e., p(1d) = 0), and D1d and V1d are both ill defined. Similarly, in

the case that cosφ cosφ′ = −1, there are no events in the 0d subensemble (i.e., p(0d) = 0), and D0d and V0d are

both ill defined.
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where (4.2), (4.11), and (4.15) have been used. Similarly, we can define and compute the average

distinguishability as

Davg := p(0d)D0d + p(1d)D1d

= 2p(0d)p(0i|0d)− p(0d) + 2p(1d)p(1i|1d)− p(1d)

= 2psucc − 1 ≡ D = − sinφ sinφ′, (4.19)

where (4.5) and (4.6) have been used.14 Note that the average distinguishability Davg is identical

to D as expected, since the probability of successfully identifying the which-way information is

independent of how the total ensemble is divided into subgroups. From the average point of view,

we again have the complementarity relation,

V2avg +D2
avg = max

(
cos2 φ, cos2 φ′

)
+ sin2 φ sin2 φ′ ≤ 1. (4.20)

Note that, whereas Davg is identical to D, the average visibility Vavg given by (4.18) is equal to

or greater than the original V given by (4.4), depending on φ′. Nevertheless, the complementarity

relation (1.1) still holds for Vavg and Davg. This will be discussed further in Sec. V.

V. COMPARISON TO ESTABLISHED PERSPECTIVES IN THE LITERATURE

In this section, we will study and discuss the complementarity relations obtained in the pre-

vious section from established perspectives in the literature, particularly in view of the entropic

framework proposed in [14] and in view of the triality relation proposed by [9].

A. Entropic framework

The entropic framework of [14] provides a generic scheme for formulating wave-particle duality

relations in arbitrary multipath interferometers from the uncertainty relations for the min- and

max-entropies. The framework considers a generic n-path interferometer for single quantum par-

ticles. After the n paths are recombined, the particle is detected at one of the detectors, giving

rise to an interference pattern for the accumulated count of individual signals. On the other hand,

the particle also interacts with some environment, upon which the imprint can be used to infer

14 As remarked in Footnote 13, in the special case that cosφ cosφ′ = 1, D1d and V1d are ill defined; in the special

case that cosφ cosφ′ = −1, D0d and V0d are ill defined. Nevertheless, for both special cases, Vavg and Davg are

still well defined, because the ill defined part is multiplied by p(1d) = 0 or p(0d) = 0 in (4.18) and (4.19).



17

the which-way information of the particle. The schematic setting is depicted in Fig. 1 of [14]. The

which-way distinguishability D is defined in Eq. (16) in [14] as

D :=
n pguess(Z|E)− 1

n− 1
, (5.1)

where Z is the random variable for which-way information, and pgusss(Z|E) is the probability of

guessing Z correctly given the outcome of the optimal measurement on the environment E. On the

other hand, for the case that the interferometer is symmetric (i.e., a particle traveling along a well-

defined path inside the interferometer arrives at each of the detectors with an equal probability),

the interference visibility V is defined in Eq. (20) in [14] as

V :=
n pmax

guess(C)− 1

n− 1
, (5.2)

where pmax
guess(C) := max~φ pguess(C) is the maximum of pguess(C) over all configurations of phase

shifts ~φ = (φ1, φ2, . . . , φn) applied to the n paths, and pguess(C) is the probability of correctly

guessing which detector clicks. The uncertainty relation for the min- and max-entropies then leads

to the generalized wave-particle duality relation

V2 +D2 ≤ 1 (5.3)

as given in Eq. (21) in [14].

For a two-path interferometer, (5.1) reduces to the form

D = 2 pgusss(Z|E)− 1, (5.4)

and (5.2) reduces to the form

V =
pmax
C=1 − pmin

C=1

pmax
C=1 + pmin

C=1

, (5.5)

where pmax
C=1 := max~φ(pC=1), p

min
C=1 := min~φ(pC=1), and pC=1 is the probability that the detector

D1 clicks. Note that (5.5) is equivalent to the definition adopted in (4.4) for the quantum circuit

implementation. However, (5.4) is slightly different from the definition adopted in (4.6), as the

former is related to the probability of correctly guessing the which-way information given the out-

come of the optimal measurement on the environment, while the latter is related to the probability

given the outcome of the Dd measurement with a specific value of φ′. As the optimal D is of course

greater than a nonoptimal D, this explains why we have V2 + D2 ≤ 1 in (4.7). Also note that if

we choose φ′ = ±π/2, the distinguishability D in (4.6) becomes optimal, and the complementarity

relation (4.7) is saturated (we will discuss this further in the next subsection).
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Furthermore, the entropic framework of [14] also gives a wave-particle duality from the viewpoint

of quantum erasure. Consider a POVM measurement Y = {Yy} performed on the environment.

