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Abstract This paper studies the M/G/1 processor-sharing

(PS) queue, in particular the sojourn time distribution condi-

tioned on the initial job size. Although several expressions for

the Laplace-Stieltjes transform (LST) are known, these ex-

pressions are not suitable for computational purposes. This

paper derives readily applicable insensitive bounds for all
moments of the conditional sojourn time distribution. The

instantaneous sojourn time, i.e., the sojourn time of an in-

finitesimally small job, leads to insensitive upper bounds re-

quiring only knowledge of the traffic intensity and the initial

job size. Interestingly, the upper bounds involve polynomials

with so-called Eulerian numbers as coefficients. In addition,

stochastic ordering and moment ordering results for the so-

journ time distribution are obtained.
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1. Introduction

With the introduction of time-sharing computing in the

1960s, people became interested in the processor-sharing

(PS) service discipline as the idealization of time-sharing

queueing models, as initiated by Kleinrock [15, 16]. Nowa-

days, the PS discipline is of considerable interest in many

application areas in which different users receive a share of

a scarce common system resource. In particular, in the field

of the performance evaluation of computer and communi-

cation systems, the PS discipline has been widely adopted

as a convenient paradigm for modeling bandwidth shar-

ing (e.g., see [2, 9]). For instance, one of the many ap-

plications of PS models is in the resource contention of

the IEEE 802.11 Wireless Local Area Networks (WLANs),

see [19].

In these types of communication networks, the most ap-

propriate Quality-of-Service (QoS) measure from a user’s

perspective is the file transfer time V (τ ) given that the user

wanted to transfer a file of a given size τ > 0. An impor-

tant feature of egalitarian PS is that the conditional ex-

pected file transfer time EV (τ ) can be computed explicitly

and grows linearly in τ, which reflects the ‘fair’ allocation

of resources to the served flows. Moreover, it is insensitive

to the flow (file) size distribution, depending on its mean

only. Characterizing the distribution of V (τ ) is an important

problem.

The exact determination of the distribution of the condi-

tional sojourn time V (τ ) given its initial service requirement

τ > 0 (file transfer time given its initial file size) in the M/G/1

PS queue was an open problem for a long time. Several an-

alytic solutions have been obtained; see Yashkov [31], Ott

[21], Schassberger [23]. More recently, Zwart and Boxma

[35] derived a new expression for the Laplace-Stieltjes trans-

form (LST) of the sojourn time distribution, which avoids the
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complex contour integrals of the previous results. However

these expressions are still fairly complex, and not readily

applicable from a practical point-of-view. The known ex-

pressions lead to, at best, complicated recursive formulas for

the moments which have mainly been examined only asymp-

totically, see e.g. [35].

In the present paper, we derive new results for the mo-

ments of the conditional sojourn time V (τ ) in the M/G/1

PS queue, and we also study the sojourn time when the ini-

tial service requirement is arbitrarily small. We define V̂ (τ )

as the instantaneous sojourn time, i.e., the sojourn time of

a customer with infinitesimally small service requirement.

We show that the instantaneous sojourn time for arbitrar-

ily small τ > 0 leads to a moment ordering result between

V̂ (τ ) and V (τ ) for arbitrary τ > 0. More specifically, our

main result is that the moments of the instantaneous sojourn

time provide upper bounds for all moments of the conditional

sojourn time, which generalizes the upper bound for the sec-

ond moment in Van den Berg [3]. Additionally, stochastic

ordering results for the M/G/1 PS queue and also for PS

models with a random number of permanent customers are

obtained.

The upper bounds have the valuable characteristic of in-

sensitivity requiring only knowledge of the traffic intensity

ρ, and not of higher moments of the service requirement

distribution. The upper bounds are also tight in a few appro-

priate senses, namely for all jobs with a small service require-

ment (τ → 0), and for all jobs in systems with heavy-traffic

(ρ → 1) or light-traffic (ρ → 0). The latter valuable property

follows from the fact that for ρ → 0, the upper bounds coin-

cide with the insensitive lower bounds given by the Jensen’s

inequality.

The paper is organized as follows. In Section 2 we give a

short review of the M/G/1 PS queue. In Section 3 we establish

the existence of insensitive upper (and lower) bounds for all
conditional moments of the sojourn time, with a particular

polynomial structure in ρ. Then, in Section 4, the instanta-

neous sojourn time V̂ (τ ) is introduced and we give readily

applicable expressions using the so-called Eulerian numbers.

In Section 5, we prove our main result that the moments of

V̂ (τ ) provide upper bounds for the moments of V (τ ), via

stochastic comparison and moment ordering techniques. In

addition, the stochastic ordering results proven in Section 5

provide simple characterizations of V (τ ) under PS, which

provide further support for the observation that the egalitar-

ian PS service discipline is ‘fair’ from a tagged customer’s

perspective.

2. Preliminaries

In this section we introduce the notation used in the paper

and give a short review of the M/G/1 PS queue. Customers

arrive according to a Poisson process with rate λ > 0. Their

service requirements are generally distributed with distribu-

tion function B(x) and B(0+) = 0. Let βk denote the k-th

moment of the service requirement distribution. Every cus-

tomer is being served with rate 1/n, when n > 0 customers

are present in the system. Assume that the workload is less

than one, i.e., ρ := λβ1 < 1, so the system allows a steady

state.

The steady-state queue length distribution πn is geomet-

rically distributed and only depends on the workload (cf.

[22]): πn = (1 − ρ)ρn , for n ∈ {0, 1, . . . }. We let V (τ ) de-

note the (conditional) sojourn time of a customer entering

the system in steady state having a service requirement of

τ upon arrival. Define the k-th moment by vk(τ ) = EV (τ )k .

The first moment of V (τ ) is given by v1(τ ) = τ/(1 − ρ),

see e.g. [8, 17].

For τ ≥ 0 define the Laplace-Stieltjes transform (LST)

of V (τ ) by v(s, τ ) = E
[
e−sV (τ )

]
, Re s ≥ 0. Yashkov [31]

derived an expression for v(s, τ ) by writing the sojourn

time as a functional on a branching process. Via differ-

ent approaches, similar results for v(s, τ ) were obtained

by Ott [21], Schassberger [23], and Van den Berg and

Boxma [4].

