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In this paper, we mainly investigate the detection of quantum states containing fewer than k

unentangled particles in multipartite quantum systems. Based on calculations about operators, we

derive two practical criteria for judging N-partite quantum states owning fewer than k unentangled

particles. In addition, we demonstrate the effectiveness of our frameworks through some concrete

examples, and specifically point out the quantum states having fewer than k unentangled particles

that our methods can detect, while other criteria cannot recognize.

PACS numbers: 03.67.Mn, 03.65.Ud

I. INTRODUCTION

Quantum entanglement [1, 2] is a very special phenomenon in quantum systems and has been regarded as an impor-

tant resource. Based on the properties of quantum entanglement, it can complete some tasks that cannot be completed

by traditional methods, such as quantum communication and quantum computing [3], quantum cryptography [4, 5],

quantum dense coding [6, 7], quantum teleportation [8].

In the theory of quantum entanglement, one of the most basic problems is to determine whether a quantum state

is entangled or separable, and great efforts have been made to try to solve this problem for a long time [9–17]. In

multipartite quantum systems, the entanglement of quantum states is often characterized from different perspectives

[18], for example, k-nonseparability is according to “How many partitions are separable?”; k-partite entanglement

is based on “How many particles are entangled?”. In the past few years, many entanglement criteria have been

proposed in terms of tools [19–31], which can only recognize certain multipartite entanglement, not all multipartite

entanglement. There is another way to depict entanglement from the number of unentangled particles [18, 32], that is,

the quantum states containing fewer than k unentangled particles in N -partite quantum systems. When the quantum

states violate the criterion based on the variance [33], the quantum states cannot be constructed by one or more

unentangled particles. Using quantum Fisher information, any state that violates the framework has fewer than k

unentangled particles [34]. Another criterion gives an inequality that a quantum state owning at least k unentangled

particles must satisfy [35]. The number of unentangled particles is closely related to metrological usefulness of quantum

states [34], so this prompts us to further explore these quantum states fewer than k unentangled particles.

In this paper, we further research the quantum states fewer than k unentangled particles and develop the detection

frame of such states. In Section II, we introduce some important concepts and symbols to be used in the following

text. In Section III and Section IV, we present our main results, namely the detection methods of quantum states

fewer than k unentangled particles, and demonstrate the practicality and operability of our criteria through concrete

examples, respectively.

∗Electronic address: gaoting@hebtu.edu.cn
†Electronic address: flyan@hebtu.edu.cn

http://arxiv.org/abs/2306.12856v1
mailto:gaoting@hebtu.edu.cn
mailto:flyan@hebtu.edu.cn


2

II. PRELIMINARY

In an N -partite quantum system with Hilber space H1 ⊗H2 ⊗ · · · ⊗HN , the pure state |ψ〉 contains k unentangled

particles if it can be written as |ψ〉 =
k+1⊗
i=1

|ψAi
〉, where A1, A2, · · · , Ak+1 constitutes a partition of {1, 2, · · · , N}, |ψAi

〉
is a single-partite state for 1 ≤ i ≤ k, and |ψAk+1

〉 owns N − k particles [32, 34]. If a mixed state ρ can be represented

as a mixture of the pure states containing k or more unentangled particles (may belong to different partitions), then

ρ contains at least k unentangled particles [32, 34], otherwise the state ρ has fewer than k unentangled particles.

For Hilbert space H1 ⊗H2 ⊗ · · · ⊗ HN with dim Hi = di, i = 1, 2, · · · , N , we first introduce the local permutation

operator Pα and global permutation operator P ,

Pα(
N⊗
i=1

xi)⊗ (
N⊗
i=1

yi) = (
⊗
i∈α

yi
⊗
i/∈α

xi)⊗ (
⊗
i∈α

xi
⊗
i/∈α

yi),

P (
N⊗
i=1

xi)⊗ (
N⊗
i=1

yi) = (
N⊗
i=1

yi)⊗ (
N⊗
i=1

xi),

where α is any subset of {1, 2, · · · , N},
N⊗
i=1

xi and
N⊗
i=1

yi are any operators of Hilbert space H1 ⊗H2 ⊗ · · · ⊗ HN with

xi and yi acting on Hi. In particular, when α is taken as {1, 2, · · · , N} or {i} with 1 ≤ i ≤ N , Pα is abbreviated as

P , Pi, respectively.

III. DETECTION OF QUANTUM STATES CONTAINING FEWER THAN k UNENTANGLED

PARTICLES

Now, we state our main results.