This discriminates all measurement events of the system into subensembles associated with the

different outcomes y. For the subensemble associated with y, one can define the distinguishability

and visibility as before by treating the subensemble as the total ensemble and denote them as D(Yy)

and V(Yy), respectively. Correspondingly, one can then define the average distinguishability and

visibility as

D(Y) :=
∑
y

pyD(Yy), (5.6a)

V(Y) :=
∑
y

pyV(Yy), (5.6b)

as given in Eq. (27) in [14]. For any choice of Y, the uncertainty relation for the min- and max-

entropies again implies

V(Y)2 +D(Y)2 ≤ 1 (5.7)

as given in Eq. (28) in [14]. Note that the average distinguishability and visibility defined in (5.6) is

equivalent to (4.18) and (4.19). Therefore, the complementarity relation V2avg +D2
avg ≤ 1 obtained

in (4.20) is just a special case of (5.7).

It should be remarked that, there are two very different scenarios for deducing which-way

information from the environment. The first is to bring the interferometer into contact with the

environment. The second, by contrast, does not invoke any direct contact with the environment

at all, but instead the “interaction” between the interferometer and the environment is through

entanglement. The work of [25] provides the first scenario implemented in a quantum circuit (see

Fig. 1 thereof). In our work, we consider the same quantum circuit in analogy to a two-path

Mach-Zehnder interferometer, but the which-way information is inferred by the second scenario.

The results of both works conform with the wave-particle complementarity relations given by [14],

concretely showing that the entropic framework of [14] is applicable to generic settings regardless of

whether the system is in direct contact with the environment or is entangled with the environment.

However, as our implementation has some peculiar features due to entanglement that are not

addressed in the framework of [25]. We will discuss them in the next subsection.
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B. Triality relation

Within either of the subensembles associated with 0d and 1d, the wave-particle complementarity

relation is also satisfied as shown in (4.17), but it is curious why the complementarity relation is

saturated. This can be understood by a simple calculation as provided in Appendix A, but it is

more instructive to understand this feature as a natural consequence from the triality relation for

bipartite systems proposed in [9].

A general bipartite state of two-dimensional (i.e., qubit) systems is given by

|Θ〉 = a|00〉+ b|01〉+ c|10〉+ d|11〉, (5.8)

with |a|2+|b|2+|c|2+|d|2 = 1. The bipartite state exhibits one bipartite property — concurrence —

and two single-partite properties — coherence and predictability. The concurrence of the bipartite

state is given by

C (Θ) = 2|ad− bc|. (5.9)

The quantity C provides a proper measure of bipartite entanglement. Particularly, C = 0 if and

only if there is no entanglement (that is, ad = bc if and only if |Θ〉 can be cast as a product state),

and C = 1 if and only if it has maximal entanglement. The coherence between the two orthogonal

quibit states, |0〉 and |1〉, of the k-th particle (k = 1 or 2) is given by

V1 = 2|ac∗ + bd∗|, V2 = 2|ab∗ + cd∗|. (5.10)

The coherence Vk can be understood as visibility of the interference pattern, if one performs an

interference experiment between the states |0〉 and |1〉 upon the k-th particle by introducing an

adjustable relative phase shift between |0〉 and |1〉. Finally, the predictability of the k-th particle

is given by

P1 =
∣∣(|c|2 + |d|2

)
−
(
|a|2 + |b|2

)∣∣ , (5.11a)

P2 =
∣∣(|b|2 + |d|2

)
−
(
|a|2 + |c|2

)∣∣ , (5.11b)

which quantifies how well one can guess the outcome if one performs a qubit state measurement

upon the k-th particle. The condition |a|2+|b|2+|c|2+|d|2 = 1 leads to a “triality” complementarity

relation:

C 2 + V 2
k + P2

k = 1, (5.12)
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which involves both single-partite and bipartite aspects.

Now, consider the subensembles associated with 0d and 1d. In Fig. 2, the upper right grouped

block and the lower right grouped block are independent of each other. Therefore, whether the

measurement of Dd is performed before or after that of Di makes no difference. In fact, we can

pretend that the whole lower right block is performed before slice 3. In this case, the two-qubit

state before the Dd measurement is given by |ψ5〉 in (3.3e) with θ now replaced by 0. That is, we

have

|ψ〉 =
1√
2

(
cos

φ+ φ′

2
|0〉+ cos

φ− φ′
2
|1〉
)
|0〉

+
1√
2

(
sin

φ+ φ′

2
|0〉 − sin

φ− φ′
2
|1〉
)
|1〉. (5.13)

