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Abstract. We consider a two-station tandem queueing system where customers arrive according to a Poisson
process and must receive service at both stations before leaving the system. Neither queue is equipped with
dedicated servers. Instead, we consider three scenarios for the fluctuations of workforce level. In the first, a
decision-maker can increase and decrease the capacity as is deemed appropriate; the unrestricted case. In
the other two cases, workers arrive randomly and can be rejected or allocated to either station. In one case
the number of workers can then be reduced (the controlled capacity reduction case). In the other they leave
randomly (the uncontrolled capacity reduction case). All servers are capable of working collaboratively on
a single job and can work at either station as long as they remain in the system. We show in each scenario
that all workers should be allocated to one queue or the other (never split between queues) and that they
should serve exhaustively at one of the queues depending on the direction of an inequality. This extends
previous studies on flexible systems to the case where the capacity varies over time. We then show in the
unrestricted case that the optimal number of workers to have in the system is non-decreasing in the number
of customers in either queue.
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1. Introduction

The use of an agile workforce is becoming more prevalent in the manufacturing and
service sectors. Practitioners would like to understand the benefits of cross-training to
know whether they exceed the costs. If workers or machines can perform a variety of
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tasks, they may be reallocated to alleviate areas of high congestion. Most models, how-
ever, assume that the number of workers available is predetermined. In many practical
situations it is often the case that the number of workers available is dynamic. For ex-
ample, consider a simple two cell factory where a company manufactures two products,
A and B. Suppose some of the workers have the primary tasks of manufacture and in-
spection of product A, but are also trained to perform the same tasks for product B. A
decision-maker monitors the workload of the entire job shop and can decide to reallocate
some of the workers to either the manufacture or inspection portion of the product B
line. This, of course, reduces the capacity to produce A and can be costly to the system.
Three questions arise:

e Should cross-trained workers be assigned to work on product B?

o If they are to be assigned to product B, should they be allocated to the manufacture
or inspection station?

e How long should they remain working on the product B line?

We address these questions in three contexts; each from the point of view of the product
B line. The first is called the unrestricted case where the decision-maker can increase or
decrease capacity to produce product B at any time. In the second model, workers become
available randomly but may be released by the decision-maker; controlled capacity
reduction. In the final problem workers randomly become available and randomly leave
the system; uncontrolled capacity reduction. We note that the decision-maker has less
and less control over the availability of cross-trained workers from the first to the third
problem.

To illustrate each problem, consider the availability of health care professionals
(doctors, nurses, etc.) in various hospital operations. It is standard practice for a nurse or
doctor who is currently assigned to work in other care units, such as the intensive care
unit (ICU) or the outpatient clinic, to be called to the emergency room (ER) or trauma
center to handle higher priority patients and then returned to their primary assignment
when the workload has subsided. This practice is called “jeopardy”. From the perspective
of the other care units, the time between calls that take workers away and the time they
(or some other worker) become available again can be modeled as random events; the
uncontrolled capacity reduction case. On the other hand, since the ER and trauma center
are usually the highest priority (and often the most costly) operation performed in a
hospital, they can add and subtract workers as needed; the unrestricted case. Finally,
while arrivals of workers may be random (from say the ER), it is often the case that
some of these nurses are released to work in the general rounds when not needed; the
controlled capacity reduction case.

Each problem is considered under the infinite horizon discounted expected cost and
average expected cost criteria. Since the average case is considered, we present sufficient
conditions for the stability of each model. We then show the rather surprising result that
the optimal allocation policy is “independent” of the decision to increase or decrease
capacity in the sense that a rule analogous to the classic cu-rule applies (no matter how
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many workers are available). Once this assertion is made, Markov decision processes
are employed to prove that optimal policies in the unrestricted case are monotone in the
number of customers in each queue. This result is used to develop heuristics for each case.

Of particular relation to the present work is the work of Ahn et al. [1,2] where the
clearing system and dynamic versions of this problem with a static number of servers are
considered. In each case, the authors provide conditions under which the optimal policy is
exhaustive in each station. Duenyas et al. [13] and Iravani et al. [20], in parallel, consider
a tandem queueing system with one flexible server and characterize the optimal policy
to be a monotone switching curve. The control of a flexible workforce in minimizing the
cycle time of each job is discussed in Van Oyen et al. [26]. Andradottir et al. [3] consider
the control of flexible servers to maximize throughput when the service rate is additive.
Javidi et al. [21] consider two interconnected queues with identical machines and derive
sufficient conditions under which the policy that prioritizes jobs in queue 1 minimizes
the expected value of the first time that the system becomes empty (i.e., the dynamic
version of makespan). Other related works include the work on “bucket brigades” by
Bartholdi and Eisenstein [5] and Bartholdi et al. [4,6].

The scheduling of (temporary) workers in queueing systems is closely related to
the scheduling of a removable server. Early work in this area considered the question
of when to schedule the server to be offline and online (cf. [19,27]). The authors show
the existence of control limits determining when the server should be turned on and
off. More recently, Feinberg and Kella [16] show the optimality of “D-policies” that
turn the server off when the system empties and turn it back on when the workload
reaches some level D. There has also been a considerable amount of work on service
rate control in queueing systems. Classic models include the work of Crabill [10], where
it is shown that the optimal service rate is non-decreasing in the number of customers
in the system. More recent studies of service rate control problems include the work of
Stidham and Weber [25] and George and Harrison [17]. In each case, the authors consider
models analogous to our unrestricted case but with the cost function non-decreasing
in the one-dimensional state. No such representation holds here. Other related works
include [14,15].

The rest of the paper is organized as follows. Section 2 contains formal definitions of
the problems considered and Markov decision process formulations. In the same section,
we state results leading to the stability of the network and the existence of a solution
to the average cost optimality equations. The main results of the paper are contained in
Sections 3 and 4; the optimality of an exhaustive policy in each case and the monotone
structure of an optimal policy in the unrestricted case. Some examples displaying a
significant difference between the models are provided in Section 5. Promising heuristics
are also introduced and analyzed. We conclude the paper in Section 6.

2. Preliminaries and model formulation

Consider a two station, tandem queueing system where customer arrivals to station 1
follow a Poisson process of rate A > 0. After receiving service at station 1, customers
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proceed immediately to station 2 and must receive service in order to leave the system.
The service requirement for all customers is exponential with (finite) means 1/u; and
1/, for stations 1 and 2, respectively. Neither station is equipped with a dedicated,
permanent server. Instead, in the unrestricted case the number of workers may be in-
creased or decreased, while in the controlled or uncontrolled capacity reduction cases
workers arrive according to a Poisson process at rate o(k) > 0 when there are k workers
currently in the system. In the uncontrolled capacity reduction case, accepted workers
are available for an exponential amount of time with rate y.

Once the decision is made to increase the capacity, workers are immediately as-
signed to a station. Assume that all workers are identical and able to work at rate 1
regardless of the station to which they are assigned. Note that this along with the as-
sumption that the service requirements are exponentially distributed implies that the
time to complete a job at station i is exponential with rate p;. Assume that customers
in service can be preempted to reallocate workers and that when more than one worker
is working at a station their rates are additive; servers can collaborate on a single job.
Let ¢ < oo represent the maximum number of workers that can be in the system at any
particular time or equivalently set «(k) = O for k > ¢.

Define h;, i = 1, 2, to be the rate at which holding costs are accrued for each
customer at station i and r (k) to be the (finite, real-valued) cost rate of having k workers
in the system. Intuitively, this is the opportunity cost of having the workers allocated
to this station instead of in some other part of the job shop described in Section 1. We
assume that (0) = 0. At each customer arrival and departure time, the decision-maker
must decide how to allocate the flexible workers to each station. In the unrestricted case,
the decision-maker must decide how many workers to keep (or add) for the coming
period. In the controlled capacity reduction case, the decision-maker can reduce the
number of workers at any time, while in the uncontrolled capacity reduction case it
must wait for workers to leave. In the controlled and uncontrolled capacity reduction
cases, workers can only be added when the opportunity arises. A decision must then
be made if they should be rejected. In either case, workers that are rejected are lost
forever.

For the remainder of the paper we differentiate the unrestricted, controlled and
uncontrolled capacity reduction cases with superscripts U, C, and F, respectively. Unless
otherwise specified, quantities without superscripts have a common definition for each
problem. In each scenario a decision rule, say d(x), is a function that maps the state
space to the set of potential actions (the action space). A sequence of decision rules is
called a policy and prescribes what action should be taken for each state at any particular
time. Note that although we have defined policies to only cover those that are Markovian,
this set is sufficient to guarantee the optimality over the larger set of non-anticipating
policies. Let XY = Z* x Z* and X¢ = XF =XV x {0, 1, ..., £} denote the respective
state spaces of each problem, where Z" is the set of non-negative integers. The first
two elements of the state space represent the number of customers at each station and
the last element (in X¢ and X*) is the number of workers available to be allocated to
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either station. Let I'T denote the set of non-anticipating, non-idling policies and suppose
for a fixed w € IT and ¢t > O that Q7 (¢), Q7 (¢) and Z™(¢) represent the queue length
processes for station 1 and 2 and number of workers available at time ¢, respectively.
Define

vp(x) = E, /0 e [ 0T () + ha Q% (s) + r(Z7(s))] ds, 2.1)
vy (x) = tl_1>ngo v/ (X), 2.2)

v (x
p" (x) = lim sup L(),
=00

(2.3)

where 6 > 0 is the discount factor. The equations (2.1)—(2.3) define the finite horizon
expected discounted cost, the infinite horizon expected discounted cost, and the long-
run average expected cost, respectively. In the finite horizon case, only the portion of
the policy required for the time horizon is used. In each case we define the optimal
values

vrg(x) = inIf_I v,’fe(x), 2.4)
vo(x) = inlf[ vy (x), (2.5)
plx) = ;EE p”(x), (2.6)

where a policy that achieves the infimum of any of the respective criteria is deemed
optimal.

We will find it instructive to consider both the continuous-time problem presented
and its discrete-time analogue. In the discrete-time case assume that uniformization
in the spirit of Lippman [22] has been applied so that the optimal discounted and
average costs are scaled by a constant. The optimal decisions are unaffected. Let
W = A + maxgeqo,1,... e {a(k)} + €(max{wuy, 2} + y) be the uniformization constant
and g = Mi\y be the scaled discount factor. Without loss of generality assume that
v =1.