The expression for v(s, τ ) obtained by Zwart and Boxma

[35] which avoids the contour integrals in the expressions of

[31, 21, 23], is the most suitable one for our purposes. They

showed that v(s, τ ) can be written as

v(s, τ ) =
( ∞∑

n=0

sn

n!
αn(τ )

)−1

, (2.1)

where the coefficients αn(τ ) are related to the waiting-time

distribution in an equivalent M/G/1 queue with First Come

First Served (FCFS) service discipline: α0(τ ) := 1, and for

n ≥ 1,

αn(τ ) = n

(1 − ρ)n

∫ τ

x=0

(τ − x)n−1 R(n−1)∗(x)dx, (2.2)

with Rn∗(x) denoting the n-fold convolution of the waiting-

time distribution R(x) in the M/G/1 FCFS queue. It can be

shown that for n ≥ 1 (cf. [35]):

Rn∗(x) = (1 − ρ)n
∞∑

m=0

(
m + n − 1

n − 1

)
ρm B̃m∗(x), and

R0∗(x) := 1, (2.3)

where B̃m∗(x) is the m-fold convolution of the integrated tail

or excess service requirement distribution B̃(x) = 1
β1

∫ x
0

(1 −
B(u))du.
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As a consequence of the form of the LST in (2.1), it is

shown in [35] that the moments vk(τ ) can be calculated

recursively, as v0(τ ) := 1 and for k ≥ 1,

vk(τ ) = −
k∑

j=1

(
k

j

)
vk− j (τ )α j (τ )(−1) j . (2.4)

In particular, it holds that v1(τ ) = α1(τ ) = τ/(1 − ρ), and

v2(τ ) = 2τ 2/(1 − ρ)2 − α2(τ ).

For additional and related work on the M/G/1 PS queue,

readers may refer to Asare and Foster [1], Yashkov [32, 33,

34], Grishechkin [11], Kitayev [12], Whitt [30], Ward and

Whitt [29], and Núñez-Queija [20].

3. Upper and lower bounds for the conditional
sojourn time

In this section, we establish insensitive bounds for all mo-

ments of the conditional sojourn time distribution, which

have the form: 1 ≤ (1 − ρ)kvk(τ )/τ k ≤ φk−1(ρ), where

φk−1(ρ) is a polynomial in ρ of (at most) degree k − 1 and

with non-negative coefficients.

For the second moment of the conditional sojourn time in

the M/G/1 PS queue, Van den Berg [3] obtained the following

simple bounds:

1

(1 − ρ)2
τ 2 ≤ v2(τ ) ≤ 1 + ρ

(1 − ρ)2
τ 2, (3.1)

simply by using the fact that R(0) = 1 − ρ > 0. We note

that the upper bound for the second moment is 100ρ%

larger than the lower bound, and these bounds only de-

pend on the mean service requirement and not on the sec-

ond and higher moments. From (3.1) it is also interesting

to note that V (τ ) has a coefficient of variation less than√
ρ.

By using the recursive formula (2.4) for vk(τ ) and ‘ig-

noring’ the alternating term (−1) j , the following crude

upper bound for all moments can be given: vk(τ ) ≤
k! ((e − 1)τ )k /(1 − ρ)k , see also Zwart [36]. As a conse-

quence of this bound, the sojourn time V (τ ) is always light-

tailed conditional upon its service requirement. Intuitively

it supports the conjecture that a large sojourn time is not

due to excessive behavior of other customers present in the

system.

The crude bound for the second moment is always worse

than the upper bound given in (3.1), since 1 + ρ < 2 <

2!(e − 1)2. Furthermore, for ρ → 0, we have the attractive

property that the upper and lower bound in (3.1) coincide.

Now we will generalize (3.1) for all moments, by using the

recursive formula (2.4) and using the simple observation as

for the second moment in [3], to obtain ‘tight’ bounds with

a similar structure as (3.1).

Theorem 3.1. For all k ≥ 2, there exist non-negative con-
stants ck

i ≥ 0, such that vk(τ ) is bounded by

1

(1 − ρ)k
τ k ≤ vk(τ ) ≤ φk−1(ρ)

(1 − ρ)k
τ k, (3.2)

where φk−1(ρ) = ∑k−1
i=0 ck

i ρ
i is a polynomial in ρ of degree

k − 1 (if k even) or k − 2 (if k odd) and ck
0 = 1.

Proof: The lower bound in (3.2) is straightforward by ap-

plying the Jensen’s inequality. For the upper bound, we note

that 1 − ρ ≤ R(x) ≤ 1 and hence (1 − ρ)n ≤ Rn∗(x) ≤ 1.

Therefore, by using (2.2) we obtain upper and lower bounds

for αn(τ ):

τ n

1 − ρ
≤ αn(τ ) ≤ τ n

(1 − ρ)n
, for n ≥ 1, and α0(τ ) := 1.

(3.3)

Existence of the upper bound in (3.2) is obtained

by induction. We rewrite the recursive formula (2.4)

as vk(τ ) = − ∑k
j=1

(k
j

)
vk− j (τ )α j (τ )(−1) j , where vk(τ ) :=

(1 − ρ)kvk(τ )/τ k and α j (τ ) := (1 − ρ) jα j (τ )/τ j . From

(3.3), bounds for α j (τ ) are: (1 − ρ) j−1 ≤ α j (τ ) ≤ 1, for

j ≥ 1. Assume (induction hypothesis) that the following

bounds hold for vk−1(τ ), vk−2(τ ), . . . :

1 ≤ vk− j (τ ) ≤ φk− j−1(ρ),

and where the bounds for v0(τ ) and v1(τ ) are satisfied by

definition, since v0(τ ) := 1, and v1(τ ) := 1. Then, we have

bounds for the product vk− j (τ )α j (τ ), for j = 1, . . . , k:

1 +
j−1∑
i=1

(−ρ)i

(
j − 1

i

)
= (1 − ρ) j−1 ≤ vk− j (τ )α j (τ ) ≤ φk− j−1(ρ)

= 1 +
k− j−1∑

i=1

ck− j
i ρi .

Now, apply induction and take into account the alternating

term (−1) j (hence, we need both upper and lower bounds for

vk− j (τ )α j (τ )) to obtain the upper bound for vk(τ ). Hence,

straightforward term-by-term bounding (and ‘splitting the
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positive and negative terms’ in the recursive formula) gives:

vk(τ ) =
k∑

j=1
j :odd

(
k

j

)
vk− j (τ )α j (τ ) −

k∑
j=2
j :even

(
k

j

)
vk− j (τ )α j (τ )

≤
k∑

j=1
j :odd

(
k

j

) {
1 +

k− j−1∑
i=1

ck− j
i ρi

}
−

k∑
j=2
j :even

(
k

j

)
{

1 +
j−1∑
i=1

(−ρ)i

(
j − 1

i

)}
≡

k−1∑
i=0

ck
i ρ

i . (3.4)

