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Abstract We study the stationary solution of a (max,
plus)-linear recursion. Under subexponentiality assumptions
on the input to the recursion, we obtain the tail asymptotics
of certain (max, plus)-linear functionals of this solution.

(Max, plus)-linear recursions arise from FIFO queueing
networks; more specifically, from stochastic event graphs. In
the event graph setting, two special cases of our results are of
particular interest and have already been investigated in the
literature. First, the functional may correspond to the end-to-
end sojourn time of a customer. Second, for two queues in
tandem, the functional may correspond to the sojourn time
in the second queue. Our results allow for more general net-
works, which we illustrate by studying the tail asymptotics
of the resequencing delay due to multi-path routing.

Keywords (Max, plus) recursion · Subexponential
distribution · Open queueing network · Stochastic event
graph · Resequencing delay

1. Introduction

Ever since the derivation of the tail asymptotics of the wait-
ing time in a FIFO G I/G I/1 queue under subexponentiality
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(Pakes [25] or Veraverbeke [28]), a vast body of literature
has been devoted to asymptotics for isolated systems. For in-
stance, Asmussen, Schmidli, and Schmidt [4] allow for more
general arrival process than renewal processes. Moreover,
under certain conditions, when several heterogeneous inputs
are multiplexed, the ‘heaviest’ one dominates the tail asymp-
totics (see [1, 15, 21]). From the point of view of asymptotics,
the queue length behaves qualitatively different from the
waiting time; see Asmussen, Klüppelberg, and Sigman [3]
and Foss and Korshunov [16]. For surveys on the state of the
art for this kind of asymptotics, we refer to the special issues
of Queueing Systems, 33:1–3 (1999), and 46:1–2 (2004).

In recent years, there has been some interest in extending
the FIFO G I/G I/1 result to networks of queues. Among
the first contributions in this area are the papers by Huang
and Sigman [19] and Baccelli, Schlegel, and Schmidt [13].
Huang and Sigman consider fork-join systems (of which tan-
dem queues are special cases), for which one service time tail
is heavier than all others. Baccelli et al. consider the station-
ary sojourn time up to some node in a network that can be
represented by so-called event graphs. They solve the case of
irreducible event graphs, and derive upper and lower bounds
for the reducible case. Recently, the asymptotics of the end-
to-end sojourn time were found in the general reducible case;
see [10].

An interesting question is whether such asymptotics can
also be established for other system characteristics than the
sojourn time up to a specific node. This question has already
been answered negatively in the case of the multi-server
queue. Scheller-Wolf and Sigman [26] show that the tail of
the sojourn time of the whole system is typically strictly
heavier than the tail of individual waiting times. On the other
hand, for queues in tandem, Baccelli and Foss show in [9]
that the tail of the total sojourn time in the system and the
sojourn time in the second queue can be of the same order.
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In this paper, we investigate the tail asymptotics for func-
tionals of the stationary solution of (max, plus)-linear recur-
sions. This choice is motivated by the fact that single input,
FIFO event graphs (which can represent queues in tandem,
for instance) admit a representation as (max, plus)-linear sys-
tems in a random medium [7]. Consequently, our results can
be used to study the tail of several characteristics of queueing
networks. The present paper can thus be regarded as a contin-
uation of [10, 13]. As in [10], we rely on results of Baccelli
and Foss [9]. They show that for a wide class of networks, a
large sojourn time must be caused by a single large service
time in the distant past. This theorem is also the basis for
recent results on generalized Jackson networks [11].

The main motivation for our work stems from a queueing
problem. Reliable transport protocols require packets to be
delivered to the destination in the order of transmission at the
sender. Packets that arrive at the receiving host may be misor-
dered due to multi-path routing. The transport layer at the re-
ceiver is responsible for (temporarily) buffering out-of-order
packets and for resequencing all packets; by doing so, some
of the packets are delayed. Thanks to our results, we are able
to study the asymptotics of this delay for quite general dis-
ordering networks. In [23], this analysis is extended to study
the asymptotics of the size of the resequencing queue. We
should stress that our results are not restricted to a queueing
context, as they may also be relevant for modeling production
or railway systems, for instance.