Then, after the measurement of Dd, the two-qubit state collapses into

|ψ0d〉 =
1√

1 + cosφ cosφ′

(
cos

φ+ φ′

2
|0〉+ cos

φ− φ′
2
|1〉
)
|0〉, (5.14a)

|ψ1d〉 =
1√

1− cosφ cosφ′

(
sin

φ+ φ′

2
|0〉 − sin

φ− φ′
2
|1〉
)
|1〉, (5.14b)

associated with the outcomes 0d and 1d, respectively. The first qubit of the state (5.14) then enters

the P (θ) gate and the H gate and finally is detected by Di. A moment of reflection on the physical

meanings of the coherence Vk=1 and predictability Pk=1 leads to that Vk=1 for the state (5.14) is

identical to the visibility V0d or V1d , and Pk=1 is identical to the distinguishability |D0d | or |D1d |.
It is also easy to explicitly show that (5.10) and (5.11) for the state (5.14) yield the same results of

V0d , V1d , |D0d |, and |D1d | given by (4.11), (4.15), and (4.16). Furthermore, as the collapsed state

(5.14) is a product state, the concurrence C vanishes. Therefore, the triality relation (5.12) implies

the saturated complementarity relation given by (4.17).

The triality relation can also be used to understand why the complementarity relation (4.7)

for the total ensemble is saturated when φ′ = ±π/2. Again, we pretend that the Ry(φ
′) gate is

performed before slice 3 in Fig. 2. The bipartite state before the measurements of Di and Dd is

again given by (5.13), for which (5.9), (5.10) and (5.11) give rise to

C = | sinφ|, (5.15a)

Vk=1 = | cosφ|, (5.15b)

Pk=1 = 0. (5.15c)

As expected, the coherence Vk=1 given in (5.15b) is identical to the visibility V in (4.4) since they

now have the same physical meaning. In the special case of φ′ = ±π/2, the gate Ry(φ
′) is equivalent
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to a H gate (up to a sign difference and a swap between |0〉 and |1〉). For the open configuration

in Fig. 2 (i.e., the second H gate is removed), the concurrence of the outcomes of Di and Dd is

the same as the concurrence C defined in (5.9), because the first H gate and the Ry(φ
′ = ±π/2)

gate are compensated with each other.15 It is also not difficult to argue that the concurrence of

the outcomes of Di and Dd is identical to the distinguishability |D| defined in (4.6). Consequently,

we have C = |D|. This is verified by the fact that C given in (5.15a) is identical to |D| in (4.6) if

φ′ = ±π/2. Therefore, the triality relation (5.12) with (5.15) implies V2 + D2 = 1 in (4.7) in the

case of φ′ = ±π/2.

In the setting of Fig. 2, the which-way information is obtained through the entanglement between

the two qubits. Therefore, it is natural that |D| ≤ C , and consequently the triality relation (5.12)

implies V2 +D2 ≤ 1. Particularly, |D| yields the optimal value if the measurement of Dd exploits

the bipartite concurrence, that is, when φ′ = ±π/2.

VI. EXPERIMENTS ON IBM QUANTUM

In this section, we present the experimental results on the quantum circuit of superconduct-

ing qubits provided by IBM Quantum [21]. The results were obtained by the quantum computer

ibm auckland. For comparison, more experimental results obtained by the noisier quantum com-

puter imbq toronto are also provided in Appendix C. The details of the device layout and the

system calibration data for both ibm auckland and imbq toronto can be found in Appendix B.

In the circuit shown in Fig. 2, each time for the same setting of φ, φ′, and θ, we perform 40000

shots for simulation and 5000 shots for experiment to accumulate measurement outcomes. For each

shot, the measurements of Di and Dd are performed in the computational (0/1) basis. For a given

pairs of φ and φ′, we gradually vary the value of θ in the range from 0 to 2π with the resolution

of 0.04π. In the closed configuration (i.e., the dashed H gate in Fig. 2 is applied), varying θ with

high resolution gives the interference pattern in response to θ. In the open configuration (i.e., the

dashed H gate in Fig. 2 is removed), the measurement outcomes, theoretically, are independent of

the value of θ, but we nevertheless vary the values of θ to collect more data and average out any

noise biased by the value of θ. Various probabilities such as p(0i), p(0i, 0d), etc. in the closed and

open configurations are then counted as the relative frequencies of occurrence of the corresponding

outcomes from the repetitive shots.

15 Also note that, in the open configuration, the phase gate P (θ) has no effect on the outcome of Di.
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We also utilize the delay gate in the Qiskit API to delay the measurement by Dd. The delay

gate instructs the qubit to idle for a certain duration of delay, denoted as tdelay, which can be

specified by the user in the unit of the sampling timestep dt of the qubit drive channel [33]. For

the quantum computers used in this study, the timestep is dt = 0.22 ns.