By definition of the coefficients ck
i in (3.4) and by compar-

ing the terms, it is not difficult to see that: ck
0 = 1 for all k,

ck
k−1 = 1 if k is even, and ck

k−1 = 0 if k is odd. Furthermore,

it can be shown that ck
i ≥ 0, where the coefficients are con-

structed as in (3.4). However, for the existence of an upper

bound of the described structure, it is not necessary to show

that ck
i ≥ 0, since ck

i can always be chosen sufficiently large

(and finite). �

Remark 3.2. In principle, we can apply the ‘alternating’ pro-

cedure to obtain a lower bound as well. However, the re-

sulting lower bound is always worse than Jensen’s lower

bound. Jensen’s lower bound is obtained via the recursive

formula if the coefficient αn(τ ) is replaced by the upper

bound τ n/(1 − ρ)n for all n ≥ 1. Hence, the procedure of

recursively term-by-term bounding as in the proof of The-

orem 3.1 for obtaining a lower bound (as well as for an

upper bound) for vk(τ ), is too conservative. The latter fact

can also be argued from the dependency of the coefficients

{αn(τ ), αn+1(τ ), . . . }, n ≥ 2. For example, if αn(τ ) is ‘close

to its lower bound’ τ n/ (1 − ρ), then αn+1(τ ) is generally

‘not close to its upper bound’ τ n+1/(1 − ρ)n+1. In fact,

for a fixed τ > 0, if it holds that αn(τ ) = τ n/(1 − ρ) for

some n ≥ 2, then necessarily αn(τ ) = τ n/(1 − ρ) for all
n ≥ 2. The latter observation will be important (see the

similar observation in Lemma 5.8); the sequence αn(τ ) =
τ n/(1 − ρ) for n ≥ 1, also uniquely defines the so-called

instantaneous sojourn time, which will be introduced in

Section 4.

For the second moment, we obtain c2
1 = 1 since k = 2

is even, and the upper bound is the same as in (3.1). As a

direct consequence of Theorem 3.1 we have the following

Corollary 3.3, which states that all conditional moments are

finite in the stable M/G/1 PS system. This result is in sharp

contrast with the stable M/G/1 FCFS queue, which provides

further support for the observation that PS is a ‘fair’ service

discipline.

Corollary 3.3. If ρ < 1, then vk(τ ) < ∞ for all k ≥ 1.

For the moments of the sojourn time in the stable M/G/1

FCFS queue, it is known that the k-th moment exists if and

only if βk+1 is finite. For the PS case, the k-th moment of the

(unconditional) sojourn time exists if and only if βk is finite

(see [35]).

4. The instantaneous sojourn time

In this section we introduce the instantaneous sojourn time

V̂ (τ ), defined as the sojourn time of an infinitesimally small

job. The key idea is as follows. A customer with a (very small)

initial service requirement τ > 0 arrives at the system in

steady state, say at time t0. By the PASTA property, the tagged

customer sees n other customers upon arrival with probability

πn = (1 − ρ)ρn . If we denote the remaining service require-

ments of the n other customers at time t0 by xi , i = 1, . . . , n,

then we may assume that τ << mini=1,... ,n xi . Furthermore,

we assume that τ is small enough such that no other cus-

tomers arrive during the time interval [t0, t0 + (n + 1)τ ). Un-

der these assumptions, it is as if the tagged customer arrived

at a system with n permanent customers with probability πn

and with no other arriving customers. Hence, the sojourn time

of the tagged customer is (n + 1)τ with probability πn . We

define the instantaneous sojourn time as V̂ (τ ) = (N + 1)τ ,

where N is distributed as P(N = n) = πn . The k-th moment

of the true sojourn time V (τ ) can be approximated with the

k-th moment of the instantaneous sojourn time v̂k(τ ), as

τ → 0,

vk(τ ) ≈ v̂k(τ ) := EV̂ (τ )k =
∞∑

n=0

πn {(n + 1)τ }k , k ∈ N.

Clearly, it holds that v̂1(τ ) = E(N + 1)τ = τ/(1 − ρ),

and thus the instantaneous sojourn time V̂ (τ ) as an approxi-

mation for V (τ ), is exact for the first moment v1(τ ) and even

for arbitrary τ > 0. This will be an important fact for the rest

of the paper. It can also be shown that V (τ )/τ
d→ N + 1,

as τ → 0; the convergence in distribution (denoted by
d→)

follows from:

lim
τ→0

αn(τ )

τ n
= 1

1 − ρ
, for n ≥ 1,

cf. (2.2) and (2.3), and hence v(s/τ ; τ )−1 =
1 + ∑∞

n=1
sn

n!
αn (τ )
τ n converges to es−ρ

1−ρ
(as τ → 0), which is the

reciprocal of the LST of (N + 1), see also the last comment

in Remark 3.2.

Interestingly, the moments v̂k(τ ) can be written explic-

itly by using the so-called Eulerian numbers. Eulerian num-

bers appear in many contexts in various fields of mathemat-

ics (number theory, combinatorics) and in various special
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functions (sinc functions, polylogarithms, etc.); we refer to

[6, 10, 24, 25, 28] and references therein. An interpretation

of the Eulerian number
〈k

j

〉
is that it counts the total number of

permutations of the ordered set {1, . . . , k} that have j ‘per-

mutation ascents’. The first five rows of the Euler’s number

triangle are given by〈
1
0

〉
1〈

2
0

〉 〈
2
1

〉
1 1〈

3
0

〉 〈
3
1

〉 〈
3
2

〉
1 4 1〈

4
0

〉 〈
4
1

〉 〈
4
2

〉 〈
4
3

〉
1 11 11 1〈

5
0

〉 〈
5
1

〉 〈
5
2

〉 〈
5
3

〉 〈
5
4

〉
1 26 66 26 1

Shenton and Bowman [24, 25] studied geometric distri-

butions, and obtained an unusual recurrence relation for its

cumulants, with ‘cumulant components’ that involve Eule-

rian numbers. To the best of our knowledge, the raw mo-

ments of a shifted geometric distribution on {1, 2, . . . }, are

not explicitly stated in the existing literature, in the form of

Theorem 4.1.

Theorem 4.1. The k-th moment of the instantaneous sojourn
time is given by

v̂k(τ ) = τ k

(1 − ρ)k

k−1∑
j=0

〈
k

j

〉
ρ j , for k ∈ N.

Proof: Use the identity (e.g., see [28]):

∞∑
n=1

nkrn ≡ 1

(1 − r )k+1

k∑
i=0

〈
k

i

〉
rk−i

= r

(1 − r )k+1

k−1∑
i=0

〈
k

i

〉
rk−i−1,

where the last equality sign relies on the fact that
〈k
k

〉 = 0.
Then, we readily derive

v̂k(τ )

τ k
=

∞∑
n=0

πn(n + 1)k = 1 − ρ

ρ

∞∑
n=1

nkρn

=
∑k−1

i=0

〈k
i

〉
ρk−i−1

(1 − ρ)k
=

∑k−1
j=0

〈k
j

〉
ρ j

(1 − ρ)k
,

where
〈k
i

〉 = 〈 k
k−i−1

〉
is used in the last equality sign (symmetry

of Euler’s number triangle). �

In Figure 1, as an illustration of the instantaneous sojourn

time, we have depicted vk(τ ) and v̂k(τ ) for the M/M/1 PS

queue (together with the Jensen’s lower bound v1(τ )k), for

k = 2, 3, 4, on a small and large scale for τ , respectively.