As for the technical aspects of our work, we use a limit
theorem that characterizes the most likely way for a rare event
to occur. A related limit theorem for Jackson networks (see
[22]) served as the basis for the analysis in [11]. One contri-
bution of our work is to give new proofs of [10] that provide
probabilistic intuition of the asymptotics in relation with the
‘single-big-event’ paradigm of [9]. A significant part of this
paper, however, deals with the situation where this theorem
cannot be used, i.e., when the limit vanishes. Different tech-
niques must then be used, relying on the extensive use of
(max, plus)-algebra.

The paper is organized as follows. Section 2 gives the gen-
eral (max, plus) framework and the stochastic assumptions;
we also give explicit conditions for a particular system to
fall within the scope of this paper. In Section 3, we give our
main results: the aforementioned limit theorem and a theo-
rem which yields the tail asymptotics of certain functionals of
a recursion’s stationary solution. We also relate our results
to the literature. In Section 4, we apply our results to the
resequencing problem. Sections 5–7 are devoted to proofs.

2. General framework and stochastic assumptions

In this paper we consider open systems that belong to the
class of monotone separable networks. The system has a

single input marked point process N = {(Tn, ζn)}−∞<n<∞,
where in a queueing context the sequence {ζn} describes the
service times and routing decisions. We refer to [6] and [8] for
a precise definition of this monotone separable framework.
The present paper focuses on a subclass of these systems,
which we describe first.

2.1. (Max, plus)-linear systems

Notation

The (max, plus) semi-ring Rmax is the set R ∪ {−∞},
equipped with max, written additively (i.e., a ⊕ b =
max(a, b)) and the usual sum, written multiplicatively (i.e.,
a ⊗ b = a + b). The zero element is −∞. For matrices of
appropriate sizes, we define (A ⊕ B)(i, j) = A(i, j) ⊕ B(i, j) :=
max(A(i, j), B(i, j)) and (A ⊗ B)(i, j) = ⊕

k A(i,k) ⊗ B(k, j) :=
maxk(A(i,k) + B(k, j)).

Let s and m be arbitrary fixed natural numbers such that
m ≤ s. We assume that two matrix-valued mappings A and
B are given:

A : Rm
+ → M(s,s) (Rmax)

ζ = (ζ (1), . . . , ζ (m)) 	→ A(ζ ),

B : Rm
+ → M(s,1) (Rmax)

ζ = (ζ (1), . . . , ζ (m)) 	→ B(ζ ).

It is the aim of this subsection to show how one can associate
a (max, plus)-linear system to A and B.

Write A(ζ ) = (A(i, j)(ζ ))1≤i, j≤s and B(ζ ) =
(B(i)(ζ ))1≤i≤s . We suppose that each element A(i, j)(ζ )
is a polynomial in the variables ζ (1), . . . , ζ (m) in the
(max, plus)-semiring. In particular, for any i, j , we either
have A(i, j)(ζ ) = −∞ for any ζ (corresponding to the
null-polynomial) or A(i, j)(ζ ) > −∞ for any ζ . Since this
property does not depend on ζ , we write A(i, j) = −∞
and A(i, j) > −∞ in the first and second case respectively.
This assumption is referred to as the support assumption
in [13], but it is also said that A(ζ ) and B(ζ ) have a fixed
structure [27]. We also impose the support assumption on the
elements of B(ζ ); further assumptions on A and B can only
be formulated after introducing communication classes.