Theorem 1. In Hilbert space H1 ⊗H2 ⊗ · · · ⊗ HN with dim Hi = di, i = 1, 2, · · · , N , if a quantum state ρ contains

at least k unentangled particles for 1 6 k 6 N − 1, then we have

(2k+1 − 2)
√
Tr

[
(X† ⊗ Y †)ρ⊗2P (X ⊗ Y )

]
≤

∑
{α}

√
Tr

[
(X† ⊗ Y †)P †

αρ⊗2Pα(X ⊗ Y )
]
, (1)

where {α} consists of nonempty proper subsets of {1, 2, · · · , N}, X =
N⊗
i=1

xi and Y =
N⊗
i=1

yi are any operators of Hilbert

space H1 ⊗ H2 ⊗ · · · ⊗ HN . If a quantum state ρ violates inequality (1), then it contains fewer than k unentangled

particles.

Proof. First we prove that the inequality (1) is true for any pure state. Suppose that pure state ρ = |ψ〉〈ψ|

contains at least k unentangled particles, then there exits a partition A1|A2| · · · |Ak+1 such that |ψ〉 =
k+1⊗
m=1

|ϕAm
〉. By

Cauchy-Schwarz inequality, we have

Tr
[
(X† ⊗ Y †)ρ⊗2P (X ⊗ Y )

]
= |〈ψ|Y X†|ψ〉|2 ≤ 〈ψ|Y Y †|ψ〉〈ψ|XX†|ψ〉. (2)

For the partition A1|A2| · · · |Ak+1, let αj1,··· ,jn be a set of any n subsets Ajt (that is, αj1,··· ,jn = Aj1

⋃ · · ·⋃Ajn),

αj1,··· ,jn be complement (αj1,··· ,jn = {1, 2, · · · , N} − αj1,··· ,jn = Ajn+1

⋃ · · ·⋃Ajk+1
). Thus we get

Tr
[
(X† ⊗ Y †)P †

αj1 ,j2,··· ,jn
ρ⊗2Pαj1,j2,··· ,jn

(X ⊗ Y )
]

= Tr
{
[(

⊗
i∈αj1 ,j2,··· ,jn

y
†
i )⊗ (

⊗
i/∈αj1,j2,··· ,jn

x
†
i )](

k+1⊗
m=1

|ϕAm
〉〈ϕAm

|)[(
⊗

i∈αj1 ,j2,··· ,jn

yi)⊗ (
⊗

i/∈αj1,j2,··· ,jn

xi)]
}

×Tr
{
[(

⊗
i∈αj1,j2,··· ,jn

x
†
i )⊗ (

⊗
i/∈αj1,j2,··· ,jn

y
†
i )](

k+1⊗
m=1

|ϕAm
〉〈ϕAm

|)[(
⊗

i∈αj1 ,j2,··· ,jn

xi)⊗ (
⊗

i/∈αj1,j2,··· ,jn

yi)]
}

=
( n∏

t=1
〈ϕAjt

| ⊗
i∈Ajt

yiy
†
i |ϕAjt

〉
k+1∏

t=n+1
〈ϕAjt

| ⊗
i∈Ajt

xix
†
i |ϕAjt

〉
)
×
( n∏

t=1
〈ϕAjt

| ⊗
i∈Ajt

xix
†
i |ϕAjt

〉
k+1∏

t=n+1
〈ϕAjt

| ⊗
i∈Ajt

yiy
†
i |ϕAjt

〉
)

= 〈ψ|Y Y †|ψ〉〈ψ|XX†|ψ〉.
(3)
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Eq. (2) and Eq. (3) ensure that the inequality (1) holds for any pure state containing at least k unentangled particles.

Let ρ be a mixed state containing at least k unentangled particles, then it can be rewritten as ρ =
∑
i

pi|ϕi〉〈ϕi|
with the pure state ρi = |ϕi〉〈ϕi| containing at least k unentangled particles. Thus we have

(2k+1 − 2)
√
Tr

[
(X† ⊗ Y †)ρ⊗2P (X ⊗ Y )

]

≤(2k+1 − 2)
∑

i

pi

√
Tr(X† ⊗ Y †)ρ⊗2

i P (X ⊗ Y ) (4)

≤
∑

i

pi
∑

{α}

√
Tr(X† ⊗ Y †)P †

αρ
⊗2
i Pα(X ⊗ Y ) (5)

≤
∑

{α}

√{∑

i

piTr[(
⊗

i∈α

y
†
i )⊗ (

⊗

i/∈α

x
†
i )ρi(

⊗

i∈α

yi)⊗ (
⊗

i/∈α

xi)]
}{∑

i

piTr[(
⊗

i∈α

x
†
i )⊗ (

⊗

i/∈α

y
†
i )ρi(

⊗

i∈α

xi)⊗ (
⊗

i/∈α

yi)]
}

(6)

=
∑

{α}

√
Tr

[
(X† ⊗ Y †)P †

αρ⊗2Pα(X ⊗ Y )
]
.