In order to simplify notation, for each decision-making scenario, let g be any real-
valued function on the respective state space. Define the following mappings for the
unrestricted model

,,,,,,

k=028, (j = D)+ [1 = o+ xpr 4 (k= 0)p)lglE, HH},
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for the uncontrolled capacity reduction model

Hy gG, j, k) =r(k) + BOg + 1, j, k) + ykgG, j, k= 1)
+a(k) min{g(i, j, k), g(@, j, (k + 1) A £)}
+ min {epg((@ = D7, j+ 1K) + (k = x0)pagli, (j = DT, k)

+[1 — A+ ky +ak) +xpu + (k —x)u)lgl, j, k)}),

and for the controlled capacity reduction model

Hj g(i. j.k) = min {r(m)+ pOgli + 1. j.m)
+a(m)min{g(i, j, m), g@@, j, (m + 1) A £)}
+ min {opag(( = DT+ 1Lm) + (m = 0pag(i. (j = DF. m)
+ 11— (A am) +xpr + (m = 0)p)g . j.m)),

where in each case a* represents the positive part of a. These mappings represent the
one-step cost associated with current workers, capacity increase/decrease decisions, and
a terminal cost g. In order to construct the optimal infinite horizon value functions let
vo,p = 0 and define the following sets of equations,

U gy o k) = ihy + jhy + Hf vay g, j, k), (2.7)
vp(i, j. k) = ihy + jhy + H vg(i, j. k), (2.8)
o +w(i, j k) =ihy + jhy+ H w(i, j, k), (2.9)

where P =U, F, orC.

The system of equations (2.7) are referred to as the finite horizon optimality equa-
tions (FHOE), (2.8) the discounted cost optimality equations (DCOE) and (2.9) the
average cost optimality equations (ACOE). It is well-known that a solution to (2.7) is
such that v, g is the optimal, B-discounted, n-stage cost for whichever problem is cur-
rently under consideration. Since the action set is finite, Proposition 1.7 of [7] implies
thatv, g — vg, asolution to the DCOE, as n — o0. Moreover, a policy that achieves the
minimum in (2.7) ((2.8)) is n-stage cost (infinite horizon, discounted cost) optimal for
the appropriate model. The average cost case is a bit more subtle since the recurrence
structure of the Markov process induced by each policy must be considered. For the
problems considered, when a solution (w, p) of the ACOE (2.9) exists it is such that
p is the optimal cost (independent of the initial state) and w(x), called a relative value
function, is unique up to an additive constant.

The first result states that the finite and infinite horizon discounted cost value
functions are non-decreasing in i and j. In order to ease notation, let A;g(i, j) =

g +1,j)—gG, j)and A;e(, j) = gG, j+ 1) — g, j).
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Lemma2.1. v/ p and v g are non-decreasing in the number of customers in either queue
forP =U,C,F.

Proof. 'We show the result for the unrestricted case. The other cases follow similarly.
The n = 0 case is trivial. Assume that it holds at n — 1. Let d,(i + 1, j) = (X, x’) be
the optimal number of workers and the number of workers to place at station 1 when in
state (i + 1, j) at time n. If we use the same decision in state (i, j) we have fori > 1

Aiv] g, ) = i+ BAAV | 4G+ 1, )+ A 46— 1, j+ 1)
+ (K —=x" 2 Aivy G, j=D+1= + x' 1 + K =X )] Ajvy) 4G, ).

The inductive hypothesis and the non-negativity of /; implies Aivfiﬁ(i ,j) = 0. A
similar argument holds for i = 0 except that we idle the workers assigned to station 1
in the process starting in state (0, j). Taking limits as n — oo yields the result in the
infinite horizon case. g

The next result yields that the ACOE holds in states that are positive recurrent for
the average optimal policy. In Section 3 we provide results that allow us to identify the
set of positive recurrent states.

Proposition 2.2. Suppose that in the unrestricted or controlled capacity reduction mod-

els there exists k* € {0, 1, ..., £} such that Mi + % < k* or in the uncontrolled capacity

: ) ) I
reduction case ™ + &= <z=),_,(kpi), where

Mn2
Po = (1 + Z Ooc(n))

Hk a(n)
pkzﬁpo, k=1,2,...,¢

In each case, the following hold

1. The optimal average cost may be computed by p = limgs(1 — B)vg(x) for any
x eX.

2. There exists a (bounded) limit point w(x) = lim,_, o wg, (x) = lim,_[vg,(x) —
vg,(0)] such that (p, w) satisfy the ACOE with the equality replaced with “>", where
vp(0) = vé] (0, 0) in the unrestricted case and vg(0) = minkeo,1 g}{vg (0,0, k)} for
P=C,F.

3. Any policy, say f, achieving the minimum on the right hand side of the above
inequality is average cost optimal with average cost p. Moreover, the inequality is an
equality at any state that is positive recurrent under the Markov chain induced by f.

.....

Proof. Lemma 2.1 yields that vg is non-decreasing in the number of customers in each
queue. Moreover, under the hypotheses of the proposition we have the existence of a
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policy with finite average cost (see the Appendix) so that the assumptions of Sennott [24,
Proposition 7.2.4] hold. The result now follows by applying Theorems 7.2.3 and 7.4.3
of [24]. O

The remainder of the paper is dedicated to proving Theorem 2.3 below. The results
on the allocation decision hold for all three models, while the capacity decisions are
for the unrestricted model. In the latter, the monotonicity results serve as a baseline for
heuristics in the controlled and uncontrolled capacity decrease models.

Theorem 2.3. In each scenario and under the infinite horizon discounted cost and
average cost criteria, the following hold

1. there exists an optimal policy that allocates all workers to one station or the other
(workers are not split between the two)

2. if uohy < (=) w1(hy — hy), there exists an optimal policy that is exhaustive in station
1(2).

Moreover, in the unrestricted case, if wq = uo,

3. for each fixed (i, j) € XY there exists an optimal number of workers, L(i, j), such
that L (7, j) is non-decreasing in i and ;.

The third result above requires more comment. In all three cases, all of the ex-
amples we considered yielded that the optimal capacity increase/decrease policy was
non-decreasing in i and j. However, we were only able to prove it in the unrestricted
case. The difficulty is that the optimal capacity increase/decrease decisions in the other
cases may vary in three directions (i, j, k). This significantly complicates the problem.
Indeed, given the results for the unrestricted case, we originally conjectured that an opti-
mal policy in the controlled and uncontrolled cases would continue to increase workers
until reaching some level, say M (i, j), after which it would stop increasing; monotone
in k. The next example disproves this conjecture.

Example 2.4. Suppose we have the following inputs for the uncontrolled capacity
reduction model: by =2; hy =3, =7, A = 3; 1 = 2; uo = 2; a(k) = 2; y = .001.
Figure 1(a) displays the cost function r (k) and 1(b) the average optimal capacity increase
actions for j = 0, 1.

The second result of Theorem 2.3 implies that the optimal allocation is exhaustive
in queue 2 so that the set of recurrent states may only have j = 0 or 1. Note that despite
the fact that the cost function is non-decreasing in &, the optimal capacity increase policy
is not. We note that the cost function depicted in Figure 1(a) may be interpreted as a
system where the first few workers allocated are not costly while allocating several
workers to this station significantly hampers productivity of the whole system.

We also mention that the inequality pushy > (<) ui(h; — hy) is analogous to the
cp-rule in parallel systems. In a parallel system, the choice of which job to serve next
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Figure 1. Counter-example, Example 2.4, showing an optimal policy need not be monotone (in k).

is made based on the one that can reduce the cost the fastest; with the highest cu. The
fact that the system has flexible workers makes the decision of where to serve a direct
analogue. The right (left) hand side of the inequality is the rate at which costs can be
drained if the workers are allocated to queue 1 (2). A further explanation is provided
in [1].

3. Optimal worker allocation

We divide the control of the system into two parts: the first discusses how workers should
be allocated to each station and the second discusses optimal capacity increase/decrease
decisions. The next result shows that we need only consider policies that never divide
the workers between queues. Although given the existence of a solution to the DCOE
and ACOE, the proof is now simple, this result stands to simplify the other results of
this section.

Proposition 3.1. In any of the models considered and under either the discounted or
average cost criterion, there exists an optimal policy that always allocates all workers to
either station 1 or station 2.

Proof.  Note that the portion of Hf' g, Hj ¢ and H g that corresponds to the allocation
decision has the form

G(l9 jakvx) E-xl‘blg(l - 15 J + 19k)+(k _x)lqu(i’ J - l’k)
+[I = +ky +alk) +xpur + (k—x)u2)lgl, j, k),

with perhaps y and «(k) being zero. Since G (i, j, k, x) is linear in x and a linear function
achieves its maximum and minimum at the extreme points, the fact that the optimality
equations under each criterion have a solution imply that it is optimal to set x equal to
0 or k and the result is proven. O
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Proposition 3.1 implies that we may restrict attention to policies that always allocate
all workers to one station or the other. Define IT® C IT to be this set of policies. Next
we show the existence of optimal policies that are exhaustive in either queue 1 or 2. The
proof is analogous to that in Nain [23] for scheduling in parallel queues. First we make
the assumption that the cost rate of having workers in the system is zero (r(-) = 0). This
will be relaxed later. For a policy f let

¢’ (s) = / Z (e )[palhy — hoa] () + pahoad (x)] dx
0

where Z/(x) is the controlled Markov process representing the number of workers cur-
: Fory = : vy = _
rently available, a; (x) = 1{Q{()C_)>O’df(x)=1},a2 x) = l{sz(x_)>0’d_,~(X>:2}, andd’(x) =i
represents the action that all workers are currently assigned to station i, for
i=1,2.
Lemma 3.2. For a fixed policy f € IT¥ and fixed 6 > 0,
1 t t
v/, = 5(1—e_9’)E[h1Q{(0) + ha05(0)] + IE/ e hiAy(s)ds — E/ e PP (s)ds,
0 0
(3.1)

where A;(s) is a Poisson process of rate A.