To do so, we first associate a graph GA = (VA, EA) to
A, as in Section 2.3 of [7]. Set VA := {1, . . . , s}, which we
abbreviate as [1, s]. An edge (i, j) belongs to EA if and only
if A( j,i) ≥ 0. Two nodes of VA are said to belong to the same
communication class if there is a directed path from the first
to the second and another one from the second to the first.
Let C1, . . . , Cd be the communication classes of GA and �
the associated partial order, namely C� � Cm if there is a path
from any vertex in C� to any vertex in Cm . Without loss of
generality, we assume that C� � Cm implies � ≤ m; this is a
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notationally convenient restriction on the numbering of the
communication classes.

We use the following notation:� for any coordinate i ∈ VA, its communication class is de-
noted by [i];� for any coordinate i (resp. communication class C), the
subset of coordinates j such that [ j] � [i] (resp. [ j] � C)
is denoted by [≤ i] (resp. [≤ C]);� for any coordinate i (resp. communication class C), the
subset of coordinates j such that [i] � [ j] (resp. C � [ j])
is denoted by [i ≤] (resp. [C ≤]);� for any coordinate i (resp. communication class C) and
j ∈ [i ≤] (resp. j ∈ [C ≤]), we write

[i ≤ j] := [i ≤] ∩ [≤ j]

and

[i ≤ C] := [i ≤] ∩ [≤ C]

respectively; similarly for [C ≤ i].

It is convenient to also impose some structure on the num-
bering of the coordinates. Indeed, again without loss of gen-
erality, we may assume that [i] � [ j] implies i ≤ j . This
means that we have the following block structure for the
matrix A(ζ ):

⎛⎜⎝ A[1, 1](ζ ) −∞ −∞ −∞
A[2, 1](ζ ) A[2, 2](ζ ) −∞ −∞
A[d, 1](ζ ) A[d, 2](ζ ) A[d, d](ζ )

⎞⎟⎠ ,

where each A[�, �](ζ ) is an irreducible matrix (correspond-
ing to communication class C�).

Assumptions on A and B. We now formulate some fur-
ther assumptions on the mappings A and B. Given a vec-
tor v = (v(1), . . . , v(K )), we call a (max, plus) expression
P a polynomial in v of unit maximum degree if it has the
form

P =
⊕

j

⊗
k∈K j

v(k),

where K j ⊂ [1, K ].

Assumption (M) (structure of the mappings).

(M1) Write I = {i ∈ [1, s] : B(i) > −∞} and J =
[1, s]\I . Then (the following properties do not
depend on the argument of the mappings)

∀i ∈ J, max
j

A(i, j)(ζ ) = 0;

∀i ∈ I, max
j

A(i, j)(ζ ) = max
j∈I

A(i, j)(ζ ) = B(i)(ζ ).

(M2) For all i , A(i,i) > −∞. Moreover, for all
k ∈ [1, m], there exists a unique j such that
A( j, j)(ζ ) = ζ (k); this defines a mapping c(·)
from [1, m] to {C1, . . . Cd} by c(k) = [ j].

(M3) For any �1 ≤ �2, each of the coefficients of
A[�2, �1](ζ ) (that are not 0 or −∞) are a poly-
nomial (in Rmax) in

{
ζ (k) : C�1 � c(k) � C�2

}
of

unit maximum degree.

A discussion of this assumption is deferred to the end of this
subsection, after the introduction of the (max, plus)-linear
system associated to A and B. In Section 4, we give a non-
trivial example of these mappings.

The (max, plus)-linear system associated to A and B

The (max, plus)-linear system associated to A and B is
intuitively best understood by having a queueing network
in mind (e.g., the tandem system of Section 3.2). Given
a marked point process N = {(Tn, ζn)}−∞<n<∞ with ζn =
(ζ (1)

n , . . . , ζ (m)
n ), we can define the matrices An and Bn by

An := A(ζn), Bn := B(ζn).

To the sequences {An}, {Bn}, and {Tn}, we associate the fol-
lowing (max, plus)-linear recurrence:

Xn+1 = An+1 ⊗ Xn ⊕ Bn+1 ⊗ Tn+1, (1)

where {Xn, n ∈ Z} is a sequence of state variables of dimen-
sion s. In a tandem system, the Tn are the arrival moments
of the customers, the ζn are the vectors of service times, and
the Xn are the departure moments of the customers.