Here we have used triangle inequality, validity of inequality (1) for any pure state containing at least k unentangled

particles, and Cauchy-Schwarz inequality at the inequalities (4), (5) and (6), respectively. The above proof is exactly

what we want.

Theorem 2. In a Hilbert space H⊗N = H1 ⊗ · · · ⊗ HN with dim H = d, any N -partite quantum state ρ containing

at least k unentangled particles must satisfy the following inequality,

∑
s,t∈ω

1≤i6=j≤N

√
Tr

[
(Xs

i
† ⊗Xt

j
†
)ρ⊗2P (Xs

i ⊗Xt
j)
]

≤ ∑
s,t∈ω

1≤i6=j≤N

√
Tr

[
(Xs

i
† ⊗Xt

j
†
)P †

i ρ
⊗2Pi(Xs

i ⊗Xt
j)
]
+ T (N − k − 1)

∑
s∈ω

1≤i≤N

√
Tr

[
(Xs

i
† ⊗Xs

i
†)ρ⊗2(Xs

i ⊗Xs
i )
] (7)

for 2 ≤ k ≤ N − 1, and

Tr
[
(Xs

i
† ⊗Xt

j
†
)ρ⊗2P (Xs

i ⊗Xt
j)
]
≤ Tr

[
(Xs

i
† ⊗Xt

j
†
)P †

i ρ
⊗2Pi(X

s
i ⊗Xt

j)
]

(8)

for k = 1. Here ω = {ω1, · · · , ωT } is a set of arbitrary T operators in H, X =
N⊗
i=1

xi are any operator with xi acting

on subsystem Hi, X
s
i = (

i−1⊗
m=1

xm)⊗ ωs ⊗ (
N⊗

m=i+1

xm) is the operator with ωs acting on subsystem Hi and xm acting

on subsystem Hm for m 6= i. If a quantum state ρ does not satisfy the above inequality, it contains fewer than k

unentangled particles.

Proof. Suppose that the quantum state ρ = |ψ〉〈ψ| is pure state where |ψ〉 =
k+1⊗
m=1

|ϕAm
〉 contains at least k

unentangled particles under the partition A1| · · · |Ak+1 with the subset Ak+1 owning N − k particles and each of rest

subsets Am owning 1 particle. After calculations, we can easily obtain
√
Tr

[
(Xs

i
† ⊗Xt

j
†
)ρ⊗2P (Xs

i ⊗Xt
j)
]

= |〈ψ|Xt
jX

s
i
†|ψ〉|

≤
√
〈ψ|Xt

jX
t
j
†|ψ〉〈ψ|Xs

iX
s
i
†|ψ〉

≤

√
Tr

[
(Xt

j
† ⊗Xt

j
†
)ρ⊗2(Xt

j ⊗Xt
j)
]
+
√
Tr

[
(Xs

i
† ⊗Xs

i
†)ρ⊗2(Xs

i ⊗Xs
i )
]

2
,

when i and j are both in the subset Ak+1, where these two inequalities are true by using Cauchy-Schwarz inequality

and the mean inequality; and
√
Tr

[
(Xs

i
† ⊗Xt

j
†
)ρ⊗2P (Xs

i ⊗Xt
j)
]

=
∣∣∣〈ψ|Xt

jX
s
i
†|ψ〉

∣∣∣

≤
√
Tr

[
(Xs

i
† ⊗Xt

j
†
)P †

i ρ
⊗2Pi(Xs

i ⊗Xt
j)
]
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when i and j belong to different subsets Al, Al′ . Based on the above two cases, so we can get

∑
s,t∈ω

1≤i6=j≤N

√
Tr

[
(Xs

i
† ⊗Xt

j
†
)ρ⊗2P (Xs

i ⊗Xt
j)
]