Proof. Denote the history of possible arrivals, services and the Markov process gen-
erated by the capacity increase/decrease decisions under policy f by

H(t) = { (Ai(s), Y{"(s), Z/(s)) ,k=1,2,...,¢, 0<s <t}

where {Y", k = 1,2, ..., £} are independent Poisson processes of rate (,, form = 1, 2.
Let F; be the o-field generated by H (¢). That is to say that F, is the smallest filtration
to which H (¢) is adapted. The queue length processes can be written

L s ‘
0{()= 0[O+ Ais) =Y f Lz oyznal () dY{ (x) (32)
k=10

) 4 s 4 s .
0l()=00)+ ) f Lz aoyznal @AY} (x) =Y / L(zf (o=@ (¥) dY ().
k=170 k=10
3.3)

Note that since f is non-anticipating (and thus, left-continuous) the integrands in (3.2)
and (3.3) are predictable with the respect to F;,. Moreover, each Y;"(¢) is adapted to



INTRODUCTION OF AN AGILE, TEMPORARY WORKFORCE INTO A TANDEM QUEUEING SYSTEM 145

F:. Applying a result from Bremaud [8] (see the “Partial result” on page 24 of [8]) we
have

4 Ky l N
E Z/ L2/ oyzn @ () dY () = E Z/ (27 (emy=h) @3y (X) tomd X
k=170 k=10

—E [ 2/l (pnd,
0

form =1, 2. Thus,

Uife = E/ e h |:Q‘1f(0) + Ai(s) — /S Zf(x—)a{(x)mdx]ds
0 0

+E / e—mhz[Q{(ow / 20 (- ad () prddx - / 7 (x—)a{(x)mdx]ds.
0 0 0

A little algebra yields

v/, = %(1—e‘9’)E[h1Q{(O) +h205(0)] —HE/ e‘eshlAl(s)ds—E/ e P ps(s)ds,
0 0

and the result is proven. O

Note that the above proof does not require the Poisson arrival or worker availability
process assumptions; any counting processes will suffice. Moreover, since only the last
term in (3.1) is dependent on the policy, showing that 77* minimizes v/, is reduced to
showing E¢«(s) > E¢,(s) forallm € IT¥ and all 0 < 5 < ¢.

Theorem 3.3. Fix ¢t > 0. Suppose wi(h; — hy) < (>) u2h,. Then there exists a policy
that minimizes v}, over IT% for all 0 < s < ¢ that allocates all available workers to
queue 2 (1) at time x if Q7 (x) > 0 (Q7(x) > 0).

Proof. Consider the case with p1(hy — hy) < uohy. The other case is proved similarly
and is omitted for brevity. The result is proved via an interchange argument. Consider
2 processes defined on the same probability space. Suppose Process 1 follows a policy
f € ¥ while Process 2 follows a policy = € TT* defined shortly. Since they are defined
on the same space, the arrivals and (potential) services are the same. Moreover, assume
that 77 is chosen so that the Markov chains Z/ (s) and Z7 (s) are such that Z/ (s) = Z"(s)
almost surely. Suppose Process 1 allocates all workers to station 1 at some time o < ¢
when Qg (o) > 0. Let 7 be the first time after o that Process 1 begins serving at station 2
and 1 be the time after o that it completes service of the first customer at station 2. Note
that since customers may be pre-empted, there is no reason to believe that t corresponds
to a service completion.
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The policy 7 follows the same policy as f until time o. At this time, it serves at
station 2 until either it completes service of the first customer in queue, or Process 1
stops serving at station 1; whichever occurs first. Denote this time by o *. Process 2 then
follows the policy f until such time that the first customer in queue 2 has been served
(in Process 2). Denote this time by n,. On [1,, 1) Process 2 serves at station 1. After
1 the processes follow the same policy, f. Since the processes have the same number
of workers, the amount of work that can be done before 1, is the same. Moreover, since
each process does precisely enough work at station 2 to serve the first customer (the rest
of the capacity is spent serving station 1), after 7, the two processes coincide. Thus,
Q,’: (x) = Qf (x) for x € [0,0) U [n;, 00). Note that

0 if x € [0, c0)\([o, o*) U [n2, n1)),
af(x) —al ()= 1{ -1 ifx €lo,0%),

1 if x € [n2, M),

0 if x € [0, c0)\([o, 0*) U [m2, 1)),
ay(x) — azf(x) =11 if x € [0,0%),

—1 ifx € [n, m).

Consider
G2 (s) — Py (s) = fo 27 @palhy — ho)(a @) — al (1)) + paha (a3 () — af (1)) dix

= [p2hy — pi(hy — hz)]/ Zf(-x)(l{xe[(r,cr*)} — Lixefm,ny) dX.
0

Note that since the total amount of work done by each process must coincide, for s > n;
the above integral is zero. On the other hand, since [0, 0*) N[y, 1) = ¥, and 0* < 1,
for s < n; the above integral is non-negative. Now, the assumption pyhy > wi(hy —hy)
implies ¢ (s) > ¢7(s) foreach0 < s < 1.

It should be clear that the above argument can be repeated to create a finite sequence
of policies {r;, 0 < i < M} such that 7y is exhaustive in station 2 and ¢, ,, (s) > ¢, (s)
for each 0 < s < ¢t where my = f.

As in [23], we note that although the policies 7;, for 1 < i < M — 1, are antic-
ipating and thus not in I, ), is non-anticipating (since it is exhaustive). Moreover,
since ) only depends on f through the capacity increase/decrease decisions, the
increase/decrease process does not violate the non-anticipation. The optimal policy’s
capacity increase/decrease policy may improve on this by using the queue length infor-
mation currently available. That is, there exists an exhaustive policy that has expected
cost lower than or equal to that of 7y, and the result is proven. O

Note that since the policy 7 constructed in the proof of Theorem 3.3 has the same
capacity increase/decrease process as that of f, the restriction thatr = 0 is not necessary.
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Moreover, we note that since the results of Theorem 3.3 hold for each ¢, they hold under
the infinite horizon discounted and average cost cases (assuming stability) as well. In
light of Proposition 3.1 they hold over the larger class of policies IT.

The results of this section suggest that the optimal capacity increase/decrease
decisions are in some sense decoupled from the allocation decision. Originally we
expected the two decisions to be intertwined, however, since the cu-rule is basically
a “greedy” algorithm (drain the cost as fast as possible), this interpretation continues
to hold no matter how much capacity is available. In the next section we analyze how
capacity increase/decrease decisions are made.

4. Optimal capacity increase/decrease

In this section we consider the problem of when to increase and decrease workers. In the
unrestricted model we show that the number of workers that should be made available
is non-decreasing in both queue lengths. Although this result has also held true in all of
our numerical studies in the controlled and uncontrolled capacity reduction cases, we
have been unable to prove it to date. Recall from Example 2.4 that this monotonicity
does not extend to the optimal number of workers.

Theorem 3.3 implies that when wyh, > (<) w1(h; — hy) we may restrict attention
to policies that are exhaustive in queue 2 (1). Consider the unrestricted case and suppose
wahy > pi(hy — hy). For a (finite) function g on XY, Hé] can now be simplified

mlin l}{r(k) +B(Agl + 1, j) + kuag(, j — 1)

kef{0
U oo H[1 — (A 4 kpo)lgl, )} for j > 1,
reRin Z}{r(k) +B(gl + 1, j) +kpuigli — 1,7+ 1)
+[1 = A+ kulgl, )} for j =0,

where for i = j = 0 set £ = 0 in the minimum above. There is an analogous mapping
withku,g(i, j—1)replaced withkp,g(i —1, j+1) forthe case with uyhy, < pi(hy—hy).

Inspecting H /g] g(i, j), we note that if r(k) is concave, the minimum is that of a
concave function. Thus, its minimum is achieved on the boundary (i.e. at k = 0 or £).
This is stated in the following proposition.

Proposition 4.1. Ifr(k)is concave, it is optimal to have either zero workers or £ workers
in the system.

When r(k) is a general non-decreasing function but perhaps not concave, the
optimal policy depends on the number of jobs in each queue as well as r (k). Therefore,
we investigate the structure of the optimal policy with respect to the number of jobs in
the system. For the remainder of this section assume that © = p; = w, and that r (k) is
a general non-decreasing function. Since 8 will be fixed throughout most of the section,
we write v, for v, g. The main theorem of this section is stated next.
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Theorem 4.2. In the n-stage discounted cost problem, for each fixed (i, j), there exists
an optimal number of workers to be made available, say L, g(i, j). Moreover, these
levels are such that L, (7, j) is non-decreasing in both i and j. Similarly for the infinite
horizon discounted cost and, under the assumptions of Proposition 2.2, for average cost
models.

Lemma 4.3. Consider the following cases.

1. If 2hy > hy, then for all n > 0,
(@) Al j—1) < A, j)for j > 1,
®) AYG -1 <AV, j), for j > 1,
(©) A,-vfl](i -1, < A,-vff(i,O), fori > 1
(@ AV, 00> 076G, 0 -V —1,1) > A0V G —1,0).

2. If hy > 2h,, thenforalln > 0,

(@ AY3, j) <AV, j+1)fori, j >0,
®) AYGE—1,j+1) <AV, j)fori > 1and j > 0.

Proof. See Appendix. O

Proof of Theorem 4.2 (and 2.3 (3)). We consider the cases when the optimal allocation
policy is exhaustive at station 1 and 2 separately.

