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A novel approach is introduced to assess one-way Normalized Entropic Uncertainty Relation
(NEUR)-steering in a two-qubit system by utilizing an average of conditional entropy squeezing.
The mathematical expressions of conditional entropy squeezing and NEUR-steering are derived
and presented. To gain a better understanding of the relationship between the two measures,

a comparative analysis is conducted on a set of two-qubit states.

Our results reveal that the

two measures exhibit complete similarity when applied to a maximally entangled state, while they
display comparable behavior with minor deviations for partially entangled states. Additionally, it
is observed that the two measures are proportionally affected by some quantum processes such as
acceleration, noisy channels, and swapping. As a result, the average of conditional entropy squeezing
proves to be an effective indicator of NEUR-steering.
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I. INTRODUCTION

In 1935, Schrodinger tried to interpret the Einstein-
Podolsky-Rosen (EPR) paradox by establishing correla-
tions between two quantum systems that were too strong
to be explained classically, this phenomenon is commonly
referred to as EPR-steering [1, 2]. The concept of steer-
ing involves one remote user using a pair of entangled
states to influence or steer their partner’s state through
local measurements. As per the hierarchy of quantum
correlations, steerable states are a strict superset of the
states that can demonstrate Bell nonlocality and a strict
subset of the entangled states [3-5]. Quantum steer-
ing has recently received significant attention in the field
of quantum information research and has been the sub-
ject of both experimental and theoretical investigations
[6, 7]. For example, the experimental quantum steering
has been studied through the implementation of gener-
alized entropic criteria and dimension-bounded steering
inequalities, where two or three measurement setups are
used on each side [8]. Steering game based on the all-
versus-nothing criterion has been experimentally demon-
strated [9]. The asymmetric property of EPR steering
is relevant for experimental and potential applications in
quantum information as a one-sided device-independent
quantum key distribution [10], quantum teleportation
[11], and optimal prepare-and-measure scenarios [12].
Moreover, for different quantum systems, the possibil-
ity of quantum steering is experimentally interpreted,
including photon polarizations in a linear-optical setup
[13], Bohmian trajectories [14], a family of the natural
two-qubit state [15], and non-Gaussian state [16].
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In the theoretical framework, researchers have devel-
oped asymmetric criteria of steering correlation for a pair
of arbitrary continuous variables [3]. Additionally, Wal-
born et al. [17] have utilized the entropic uncertainty
relations to express the steering inequality for arbitrary
discrete observables. The violation of the Clauser-Horne-
Shimony-Holt inequality has also been employed to dis-
cuss the degree of steerability [18, 19]. Furthermore,
some investigations have been conducted on the violation
of steering inequality and its degree for various quantum
systems, including a three-mode optomechanical system
[20], Heisenberg chain models [21, 22], two-level or three-
level detectors [23, 24], and qubit-qubit as well as qubit-
qutrit states [25-27].

On the other hand, the essential conceptions of
squeezed spin systems were introduced by Kitagawa and
Ueda in 1993 [28]. The entropy squeezing for a bipartite
system has been obtained for three discrete observables in
N-dimensional Hilbert space and employing the discrete
Shannon entropy [29]. The violation of two quadratures
of entropy squeezing inequality represents a magnificent
indicator of entanglement [30]. Meanwhile, the entropy
squeezing of multi-qubit inside a cavity system has been
considered a hot research topic, such as: two-qubit in-
teracting with two-mode cavity field [31], qutrit state in
a cavity filed [32], and the effect of classical field and
non-linear term on the qubit-field interaction [33].

Our motivation is to introduce how entropy squeezing
can be employed as an indicator of the degree of steer-
ability. Overall, as the discrete conditional Shannon en-
tropy is used as a measure of steerability, so do the two
quadratures of conditional entropy squeezing express the
steering? This paper is organized as follows. In Section
II, we present the steerability based on conditional en-
tropy squeezing. In Section III, the main results of our
paper are discussed in detail. Finally, the conclusion is
given in Section IV.
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II. STEERABILITY BASED ON CONDITIONAL
ENTROPY SQUEEZING

In order to gain a better understanding of the relation-
ship between entropy squeezing and normalized entropic
uncertainty relation (NEUR)-steering for bipartite sub-
systems A and B, we can take advantage of the defini-
tion provided by Walborn et al. [17]. The mathemat-
ical framework of NEUR-steering inequality concerning
an even N-dimensional Hilbert space along with the local
hidden state for a pair of arbitrary discrete observables
is expressed as [17]