=
∑

s,t∈ω
i,j∈Ak+1,i6=j

√
Tr

[
(Xs

i
† ⊗Xt

j
†
)ρ⊗2P (Xs

i ⊗Xt
j)
]
+

∑
s,t∈ω

i∈Al,j∈Al′ ,l 6=l′

√
Tr

[
(Xs

i
† ⊗Xt

j
†
)ρ⊗2P (Xs

i ⊗Xt
j)
]

≤ ∑
s,t∈ω

i,j∈Ak+1,i6=j

√
Tr

[
(Xt

j
† ⊗Xt

j
†
)P †

j ρ
⊗2Pj(Xt

j ⊗Xt
j)
]
+
√
Tr

[
(Xs

i
† ⊗Xs

i
†)P †

i ρ
⊗2Pi(Xs

i ⊗Xs
i )
]

2

+
∑

s,t∈ω
i∈Al,j∈Al′ ,l 6=l′

√
Tr

[
(Xs

i
† ⊗Xt

j
†
)P †

i ρ
⊗2Pi(Xs

i ⊗Xt
j)
]

≤ ∑
s,t∈ω

1≤i6=j≤N

√
Tr

[
(Xs

i
† ⊗Xt

j
†
)P †

i ρ
⊗2Pi(Xs

i ⊗Xt
j)
]
+ T (N − k − 1)

∑
s∈ω

1≤i≤N

√
Tr

[
(Xs

i
† ⊗Xs

i
†)ρ⊗2(Xs

i ⊗Xs
i )
]
.

This shows that the inequality (7) holds for any pure state containing at least k unentangled particles.

Next, let ρ =
∑
m
pmρm =

∑
m
pm|ϕAm

〉〈ϕAm
| be a mixed state with the pure state ρm = |ϕAm

〉〈ϕAm
| containing at

least k unentangled particles, then we have

∑

s,t∈ω
1≤i6=j≤N

√
Tr

[
(Xs

i
† ⊗Xt

j
†
)ρ⊗2P (Xs

i ⊗Xt
j)
]

≤
∑

m

pm
∑

s,t∈ω
1≤i6=j≤N

√
Tr

[
(Xs

i
† ⊗Xt

j
†
)ρ⊗2

m P (Xs
i ⊗Xt

j)
]

(9)

≤
∑

m

pm
∑

s,t∈ω
1≤i6=j≤N

√
Tr

[
(Xs

i
† ⊗Xt

j
†
)P †

i ρ
⊗2
m Pi(Xs

i ⊗Xt
j)
]

+ T (N − k − 1)
∑

m

pm
∑

s∈ω
1≤i≤N

√
Tr

[
(Xs

i
† ⊗Xs

i
†)ρ⊗2

m (Xs
i ⊗Xs

i )
]

(10)

≤
∑

s,t∈ω
1≤i6=j≤N

√[∑

m

pmTr(X†ρmX)
][∑

m

pmTr((Xst
ij )

†ρmX
st
ij )

]
+ T (N − k − 1)

∑

s∈ω
1≤i≤N

Tr
[
(Xs

i )
†
∑

m

pmρmX
s
i

]
(11)

=
∑

s,t∈ω
1≤i6=j≤N

√
Tr

[
(Xs

i
† ⊗Xt

j
†
)P †

i ρ
⊗2Pi(Xs

i ⊗Xt
j)
]
+ T (N − k − 1)

∑

s∈ω
1≤i≤N

√
Tr

[
(Xs

i
† ⊗Xs

i
†)ρ⊗2(Xs

i ⊗Xs
i )
]
,

where Xst
ij = (

⊗
m 6=i and m 6=j

xm)⊗ws ⊗wt with xm, ws and wt acting on subsystem Hm, Hi and Hj , respectively. The

inequality (9), (10) and (11) are established by triangle inequality, validity of inequality (7) for any pure state con-

taining at least k unentangled particles, and Cauchy-Schwarz inequality, respectively. This shows that the inequality

(7) holds for any mixed state containing at least k unentangled particles. We can similarly prove inequality (8).

IV. ILLUSTRATION

In this section, we will demonstrate the operability and efficiency of our framework by applying it on typical

quantum states. It is worth noting that our criteria has better detection performance in the following two explicit

examples.

Example 1. Consider the family of 8-qubit quantum states ρ(p) = p|G8〉〈G8|+
1− p

28
1, with |G8〉 =

|0〉⊗8 + |1〉⊗8

√
2

being 8-qubit GHZ state.
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TABLE I: The thresholds of the quantum states containing fewer than k unentangled particles for ρ(p) = p|G8〉〈G8|+
1− p

28
1.