Case 1. hy < 2h,. Recall that this implies the optimal allocation is for all available
workers to serve exhaustively at station 2. Suppose instead of the optimal policy at stage
nweused,(i, j)instate (i + 1, j) and d,(i + 1, j) in state (i, j). Then for j > 1

Wi, j) = ihy + jhy +r(dyG, ) + 2% G+ 1, ) +duG, ol (G, j—1)
+[1 =+ dyi, NG, )
< iy + jhy +r(dyi + 1, ) + 20l G+ 1, )
+dy(i+ 1, ol G, j— D+ 1= O+ du + 1, Hrolo? G, j),

and

WG+ 1, )=+ Dhy + jhy +r(d,G + 1, ) + 207 (i +2, ))
+dai + 1, oy G+ 1,7 = 1)
+ 1= (A +dG + 1, Dlvy_ G+ 1, j)
< (i + Dhy+ jhy +r(dyG, )+ 27 G +2, ))
+dpi, Puoy_ G+ 1, j = D4+ [1 = Qo+ du, Dl G+ 1, j).
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Thus,

AV, ) = hy AT G+ ) FdaG+ 1, HpAvy G, - 1)
+[1— (A +duGi + 1, HIAVY G, ), 4.1)

and

AT G, J) < b+ AAY G+ )+ daG, HrAvY G, j— 1)
+[1 = (& +do(i, H1AVY G, ). (4.2)

Subtracting (4.1) from (4.2) (and dividing by w) yields

[d(i, ) = dn(i + 1, DI(A) G, j = 1) = A G, ) = 0. 4.3)
When j =0, and i > 1 a similar argument yields

[d,(i,0) — d,(i + 1,0](A ]G — 1, 1) — AvY (i, 0)) > 0. (4.4)
By symmetry we have the following inequalities also hold for j > 1,

[dn(i, ) = dnGis j+ DI(A) G, = 1) = Ajul G, ) =0, (4.5)
andfor j =0andi > 1,

[d(i, 0) — d, (i, DI(vY_ G, 0) — v/ (G — 1, 1) — AjpY 1(i,0)) =0.  (4.6)

As noted previously, when i = j = 0 it should be clear that it is optimal to have
zero workers and the monotonicity holds trivially. Lemma 4.3 implies that in (4.3)—
(4.6) we have the difference in the actions between two states multiplied by a non-
positive quantity. Consider for example (4.3). If A,'vfllfl(i, j—1— Aivfffl(i, j) <0,
d,(, j) — d,(i +1,j) < 0 and the result is proven. We note that the minimum in
HE v (i, j) is realized when r(k) + kplv]_ G, j — 1) — v]_ @, j)] is minimized.
Similarly, for Hf' v (i+1, j)andr(k)+kpulv_ (i+1, j—1)—=vi_ (i +1, j)]. Thus, if
A; vf/_l i, j—1)—A; vfl/_l (i, j) = 0 we may choose the number of workers in each state
to be the same and the result is proven. The infinite horizon cases are precisely the same
upon recalling that both vg and wY, solutions to the DCOE and ACOE, respectively,
can be obtained by taking limits. That is, the inequalities of Lemma 4.3 hold with v¥
replaced with either vg or wY. This completes the proof of Case 1.

Case 2. hy > 2h,. It is optimal to serve exhaustively at station 1. We first show that
L, g(i, j) is non-decreasing in j. In an analogous manner to the case when h| < 2h,,
fori > 1

[da(i, ) = dn(is j+ DIA VG =1, + 1) = Aju, G, ) =0, (4.7)
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and fori =0
[d.(0, j) — d,(0, j + DI(A;v)_10, j — 1) — AjvY_ (0, j)) > 0. (4.8)

The proof now follows in the same manner as Case 1 by applying the second set of
inequalities in Lemma 4.3.
To prove the result for 7, note that fori > 1

[d.(, j) — du(i + 1, J')](Aiv,(,],l(i —1Lj+D-AY G, M) =0, 4.9)
and fori =0

[dn(0, j) = du(1, NI(vy_1 (0, j + 1) = v (0, j = 1) = Ajv; (0, j)) = 0.
(4.10)

Thus, we must show that the following inequalities hold for all n > 0:

L AYG =1, j+1) =AY, j)<Ofori >0,
209G, j+ D=0+ 1, /) —2YG, - D+0YG, j)<0fori >0, >1,
309G =1, )=V, j—1)<O0fori, j > 1,

where the last inequality, required for the proof of the other two, is proven by choosing
d,(i—1, j)instate (i, j — 1) and is omitted for brevity. For the first inequality, note that
fori > 2

AVYG =1, 4+ 1) =AY, )
<AMAv G+ D) = Al G+ 1 )]
+d,i — 1, j+ Dp[Anl( =2, j+2)— Ay =1, j+ D]
+[1 = +d,G+ 1, Hwl[Av] G =1, j+ 1) = Al G, )]

and fori =1

AT, j+ 1) =AY, )
< Aan? A, j+ D — Ay 2, )]
+d,(0, j + Dol 10, j +2) — vl (0, j) — Al (0, j + 1]
+[1— (A +du2. HI[Aivy_ 10, j + 1) — Al (1, )]
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The inductive hypothesis yields the result. For the second assertion with i > 1

Wi, j+ D=0+ 1, ) —vYG, j— D+l )
<2hy—h+ A G+ L j+D—v (42, ) —vl G+ 1,1
Fo G+ L D] = G+ + 1, I G+ D =l G+ 1, )
—o Gy = D+ G D]+ da A+ L v G =1+ 2)=0Y G j+D
—oV G =L )+l G =1+ D]+ [daG + 1, ) —da(y j — DI
x vl G =1, j+2)— v’ G, j+ D],

andfori =0and j > 1

vy (0, j + 1) = v/ (1, ) = v/ (0, j = D+ v/ (0, j)
< 2hy —hi + Aol (1, j+ D=7 @2, )=l j— D+l (1, )]
+ 1=+ dp (1, N[V 0, j + 1) — v (1, ) — vy 0, j=D+v. (0, j)]
+dy (0, j — Du[ A0, j —2) — A2 (0, j)].

With the exception of the last term, in each case, the inductive hypothesis suffices
for the non-positivity of each term. Furthermore, note that the inductive hypothesis
implies, via (4.9) and (4.10), that d,(i + 1, j) > d,(i, j). Thus, since d,(i, j) is also
non-decreasing in j, d,(i + 1, j) > d,(i, j — 1). This completes the proof fori > 1.
As for the last term for i = 0, recall that A;vY (0 + 1, j) > A;vY (i, j) so the result is
proven.

As in the proof for Case 1, noting that solutions to the DCOE and ACOE can be
obtained by taking limits, the results hold for the infinite horizon discounted and average
cost cases. O

5. Numerical examples

In this section we include examples under the average cost criterion and propose promis-
ing heuristics based on the results in Section 4. A truncated state space is used to facilitate
computation. In the next two examples the optimal allocation is exhaustive in queue 2,
and hence only states with j = 0 or j = 1 will be occupied in the long-run. Since
W1 = M2, the results of Theorem 2.3 part 3 also apply.

Example 5.1. Suppose we have the following parameter settings: 7 = 1; hy = 2;
rtky = k* € =6, A = .5 = ur = .5 ak) = .5; y = .1. Figure 2(a) displays
the optimal capacity levels given the number of customers for the unrestricted model.
Figure 2(b) displays the optimal capacity target levels for the controlled capacity reduc-
tion model; if £ is less than the target level, then it is optimal to add workers when the
opportunities arise up to the target, and if k is greater than the target level, then it is
optimal to decrease the number of workers down to the target. For example, wheni = 3,
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2 Add Do Nothiqg

—j=0---j=1 —j=0--"j=1
18 18
16 16
“w+s 14
12 Add : 12 A
o Do Nothlig ) Add

(b) Controlled reduction optimal capacity target levels:  (c) Uncontrolled reduction optimal capacity increase
add (remove) workers when k is less (more) than target.  policy.

Figure 2. Optimal policies for Example 5.1 with convex worker cost function r (k) = k2.

Jj =0, it is optimal add workers if £ < 3, and remove workers when £ > 3. Figure 2(c)
displays the optimal capacity increase policy for the uncontrolled reduction model. For
example, when i = 3, j = 0, it is optimal to add workers if £ < 2.

The average cost in the unrestricted, controlled capacity reduction and uncontrolled
capacity reduction cases is 7.6024, 8.2007 and 9.9530, respectively. As is expected, the
unrestricted case dominates the controlled and uncontrolled capacity reduction cases
(approximately 8% and 31%, respectively). In the class of policies with a fixed number
of servers, the optimal average cost is 11.0000 (3 workers is optimal in this class).
This is approximately 45% more than the unrestricted case. This indicates (at least for
this example) that a company can derive significant benefits from having dynamically
flexible capacity.

We know from Theorem 2.3 part 3 that the optimal number of workers for the
unrestricted case is monotone in the number of jobs. This is evident in Figure 2(a);
the optimal capacity levels are increasing in both i and j. The optimal policy for the
controlled capacity reduction case, Figure 2(b), has a form close to the unrestricted
policy and is also monotone in i and j. In addition, it is monotone in k. Likewise, the
optimal policy for the uncontrolled capacity reduction case, Figure 2(c), is monotone
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Table 1
Optimal average costs for Example 5.1 in the controlled reduction case for various «(k) = «. The second
row compares this to the unrestricted optimal cost 7.6024.

o 0.1 0.2 0.5 1 2 5 10 20 50 100

Optimal cost 8.8802 8.6651 8.2007 7.9933 7.9069 7.7243 7.6632 7.6328 7.6145 7.6085
% from unrestricted 16.81% 13.98% 7.87% 5.14% 4.01% 1.60% 0.80% 0.40% 0.16% 0.08%

Table 2
Uncontrolled reduction optimal average costs for Example 5.1 with various «(k) = « and y. NA indicates
infeasibility. The minimum cost in each column is in bold.

o

y 0.1 0.2 0.5 1 2 5 10 20 50 100

0.01 10.9166 9.9866 9.6393 9.5561 9.5159 9.4960 9.4874 9.4830 9.4804 9.4796
0.05 NA 122387 9.3982 89979 8.8438 8.7609 8.7337 8.7207 8.7133 8.7108

0.1 NA NA 9.9530 8.9535 8.6594 85054 8.4637 8.4449 8.4343 8.4309
0.5 NA NA NA NA 9.2114 8.2980 8.0951 8.0198 7.9797 7.9676
1 NA NA NA NA NA 8.5664 8.1405 7.9765 7.8836 7.8555
5 NA NA NA NA NA NA NA 8.5887 7.8991 7.7737

in all three state variables. As stated previously, while we were not able to prove it, we
conjecture that the optimal policies for the controlled and uncontrolled reduction cases
are monotone in i, j, and k when r (k) is non-decreasing and convex.

Tables 1 and 2 show the effect on the optimal average cost as «(k) is varied in
the controlled reduction case, and «(k) and y are varied in the uncontrolled reduction
case, respectively. In the controlled reduction case, as a(k) = o becomes large, that is,
when excess capacity becomes available more frequently, the average cost decreases
towards that of the unrestricted case. For a fixed y, the average cost also decreases in
the uncontrolled reduction case as « increases. For a fixed «, however, the average cost
is not monotone in y . For each « there is an “optimal” y. If y is too low, excess workers
stay too long, while if y is too high, the workers do not stay long enough. This suggests
that heuristics based on the unrestricted case may do well in some cases and not well in
others.

Example 5.2. Suppose we have the same parameters as in Example 5.1 except r (k) =
15+/k. Figure 3 displays the optimal capacity increase policy for the uncontrolled re-
duction model.