Figure 2 depicts the moments, all properly scaled with (1 −
ρ)k/τ k for the large scale of τ . As expected, v̂k(τ ) is a good

approximation for vk(τ ) when τ is small (and even for τ

up to the mean β1). The approximation is loose for large τ ,

since V (τ )/τ
P→ 1/(1 − ρ) as τ → ∞, where

P→ denotes

convergence in probability (cf. [35]). In fact, for k ≥ 2, we

have an asymptotic estimate

vk(τ ) =
(

τ

1 − ρ

)k

+ λk(k − 1)β2

2(1 − ρ)k+1
τ k−1

+ o(τ k−1), τ → ∞,

whenever β2 < ∞, cf. [35]. Note that v̂k(τ ) does not use

knowledge of the higher moments of the service requirement

distribution; v̂k(τ ) is also properly defined when β2 = ∞.

Interestingly, the approximation for the second moment

v2(τ ) ≈ v̂2(τ ) = 1+ρ

(1−ρ)2 τ
2 for small τ > 0, yields in fact

v2(τ ) ≤ v̂2(τ ) for arbitrary τ > 0, see (3.1). This might sug-

gest that the moments of the instantaneous sojourn time v̂k(τ )

are upper bounds for vk(τ ), for all k ≥ 2. In Section 5, we

will prove our main result that vk(τ ) ≤ v̂k(τ ) for all τ ≥ 0

and k ∈ N; see Theorem 5.11. The upper bounds hold un-

der general service requirement distributions. An intuitive

explanation is given in the next remark.

Remark 4.2. (intuition for the upper bound) In the instan-

taneous sojourn time analysis (τ → 0) we assumed that dur-

ing a time interval of length (n + 1)τ , there is no other ac-

tivity in the system. When n is large upon arrival, then this

is not very likely: V̂ (τ ) overestimates the true sojourn time

V (τ ) when n is large upon arrival of the tagged customer,

and underestimates V (τ ) when n is small upon arrival. Ap-

parently, for the first moment: over- and underestimation

outweigh each other (weighted with probability πn). For

higher moments: overestimation is weighted more heavily

than underestimation, since ρ < 1 and thus the queue length

process shows a negative drift for a large initial value of the

number of customers present in the system.

We note that V (τ ) and V̂ (τ ) have a similar heavy-traffic

behavior (when ρ → 1). From the identity
∑k−1

j=0

〈k
j

〉 = k!

(i.e., the row sums of the Euler’s number triangle), it fol-

lows that:

lim
ρ→1

(1 − ρ)k v̂k(τ ) = k!τ k .

For V (τ ) it is known that: limρ→1(1 − ρ)kvk(τ ) = k!τ k (cf.

[35]), or in fact,

P ((1 − ρ)V (τ )/τ ≤ x) → 1 − e−x , as ρ → 1, x ≥ 0,
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Fig. 1 The moments vk (τ ) in the M/M/1 PS queue with λ = 0.4, β1 = 2, ρ = 0.8, and the instantaneous sojourn time moments v̂k (τ ), and Jensen’s
lower bound v1(τ )k , for k = 2, 3, 4. Upper graphs: τ ∈ (0, β1] (small scale for τ ); and lower graphs: τ ∈ (0, 200β1] (large scale).

i.e., (1 − ρ)V (τ )/τ converges in distribution to an exponen-

tial random variable with mean 1, when ρ → 1 (cf. [34]).

We also note that v̂k(τ ) = vk(τ ) = τ k (deterministic) for

ρ → 0.

The above observations and Remark 4.2 suggest that v̂k(τ )

are (insensitive) upper bounds and tight in an appropriate

sense. Furthermore, since {k!τ k/(1 − ρ)k}k≥1 is the moment

sequence of an exponentially distributed random variable

X (τ ) with mean τ/(1 − ρ), it seems that V (τ ) is ‘less vari-

able’ than X (τ ), in the convex stochastic order sense. In the

next section we obtain more precise stochastic ordering re-

sults together with the formal proof that the instantaneous

sojourn time moments are upper bounds for vk(τ ), for all

τ ≥ 0 and k ∈ N, with Eulerian numbers as coefficients for

the polynomials in ρ.

5. Stochastic ordering

In this section we obtain some new results for the distri-

bution of V (τ ) in relation with stochastic ordering theory.

For stochastic ordering theory we refer to Stoyan [27], and

Shaked and Shanthikumar [26]. The main goal of this sec-

tion is to prove that the moments of the instantaneous sojourn

time serve as upper bounds for all moments of the conditional

sojourn time.

In Section 5.1 we first establish a Laplace transform order-

ing between V (τ ) and the instantaneous sojourn time V̂ (τ ).

In addition, a characterization that V (τ ) belongs to the so-

calledL-class of life time distributions will be derived, which

is related to the Laplace transform ordering. In Section 5.2 we

prove the moment ordering result between V (τ ) and V̂ (τ ),

tnemom dnoces delacS tnemom driht delacS      lacS        tnemom htruof de

tini                     )elacs egral( tnemeriuqer ecivres laitini                    )elacs egral( tnemeriuqer ecivres laitini )elacs egral( tnemeriuqer ecivres lai

emit nruojos suoenatnatsnI :tnemoM SP 1/M/M ni tnemom tcaxE )nesneJ( dnuob rewoL :tnemoM

1

2.1

4.1

6.1

8.1

2

004023042061080

1

2

3

4

5

6

004023042061080

1

57.6

5.21

52.81

42

04023042061080 0

Fig. 2 The scaled moments (1 − ρ)kvk (τ )/τ k in the M/M/1 PS queue (λ = 0.4, β1 = 2), with (1 − ρ)k v̂k (τ )/τ k as the scaled instantaneous sojourn
time moments and the lower bound of 1.
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i.e., EV (τ )k ≤ EV̂ (τ )k for all τ ≥ 0 and k ∈ N, which fol-

lows from a more general moment ordering result between

two PS queues, constructed with a random number of per-
manent customers.

5.1. Laplace transform ordering

The stochastic ordering in Laplace transforms denoted by

Y ≥Lt X , for any non-negative random variables X and Y ,

i.e., v(s) = Ee−sY ≤ Ee−s X = w(s), Re s ≥ 0, is generally

a weak ordering; it only implies EY ≥ EX . If in addition

EY = EX is known besides the ordering v(s) ≤ w(s), then

it can be easily shown that EY 2 ≤ EX2, see Proposition 5.1.

Implications for higher moments cannot be made in general.

For V (τ ) in the M/G/1 PS case we have a stronger Laplace

transform ordering result; see Theorem 5.3.

Proposition 5.1. For any non-negative random variables X
and Y , with EY = EX and the LST ordering v(s) = Ee−sY ≤
Ee−s X = w(s), Re s ≥ 0, it holds that: EY 2 ≤ EX2.