N+1
> H(RPIR}) >

i=1

where {R{'} and {RP} are the eigenvectors of the dis-
crete observables R4 and RB, respectively, and N is
the total number of different eigenvectors. H(RZ|R4) >
>\ P(N\)Ho(RP|X) denotes the corresponding local hid-
den state constraint for discrete observables, which is de-
fined by the conditional information entropy Ho(RP|Q)
of the probability distribution Pg(RP|)\) with the hidden
variable A. In two-dimensional Hilbert space N = 2, by
employing the Pauli spin operators {o,,0,,0.} as mea-
surements, the NEUR-steering from A to B is realized
only if the following condition is violated [17, 34]

H(oB|o2) + H(oP|o) + H(oPlo2) > 2In2,  (2)

N_ N N N

where

H(cP|o{") = H(pap)i — H(pa)i

2 2 (3)
=— > P"'WmP"" +> P/lnpP.

n,m=1 l

Here, PM™ = (g}.6}loaslél,¢)) and PP —
(@1 |pa|dL) are the probability distribution of an arbi-
trary two-qubit state pap and reduced single qubit state
pa, respectively, where |¢;> represent the two possible
eigenvectors (j = 1,2) of oy, and pa = Trglpas]-

In this paper, we assume that the density state
pap with real components in the standard basis
{]00), |01),]10),|11)} can be written as

pi1 0 0 pug
p22 p23 0

. 4

0 p23 p33 O )
pra 0 0 pyq

pPAB =

Note that the operator p4p satisfies the common condi-
tions [)AB Z 0 and TT’[[)AB} =1.

By applying state (4) in Eq. (2) and violating NEUR-
steering inequality, one can obtain

3 4
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i=1 j=1
! (5)

— Z(l +ag)In(l+ax) <2In2,
k=1

where the summations in the first term are related to the
three Pauli spin operators and probability distribution of
the two-qubit pap, respectively, and x;; are obtained by

P14 + p23),
P23 — P14),

T11 = T12 = —T13 = —T14 = 2(
T21 = X2 = —X23 = —X24 = 2(
x31 = 3p11 — (p22 + p33 + paa),
x32 = 3p22 — (p11 + P33 + Paa),
T33 = 3p33 — (P11 + p22 + paa),
w34 = 3paa — (P11 + p22 + p33).
Likewise, the summation in the second term is related

to the probability distribution of the reduced state p4,
and ay is given by

ar = (—=1)%(p11 + paz2 — p33 — paa). (7)

However, the one-way NEUR-steering is quantified
based on observable A measurements as follows [35]

IAB —2In2 }

A—B
S = max {0, T 92 (8)
where Z,,4, = 61n2 when the system is prepared in Bell
states.

On the other hand, if we define the function
E(oP|of) = ef(@71)  then the inequality (2) can be
reformulated as

4
—/ B| _Ay=( _B|_A
E(oy oy )‘—‘(Uy |Uy) > W7 9)
where
2 P P!
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According to Ref. [29], the fluctuations in component
E(cP|of) (i = z,y) are said to be “squeezed in entropy”

if the squeezing factor E(cP|o!) satisfies the condition
2

E(UZB|U;4) = max {O7 e —
E(oB|o)

_ 65(05\024)}’ (11)

with ¢ = x,y. From the previous condition, we can depict
the upper bounds or the lower bounds of the NEUR-
steering degree. If the state is a maximum entangled
state, then the upper and lower bounds in condition
(11) are identical. Hence, bidirectional steerability and
the average of conditional entropy squeezing quadrature
have similar behavior. In partially entangled states, the
NEUR steerability is restricted between the upper and
lower bounds. Therefore, the average of the two compo-
nents of conditional entropy squeezing E(cP|c#') repre-
sents an indicator for quantum steerability. In any case,
we can define the quantum steerability based on the av-
erage of entropy squeezing as

E(o]|o}) + E(o)|oy)

2 }’ (12)

2478 — max {o,



where E(cf o) and E(c|o;') are defined in Eq. (11).
Hereinafter, we provide a comparative study between the
average of conditional entropy squeezing and one-way
quantum steering for some different quantum systems.

III. SOME RESULTS AND DISCUSSION

Here, we study the relationship between one-way steer-
ing and the average conditional entropy squeezing for a
class of two-qubit state, which reads

pap = v|$) (o] + (1 = v)[¥) (Y], (13)

101)+[10) +|10 ) = |00) +\11

where |¢) =

state parameter. The state (13) is maximally entangled
for v = 1 and v = 0, while partially entangled for v €
(0,0.5) U (0.5, 1).