We have seen in Examples 2.4 and 5.2 that optimal policies need not be monotone
in k even when r (k) is increasing. Our numerical studies suggest that such monotonicity
is guaranteed only when r (k) is convex. Example 5.2 has a worker cost function that is
increasing and concave. We see in Figure 3 that the optimal policy for the uncontrolled
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Add

Figure 3. Uncontrolled reduction optimal capacity increase policy of Example 5.2 with concave worker
cost function r(k) = 15k.

reduction case is not monotone in k. For example, when i = 3, it is optimal to not add
workers when k£ = 0, optimal to add workers when k = 1, and then optimal to not add
workers again for larger k.

5.1. Heuristics

In this section, we consider some heuristics that have shown promise. An easily char-
acterized heuristic is to try to maintain a constant workforce level independent of the
number of jobs in the system. As noted for Example 5.1, this does not work well in the
unrestricted case (costs 45% more than the optimal policy). Instead consider the policy
that increases capacity to a constant level, say L, when there are jobs in the system and
then removes all workers when there are no jobs. We refer to such a policy as a 0-L
heuristic. For the unrestricted case of Example 5.1, L = 3 is optimal in this class of
policies with an average cost of 8.0000, only 5.23% above the optimal policy cost. For
this system we exploited the fact that under a constant level of 3 workers, the probability
of having zero customers in the system is significant: .3333. Thus, in this case, the 0-L
heuristic significantly reduces the worker idle time.

For the controlled and uncontrolled reduction cases, a O-L heuristic adds workers
(when the opportunities arise) if and only if there are a positive number of jobs in the
system and fewer than L workers on hand. In addition in the controlled capacity reduction
case, the heuristic policy removes all workers when there are no jobs in the system. The
results for the controlled reduction case of Example 5.1 are given in Table 3 for various
values of a(k) = o. Again L = 3 performs the best. We see that for some parameters
this heuristic performs well, while for other parameters it does not. In the uncontrolled
capacity reduction case, the heuristic in general does not perform well. For example,
for the parameters of Example 5.1 with «(k) = .5 and y = .1, the best such heuristic is
only within 22% of optimal (average cost of 12.1440 compared to optimal 9.9530).

For the uncontrolled reduction case, consider the following policy: when there
are less than 7 jobs in the system (in total), add workers only when there are less
than L; servers on hand; when there are T or more jobs, add workers up to a total of



INTRODUCTION OF AN AGILE, TEMPORARY WORKFORCE INTO A TANDEM QUEUEING SYSTEM 155

Table 3
Average costs of a 0-L heuristic with L = 3 applied to the controlled reduction model of Example 5.1 with
various a(k) = «a.

o 0.1 0.2 0.5 1 2 5 10 20 50 100

Heuristic cost 143166 11.1361 9.1993 8.5555 8.0838 8.2476 8.0380 8.0179 8.0069 8.0034
% from optimal 61.22% 28.52% 12.18% 7.03% 4.31% 4.65% 4.89% 5.05% 5.15% 5.19%

L. Thus, there are two target worker levels, L and L,, and a threshold total number
of jobs T that indicates when to switch between the two. We refer to such a policy
as a 2-level heuristic. A 2-level heuristic may perform well and is fairly simple to
implement.

For Example 5.1, the best 2-level heuristic has L; = 2, L, = 4,and T = 3.
This is depicted in Figure 4(d). The average cost is 10.2438, within 2.92% of optimal.
Figure 4(b) shows a 2-level heuristic for Example 2.4 that performs within 0.47% of
optimal. The best 2-level heuristic for Example 5.2 is depicted in Figure 4(f). Here,
L1 = 0and L, = 6 and the policy reduces to a simple job threshold policy that adds
capacity if and only if there are T = 4 or more jobs in the system, independent of the
number of workers (up to the capacity limit). This policy performs within 0.82% of
optimal. It should be noted that a single job threshold policy (L; = 0 and L, = ¢) does
not always perform well. For example, the best such policy for Example 5.1 has T = 3
and is only within 17.63% of optimal.

5.1.1. 2-Level heuristic numerical study
In this section we present the results of a numerical study of how well 2-level heuristics
perform for a variety of parameters. For the study, the arrival rate and the total number
of workers allowed are kept fixed at A = .5 and £ = 6. Three values for the ratio /1,/ A
are considered: .5,2,and 5; hy =2and h, = 1, h; = land hp, = 2,and h; = 1 and
h, = 5, respectively. There are also three possible values for the ratio @ /us: .5, 1, and
2. The specific values for @ and u, are such that the offered load, A(1/u + 1/17), is
equal to 2. The resulting values for p; and u, are u; = .5 and upy = .5, u; = .75 and
o = 375, and u; = .375 and u, = .75. Of the nine combinations of ratios 4,/
and 1/, two combinations with 4,/ h; = .5 result in optimal exhaustive allocation
at queue 1 (with one of these two being indifferent between allocation to queue 1 or to
queue 2); the rest are exhaustive at queue 2.

For the uncontrolled reduction case, we consider three values for the ratio «/y.
In order for the system to be stable, with an offered load of 2; it must be that o/y >
2.0258. The ratios «/y are chosen to be 3, 5, and 10. As a base case, consider the
convex worker cost function 7 (k) = k2. For this cost function, y is chosen to be .05,
.1, and .5. Hence, the base set of parameters have nine different «-y combinations and
81 overall parameter combinations. In particular, the parameters of Example 5.1 are
included.
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(a) Optimal capacity increase policy, Example 2.4. (b) Heuristic within 0.47% of optimal, Example 2.4.
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(c) Optimal capacity increase policy, Example 5.1 (d) Heuristic within 2.92% of optimal, Example 5.1
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(e) Optimal capacity increase policy, Example 5.2. (f) Heuristic within 0.82% of optimal, Example 5.2.

Figure 4. Optimal uncontrolled reduction capacity increase policies and respective heuristics.

The results of the numerical study are given in Table 4. The average percent differ-
ence between the optimal average cost and the average cost of the best 2-level heuristic is
2.77%. We see that the percent difference gets smaller as o decreases («/y decreases for
a fixed y). In fact, the average percent difference for @ < A = .5is only 1.77%. When
a/y is 3 (or less), it turns out that the best 2-level heuristics always have L, = 6; full ca-
pacity. In these cases both the optimal policy and the heuristic policy spend a lot of time in
states where it is optimal to hire, and the percent differences between their average costs
are very small. As « increases, the percent of arrivals that are hired decreases. For the
parameters of Example 5.1 with o = .5, the best 2-level heuristic has L = 2, L, = 4,
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Table 4
Results of the numerical study for the uncontrolled reduction base case with r(k) = k?. Given are the
optimal average cost, the average cost of the best 2-level heuristic, and the percent difference.

b _
L=35

b _ 9

hi

T
M2

Mo
1

)

H2

a5

2

mo_ 9

2]

y = .05 % =3 Opt:
Heur:

% Diff:

=5 Opt:
Heur:

% Dift:

=10 Opt:
Heur:

% Dift:

y =.1 % =3 Opt:
Heur:

% Diff:

=5 Opt:
Heur:

% Dift:

=10 Opt:
Heur:

% Dift:
y=.5 2£=3 Opt:
Heur:

% Diff:

=5 Opt:
Heur:

% Dift:

£ =10 Opt:
Heur:

% Dift:

xR

<R

xR

<R

xR

24.637
24.670
0.13%
13.594
13.737
1.05%
11.148
11.529
3.42%
18.767
18.820
0.28%
12.102
12.442
2.81%
10.471
10.850
3.62%
12.951
13.178
1.76%
10.140
10.666
5.19%
9.358

9.921

6.02%

10.606
2.91%
8.712
9.083
4.26%
8.190
8.659
5.73%

16.823
16911
0.52%
10.881
11.143
2.41%
9.398
9.698
3.19%
13.563
13.671
0.80%
9.953
10.244
2.92%
8.954
9.261
3.44%
10.384
10.690
2.94%
8.825
9.168
3.89%
8.298
8.753
5.49%

17.043
17.124
0.48%
11.074
11.333
2.34%
9.593

9.907

3.27%
13.783
13.889
0.77%
10.152
10.438
2.82%
9.160

9.451

3.17%
10.599
10.904
2.87%
9.007

9.366

3.98%
8.498

8.941

5.20%

17.621
17.684
0.36%
11.632
11.871
2.05%
10.140
10.462
3.17%
14.361
14.469
0.76%
10.708
10.995
2.68%
9.696
10.020
3.34%
11.175
11.492
2.84%
9.548
9.932
4.02%
9.042
9.504
5.11%

18.769
18.806
0.20%
12.750
12.947
1.55%
11.248
11.572
2.88%
15.519
15.630
0.72%
11.836
12.110
231%
10.793
11.106
291%
12.332
12.606
2.23%
10.619
11.064
4.19%
10.072
10.571
4.96%

T = 3, and a 2.92% percent difference; when o = .3, the best heuristic is L; = 3,
L, =6, T =4, and the percent difference is only 0.80%; when o = 1, the best heuristic
isL; =2,L, =4,T =5, and the percent difference is 3.44%. Increasing the opportu-
nities to add workers makes the optimal policy in a sense more “dynamic” and the 2-level
heuristic may not do as well in matching it. Below we will see results for other worker cost
functions where sometimes the percent difference in costs may actually decrease as o

increases.