Proof: By EY = EX, the tangent line of v(s) at s = 0 is

equal to the tangent line of w(s) at s = 0. Then, by convexity

and analyticity of LSTs, and the ordering v(s) ≤ w(s), it is

readily seen that d2

ds2 v(s) ≤ d2

ds2 w(s) for s in a neighborhood

of 0. Hence, EY 2 ≤ EX2. �

Definition 5.2. (Klefsjö [14]) It is said that V (τ ) belongs

to the L-class of life time distributions if the LST ordering

v(s, τ ) ≤ x(s, τ ) holds, Re s ≥ 0, where x(s, τ ) is the LST

of an exponential distribution with mean τ/(1 − ρ).

Theorem 5.3. For the stable M/G/1 PS queue, the LST
v(s, τ ) of V (τ ) is bounded by

e−sτ/(1−ρ) ≤ v(s, τ ) ≤ v̂(s, τ ) = 1 − ρ

esτ − ρ
≤ x(s; τ )

= 1

1 + sτ/(1 − ρ)
, Re s ≥ 0,

where v̂(s, τ ) := Ee−sV̂ (τ ) is the LST of V̂ (τ ); and x(s; τ )

is the LST of an exponential random variable with mean

τ/(1 − ρ). In addition, V (τ ) ∈ L, i.e., the conditional sojourn

time belongs to the L-class of life time distributions.

Proof: The bounds e−sτ/(1−ρ) ≤ v(s, τ ) ≤ 1−ρ

esτ −ρ
follow

straightforwardly from (2.1) with the bounds (3.3), and

it is also straightforwardly shown that 1−ρ

esτ −ρ
coincides

with v̂(s, τ ) := Ee−sV̂ (τ ), if ρ < 1. The inequality v̂(s, τ ) ≤
x(s; τ ) follows from: 1−ρ

esτ −ρ
≤ 1−ρ

1+sτ−ρ
=: x(s, τ ), where

x(s, τ ) is clearly the LST of an exponential distribution with

mean τ/(1 − ρ). Hence, V (τ ) ∈ L. �

Distributions belonging to the L-class of life time distri-

butions always have a finite second moment, and the coef-

ficient of variation is not greater than one; see e.g. [5, 18].

More interestingly, although the L-class is a wide class of

distributions, Klar [13] obtained explicit and sharp ‘reliabil-

ity bounds’ for any L-class distribution. As an application

of these reliability bounds (Theorem 4.1 from [13]), for the

conditional sojourn time distribution in the M/G/1 PS queue,

we obtain the next corollary.

Corollary 5.4. For x ≤ τ/(1 − ρ) we have the insensitive
lower bound

P(V (τ ) > x) ≥ 1 − 1

(x(1 − ρ)/τ )2 − 2x(1 − ρ)/τ + 2
.

For x > τ/(1 − ρ) we have the insensitive upper bound

P(V (τ ) > x) ≤ 1

(x(1 − ρ)/τ )2 − 2x(1 − ρ)/τ + 2
.

Remark 5.5. Stronger results for the reliability bounds exist

for life time distributions belonging to subclasses of the L-

class.

5.2. Moment ordering

In this section, we will prove our main result that vk(τ ) ≤
(1 + ∑k−1

i=1

〈k
i

〉
ρi )/ [(1 − ρ)/τ ]k , see Theorem 5.11. This mo-

ment ordering result follows from a more general moment

ordering result between two PS queues with a random num-

ber of permanent customers, see Theorem 5.9. In Section

4, the instantaneous sojourn time V̂ (τ ) is defined as the so-

journ time of an infinitesimally small job. Alternatively, V̂ (τ )

can also be viewed as the sojourn time of a customer (with

an arbitrary service requirement τ ) that enters a PS system

with no other arriving customers but with a random number

of permanent customers that is distributed as πn . The latter

viewpoint turns out to be convenient for proving our main

result in the remainder of the paper.

We proceed with constructing two independent PS queues;

both M/G/1 queues have the same service requirement distri-

bution B(x) with mean β1 (= EX ); they only have different

Poisson arrival rates, λ1 and λ2 respectively. We let Vi (τ )

denote the conditional sojourn time in the M/G/1 PS queue

with arrival rate λi , i = 1, 2. Next, we define the random vari-

able Vi (τ ; n) as the conditional sojourn time in the M/G/1 PS

queue with arrival rate λi , but now modified with n perma-

nent customers in the system. The distribution of Vi (τ ; n) is

given by the (n + 1)-fold convolution of the distribution of

Vi (τ ), see e.g. [3, 30]. Note that Vi (τ ) ≡ Vi (τ ; 0).
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We let N (i), i = 1, 2, be geometrically distributed with

probability density function

P(N (i) = n) = 1 − ρ

1 − ρi

(
ρ − ρi

1 − ρi

)n

, n ∈ N ∪ {0}. (5.1)

Hence the random variable Vi (τ ; N (i)) can be interpreted as

the conditional sojourn time in the M/G/1 PS queue with

arrival rate λi and with a random number of permanent cus-

tomers distributed as N (i), where ρi = λiEX , and assume

ρ = ρ1 + ρ2 < 1.

It is not difficult to show that EVi (τ ; N (i)) = τ/(1 − ρ),

and Vi (τ ; N (i)) ∈ L, i = 1, 2. In general, we will prove

that the following moment ordering holds: EV1(τ ; N (1))k ≤
EV2(τ ; N (2))k , if the values for the arrival rates satisfy λ1 ≥
λ2; see Theorem 5.9. First we derive the LST of Vi (τ ; N (i)),

for i = 1, 2.

Lemma 5.6. For i = 1, 2, the LST defined by v̂(i)(s; τ ) =
Ee−sVi (τ ;N (i)), Re s ≥ 0, for the random variable Vi (τ ; N (i))

is expressed by

v̂(i)(s; τ ) =
( ∞∑

n=0

sn

n!
α̂n(τ, ρi )

)−1

,

where α̂n(τ, ρi ) is defined by: α̂0(τ, ρi ) := 1, α̂1(τ, ρi ) :=
τ/(1 − ρ) and for n ≥ 2:

α̂n(τ, ρi ) = n

1 − ρ

∞∑
m=0

ρm
i

(
m + n − 2

n − 2

)
∫ τ

x=0

(τ − x)n−1 B̃m∗(x)dx . (5.2)

Proof: It holds that v̂(i)(s; τ ) = ∑∞
n=0

(
v(i)(s; τ )

)n+1

P(N (i) = n) by definition of Vi (τ ; N (i)) and conditioning on

the event {N (i) = n}, where v(i)(s; τ ) = (∑∞
n=0

sn

n!
α(i)

n (τ )
)−1

is the LST of Vi (τ ; 0). Straightforward calculations give

v̂(i)(s; τ ) = (1 − ρ)v(i)(s; τ )

1 − ρ + (ρ − ρi )
(
1 − v(i)(s; τ )

)
=

(
1

v(i)(s; τ )
+ ρ − ρi

1 − ρ

(
1

v(i)(s; τ )
− 1

))−1

=
( ∞∑

n=0

snα(i)
n (τ )

n!
+ ρ − ρi

1 − ρ

∞∑
n=1

snα(i)
n (τ )

n!