Before studying the visibility-distinguishability complementarity relations, we demonstrate the

behavior of delayed-choice quantum erasure in Fig. 3. We consider three cases of φ = 0, 0.25π, and

0.5π, which respectively correspond to zero, intermediate, and maximum entanglement between the

two qubits. In the closed configuration, according to (4.1), the probability p(0i) or p(1i) ≡ 1−p(0d)
exhibits the interference pattern as modulated in response to the phase shift θ with the amplitude

of modulation given by | cosφ|/2. (In the case of φ = 0.5π, the interference pattern is completely

flatten.) The experimental results are shown in Fig. 3 (a), which closely agree with (4.1). Further,

we take into account the outcomes of Dd with φ′ = 0. Within either of the two subensembles

associated with 0d and 1d, the interference pattern is maximally “recovered”, i.e., V0d = V1d = 1

according to (4.11) and (4.15). This behavior of quantum erasure can be shown in terms of the

conditional probabilities (4.9) and (4.13). In Fig. 3 (b–d), in particular, we present the results of

p(0i|0d) for the three cases, for all of which the interference pattern is maximally restored with full

contrast, regardless of φ.

Next, we study the visibility-distinguishability relations. In particular, we choose φ′ = 0, 0.25π,

and 0.5π for consideration. For each value of φ′, we then consider φ = 0, 0.1π, 0.2π, . . . , 2π. In

the closed configuration, for each pair of φ′ and φ, we obtain the interference pattern in response to

θ, and then the visibility is extracted from the maximum and minimum of the interference pattern

according to the definitions in (4.4), (4.11), (4.15), and (4.18). For the same pair of φ′ and φ, we

also perform the experiment in the open configuration, the distinguishability is then inferred from

the correlation between the outcomes of Di and Dd according to (4.5), (4.6), (4.16), and (4.19).

We first run the simulation on the qasm simulator without modeling any noise, and then perform

the experiment on the ibm auckland quantum computer. The same simulated and experimental

data are analyzed in the following from three different perspectives as described in Sec. IV.

The results of interference visibility and path distinguishability in the total ensemble perspective

are shown in Fig. 4. The top panels (a–c) are the simulated results obtained from the qasm

simulator, which are in close agreement with the theoretical equations (4.4), (4.6), and (4.7).16

The bottom panels (d–f) are the experimental results obtained from ibm auckland, which agree

16 The simulated data already agree closely with the theoretical ones when we perform 5000 shots for each setting.

This ensures that the number of 5000 shots is large enough to average out probabilistic fluctuations for real
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FIG. 3. (a): The interference pattern of p(0i) for φ = 0, 0.25π, and 0.5π performed on ibm auckland.

(b–d): With φ′ = 0, the interference pattern within the 0d subensemble is depicted in terms of p(0i|0d). The

duration of delay is set to tdelay = 0 dt.

well with the theoretical equations, in spite of slight deviations.

The results of interference visibility and path distinguishability in the average perspective are

shown in Fig. 5. The top panels (a–c) are the simulated results obtained from the qasm simulator,

which are in close agreement with the theoretical equations (4.18), (4.19), and (4.20). The bottom

panels (d–f) are the experimental results obtained from ibm auckland, which agree well with the

theoretical equations, in spite of slight deviations. Comparing Fig. 4 with Fig. 5, we can affirm the

effect of quantum erasure: the visibility V = | cosφ| in Fig. 4, which is independent of φ′, is fully

or partially enhanced to Vavg = max(| cosφ|, | cosφ′|) in Fig. 5, depending on φ′.

In both Fig. 4 and Fig. 5, the experimental results are slightly deviated from theoretical ones.

experiments. In Fig. 4–Fig. 6, we present the simulated data with 40000 shots for each setting. The deviation

from the theory is almost inappreciable with the large number of 40000 shots.
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FIG. 4. The interference visibility and path distinguishability in the total ensemble perspective of the

simulation on qasm (a–c) and the experiment on ibmq auckland (d–f). The theoretical equations are depicted

as the smooth curves in (a–c). From the left to right columns, φ′ = 0, 0.25π, and 0.5π, respectively. For

(d–f), the duration of delay is set to tdelay = 0 dt.

Both visibility and distinguishability are slightly diminished from the theoretical values roughly

by an overall diminishing factor. However, the characteristic of the error is not universal but

device dependent. For instance, the experimental results for the same circuit performed on another

quantum computer, ibmq toronto, exhibit much more significant deviations in a more complicated

way, which cannot be described by an overall diminishing factor (see the data in Appendix C)

The results of interference visibility and path distinguishability in the subensemble perspective

are shown in Fig. 6 (for the 1d subensemble in particular). The top panels (a–c) are the simulated

results obtained from the qasm simulator, which are in close agreement with the theoretical equa-

tions (4.15), (4.16), and (4.17). The bottom panels (d–f) are the experimental results obtained

from ibm auckland, which agree well with the theoretical equations, in spite of some deviations.