So far we have only defined a 2-level heuristic for the uncontrolled reduction case.
We can also define 2-level heuristics for the controlled reduction and unrestricted cases.
In the unrestricted case, when there are less than T jobs in system, have L; workers on
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Table 5
Results (optimal average cost, cost of the best 2-level heuristic, and percent difference) of the numerical
study for the controlled reduction case of the base parameters with r (k) = k2.

hy _ hy _ b _
hy =.5 hy hy =5
Mo 5 M [ M5 M1 M M5 M LA}
2%} : W2 M2 M2 . 2%} 12 12 ’ 2%} %)

a=.15 Opt: 10439 10265 9.544 8.647 8.735 8919 9461 9.958 10.547
Heur: 10.620 10.418 9.672 8737 8819 9.012 9560 10.054 10.651

% Diff:  1.73% 150% 134% 1.04% 096% 1.04% 1.04% 097% 0.99%

a=.25 Opt: 10.131 9948 9336 8530 8.626 8806 9337 9.822 10.398
Heur: 10.262 10.070 9.457 8.626 8706 8.895 9.433 9917 10.508

% Diff:  1.30% 122% 130% 1.13% 092% 1.01% 1.03% 097% 1.06%

a=.3 Opt: 10.058 9.872 9286 8399 8506 8.685 9244 9.761 10.360
Heur: 10.172 9983 9.399  8.601 8.680 8.868 9.402 9.883 10.470

% Diff:  1.14% 1.13% 1.22% 241% 2.04% 2.11% 171% 124% 1.06%

a=.5 Opt: 9.768 9.591 8974 8.104 8201 8373 8909 9.404 9.980
Heur: 10.002 9.819 9.292 8400 8489 8.661 9.182 9.657 10.224

% Diff:  2.40% 238% 3.53% 3.65% 351% 3.43% 3.06% 2.69% 2.44%

a=1 Opt: 9266 9.099 8606 7903 7.993 8160 8.670 9.140 9.691
Heur: 9866 9.689 9.018 8226 8308 8470 8958 9.401 9.933

% Diff:  6.48% 649% 4.79% 4.09% 3.94% 3.80% 3.32% 2.86% 2.50%

a=15 Opt: 9.106 8942 8486 7.846 7.934 8.098 8597 9.056 9.597
Heur: 9.732 9540 8918 8.196 8274 8432 8904 9334 9.850

% Diff:  6.87% 6.68% 5.09% 4.46% 430% 4.13% 3.58% 3.07% 2.63%

a=25 Opt: 8985 8.822 8392 7.761 7.847 8.005 8486 8.931 9.452
Heur: 9.626 9.437 8854 8114 8190 8342 8800 9217 9.714

% Diff:  7.14% 697% 5.52% 4.54% 438% 4.22% 3.70% 320% 2.77%

a=5 Opt: 8792  8.635 8221 7.639 7.724 7.882 8359 8.802 9.312
Heur: 9.453 9266 8.687 8009 8.084 8234 8683 9.094 9582

% Diff:  751% 731% 5.67% 4.84% 4.65% 4.46% 3.88% 332% 2.89%

hand. When there are T or more jobs, have L, workers. In the uncontrolled reduction
case, hire when there are less than T jobs and less than L; workers on hand. When there
are less than 7' jobs and more than L workers, reduce capacity down to L ;. When there
are T or more jobs, hire up to or reduce down to L.

Results for 2-level heuristics in the controlled reduction and unrestricted cases
for the base set of parameters are given in Tables 5 and 6, respectively. While there
are nine different /) ratios in the uncontrolled reduction case, there are only eight
different values for . These are the values studied in the controlled reduction case. The
average difference in costs for the controlled reduction case (over 8§ different «’s) is
3.16%, with an average of only 1.71% for « < A. The average difference in costs for the
unrestricted case is 5.32%. For the parameters of Example 5.1, the best 2-level heuristic
in the unrestricted case is L1 = 0, L, = 3, and T = 1 with a cost difference of 5.23%.
In other words, the best 2-level heuristic is a O-L heuristic with L = 3, the best 0-L
heuristic. All of the best 2-level heuristics in the unrestricted case are 0-L heuristics. In
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Table 6
Results (optimal average cost, cost of the best 2-level heuristic, and percent difference) of the numerical
study for the unrestricted case of the base parameters with r (k) = k2.

hy __ hy _ hy _
ﬁ =5 h? =2 T =5
2] n2 n2 n2 2 n2 n2 M2 M2
Opt: 8.544 8.387 8.007 7.517 7.602 7.760 8.233 8.671 9.170
Heur: 9.185 9.000 8.476 7.926 8.000 8.148 8.593 9.000 9.481

% Diff:  7.50% 731%  5.87% 5.43% 523%  5.00% 4.36% 379%  3.40%

the uncontrolled case, the parameters of Example 5.1 result in a best 2-level heuristic
of Ly =1,L, =3,and T = 1 with a cost difference of 3.51%. This is better than the
12.18% of the best 0-L heuristic found in Table 3. Note that in the controlled reduction
case the cost difference is not always non-decreasing in «.

In addition to the convex worker cost function r(k) = k2 (Function 1), consider
the linear function r(k) = 6k (Function 2), the concave function in Example 5.2,
r(k) = 15+/k (Function 3), and the general function (neither concave nor convex)
given by the vector r = [0, 8, 13, 17, 22, 30, 36] (Function 4). Numerical results for
these functions are given in Tables 7-9 for the uncontrolled reduction, controlled reduc-
tion, and unrestricted cases, respectively. We only give results for the case y = .1 and
the three resulting o’s when «/y = 3, 5, and 10.

For Function 1 the average cost difference in the uncontrolled case restricted to
y = .11is 2.29%. For Functions 2, 3, and 4 this average difference is 1.75%, 0.94%,
and 1.43%, respectively. For Function 1 in the controlled firing case the overall av-
erage cost difference for « = .3, .5, and 1 is 2.94%. For Functions 2, 3, and 4 this
average difference is 0.37%, 0.90%, and 0.42%, respectively. For Function 1 in the
unrestricted case the average cost difference is 5.32%. For Functions 2, 3, and 4 this
average difference is 0.00%, 0.00%, and 0.74%. For Functions 2, 3, and 4 the 2-level
heuristics do very well. In fact, for Functions 2 and 3, both of which are concave, the
best 2-level heuristic in the unrestricted case is always L, = 0, L, = 6, and T = 1,
which coincides with the overall optimal policy. For Function 3, the best 2-level heuris-
tic in the unrestricted case is always L1 = 0, L, = 4, and T = 1, a 0-L heuristic.
Since it is not concave, it does not have L, = 6 and does not coincide exactly with
the overall optimal policy. Note again that the percent difference in costs is not always
non-decreasing in . For example, for the parameters of Example 5.1 except with worker
cost Function 4, the best 2-level heuristic (L; = 1, L, =4, T = 3) is within 1.98% of
the optimal cost while the best 2-level heuristics for o lowered to .3 (L} = 3, L, = 6,
T =4)and ¢ raisedto 1 (L1 =0, L, = 4, T = 4) are within 0.53% and 1.53%,
respectively.

The 2-level heuristics displayed in Figures 4(b), (d), and (f) seem to work well
because they are essentially smoothing the optimal policies, Figures 4(a), (c), and (e),
respectively. While we found that 2-level heuristics work well in many settings and are
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Table 7
Results (optimal average cost, cost of the best 2-level heuristic, and percent difference) of the numerical
study for the uncontrolled reduction case of the base parameters restricted to y = .1 with various worker
cost functions.

b5 M1 M JLA R Mo M_—9p M5 K LR
"2 ) 42 42 42 ) 2 2 2 :

Function 2 =3 Opt: 26.037 25.778 23.483 20.369 20.450 20.670 21.261 21.779 22.439
(linear) Heur: 26.106 25.847 23.552 20.536 20.617 20.833 21.415 21924 22575
% Dift:  0.26% 0.27% 029% 0.82% 0.81% 0.79% 0.72% 0.67% 0.61%

=5 Opt: 19.661 19.479 18.539 17.079 17.191 17.381 17.957 18.491 19.112
Heur: 20.053 19.849 18.933 17.482 17.575 17.765 18.331 18.851 19.464

% Diff: 1.99% 1.90% 2.13% 236% 2.23% 221% 2.09% 195% 1.84%

=10 Opt: 18.220 18.038 17.377 16335 16.444 16.641 17.208 17.741 18.344
Heur: 18.773 18.577 17.937 16.740 16.843 17.029 17.606 18.142 18.760

% Diff: 3.03% 2.99% 3.22% 248% 2.42% 2.33% 231% 2.26% 2.27%
Function 3 % =3 Opt: 33.459 33.211 30.984 27.864 27.953 28.167 28.753 29.277 29.926
(concave) Heur: 33.467 33.219 31.024 27.989 28.075 28.280 28.862 29.384 30.025
% Diff: 0.02% 0.02% 0.13% 0.45% 0.44% 040% 0.38% 0.36% 0.33%

=5 Opt: 27.352 27.183 26.240 24.613 24.729 24904 25451 25985 26.579
Heur: 27.685 27.504 26.583 24.817 24932 25.102 25.673 26217 26.815

% Diff:  1.22% 1.18% 131% 083% 0.82% 0.79% 0.87% 0.89% 0.89%

=10 Opt: 25.870 25.702 25.058 23.546 23.662 23.831 24.349 24871 25.452
Heur: 26222 26.052 25360 23.926 24.045 24211 24.780 25323 25.898

% Diff: 1.36% 136% 120% 1.61% 1.62% 159% 1.77% 1.82% 1.75%
Function 4 % =3 Opt: 26.084 25.828 23.610 20.653 20.731 20.947 21.523 22.036 22.684
(general) Heur: 26.097 25.842 23.689 20.766 20.841 21.056 21.633 22.136 22.773
% Diff: 0.05% 0.05% 0.33% 0.55% 0.53% 0.52% 0.51% 0.45% 0.40%

=5 Opt: 19.848 19.665 18.761 17.401 17.505 17.693 18.245 18.769 19.372
Heur: 20.327 20.127 19.204 17.756 17.852 18.046 18.625 19.143 19.724

% Diff: 2.41% 235% 2.36% 2.04% 198% 199% 2.08% 199% 1.82%

=10 Opt: 18399 18218 17.599 16.607 16.723 16.905 17.439 17.948 18.523
Heur: 18.810 18.620 18.043 16.873 16.979 17.155 17.721 18.225 18.787

% Diff: 2.24% 221% 2.52% 1.60% 1.53% 148% 1.62% 1.55% 1.43%

xR

xR

<R

xR

<R

xR

<R

definitely promising, if they do not work well in a particular instance then the idea of
smoothing the optimal policy could be explored further.