When pk < p ≤ 1 and pk
′ < p ≤ 1, ρ(p) contains fewer than k unentangled particles captured by our Theorem 1 and observation

5 in Ref.[34], respectively.

p

k
1 2 3 4 5 6 7

pk 0.4980 0.2485 0.1241 0.0620 0.0310 0.0155 0.0078

pk
′ 0.8015 0.6279 0.4790 0.3550 0.2557 0.1811 0.1315

a
b

c
d

a : k = 1
b : k = 2
c : k = 3
d : k = 4

p + q = 1

0.0 0.2 0.4 0.6 0.8 1.0
p

0.2

0.4

0.6

0.8

1.0
q

N=5

FIG. 1: (Color online) Detection power of Theorem 2 for ρ(p, q) = p|W 〉〈W |+ q|W̃ 〉〈W̃ | +
1− p− q

dN
1 for k = 1, 2, 3, 4 when

N = 5, d = 4. The area enclosed by red line a ( blue line b, orange line c, green line d ), the p axis, the q axis and line p+ q = 1

represents quantum states containing fewer than 1 (2, 3, 4) unentangled particles, respectively.

These quantum states ρ(p) contain fewer than k unentangled particles when pk < p ≤ p′k, which only can be

detected by our Theorem 1 with choosing xi = |1〉〈0|, yi = |0〉〈0|, but not by observation 5 in Ref.[34]. This indicates

that our Theorem 1 has more efficient detection than observation 5 in Ref.[34] for the family of quantum states ρ(p).

The specific values of pk and p′k are shown in Table I.

Example 2. Considering the family of N -partite quantum states,

ρ(p, q) = p|W 〉〈W |+ q|W̃ 〉〈W̃ |+ 1− p− q

dN
1,

where d ≥ 3, |W 〉 =
1√

N(d− 1)

d−1∑
i=1

(|0 · · · 00i〉 + |0 · · · 0i0〉 + · · · + |i0 · · · 00〉) and |W̃ 〉 = σ⊗N |W 〉 with σ|0〉 =

|1〉, · · · , σ|d− 2〉 = |d− 1〉, σ|d− 1〉 = |0〉.
Choose xi = |0〉〈0| and {ω1, · · · , ωT } = {|1〉〈0|, |2〉〈0|, · · · , |d − 1〉〈0|} (or xi = |1〉〈1| and {ω1, · · · , ωT } =

{|0〉〈1|, |0〉〈2|, · · · , |0〉〈d − 1|}), our Theorem 2 can always detect some quantum states containing fewer than k un-

entangled particles. Since the observation 5 of Ref.[34] only works for d = 2, it can’t recognize any quantum states

containing fewer than k unentangled particles for d ≥ 3. This indicates that our Theorem 2 is more powerful than

observation 5 of Ref.[34] for N -partite quantum states ρ(p, q). When N = 5, d = 4, we describe the specific ranges of

quantum states containing fewer than k unentangled particles for k = 1, 2, 3, 4 in Fig. 1.

In particular, for ρ(p, 0) = p|W 〉〈W |+ 1− p

dN
1, the quantum states ρ(p, 0) contain fewer than k unentangled particles

when

p >
N(d− 1)(2N − k − 2)

kdN +N(d− 1)(2N − k − 2)
.

Let p(N,k,d) :=
N(d− 1)(2N − k − 2)

kdN +N(d− 1)(2N − k − 2)
. For any d, when 1 ≤ k ≤ N , the larger k is, the smaller p(N,k,d) is. For
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any d, it’s easy to see that lim
N→+∞

p(N,k,d) = 0. This means that as N increases, our Theorem 2 can identify more

and more quantum states containing fewer than k (1 ≤ k ≤ N) unentangled particles for any d. For any N and

1 ≤ k ≤ N , it is obvious that lim
d→+∞

p(N,k,d) = 0. This implies that as d increases, our Theorem 2 can detect more

and more quantum states containing fewer than k unentangled particles.

V. CONCLUSIONS

In this work, we propose two practical methods for the detection of quantum states containing fewer than k

unentangled particles based on some permutations and operators. These methods are practical in two senses: first,

our methods don’t involve optimization problems, only require some algebraic operations, this demonstrates their

operability; second, our methods can identify some quantum states containing fewer than k unentangled particles that

are not recognized by other criteria, this shows our methods can be efficiently applied in practice. As a consequence, the

two criteria have good application potential for the detection of quantum states containing fewer than k unentangled

particles in multipartite quantum systems.
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