The deviation for V1d becomes rather significant when φ′ = 0 and φ is close to 0 or 2π in Fig. 6 (d).

As commented in Footnote 13, in the special case of φ′ = 0 and φ = 0 ≡ 2π, the 1d subensemble

is supposed to be empty (i.e., p(1d) = 0), and thus D1d and V1d are both ill defined.17 In reality,

17 The simulated data indeed yield no 1d events when φ′ = 0 and φ = 0 ≡ 2π. In Fig. 6 (a), the points where D1d



25

FIG. 5. The interference visibility and path distinguishability in the average perspective of the simulation

on qasm (a–c) and the experiment on ibmq auckland (d–f).

the presence of noise allows 1d events to occur (i.e., p(1d) 6= 0). If the noise responsible for the

occurrence of 1d events is completely random, we should have p(0i|1d) = p(1i|1d) = 1/2 both in the

closed and open configurations, since the two qubits are completely unentangled for φ = 0 ≡ 2π.

This renders V1d ≈ 0 and D1d ≈ 0 according to (4.15) and (4.16). The experimental result of V1d
in Fig. 6 (d) suffers significant deviation whenever φ is close to 0 or 2π, which, however, is quite

different from V1d ≈ 0. This suggests that the noise is not completely random but gives rise to

unwanted entanglement between the two qubits. In the following, we will demonstrate that this

deviation can be attributed to the error of the CNOT gate.18 The same error also gives rise to

considerable deviation for V1d whenever φ is close to 0 or 2π and the theoretical value of p(1d)

remains small. In Fig. 6 (e), the deviation is noticeable when φ′ = 0.25π and φ is close to 0 or

and V1d are ill defined are indicated by the hollow squares and hollow diamonds.
18 By contrast, the same error does not lead to significant deviations in the total ensemble perspective and the average

perspective as shown in Fig. 4 and Fig. 5. The total visibility V defined in (4.4) does not involve p(0d) or p(1d)

and thus is insusceptible to the errors on p(0d) and p(1d). On the other hand, for D in (4.6) with (4.5), Vavg in

(4.18), an Davg in (4.19), the errors on p(1i|1d), V1d , and D1d are greatly “tamed” through the multiplication by

p(1d), which in the presence of noise remains close to 0 when φ ≈ 0 and φ ≈ 0 ≡ 2π. In fact, theoretically, V, D,

Vavg, and Davg are all well defined even if p(0d) = 0 or p(1d) = 0 (recall Footnote 12 and Footnote 14).



26

FIG. 6. The interference visibility and path distinguishability in the 1d subensemble perspective of the

simulation on qasm (a–c) and the experiment on ibmq auckland (d–f).

2π. This is because, according to (4.2), the theoretical value of p(1d) at the point of φ′ = 0.25π

and φ = 0 ≡ 2π is given by p(1d) = 0.147, which is still not large enough to be robust against

the CNOT noise. On the other hand, in Fig. 6 (f), the deviation is much less noticeable, because

theoretical value p(1d) = 0.5 at the point of φ′ = 0.5π and φ = 0 ≡ 2π is quite large.

In the case of φ′ = 0 and φ = 0 ≡ 2π, theoretically, both the Ry(φ) gate and the CNOT gate

in Fig. 2 become superfluous, therefore producing the same result as if both gates were removed.

However, in reality, the presence of the CNOT still make a difference due to its error. To show that

the CNOT gate error is responsible for the deviation mentioned above, we remove the Ry(φ) gate

and compare the experiment results performed with and without the CNOT gate. The comparison

is presented in Fig. 7. Theoretically, the visibility V1d should not depend on φ′ (the horizontal

axis), since the two qubits are now completely unentangled. However, when the CNOT is present,

as shown in Fig. 7 (b), the visibility V1d is greatly dropped and becomes dependent on φ′. This

suggests that the CNOT error induces unnecessary entanglement between the two qubits.

Moreover, we measure the second-order Rényi entropy of the entangled state |ψ2〉 at slice 2 in

Fig. 2 via the randomized measurement protocol [34]. The second-order Rényi entropy is defined
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FIG. 7. The experimental results of the 1d subensemble for demonstrating the CNOT error by removing

the Ry(φ) gate. (a) The CNOT gate is also removed. (b) The CNOT is present.