)−1

=:

( ∞∑
n=0

sn

n!
α̂n(τ, ρi )

)−1

,

where α̂n(τ, ρi ) is defined by: α̂0(τ, ρi ) = α
(i)
0 (τ ) = 1, and

for n ≥ 1:

α̂n(τ, ρi ) = α(i)
n (τ )

(
1 + ρ − ρi

1 − ρ

)
= 1 − ρi

1 − ρ
α(i)

n (τ ),

which leads to α̂1(τ, ρi ) = (1 − ρi )α
(i)
1 (τ )/(1 − ρ) = τ/

(1 − ρ) and for n ≥ 2, it is given by the expression (5.2);

cf. (2.2) and (2.3) for the ordinary M/G/1 PS queue with

workload ρi . �

As a direct consequence of Lemma 5.6, the moments of

the random variables Vi (τ ; N (i)), i = 1, 2, satisfy a similar

recursion as for an ordinary M/G/1 PS queue.

Corollary 5.7. For all τ ≥ 0, the moments defined by
v̂

(i)
k (τ ) = E

{
Vi (τ ; N (i))

}k
, are recursively given by v̂

(i)
0 (τ ) =

1, and for k ≥ 1:

v̂
(i)
k (τ ) = −

k∑
j=1

(
k

j

)
v̂

(i)
k− j (τ )̂α j (τ, ρi )(−1) j .

In order to prove the general moment ordering: v̂
(1)
k (τ ) ≤

v̂
(2)
k (τ ), for λ1 ≥ λ2 (Theorem 5.9), we first need the fol-

lowing Lemma 5.8, which implies that if we have that

v̂
(1)
k (τ ) = v̂

(2)
k (τ ) for some k ≥ 2 and for some τ > 0, then

V1(τ ; N (1)) and V2(τ ; N (2)) are equally distributed. The con-

verse statement is clearly true.

Lemma 5.8. For any τ > 0, and for any k ≥ 2 (both fixed),
the following equivalence holds (provided ρ1 + ρ2 < 1):

v̂
(1)
k (τ ) = v̂

(2)
k (τ ) if and only if ρ1 = ρ2.

For k = 1, we have v̂
(1)
1 (τ ) = v̂

(2)
1 (τ ) = τ/(1 − ρ), irrespec-

tive of the ordering between ρ1 and ρ2.

Proof: For τ > 0 fixed, we will first prove the following

equivalent statements:

(i) ρ1 = ρ2

(ii) For all n ≥ 2: α̂n(τ, ρ1) = α̂n(τ, ρ2)

(iii) For some n ≥ 2: α̂n(τ, ρ1) = α̂n(τ, ρ2)

Clearly, (i) implies (ii), which in turn implies (iii).

Now we will show the non-trivial implication (iii) ⇒ (i). For

τ > 0, suppose that for some n ≥ 2: α̂n(τ, ρ1) = α̂n(τ, ρ2).
Then, it follows from the structure of (5.2) that ρ1 = ρ2. To

this end, note that α̂n(τ, ρi ) is a real-valued polynomial in ρi

with non-negative coefficients, and with positive coefficients

if τ > 0 (also observe that B̃(x) is a proper distribution

function). Hence for τ > 0, α̂n(τ, ρ1) and α̂n(τ, ρ2) are the

same strictly increasing continuous functions (on R+), only
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evaluated at a different point, at ρ1 and ρ2 respectively.

Hence, if α̂n(τ, ρ1) = α̂n(τ, ρ2), then necessarily ρ1 = ρ2.

For any k ≥ 2 and for any τ > 0 (both fixed), we

now proceed with proving the implication:

v̂
(1)
k (τ ) = v̂

(2)
k (τ ) ⇒ ρ1 = ρ2. (5.3)

The above implication (5.3) must hold for all k ≥ 2 and all

τ > 0 (and it is not the same as the statement: {For all k ≥ 2

and all τ > 0: v̂
(1)
k (τ ) = v̂

(2)
k (τ )} ⇒ {ρ1 = ρ2}).

The implication (5.3) is straightforward for the sec-

ond moment, since v̂
(1)
2 (τ ) = v̂

(2)
2 (τ ) is equivalent to

α̂2(τ, ρ1) = α̂2(τ, ρ2), cf. the recursive formula in Corollary

5.7 with equal first moments, and thus ρ1 = ρ2 by the

equivalent statements (i)-(ii)-(iii). For k > 2, the implication

(5.3) is not trivial, mainly due to the presence of the

alternating term (−1) j in the recursive formula. However,

the statements (i)-(ii)-(iii) are equivalent in a strong sense.

For example, if α̂k(τ, ρ1) �= α̂k(τ, ρ2) for some k ≥ 2, then

ρ1 �= ρ2 and also α̂k(τ, ρ1) �= α̂k(τ, ρ2) for all k ≥ 2; see

also the similar observation in Remark 3.2.

Hence, if v̂
(1)
k (τ ) = v̂

(2)
k (τ ), then we have two mutually

exclusive possibilities:

(a) α̂k(τ, ρ1) = α̂k(τ, ρ2)

(b) α̂k(τ, ρ1) �= α̂k(τ, ρ2)

The fact that v̂
(1)
k (τ ) = v̂

(2)
k (τ ) implies either (a) or (b).

By contradiction, we will now show that possibility (b)

cannot occur. So, suppose v̂
(1)
k (τ ) = v̂

(2)
k (τ ) ⇒ α̂k(τ, ρ1) �=

α̂k(τ, ρ2), but α̂k(τ, ρ1) �= α̂k(τ, ρ2) is equivalent to ρ1 �= ρ2.

Hence, assuming (b) true is the same as

v̂
(1)
k (τ ) = v̂

(2)
k (τ ) ⇒ ρ1 �= ρ2, (5.4)

which is obviously false, since the negation of (5.4), i.e.,ρ1 =
ρ2 ⇒ v̂

(1)
k (τ ) �= v̂

(2)
k (τ ) is clearly false. Thus, the assumption

that (b) holds is false, and hence v̂
(1)
k (τ ) = v̂

(2)
k (τ ) implies

possibility (a) which in turn is equivalent to ρ1 = ρ2 by the

strong equivalences (i)-(ii)-(iii). �

Theorem 5.9. For τ > 0 and ρ = ρ1 + ρ2 < 1, if ρ1 ≥ ρ2,
then we have the moment ordering

v̂
(1)
k (τ ) ≤ v̂

(2)
k (τ ), for all k ∈ N.