, and v is the setting
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FIG. 1: Comparative study between (a) E(cZ|02) (dot-
ted curve), E(c|o;') (dashed curve), and one-way NEUR-
steering S4% (solid curve) for the state (13), and (b)
the average of conditional entropy squeezing 24— (dashed
curve) and one-way NEUR-steering S % (solid curve).

In Figure 1, we have performed a comparative anal-
ysis of the NEUR-steering and entropy squeezing for a
composite system consisting of a two-qubit state repre-
sented by Eq. (13). Through our analysis, we have ob-
served interesting relationships between these two mea-
sures. Figure 1(a) clearly demonstrates that the extent

of NEUR-steering is bounded by the two quadratures of
entropy squeezing. Specifically, when the NEUR-steering
is maximized, we observe that the two quadratures of
entropy squeezing become identical. Conversely, when
the NEUR-steering is minimized, the two quadratures of
entropy squeezing are separated. This finding indicates
that the values of E(cB|04) and E(af|a§1) can be con-
sidered as upper and lower bounds of NEUR-steering,
respectively. Furthermore, we have investigated the av-
erage of the two quadratures of entropy squeezing and
its relation with the NEUR-steering. Figure 1(b) illus-
trates that at maximally entanglement v =0 and v = 1,
the average of entropy squeezing (Z4—F) aligns closely
with the NEUR-steering S4——5. However, at a lower
degree of steering, corresponding to a partially entan-
gled state, we observe deviations between the behaviors
of NEUR-steering and the average of entropy squeezing.
Nevertheless, even in these cases, 245 remains a reli-
able indicator for expressing the presence of steerability
in the system.

A. Some Quantum Processes

In this subsection, we will compare in detail the effect
of some quantum processes on the functions 245 and
SA—B namely acceleration process, decoherence via a
stochastic dephasing channel, and swapping process.

1. Acceleration Process

Let two qubits be simultaneously or separately accel-
erated in Rindler space. The computational basis {0, 1}
in this space for regions I and IT can be defined as [36]

|Ok> = COSTk|0k>[|Ok>[[ + Sin’f‘k|1k>]|1k>117

11%) = [1&)r|Ok) 11, (14)

where r, € [0,7/4] is the acceleration parameter of the
qubit £k = A, B. By substituting in the state (13) and
tracing over the degrees of the region 17, one can get the
accelerated state as

PAE = A11[00)(00] + A22(01)(01] 4 A33[10)(10|
+ Agq|11)(11] + (A14]00) (11| 4+ A23]10)(01]| + h.c.),

(15)
where

Al = gcos2 Tq €082 1y, Ago = cos? ra(gsinz ry + L ; V)7
Ass = cos? rb(% sin? rq + ! ; V),

Ay = sin® 7"a(%sin2 Ty + ! ; V) + 1—v sin® rp + g,

v
A = 5 COS Ty COSTy, Aoz = COS 'y COS T'p.



FIG. 2: Average of conditional entropy squeezing Z4—5

(dashed curve) and one-way NEUR-steering S*— (solid
curve) for accelerated state (15) with v = 1. (a) ro = 7,
Tb=0and (b) Ta =T =T.

In Figure 2, we present an investigation into the impact
of the accelerated process on a two-qubit state. Specif-
ically, we aim to explore the relationship between the
NEUR-steering and average entropy-squeezing measures
under this process. We assumed that the two-qubit state
is maximally entangled with v = 1 as a fixed parameter.
In Figure 2(a), we observe that when only one qubit is
accelerated with r, = r and r, = 0, the NEUR-steering
is maximized at lower values of the acceleration param-
eter. As the acceleration parameter increases, we see a
decrease in the degree of steering. Interestingly, we note
that the NEUR-steering and the entropy squeezing are
identical across different values of the acceleration pa-
rameter r. This indicates a consistent relationship be-
tween these measures regardless of the acceleration ap-
plied to the system. On the other hand, when both qubits
are accelerated simultaneously with r, = r, = r, Fig-
ure 2(b) reveals an intriguing trend. As the acceleration
parameter increases, the rate of decrease in steering be-
comes more pronounced. This finding suggests that ac-
celerating two qubits simultaneously increases the sup-
pression of steering. However, it is important to note
that despite this trend, the two measures, namely NEUR-
steering and entropy squeezing, exhibit little variations
with respect to the acceleration parameter.