FIG. 8. The second-order Rényi enetropy for the quantum state at slice 2 in Fig. 2.

as

S(2) = − log2 γ, (6.1)

where γ is the degree of purity, the theoretical value of which is given by (3.6). The results are

shown in Fig. 8. For the results performed in ibm auckland, S(2) deviates from the theoretical

value more significantly when φ approaches 0 or π, whereby the “i” qubit is supposed to be a pure

state instead of a mixed state. This suggests that the errors in the real device have the nature that

prevents the qubit from staying in a pure state. The analysis of S(2) adds more evidence that the

CNOT gate in the real device yields more entanglement than it is supposed to do.

Finally, it is noteworthy that, theoretically, the measurement of Dd can be performed at any

moment, even after the measurement of Di, and still yields the same result. In a sense, the which-

way information in the past can be retroactively erased by the measurement of Dd performed in a
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later time. In reality, however, the entanglement between the “i” and “d” qubits gradually corrupts

over time due to decoherence. Therefore, in the closed configuration, if the measurement of Dd is

delayed longer, the interference pattern of the subensembles is enhanced by the quantum erasure

effect to a lesser extent. Consequently, whereas V (which is independent of the measurement of

Dd) remains the same as the nondelayed case, Vavg, and V0d/1d diminish with the delay time. For

the same reason, in the open configuration, D, Davg, and D0d/1d also diminish with the delay time.

To affirm these phenomena, we apply the delay gate to delay the measurement of Dd on

ibm auckland. The experimental results of the quantum erasure effect are presented in Fig. 9

for tdelay = 5 × 104 dt = 11µs and in Fig. 10 for tdelay = 5 × 105 dt = 110µs. Compared with

Fig. 3, the interference patterns in Fig. 9 (b–c) and Fig. 10 (b–c) are recovered to a lesser extent

with contrast dropped slightly and considerably, respectively. We also show the visibility and dis-

tinguishability from the total ensemble perspective, the average perspective, and the subensemble

perspective in Fig. 11, Fig. 12, and Fig. 13, respectively, for tdelay = 5 × 104 dt. The visibility

and distinguishability still exhibit the trend expected by the theory. However, except for the total

visibility V, which remains almost unchanged, the visibility and distinguishability quantifiers D,

Vavg, Davg, V0d/1d , and D0d/1d in the delayed case all diminish to a certain degree compared to the

nondelayed case.

VII. SUMMARY AND DISCUSSION

We propose a simple model of a delayed-choice quantum eraser as shown in Fig. 1 using a Mach-

Zehnder interferometer involving a pair of photons entangled in polarization. We then design a

quantum circuit as shown in Fig. 2 that emulates this quantum eraser model with the extension

that the degree of entanglement between the two paired quantons is adjustable by turning φ in the

Ry(φ) gate. This allows us to explore the intricate interplay between visibility, distinguishability,

and entanglement in more depth.

Theoretically, we investigate complementarity relations between visibility and distinguishability

from three different perspectives: (i) total ensemble perspective, (ii) subensemble perspective, and

(iii) average perspective. All complementarity relations obtained conform with the general duality

relation (1.1).

The complementarity relation for the total ensemble is given by (4.7), which can be understood

as a special case in the entropic framework proposed in [14]. The fact that (4.7) saturates when

the distinguishability |D| yields the optimal value at φ′ = ±π/2 can be understood in terms of the
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FIG. 9. (a): The interference pattern of p(0i) for φ = 0, 0.25π, and 0.5π performed on ibm auckland.

(b–d): With φ′ = 0, the interference pattern within the 0d subensemble is depicted in terms of p(0i|0d). The

duration of delay is set to be tdelay = 5× 104 dt = 11µs.

triality relation (5.12) for bipartite systems proposed in [9]. Because the which-way information

is extracted through the bipartite entanglement, it is natural that |D| is optimized when the

measurement of Dd can fully exploit the bipartite concurrence, that is, when φ′ = ±π/2.

Within either of the two subensembles associated with the readouts 0d and 1d of Dd respectively,

the complementarity relation is given by (4.17), which always saturates the general relation (1.1).

This peculiar feature can be understood in view of of the triality relation (5.12). Within the

confines of each subensemble, the entangled bipartite state is collapsed into a product state and

thus the concurrence C vanishes. As the coherence Vk=1 is identical to the visibility V0d or V1d
and the predictability Pk=1 is identical to the distinguishability V0d or V1d , the triality relation

(5.12) with C = 0 implies the saturated relation (4.17).

From the average perspective averaged over the two ensembles, the average visibility Vavg de-
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FIG. 10. (a): The interference pattern of p(0i) for φ = 0, 0.25π, and 0.5π performed on ibm auckland.