In conclusion, our numerical study yields three major observations. First, the dif-
ference in the average costs between operating with a fixed number of servers and
operating under the optimal policies for the unrestricted, controlled capacity reduction
and uncontrolled capacity reduction cases can be significant. Second, our 2-level heuris-
tic provides a simple, easily implementable alternative to optimal policies without (in
most cases) a significant increase in the average costs. This observation seems to be
robust in each of the model parameters. Finally, our numerical study supports our un-
proven conjecture that a sufficient condition for the optimal capacity increase/decrease
policy to be monotone is that the worker cost function is increasing and convex. When
the convexity assumption is relaxed, examples show that the optimal policy need not be
monotone.
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Table 8
Results (optimal average cost, cost of the best 2-level heuristic, and percent difference) of the numerical
study for the controlled reduction case of the base parameters restricted to y = .1 with various worker cost

functions.
k=135 =2 k=5
M5 KB KM _n K5 M _] K_n K_5 K _1 K _9
o o o I 2 Mo o o 2
Function2 o =.3 Opt:  17.433 17.273 16550 15560 15.669 15.805 16.288 16.750 17.224
(linear) Heur: 17.596 17.448 16.730 15.710 15.811 15930 16.370 16.798 17.250
% Diff: 093% 1.01% 1.09% 096% 090% 0.79% 0.50% 029% 0.15%
a=.5 Opt:  16.594 16.473 15871 14.645 14744 14.859 15.278 15.680 16.100
Heur: 16.726 16.615 16.006 14.669 14.765 14.874 15.283 15.681 16.100
% Diff:  0.80% 0.86% 0.85% 0.17% 0.14% 0.10% 0.03% 0.01% 0.00%
a=1 Opt:  15.030 14.936 14.576 13.795 13.879 13.974 14.334 14.682 15.053
Heur: 15.050 14.955 14.590 13.795 13.879 13.974 14334 14.682 15.053
% Diff:  0.13% 0.12% 0.10% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Function3 o =.3 Opt:  23.642 23.535 22597 20.544 20.653 20.753 21.172 21.592 22.009
(concave) Heur: 23.642 23.535 22597 20.593 20.711 20.813 21.253 21.698 22.134
% Diff:  0.00% 0.00% 0.00% 024% 028% 029% 039% 049% 0.57%
a=.5 Opt:  21.155 21.062 20.436 18.922 19.015 19.103 19.466 19.828 20.191
Heur: 21.155 21.062 20.436 19.099 19.213 19.304 19.713 20.128 20.530
% Diff:  0.00% 0.00% 0.00% 094% 1.04% 1.05% 127% 1.52% 1.68%
a=1 Opt: 18.730 18.645 18.231 17.132 17.210 17.288 17.600 17.907 18.223
Heur: 18.734 18.656 18.274 17.478 17.580 17.658 18.018 18.383 18.737
% Diff:  0.02% 0.06% 023% 2.02% 2.15% 2.14% 237% 2.66% 2.82%
Function4 o =.3 Opt: 18.035 17.890 17.145 15528 15.632 15.762 16.230 16.681 17.163
(general) Heur: 18.192 18.031 17.254 15.595 15.697 15.826 16.289 16.736 17.215
% Diff:  0.87% 0.79% 0.64% 043% 042% 041% 037% 0.33% 0.30%
a=.5 Opt:  16.562 16.433 15.786 14.493 14.592 14.712 15.147 15.567 16.016
Heur: 16.722 16.589 15873 14.518 14.615 14.737 15.177 15.600 16.056
% Diff: 097% 095% 0.55% 0.17% 0.16% 0.17% 0.19% 021% 0.25%
a=1 Opt: 14.885 14.775 14360 13.550 13.640 13.751 14.150 14.533 14.945
Heur: 15.021 14.897 14.416 13.570 13.658 13.772 14.177 14.564 14.987
% Diff: 091% 0.83% 039% 0.15% 0.14% 0.16% 0.19% 022% 0.28%
Table 9

Results (optimal average cost, cost of the best 2-level heuristic, and percent difference) of the numerical
study for the unrestricted case of the base parameters restricted to y = .1 with various worker cost functions.

h 2
2=135 2=2 2=5s
M5 Mo M) M_5 A_] A=) L35 M_] K_)
n2 n2 2 15 15] 2 2 2 "2
Function2 Opt: 12815 12750 12.646 12.574 12.625 12.685 12.907 13.125 13.352
(linear) Heur: 12.815 12.750 12.646 12.574 12.625 12.685 12.907 13.125 13.352
% Diff:  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Function3  Opt:  13.062 12.997 12.893 12.822 12.872 12933 13.155 13.372 13.599
(concave) Heur: 13.062 12.997 12.893 12.822 12.872 12.933 13.155 13.372 13.599
% Diff:  0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Function4 Opt: 12431 12341 12176 12.026 12.096 12.188 12478 12.774 13.091
(general)  Heur: 12.611 12.500 12267 12.056 12.125 12222 12.556 12.875 13.222
% Diff:  1.45% 1.29% 0.74% 025% 024% 028% 0.62% 0.79% 1.00%
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6. Conclusions

In this paper we considered several models for a potentially temporary, flexible workforce
in adynamic environment. We characterized the structure of the optimal allocation policy
of flexible capacity in a tandem queueing system when the capacity is available only for
a random amount of time. Furthermore, when the decision-maker has complete control
over the capacity available in the system, we proved the intuitive result that the optimal
number of workers is non-decreasing in the number of customers at each station. Each
of these results stand to simplify both computation and analysis.

We remind the reader that we have assumed that workers can collaborate on a
single job. When this does not hold, we believe that the allocation results of Section 3
no longer hold, at least not in both directions. Indeed, even when the capacity is not
variable, only the direction leading to the optimality of a policy that is exhaustive in
queue 1 holds (see the example in Ahn et al. [1]). We believe that a similar result holds
here. Moreover, we do not believe that the assumption that 1y = u, is required for
Theorem 4.2, but have been unable to prove it without this assumption.

As of yet we have been unable to prove any analogous results for the capacity
increase/decrease decisions in the controlled and uncontrolled capacity reduction cases.
While some examples that we considered exhibit the monotonicity, the result does not
extend to the case where the opportunity cost per unit time is increasing in the number
of servers (as demonstrated by Example 2.4). However, our extensive numerical studies
reinforced our conjecture that the optimal capacity increase/decrease policy is monotone
in the number of workers when the worker cost function is increasing and convex; this
also remains to be proven. Along with this study, we note that other future research
directions include a similar analysis for a network of stations and those with capacity
that is available for a fixed amount of time.
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Appendix

Structure of value functions for finite horizon problems

Proof of Lemma 4.3. Suppose 2h, > hy. By induction. The result holds trivially for
n = 0. Assume that it holds for n — 1. Let d,,(i, j) denote the optimal number of workers
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in state (7, j) at stage n. We show that each inequality holds for H é’ vfl/ |- The result then

follows from the definition of v¥ in (2.7). For the first inequality, choose the actions
d,(i+1, j)and d,(i, j — 1) in states (i, j) and (i + 1, j — 1), respectively. For j > 2
AiHG oY (G ) = AT G+ L ) 4 da( + 1, vy (G j— 1)
1= O+ ol 4+ 1, PlA G, ),

and

AHG G =1 <280 G+ 1, j = D+ G, j = Dpdivy G, j —2)
= G+ dyG, = DA G j =D,

Taking the difference we have

AHG v Gy j = 1) = MHG Y G )
<A G+ 17 =D = A G+ 1, )]
+dy (i, j = Du[Aiv G J = 2) = A,y j = 1]
= O+ da + 1, HI[Av) G, j = 1) = A, G, )]
The inductive hypothesis yields the first assertion. In the case that j = 1 andi > 1, a
similar argument yields

AiHG v (G,0) = AiHG v (G, 1)
<AAvY G +1,00— Al G+ 1, D]
+dai, Op[AY (—1,1) — Al G, 0)]
+ 1= A +dyG + 1, DI[Avy G, 0) — A G, D).
The result now follows directly from the inductive hypothesis. If j = 1 and i = 0, we
first note that d,(0, 0) = 0 is an optimal action (otherwise workers would be idle). Thus,
the previous inequality holds with the second term equal to zero.
For the second inequality, let A?g(i, J) = Ajgl,j+1)— Ajg(, j). Note for
Jj=1
AHOY (G ) = AN G ) 4+ d G, paie) G j— 1)
+1 = A +dG, j+ 2N G, ),

andfor j =0andi > 1

ATHG W] ((0,0) = 2850 G, 0)+dG, O)u[A vy, 0) — (v (G, 0)—vy (i—1, 1)]
+[1 = (A +dG, j+ 2N G, ).
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The result follows by the inductive hypothesis. The case for i = j = 0 is analogous to
the previous argument.
The third inequality yields

AiHJ v (G —1,1) — A HJ v (i, 0)
< A[Aw) G ) = Ay G+ 1,0)]
+d, (i, Du[Av] (i —1,00— Al (=1, 1)]
+[1 =+ d, G, Owl[A )G — 1, 1) — Al G, 0)].

Each term is non-positive by the inductive hypothesis by noting
AVY G = 1,00 =AY (G —1,1) =AY G —1,0)— A0Y G, 0).

To show the fourth inequality choose d,,(i, 1) and d,,(i — 1, 1) for the two processes
starting in (i, 0),

AHYVY (6,00 = [HY WY G,00— HY WY (G — 1, 1]
> AAY G+ 1,0) = [v] G+ 1,00 — vl @, D]]
+[1 =+ dy(, DI[Ajv]_1(,0) — [v]_(,0) — vi_ (i — 1, D]]

+d, i — 1, Dpf[vl_ G, 00— o2 (i — 1, D] — Al G —1,0)].
Similarly,

Hv! ((i,0) — Hv) (i — 1, 1) — AjHg v 1 —1,0)
> Aol G +1,00— vl G, D — Al G, 0)]
+ 11— A+ dp G, 0 1[v]_ G, 0) — vl G — 1, 1) — ApY (1 —1,0)]

+d, i —1,0u[A0Y (i —1,00—[vY G —1,00—vY G —2, D]].
J%n

In either case, the inductive hypothesis yields the result for H g vY |. Recalling that
2h, > hy yields the result for vV

Suppose now that #; > 2h;. Again, the results hold for n = 0 trivially. Assume
that it is true for n — 1. To prove the first inequality, choose potentially sub-optimal
actions to get fori > 1

Al ) —AYG, j+ 1D
< AAapl G+, )= Al G +1,j+1)]
+d, (i, pur[Apl G =1, j+ D= Al (=1, j+2)]
+ 1=+ duG, j+2wI[Av) G, ) — A G, j+ D],
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and fori =0

AP0, j)— AP0, j+ 1)
< Ay (L) =AY, j+ D)
+d, 0, Hu[Ajv, 0, j = 1) = A0, )]
+[1 = O +dn(0, j +2)w1[ A0, 10, j) = Ajv) 10, j + D).
Similarly, for the second inequality for i > 2
Al =1, 7+ 1) — a9, )
< AAapY G i+ D =AY G+ 1, )]
+dyi — 1, j+ Du[Apl =2, j+2)— Al (=1, j+ D]
+L = +d,G, j+Dwl[A] G =1+ — A a, )],
and fori =1
A0, j+ 1) — a0, j)
<A[apY 1L+ D =AY )]
+d,(0, j + Du[Av] 10, ) — Al (0, j + 1]
+[1 = +d,(1, j+ DAY 0, j+ D — A A, )]

In each case, the induction hypothesis proves the result. O

Stability results

We provide conditions under which a policy yields a stable Markov process. This leads
to a guarantee that the process also lends finite average cost, and thus to the existence
of a finite solution to the ACOE. The first result states conditions for stability for the
unrestricted and controlled capacity reduction cases.