The stationary solution of this equation is constructed as
follows. We write

Y[m,n] :=
⊕

m≤k≤n

D[k+1,n] ⊗ Bk ⊗ Tk

= max
m≤k≤n

(
D[k+1,n] ⊗ Bk + Tk

)
, (2)

where for k < n, D[k+1,n] = ⊗k+1
j=n A j = An ⊗ . . . ⊗ Ak+1

and D[n+1,n] = E , the identity matrix (the matrix with all
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its diagonal elements equal to 0 and all its non-diagonal el-
ements equal to −∞). It is readily checked that Y[m,m] =
Bm ⊗ Tm , and for all n ≥ m,

Y[m,n+1] = An+1 ⊗ Y[m,n] ⊕ Bn+1 ⊗ Tn+1.

In view of (2), the sequence {Y[−n,0]} is non-decreasing in
n, so that we can define the stationary solution of (1),

Y(−∞,0] := lim
n→∞ Y[−n,0] ≤ ∞.

We define the stationary maximal dater by

0 ≤ Z := Z(−∞,0] =
⊕

1≤i≤s

Y (i)
(−∞,0] − T0 ≤ ∞. (3)

In a tandem system, the interpretation of the stationary max-
imal dater is the sojourn time of the 0-th customer, since its
arrival time is subtracted from its departure time. In what
follows, we assume that T0 = 0. Section 2.2 discusses a con-
dition for Z to be almost surely finite.

We now comment on Assumption (M). First, we stress
that any FIFO event graph with a single input fits into our
framework; see [7] and [24] for details on this class. Some
examples are given in Section 3.2.

Assumption (M1) implies that An ⊗ 0 = Bn ⊕ 0, where
0 denotes the vector with all its entries equal to 0. By Lemma
7 of [24], this shows that the mapping N = {(Tn, ζn)} 	→
X [m,n](N ) = ⊕

1≤i≤s Y (i)
[m,n] defines a monotone separable

network. This property is crucial for our analysis, as it en-
ables us to use the results of Baccelli and Foss [9].

Assumption (M2) is best understood in the context of
event graphs. Each ζ (k), k ∈ [1, m] then typically corresponds
to one timed transition, which is recycled in order to make
the event graph FIFO. In other words, the FIFO property
translates into (M2) for the corresponding matrix.

Assumption (M3) intuitively entails that each ζ (k), k ∈
[1, m] is associated with only one communication class c(k)
in GA, since the coefficients of A[�, �](ζ ) (that are not 0 or
−∞) are polynomials of unit maximum degree in the vari-
ables

{
ζ (k) : c(k) = C�

}
only. Note that for the non-diagonal

matrices A[�2, �1](ζ ), �1 �= �2, the coefficients are upper
bounded by

∑
k∈K ζ (k), where K = {k : C�1 � c(k) � C�2}. In

particular, we have for all u ≤ s, by (M1),

max
k: c(k)�[u]

ζ (k) ≤ max
i, j≤u

A(i, j)(ζ ) = max
i≤u

B(i)(ζ ) ≤
∑

k: c(k)�[u]

ζ (k),

which is used repeatedly in what follows. In [13], this prop-
erty allows the authors to verify their Assumption S4 and in
[10], to show that Assumption (AA’) (which slightly extends
Assumption (AA) of [9]) holds, cf. Lemma 3 of [10].

2.2. Stochastic assumptions

We formulate the stochastic assumptions underlying our re-
sults.

Assumption (IA) (independence assumption). We suppose
that the sequences {ζn} and {τn := Tn+1 − Tn} are mutually
independent and each of them consists of i.i.d. random vari-
ables with finite means.