(b–d): With φ′ = 0, the interference pattern within the 0d subensemble is depicted in terms of p(0i|0d). The

duration of delay is set to be tdelay = 5× 105 dt = 110µs.

FIG. 11. The interference visibility and path distinguishability in the total ensemble perspective in compar-

ison between the nondelayed and delayed cases. For the delayed measurement, tdelay = 5× 104 dt = 11µs.
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FIG. 12. The interference visibility and path distinguishability in the average perspective in comparison

between the nondelayed and delayed cases. For the delayed measurement, tdelay = 5× 104 dt = 11µs.

FIG. 13. The interference visibility and path distinguishability in the 1d subensemble perspective in compar-

ison between the nondelayed and delayed cases. For the delayed measurement, tdelay = 5× 104 dt = 11µs.

fined in (4.18) and the average distinguishability Davg defined in (4.19) satisfy the complemen-

tarity relation (4.20). In view of the entropic framework in [14], this is a special case of the

generic wave-particle duality (5.7) from the viewpoint of “quantum erasure”. Whereas the aver-

age distinguishability Davg = − sinφ sinφ′ is identical to the total-ensemble distinguishability D,

the average visibility Vavg = max (| cosφ|, | cosφ′|) is greater than or equal to the total-ensemble

visibility V = | cosφ|. The interference visibility is said to be enhanced by the “quantum erasure”

scenario, but nevertheless the sum of the squares of visibility and distinguishability is still bound

from above by unity.

We then perform simulations and experiments on IBM Quantum. The simulated and experi-

mental results are analyzed in the three perspectives, and the results are all in good agreement with

the theoretical calculations, as shown in Fig. 4, Fig. 5, and Fig. 6. The only considerable deviation
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occurs in some extreme situations when φ is close to 0 or 2π from the subensemble perspective.

Our analysis suggests that this deviation is due to the error of the CNOT gate that gives rise to

unwanted entanglement between the two qubits. This error, on the other hand, does not lead to

significant deviations in the total ensemble perspective and the average perspective.

Furthermore, we apply the delay gate to delay the measurement of Dd. Compared with the

results without any delay, the interference pattern within either of the two subensembles associated

with the readouts 0d and 1d of Dd still exhibits the quantum erasure effect, but the interference

pattern is recovered to a lesser extent as shown in Fig. 9 and Fig. 10 due to decoherence over time,

which corrupts the entanglement between the two qubits. Because of the same effect of decoherence,

as shown in Fig. 11, Fig. 12, and Fig. 13, the visibility and distinguishability quantifiers D, Vavg,

Davg, V0d/1d , and D0d/1d all diminish to a certain degree compared to the nondelayed case.

Finally, it is noteworthy that the various quantifiers of visibility and distinguishabilty considered

in this paper from different perspectives are all empirically measurable. The fact that visibility

is measured in the closed configuration whereas distinguishability is measured in the open config-

uration is in line with Bohr’s complementarity principle in the sense that the measurement of a

certain physical property inherently excludes the measurement of its complementary counterpart.

However, if one considers the idea of quantum-controlled experiments as proposed in [20], it seems

possible to have complementary behaviors simultaneously in a single experimental setup. This

suggests that the complementarity principle might need to be revised in order to incorporate the

“morphing behavior”. On the other hand, the work of [35] defines the elements of physical reality

of being a wave or a particle for the morphing states in terms of contextual realism, and shows that

Bohr’s original complementarity principle remains valid in a quantum-controlled experiment where

physical reality of the morphing state is defined at each instant of time. The elements of physical

reality defined in [35] bear sound ontological meanings, but they seems to be counterfactual in

nature (i.e., not empirically measurable). In our opinion, whether and how the complementarity

principle should be revised remains a question open to further scrutiny. In any case, it will yield

considerable insight into the issues of physical reality of complementary phenomena if one can

investigate the complementarity relations in a delayed-choice experiment in more depth with the

extension taking quantum-controlled devices into account.
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Appendix A: An elementary account of (4.17)

It is notable that the complementarity relation (4.17) from the separate subensemble perspective

is saturated to unity. Its meaning and significance can be understood in view of the triality relation

(5.12) as discussed in Sec. V B. Here, we present a simple account for (4.17).

First, we express the state at slice 5 in Fig. 2 in the generic form

|ψ5〉 = a|00〉+ b|01〉+ c|10〉+ d|11〉. (A1)

The state at slice 6 is then given by

|ψ6〉 = H ⊗ 1|ψ5〉

=
1√
2

(
(a+ b)|00〉+ (a− b)|01〉+ (c+ d)|10〉+ (c− d)|11〉

)
. (A2)

The contrast for the 0d subensemble defined in (4.10) is computed from |ψ6〉 as

C0d = p(0i|0d)− p(1i|0d)

=
|a+ b|2 − |a− b|2
|a+ b|2 + |a− b|2 =

a∗b+ ab∗

|a|2 + |b|2 . (A3)

Because the phase gate P (θ) acting on the interference qubit, we have a∗b + ab∗ = 2|a||b| cos θ.