2. Noisy Channel Process

To examine the two functions (8) and (12) under noisy
channel models, we can express the temporal density op-
erator in terms of Kraus operators as

pap(t) =Y KFOKP(0)papO)(KOKL ()T, (17)

here p4(0) is defined in Eq. (13), while K¥(¢) and K]k(t)
with £ = A, B are the time-dependent Kraus operators
for different noise channels. For example, we use the
Kraus operators of amplitude-damping noise, which are

defined by [37]

Ky (t) = [0)(O0[+v1 = P[], Ka(t) = \/P(t)\0>(<118|)’

where P(t) = e 9t [cos(%)—i—%sin(%)}z with A =

v/ 9(2y — g). Herein, g is a decay rate which depends
on the reservoir correlation time, and + is the coupling
strength related to qubit relaxation time.

Likewise, the Kraus operators for purely dephasing
noise channels can be defined as [38]

Ky (1) = [0)O] + POI(A],  Ka(t) = /1 - PQ(t)|1>(<119\)7

where
P(t) = exp {—% (t+ g™ exp(—gt) — 1])} :

Figure 3 presents a comprehensive examination of the
impact of amplitude-damping noise on the degree of
steerability, with the NEUR-steering and entropy squeez-
ing serving as the quantifying measurements. In Figure
3(a), we observe that, by selecting a small value for the
damping rate (¢ = 0.01), the NEUR-steering oscillates
between its maximum and lower bounds. This oscilla-
tory behaviour is consistent with the properties of steer-
ability under the influence of amplitude-damping noise.
It is noteworthy that the two measures, NEUR-steering
and entropy squeezing, coincide perfectly with the scaled
time parameter. This convergence of the two measure-
ments further reinforces their equivalence in capturing
the system’s dynamics. Moving to Figure 3(b), we exam-
ine the effect of increasing decay rates within the range
of g (specifically with ¢ = 0.1 and maximally entangled
state with v = 1). As the scaled time escalates ~t, we
gradually observe the NEUR-steering oscillating with an
increase in the upper bounds. On the other hand, in
the case of a partially entangled state with a parame-
ter value of v = 0.1, it can be observed from Figure
3(c) that a clear separation between the two measures
over time. Furthermore, as the scaled time increases, the
upper bounds of the steering degree exhibit a decrease
in value. Remarkably, the maximum bounds of steer-
ing continue to expand as time progresses, indicating a
growing influence of the amplitude-damping noise on the
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FIG. 3: Average of conditional entropy squeezing Z4——5
(dashed curve) and one-way NEUR-steering S*— (solid
curve) for amplitude-damping noise, where (a) v = 1, g =
0.01, (b) v=1,g=0.1 and (c) v =0.1, g = 0.1.

steerability of the system. Just like in the previous case,
the NEUR-steering and average entropy-squeezing mea-
surements in this scenario remain parallel, underscoring
their identical nature. This consistent agreement can be
attributed to the initial state being maximally entangled.

Figure 4 provides a detailed analysis of the effect of
dephasing noise on the degree of steering, utilizing the
NEUR-steering and entropy squeezing as the measure-
ment criteria. Moreover, the comparison between these
two measures under the influence of the dephasing noise
channel is examined. In the first, we consider an initial
state that is maximally entangled with v = 1. Initially,
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FIG. 4: Average of conditional entropy squeezing Z4—5
(dashed curve) and one-way NEUR-steering S* % (solid
curve) under purely dephasing channel, where (a) v = 1,
g=0.01, (b)r=1,¢g=0.1and (¢) »=0.1, g =0.1.

we note that while the entropy squeezing and NEUR-
steering measures display similarities in their general be-
havior, they are not entirely identical as the scaled time
progresses. At the onset, both measures exhibit their
maximum bounds. However, as time increases, we ob-
serve a notable distinction between the maximum bounds
of entropy squeezing and NEUR-steering. Interestingly,
the maximum bounds of entropy squeezing surpass those
of NEUR-steering. This disparity suggests that the in-
fluence of dephasing noise imposes a more pronounced
impact on the entropy squeezing measure compared to
NEUR-steering. In the context of partial entanglement



v = 0.1 with ¢ = 0.1, our observations indicate a rapid
decay of steering and a decrease in the upper bounds of
steering during the initial stages of the interaction. This
suggests that partial entanglement has a significant im-
pact on the dynamics of steering. Furthermore, it is im-
portant to note that the time evolution of the steered sys-
tem is influenced by the degree of entanglement. As the
entanglement decreases, the decay of steering becomes
more pronounced, implying a decreasing ability to re-
motely control and influence the entangled particles.