Proof: For the first moment we have v̂
(1)
1 (τ ) = v̂

(2)
1 (τ ), irre-

spective of the ordering between ρ1 and ρ2. By Lemma 5.8, if

ρ1 �= ρ2, then it holds that v̂
(1)
k (τ ) �= v̂

(2)
k (τ ) for all k ≥ 2 and

all τ > 0. Now consider the strict ordering ρ1 > ρ2. Lemma

5.8 guarantees for ρ1 > ρ2, that v̂
(1)
k (τ ) and v̂

(2)
k (τ ) cannot co-

incide for any τ > 0 and k ≥ 2. Then, continuity of v̂
(i)
k (τ )

in τ implies for ρ1 > ρ2, that v̂
(1)
k (τ ) and v̂

(2)
k (τ ) cannot cross

each other for any k ≥ 2, as a function of τ > 0. Hence, ei-

ther {̂v(1)
k (τ ) < v̂

(2)
k (τ ) for all τ > 0}, or {̂v(1)

k (τ ) > v̂
(2)
k (τ ) for

all τ > 0} holds.

The proof is completed, if we can find a τ ∗ > 0 such that

for all k ≥ 2, if ρ1 > ρ2, then:

v̂
(1)
k (τ ∗) < v̂

(2)
k (τ ∗).

This can be done by choosing τ ∗ large enough, since Vi (τ )
τ

P→
1

1−ρi
, as τ → ∞, and

Vi (τ ; N (i))

τ

d→ N (i) + 1

1 − ρi
, as τ → ∞.

It is readily verified that (cf. the proof of Theorem 4.1 and

the geometric distribution (5.1)):

E
(

N (i) + 1

1 − ρi

)k

=
1 + ∑k−1

j=1

〈k
j

〉 (
ρ−ρi

1−ρi

) j

(1 − ρ)k
,

hence if ρ1 > ρ2, then ρ2

1−ρ1
= ρ−ρ1

1−ρ1
<

ρ−ρ2

1−ρ2
= ρ1

1−ρ2
, and

lim
τ→∞

v̂
(1)
k (τ )

τ k
= E

(
N (1) + 1

1 − ρ1

)k

< E
(

N (2) + 1

1 − ρ2

)k

= lim
τ→∞

v̂
(2)
k (τ )

τ k
, for all k ≥ 2, (5.5)

and with equality sign in (5.5) if and only if ρ1 = ρ2 (and

for k = 1: v̂
(1)
1 (τ ) = v̂

(2)
1 (τ ) = τ

1−ρ
). Hence if ρ1 ≥ ρ2, then

v̂
(1)
k (τ ) ≤ v̂

(2)
k (τ ) for all k ≥ 1 and all τ > 0. �

Theorem 5.9 can be interpreted as follows. For a fixed

τ > 0, if the sojourn time V2(τ ; N (2)) is very large, then this

is more likely due to the presence of many permanent cus-

tomers in the system (large λ1 implies that N (2) is ‘stochasti-

cally’ large) rather than a large arrival rate of non-permanent

customers (large λ2). By construction, the (random) number

of permanent customers in system i is N (i) (denote system i
as the model that corresponds to Vi (τ ; N (i)), i = 1, 2). Inter-

estingly, the number of non-permanent customers in system

i is in distribution equal to N ( j), i �= j , for i, j ∈ {1, 2}; cf.

Theorem 1 from [7] (where it is called a queue length decom-

position result). Hence, ifλ1 > λ2, then there are ‘on average’

more non-permanent and less permanent customers in sys-

tem 1 compared to system 2. However, both systems have

‘on average’ an equal number of total customers (permanent
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plus non-permanent) regardless of the ordering between λ1

and λ2, which also explains the equality of the first moments:

EV1(τ ; N (1)) = EV2(τ ; N (2)).

Remark 5.10. We conjecture that V1(τ ; N (1)) ≤cx

V2(τ ; N (2)) holds if λ1 ≥ λ2, i.e., the random variables are

ordered in the convex stochastic order sense (see [27, 26]).

Then, it is said that the random variable V2(τ ; N (2))

is more variable (more likely to take extreme values) than

the variable V1(τ ; N (1)). The first moments are necessarily

equal. A sufficient condition for convex stochastic ordering

is the so-called Karlin & Novikoff cut-criterion, cf. [27],

which states that two random variables X and Y are

convex stochastic ordered if the means are equal and the

corresponding distribution functions cross each other once

and exactly once. The difficulty to verify the cut-criterion is

that we do not have the distribution functions explicitly. We

note that the cut-criterion and the intuition for the conjecture

given in the instantaneous sojourn time analysis, are similar

(see Remark 4.2).

We arrive at our main result that the moments of the in-

stantaneous sojourn time are upper bounds for the moments

of the conditional sojourn time in the M/G/1 PS queue.

Theorem 5.11. In the stable M/G/1 PS queue, we have the
insensitive lower and upper bounds for all moments of the
conditional sojourn time V (τ ), for τ ≥ 0 and k ∈ N:

1

(1 − ρ)k
τ k ≤ vk(τ ) ≤

1 + ∑k−1
j=1

〈k
j

〉
ρ j

(1 − ρ)k
τ k .

Proof: The result is trivial for the lower bound and for τ = 0.

For τ > 0, we consider the special case of ρ2 = 0 in Theorem

5.9. Then, for all ρ ≡ ρ1 ≥ ρ2 = 0 and ρ < 1 it holds that

vk(τ ) ≡ v̂
(1)
k (τ ) ≤ v̂

(2)
k (τ ) = τ kE(N + 1)k,

since ‘with probability 1’ we have: N (1) = 0, V (τ ) ≡
V1(τ ; N (1)), P(N (2) = n) = (1 − ρ)ρn, V2(τ ; 0) ≡ τ ,

and V2(τ ; N (2)) ≡ V2(τ ; N )
d= τ (N + 1) ≡ V̂ (τ ), as in

Section 4. �

Remark 5.12. The special choice of ρ2 = 0 in Theorem 5.9 is

essentially the same as the assumptions made in the instanta-

neous sojourn time analysis, as in Section 4. For ρ2 → 0:

V2(τ ; N (2))
d→ V̂ (τ ) = (N (2) + 1)τ, as if the tagged cus-

tomer arrived at a system with n permanent customers with

probability P(N (2) = n) and with no other arriving customers

(ρ2 = 0).

Remark 5.13. (Theorem 5.11 in relation with the fluid and
quasi-stationary regime) Our main result can be related to

the result obtained by Delcoigne, Proutière and Régnié [9].

They obtained the following (increased convex) stochastic

ordering: W f l ≤icx W ≤icx W qs , for the stationary work-

load W in the M/G/1 PS queue with time-varying service

capacity. Their bounds correspond to the workload in the so-

called ‘fluid’ and ‘quasi-stationary’ regimes. As noted in [9],

it proves much more difficult to derive similar results for the

mean sojourn time.