Supposing that Eτ0 =: a < ∞ and Eζ
(i)
0 =: b(i) < ∞ for

i ∈ [1, m], this assumption implies that for all i and j ,

(A−1[k, k] ⊗ A−2[k, k] ⊗ . . . ⊗ A−n[k, k])(i, j)

n
→ γk,

both a.s. and in L1. Here γk is a constant referred to as
the top Lyapunov exponent of the sequence {An[k, k] :=
A[k, k](ζn)} of irreducible matrices (corresponding to class
k), see Theorem 7.27 in [7].

Assumption (S) (stability). We have γ := maxk γk < a.

In view of Theorem 7.36 of [7], we have that under (S)
the maximal dater Z defined in (3) is almost surely finite.

We use the following notation: if j ∈ Ci , we write γ[ j] :=
γi . Then we define for any subset E ⊂ {1, . . . , s}, γE :=
max j∈E γ[ j]. The quantities γ[≤i], γ[i≤] and γ[i≤ j] are of spe-
cial interest.

Here and later in the paper, for positive functions f
and g, the equivalence f (x) ∼ dg(x) with d > 0 means
f (x)/g(x) → d as x → ∞. By convention, the equivalence
f (x) ∼ dg(x) with d = 0 means f (x)/g(x) → 0 as x → ∞;
this is written as f (x) = o(g(x)).

We now discuss the subexponentiality assumptions con-
cerning the input to the system. Recall that a distribution func-
tion G on R+ is called subexponential if G∗2(x) ∼ 2G(x) as
x → ∞, where G∗2 is the tail of the twofold convolution
of G. For example, Pareto, Lognormal and Weibull distribu-
tions belong to the class of subexponential distributions. We
refer to [17] for a survey.

Throughout, we let F be a distribution function on R+
such that:� F is subexponential with finite first moment, and� the integrated distribution Fs of F with the tail

F
s
(x) ≡ 1 − Fs(x) = min

{
1,

∫ ∞

x
F(u)du

}

is subexponential.
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Note that since F
s

is long-tailed, we can find a non-
decreasing integer-valued function Nx tending to infinity
such that, for all finite real numbers b,

Nx∑
n=0

F(x + nb) = o(F
s
(x)). (4)

We now give the assumptions on the distribution of ζn =
(ζ (1)

n , . . . , ζ (m)
n ). Note that these assumptions correspond to

Assumptions (SE) and (H) of [9] when replacing Y ( j)
i by ζ

( j)
i .

Assumption (SE) (subexponentiality). The following equiv-
alence holds as x → ∞ (with d ( j) ≥ 0):

P(ζ ( j)
1 > x) ∼ d ( j) F(x),

for all j = 1, . . . , m with
∑m

j=1 d ( j) > 0.

Assumption (H) (hypothesis on tails). As x → ∞, we have

P

(
m∑

j=1

ζ
( j)
1 > x

)
∼ P

(
m

max
j=1

ζ
( j)
1 > x

)
∼

m∑
j=1

P
(
ζ

( j)
1 > x

)

∼
m∑

j=1

d ( j) F(x).

Assumption (TA) (technical assumption). There exists a se-
quence zn → ∞ satisfying zn = o(n), such that for any
j = 1, . . . , m,

∞∑
n=0

P

(
ζ

( j)
0 > x + n(a − γ ),

∑
k �= j

ζ
(k)
0 > zn

)
= o(F

s
(x)).

Note that if we assume that the sequences {ζ (i)
n }n are mutu-

ally independent in i , then Assumptions (IA) and (SE) imply
directly Assumptions (H) and (TA). In this case we are in the
framework of [10]. However, Section 4 shows that it can be
useful to allow for a weak dependence.

3. Main results and examples

In this section, we present our main results and show that
they generalize several results in the literature.

3.1. Limit theorem and subexponential asymptotics

Our first result is a limit theorem which is essential to our
approach. More precisely, we study how Y[−n,0] scales with
n if one element of ζ−n is extraordinarily large, i.e., of the
same order as n.