Proposition A.1. Suppose for some k* € {0, 1, ..., £}

Then in either the unrestricted or controlled capacity reduction models, there exists a
policy 7 such that p™ < oo.

Proof. In either case, one may choose the policy that has k* workers available for all
but a finite amount of time. The system is then the same system studied for 2 workers
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in Ahn et al. [1] where the average holding costs is shown to be finite. The k* worker
case is directly analogous. Adding r(k*) to this finite amount yields the result. O

When the capacity reduction is uncontrolled, the workforce cannot be made con-
stant and the argument in Proposition A.1 does not carry over. For the remainder of this
section we study this problem and thus, suppress the superscript F on all quantities. Note
that this no longer means that quantities apply to all three models. Since the workers are
flexible, the system can be viewed as a reentrant line with one common pool of resources
that can be split amongst two classes—stage 1 and stage 2 customers. Stability and con-
vergence of moments results for standard reentrant lines (with fixed service capacity)
can be obtained using fluid limit techniques as in Dai [11] and Dai and Meyn [12]. We
adapt these results to our setting with a varying service capacity. In general, the fluid
limit results are very useful in analyzing network stability even when arrival and service
times follow a general distribution. This is not taken advantage of here; only exponential
times are addressed. What is made use of is the fact that the results go beyond stability
in a positive recurrence sense and ensure finite average queue length.

Fix a Markovian head of the line (HL) policy, 7. That is, 7 is such that workers can
collaborate to work on only the first customers in each of the queues and worker alloca-
tions remain constant in between changes in the Markovian state X (¢) = (Q(t), K(¢)),
where Q(t) = (Q1(t), Q2(t)) is the queue length process (including the customers in
service) and K (¢) is the number of workers available at time ¢.

We explore the statistical regularity of this policy through fluid scaling, a law of
large numbers type scaling of space and time. Define the norm

1X(@) = 01() + Q1) + K (1)

and consider the scaled process

0'(1) = LQX(IXIt),
|x|

where the superscript denotes the dependence on the initial state x = X(0). Letting
|x| = oo, any limit point Q(t) is called a fluid limit of the queue length process. We will
show that every fluid limit is a solution to a set of equations known as the fluid model.
The fluid model is said to be stable if there exists a fixed time #, such that O(¢) = 0
for all ¢+ > ty. That is, the fluid model is stable if all queues eventually drain and once
drained stay empty.

Let the customer inter-arrival times be £(n), n = 1, 2, .. ., and the service require-
ments at stage m be n,,(n), n = 1,2, ...;m = 1, 2. Recall that we have assumed that &
and n,, are sequences of i.i.d. exponential random variables with means 1/A and 1/,
respectively. Let

E@)=max{n 20:§()+E2)+---+En -1 =<1}, 1=0,
Sm(t) =max{n = 0: npu(D) +0p@) +---+nu(n —1) <1}, 120,
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where the maximum of an empty set is zero. E(¢) is the total number of arrivals by time
t. S, (t) represents the total number of service completions from station m given ¢ units
of work. We make the following assumptions on 7w regarding capacity increases.

Al. (i) = does not reject any arriving workers up to capacity £. (ii) Workers are never
idle while customers are present.

Under Al, it is easy to see that the number of workers available follows a birth-death
process with death rates ky and birth rates «(k), £k = 0, 1, ..., £. Such a process has
steady-state probabilities p; given in Proposition 2.2. Hence, the average number of
workers available in steady state is

L
7= Z(kpk). (A.1)
k=1

Let Y[ (r) be the cumulative time there are exactly k hired workers available in
[0, ¢) given the initial state x. Suppose W, (¢) is the cumulative amount of work done
by ¢ on stage m customers during the times there are exactly k workers available.
Thus, Sm(Zﬁzo W (1)) is the number of completions from stage m by ¢. Let I} (¢)
be the cumulative amount of idle time while exactly k& workers are available so that
T () = Y[ (t) — I} (¢) is the amount of time there are customers to serve in [0, ) when
there are exactly k workers available. These processes are all defined on the domain
[0, co) and are assumed to be right continuous with left limits. The definitions above
imply the following system equations:

¢
01() = 07(0) + E*(t) — Sy ( Z Wfk(l)), (A.2)
k=0
¢ ¢
Q3(t) = Q5(0) + ST ( > Wf‘k(t)) ~ 53 ( > W;k(z)), (A.3)
k=0 k=0
Q') =0, (A4)
[

D Y=t (A.5)

k=0

TF+ @)=Y (), k=0,1,...,¢, (A.6)

Wi@)+ W @t) =kT} (), k=0,1,...,¢, (A7)

YI(), T (1), IF (), Wi, (¢), and W5, (¢) are nondecreasing and start from 0,
(A.8)

00 4
fo (01 + 03(1))d ( pA (z)) =0. (A.9)
k=0
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Note that (A.9) is the non-idling constraint and guarantees that the idle time increases
only if the total queue length is zero.

The next proposition, a variant of Theorem 4.1 in Dai [11], presents the fluid model
and establishes convergence of the scaled processes. This convergence is uniform on
compact sets (4.0.c.).

Proposition A.2. Consider any Markovian HL policy under Al. The following holds
with probability one. For any sequence of initial states {x;} € X with |x;| — o0, there
exists a subsequence {x;}, {i} € {j}, with |x;| — oo such that

(0(0), K*(0)) — (Q(0), 0), (A.10)
(0% (1), T (1), W5 (1)) = (Q(), T(t), W (1)) wo.c., (A.11)

where (Q, T, W) satisfies the following set of equations:

3
01(1) = Q1(0)+)\f—M1<ZW1k(t))’ (A.12)
k=0
—_ —_ [ —_ l —
02(1) = 02(0) +m(2wlk(z>> - m(szk(w), (A.13)
k=0 k=0

O(t) > 0, (A.14)

4

Zpk =1, (A.15)

k=0

To@)+ Tt) = pet, k=0,1,...,¢, (A.16)

Wi(6) + Wa(t) = kTi(t), k=0,1,....¢, (A.17)

Yi(t), Tr(t), I1(t), Wix(t), and W (t) are nondecreasing and start from 0,
(A.18)

o) 4
| @+ sz)d(Zik(r)) —o. (A.19)
k=0

Proof. Notice that form =1, 2,

1, |-
—0,(0) <1, —K"(0)<1,
|x ;1 x|

for all j. Also, 0 < K*/(0) < £. Therefore, there exists a subsequence |x;| — oo such
that (A.10) holds.
For any 0 < #; < f;, and each m and k, we have

0 < W) = Wi (t) < k(T (1) — Tiyp(t)) < £tz — 1y).
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That is, {T{(¢), |x| > 1} and {W?,(¢), |x| > 1} are uniformly Lipschitz, and hence
equicontinuous. Setting /; = 0 and #, = ¢ yields uniform bounds 0 < T{(t) < ¢ and
0< W’,; () < £t. Therefore, by the Arzela-Ascoli theorem, any subsequence of T',ﬁ(t)
has au.o.c. convergent subsequence. Similarly, for W;‘,’, (1) The families {I (@), x| = 1}
and {Y{(¢), |x| > 1} can be shown to have a u.o.c. convergent subsequence in the same
manner. Since K*(¢) is ergodic, the (functional) Strong Law of Large Numbers (SLLN)
(cf. Glynn and Whitt [18]) can be applied to get

Yi(t) = pt,
E(t) = At,
Sm(t) = Uml.

Equations (A.12) and (A.13) then follow from (A.2) and (A.3) where the random time
change is valid by Theorem 5.3 of Chen and Yao [9]. Equations (A.14)-(A.18) are a
consequence of (A.4)—(A.8) and (A.19) follows from (A.9) and Lemma 4.4 of Dai [11].

O

The next proposition says that the desired stability results hold if on average the
offered workload by the arriving customers is less than the capacity of the hired workers.

Proposition A.3. Suppose z is defined as in Proposition 2.2. If A(1/u + 1/u2) < z,
then for any Markovian HL policy 7 satisfying A1, the fluid model is stable and, thus,
an invariant probability i exists for X = {X(¢), ¢ > 0}. Furthermore,

tlim EX[Qn()] =E}[0n(0)] <00, m=1,2, (A.20)
and p* < 0.

Proof. 'To show that the fluid model is stable, consider the immediate workload given
by

L) = 01(0)/ 11+ (01(t) + 02(1))/ 12
¢
= 01(0)/p1 + (Q1(0) + 02(0))/p2 + A(1 /1 + 1/ p2)t — Z(ka(t))-
=0

L(t) is nonnegative and equals zero if and only if Q(f) = 0,(t) = 0. Because
Ti(t) and W ,;(¢) are Lipschitz continuous, so are Q,,(t) and L(t). Lipschitz conti-
nuity implies absolute continuity, so L(¢) is differentiable almost everywhere. When
(01(t) + 01(t)) > 0, (A.19) and (A.16) imply I (t) = 0 and T (t) = px, and thus

L@ty =21/ + 1/p2) — 2.

By Lemma 5.2 of Dai [11], L(t) = 0 for t > (z — A(1/p1 + 1/u2))~!. Therefore, the
fluid model is stable.
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The results showing that stability of the fluid model implies stability of the original
system are proven in Dai [11] and Dai and Meyn [12]. Since K (¢) is uniformly bounded,
it is easily incorporated into these proofs. The existence of an invariant probability for
X follows from Theorem 4.2 of Dai [11]. From Theorem 4.1 of Dai and Meyn [12], we
have (A.20). Since the holding cost rates are linear, this together with a bounded worker
cost imply p* < oo. O

Note that the above arguments can be carried over without much difficulty to a
network of any finite number of queues in tandem. Since this just amounts to more
bookkeeping, the details are omitted.
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