Consequently, the visibility V0d defined in (4.11) is given by

V0d =
2|a||b|
|a|2 + |b|2 . (A4)

Meanwhile, the distinguishability for the 0d subensemble defined in (4.16) is computed from |ψ5〉
as

D0d = 2p(0i|0d)− 1 =
|a|2 − |b|2
|a|2 + |b|2 . (A5)

It follows that D2
0d

+ V20d = 1. In the subensemble perspective, the complimentary relation always

saturates.
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FIG. 14. The qubit layout of the IBM Q machines ibm auckland and ibmq toronto. The numbers index

the physical qubits and the edges denote the connections that allow CNOT operations.

pair machines
physical
qubits T1 (µs) T2 (µs)

CNOT
error rate

(i) ibm auckland
4 277.64 359.54

3.653× 10−3

7 221.56 202.29

(ii) ibm auckland
1 200.88 203.58

6.071× 10−3

4 250.98 246

(iii) ibmq toronto
1 136.34 113.5

1.17× 10−2

4 117.56 151.47

TABLE I. The calibration data of the selected physical qubits for the pairs we have chosen. The data

were retrieved directly from the IBM Quantum website on the same days of the experiments. T1 is the

longitudinal (thermal) relaxation time, and T2 is the transverse (dephasing) relaxation time.

Appendix B: System calibration data

The experimental results presented in the main text are performed on ibm auckland, and more

experimental results presented in Appendix C are performed on ibmq toronto. Both ibm auckland

and ibmq toronto share the same qubit layout as shown in Fig. 14.19

We select three different pairs for our “i” and “d” qubits: (i) physical qubits 4 and 7 on

ibm auckland, (ii) physical qubits 1 and 4 on ibm auckland, and (iii) physical qubits 1 and 4 on

ibmq toronto. The calibration data of these pairs were retrieved directly from the IBM Q website

on the same days of the experiments and are reported in Table I. Pair (i) is used for Fig. 4–Fig. 6.

Pair (ii) is used for Fig. 3 and Fig. 7–Fig. 13. Pair (iii) is used for the figures in Appendix C.

19 This picture of the layout is obtained from the Qiskit API [33].
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FIG. 15. The interference visibility and path distinguishability in the total ensemble perspective on

ibmq toronto with tdelay = 0 (a–c) and tdelay = 100 dt (d–f). From the left to right colomns, φ′ = 0,

0.25π, and 0.5π.

Appendix C: More experimental data

In order to know more about the nature of noises in the real devices of IBM Quantum, in addition

to experiments performed on ibm auckland, we also perform experiments on ibmq toronto for

comparison.

The experimental results on ibmq toronto from the total ensemble perspective, the average

perspective, and the subensemble perspective are presented in Fig. 15, Fig. 16, and Fig. 17, re-

spectively. The top panels (a–c) show the results with the delay time tdelay = 0 dt in the delay

gate, while the bottom panels (d–f) show the results with tdelay = 100 dt. Compared with the

experimental results performed on ibm auckland as presented in the main text, the visibility and

distinguishability are much noisier. Moreover, the time delay has stronger effect on ibmq toronto

than on ibm auckland: the effect is appreciable with tdelay ∼ 100 dt on the former, but it is not

appreciable until tdelay ∼ 105 dt on the latter. The fact that ibmq toronto is much noisier than

ibm auckland is in agreement with the fact that the former has shorter relaxation times and a

larger CNOT error rate, according to the daily calibration data provided by IBM Quantum as

shown in Table I.
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FIG. 16. The interference visibility and path distinguishability in the average perspective on ibmq toronto

with tdelay = 0 (a–c) and tdelay = 100 dt (d–f).

FIG. 17. The interference visibility and path distinguishability in the 1d perspective on ibmq toronto with

tdelay = 0 (a–c) and tdelay = 100 dt (d–f).



37

[1] N. Bohr, The quantum postulate and the recent development of atomic theory, Nature 121, 580 (1928).

[2] M. O. Scully, B.-G. Englert, and H. Walther, Quantum optical tests of complementarity, Nature 351,

111 (1991).

[3] G. Jaeger, A. Shimony, and L. Vaidman, Two interferometric complementarities, Phys. Rev. A 51, 54

(1995).

[4] B.-G. Englert, Fringe visibility and which-way information: An inequality, Phys. Rev. Lett. 77, 2154

(1996).
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