Notably, despite the difference in the maximum bounds
between the two measures, they still portray parallel
trends. As the scaled time continues to grow, we witness
a decrease in the degrees of steering for both measures.
This observation implies that the detrimental effects of
dephasing noise manifest as a reduction in the correla-
tion between the entangled subsystems. Besides, it is ev-
ident that increasing the damping rate of the dephasing
channel exacerbates this decreasing effect on the steering
degrees.

8. Swapping Process

Let us consider two different sources, Si2 and Ssq,
which generate pairs of two-qubit state p12 and psg, re-
spectively. Qubits 1 and 4 are far apart, while qubits
3 and 2 remain close. The swapping process is aimed to
measure the amount of quantum NEUR-steering between
qubits 1 and 4 by performing a joint Bell measurement
on qubits 2 and 3. The post-measurement state pi4 is
calculated by [39]

]\4‘-/)1234-1\42-T
T’I"[Mi.p1234.MiT] ’

p1a = T'ro3 (20)

where p1234 = paB ® pap, such that the two sources
generate the state pap defined in Eq. (13). Moreover,
M; = I, ®|9;)(®;| ® Iy and |®;) stand for the usual four
Bell states.
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FIG. 5: Average of conditional entropy squeezing Z4—75
(dashed curve) and one-way NEUR-steering S*— (solid
curve) under swapping process with |®;) = [¢)).

Finally, Figure 5 focuses on analyzing the effects of the
swapping process on the behavior of NEUR-steering and
conditional entropy squeezing concerning the state pa-
rameter v. The post-measurement state p14 at |®;) = [¢))
is studied to understand how the swapping process influ-
ences the behavior of the quantum system. The find-
ings indicate that the steerability degree significantly de-
creases when the two-qubit state is initially in a partially
entangled state. Furthermore, when compared to Figure
1, it is noticeable that the unsteerable region expands
during the swapping process. However, when the two-
qubit state is maximally entangled, the two measures are
equal. Hence, conditional entropy squeezing serves as an
excellent indicator of the level of NEUR-steering present
under this process.

IV. CONCLUSION

We have proposed a new method for quantifying one-
way quantum NEUR-steering in an arbitrary two-qubit
system using the average of conditional entropy squeez-
ing. We derived the explicit analytical expressions of
NEUR-steering and conditional entropy squeezing. A
comparative analysis of the two measures was conducted
on a free maximally mixed two-qubit state, either re-
stricted two-qubit state by using acceleration, noisy chan-
nels, or swapping processes.

For the free maximally mixed two-qubit state, our re-
sults highlight the interconnectedness between NEUR-
steering and entropy squeezing. We demonstrated that
the quadratures of entropy squeezing serve as bounds for
NEUR-steering, which represented the upper and lower
limits. Additionally, we established the average of en-
tropy squeezing as a valuable indicator of steerability,
particularly at a maximally entangled state.

The effects of the accelerated process on a two-qubit
state have been demonstrated. We observed that the be-
havior of NEUR-steering and entropy squeezing depends
on whether one or both qubits are accelerated. In the
former case, the degree of NEUR-steering decreases with
increasing acceleration, while in the latter case, the rate
of decrease in steering is amplified. Nonetheless, despite
these variations, the measures of NEUR-steering and en-
tropy squeezing remain stable and invariant with respect
to the acceleration parameter.

Under the amplitude-damping noise, our results
showed that under a specific small damping rate,
the NEUR-steering experiences oscillatory behavior.
By allowing the decay rate to increase, the NEUR-
steering experiences oscillatory behavior with expand-
ing boundaries. Notably, the NEUR-steering and
entropy-squeezing measurements remained indistinguish-
able throughout these processes, further validating their
correlation. On the other hand, the effect of dephas-
ing noise on the degree of steering has been evaluated.
While the two measures differ in terms of their maximum
bounds, they exhibit similar overall trends. Specifically,



as the scaled time increases, both measures demonstrate
a decrease in the degree of steering. This decreasing ef-
fect is amplified by enhancing the damping rate of the
dephasing channel.

Finally, the swapping process significantly diminishes
the steerability degree when the initial state of the two-
qubit is partially entangled. For maximally entangled
states, the two measures coincide.

In conclusion, it is evident that entropy squeezing
serves as a measure of steering primarily in the context
of a maximally entangled system. However, when
considering partially entangled states or situations
where entanglement is constrained by external factors,
entropy squeezing remains a highly reliable indicator of
steering. By assessing the degree of entropy squeezing in
such scenarios, valuable insights can be gained regarding
the presence and extent of quantum steering. Entropy
squeezing is a tool for indicating and understanding
quantum steering, even in cases where maximal entan-
glement may not be achieved.
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