In our paper, V̂ (τ ) can also be viewed as the sojourn time

V qs(τ ) in a quasi-stationary regime, which can be obtained by

considering a (modified) M/G/1 PS queue with fixed capac-

ity, arrival rate λs and service requirement X/s. The (pertur-

bation) parameter s > 0 represents the ‘speed’ of the queue

length process, and it does not influence the queue length dis-

tribution. In the limit s → 0, the queue length process freezes

in some initial state, yielding the quasi-stationary regime,

and it can be shown that V qs(τ )
d= V̂ (τ ). For the sojourn

time V f l(τ ) in the fluid regime (i.e., for the limit s → ∞), it

can be shown that V f l(τ ) is constant and equal to τ/(1 − ρ).

Analogous to the insensitive bounds in [9], we conjecture

that holds: τ/(1 − ρ) ≤icx V (τ ) ≤icx V̂ (τ ), where the ≤icx -

ordering could be replaced by the ≤cx -ordering (since the

means are equal).

Remark 5.14. With the moments of the instantaneous so-

journ time as upper bounds, i.e., vk(τ ) ≤ v̂k(τ ), and the

Chebyshev-Markov inequalities P(V (τ ) > x) ≤ 1
xk vk(τ ) for

all k ≥ 1, an insensitive upper bound for the tail probability

P(V (τ ) > x) can be given

P(V (τ ) > x) ≤ min
k≥1

1 + ∑k−1
i=1

〈k
i

〉
ρi

(x(1 − ρ)/τ )k , (5.6)

for x ≥ τ > 0, ρ < 1. The improvement upon Corollary

5.4 is considerable, particularly for large x . For x ≤
τ/(1 − ρ) the bound is not useful. However, if x(1 −
ρ)/τ > 1, then both the numerator and denominator on

the right-hand-side of (5.6) increase in k, but the denom-

inator will be dominant for a certain k∗, defined by k∗ ≡
k∗(x ; τ ) = arg mink≥1

v̂k (τ )
xk . We omit the details of the latter

statement.

6. Conclusion

In this study, we have investigated the sojourn time V (τ )

conditional on the initial service requirement τ > 0 in

the M/G/1 processor-sharing (PS) queue. In particular,
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we have studied all moments of V (τ ) and we have ob-

tained upper and lower bounds. Our main result (Theorems

5.11 and 5.9) is that there exist upper bounds, given by(
1 + ∑k−1

i=1

〈k
i

〉
ρi

)
τ k/(1 − ρ)k, where

〈k
i

〉
are Eulerian num-

bers, and they only depend on τ and the traffic intensity ρ <

1. A lower bound follows easily from Jensen’s inequality.

The main result has been proved via stochastic comparisons

of two related PS models with random number of permanent

customers.

An attractive feature of the upper bound of the above struc-

ture is that it is independent of second and higher moments

of the service requirement distribution. Another attractive

feature is that the upper bound coincides with Jensen’s lower

bound when ρ → 0. Moreover, the k-th moment of V (τ ) and

the above upper bound, converge to the same expression, af-

ter proper scaling when ρ → 1. The upper bounds of the

above structure with Eulerian numbers are in fact the mo-

ments of the so-called instantaneous sojourn time V̂ (τ ), i.e.,

the sojourn time of a customer with an infinitesimally small

initial service requirement (τ → 0). If the initial service re-

quirement τ > 0 is arbitrary (and not necessarily small), the

instantaneous sojourn time also corresponds to the sojourn

time of a tagged customer entering a PS system with no other

arrivals but with a random number of permanent customers.

The instantaneous sojourn time is also the sojourn time in a

so-called quasi-stationary regime.

By studying the higher moments and providing insensitive

upper bounds, we provide further support for the observation

that PS is a ‘fair’ service discipline. In the stable M/G/1 PS

system, excessive behavior of other customers in the system

always has a limited influence on the sojourn time of the

tagged customer. Intuitively, from a tagged customer point-

of-view, the influence of the service requirements of other

customers on the sojourn time of the tagged customer, is

nearly insensitive. Even when there is a customer with in-

finite service requirement, the influence of this permanent
customer on non-permanent customers is limited.

The influence of other customers is even more limited for

jobs with a small initial service requirement; its sojourn time

may be reasonably approximated by the instantaneous so-

journ time. Moreover, it provides tight upper bounds for the

higher moments of V (τ ). However, for very large τ , these up-

per bounds are ‘quite loose’. This can be seen as the price that

must be paid for obtaining insensitive upper bounds. Never-

theless, the moments of V (τ ) are always bounded from above

by the moments of V̂ (τ ), which in turn are bounded from

above by the moments of an exponential random variable

with mean τ/(1 − ρ), regardless of the service requirement

distribution (even when the service requirement has an infi-

nite second moment).

We conclude this paper with the remark that consider-

able attention has been paid in the literature to the exact

analysis of the sojourn time in the M/G/1 PS queue. Rela-

tively little work has been done on the investigation of the

practical implications of the results. The discovery of sim-

ple bounds for all moments of V (τ ) stimulates the investi-

gation of simple but nevertheless good approximations for

the distribution of V (τ ), the moments and the tail proba-

bilities. In addition, a logical next step is to investigate if

similar results also hold for other PS queues. For exten-

sions of PS service disciplines, such as the discriminatory
PS, it is to be expected that the nice properties (regard-

ing the instantaneous sojourn time) are lost. For the M/G/1

queue with the egalitarian PS discipline and queue-dependent

service capacity [8] it may be worthwhile to investigate if

the structures remain valid. This remains a topic for further

research.
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Statistical bandwidth sharing: A study of congestion at flow level,
in: Proceedings ACM SIGCOMM’01 (2001) pp. 111–122.

3. J.L. van den Berg, Sojourn Times in Feedback and Processor
Sharing Queues, Ph.D. thesis, Utrecht University, The Netherlands
(1990).

4. J.L. van den Berg and O.J. Boxma, The M/G/1 queue with processor
sharing and its relation to a feedback queue, Queueing Systems 9
(1991) 365–402.

5. A. Bhattacharjee and D. Sengupta, On the coefficient of variation
of the L- and L-classes, Statistics Probability Letters 27 (1996)
177–180.

6. L. Carlitz, Eulerian numbers and polynomials of higher order, Duke
Mathematical Journal 27 (1960) 401–423.

7. S.-K. Cheung, J.L. van den Berg, and R.J. Boucherie, Decompos-
ing the queue length distribution of processor-sharing models into
queue lengths of permanent customer queues, Performance Evalu-
ation 62(1–4) (2005) 100–116.

8. J.W. Cohen, The multiple phase service network with generalized
processor sharing, Acta Informatica 12 (1979) 245–284.

9. F. Delcoigne, A. Proutière, and G. Régnié, Modeling integration of
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