To formalize this, we need some new notation: for ζ ∈ Rm
+,

we define

Y[−n,0](ζ ) := max
0≤p≤n−1

(
D[−p+1,0] ⊗ B−p + T−p

)
⊕ (

D[−n+1,0] ⊗ B(ζ ) + T−n
)
.

It is the aim to describe the limit of Y[−n,0](ζ ) if one ele-
ment of ζ , say ζ ( j), is large. In general, this limit depends on
j, ζ ( j) and n, and we denote it by f ( j, ζ ( j), n). Element � of
f ( j, ζ ( j), n) is denoted by f (�)( j, ζ ( j), n).

Theorem 1. Under Assumptions (M), (IA) and (S), we have
for any sequence zn → ∞ with zn = o(n) the following
limit,

lim
n→∞ sup

ζ :ζ ( j)≥n(a−γ )
ζ (k)≤zn ,k �= j

∥∥∥∥Y[−n,0](ζ ) − f ( j, ζ ( j), n)

n

∥∥∥∥ = 0 a.s.,

where

f (�)( j, σ, n) :=
{

(σ + n(γ[c( j)≤�] − a))+ if c( j) � [�];
0 otherwise.

In this paper, we study the asymptotics of P(�(Y(−∞,0]) >

x), with � : Rs
+ → R+ given by

�(y(1), . . . , y(s)) := max
p=1,...,L

C p∑
i=1

(
y(�p

i ) − y(k p
i )

)
, (5)

where the �
p
i , k p

i are chosen such that for all p,

[k p
1 ] � [�p

1 ] � · · · � [k p
C p

] � [�p
C p

].

We allow for the choice k = 0, with the convention that 0 �
[�] for all �, and y(0) = 0. We set

W := �(Y(−∞,0]); W[−n,0] := �(Y[−n,0]),

so that limn→∞ W[−n,0] = W . Note that W ≤ Z by construc-
tion. We write C := ∑

p C p.
In the tandem network framework of Section 3.2, the vec-

tor Y(−∞,0] contains the departure moments of the 0-th cus-
tomer (i.e., a ‘stationary’ customer) from each of the stations.
Since this customer arrives at time 0, � can therefore be cho-
sen so that W represents the total sojourn time in a group of
stations.

In order to establish the asymptotics of P(�(Y(−∞,0]) >

x), we define the following domain

� j (x) := {
(σ, t) ∈ R2

+ : � ( f ( j, σ, t)) > x
}
. (6)

Before giving an alternative description of � j (x) in
Lemma 1, we note that � j clearly satisfies a scaling prop-
erty: � j (x) = x� j (1) := x� j for x > 0. In particular, the
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property � j (x) �= ∅ does not depend on x , and we may un-
ambiguously write � j �= ∅.

Theorem 2. Under Assumptions (M), (IA), (S), (SE), (H),
and (TA), we have� if � j �= ∅ for every j with d ( j) > 0,

P(W > x) =
m∑

j=1
d ( j)>0

∫
(σ,t)∈� j (x)

P(ζ ( j) ∈ dσ )dt + o(F
s
(x));

� if � j = ∅ for some j with d ( j) > 0,

P(W > x)

=
m∑

j=1
d ( j)>0,� j �=∅

∫
(σ,t)∈� j (x)

P(ζ ( j) ∈ dσ )dt + o(F
s
(x)),

provided the γ� are all distinct.

Note that we are not always able to derive the exact asymp-
totics of W . We are dealing in this paper with tails of the order
of F

s
(x). In particular, if for fixed p each pair (�p

i , k p
i ) are

coordinates that belong to the same communication class Ci ,
it follows from our proof that the tail distribution of W is of
the order F(x) = o(F

s
(x)) (see the proof of Lemma 4). This

should be compared to the work of Ayhan, Palmowski, and
Schlegel [5] on closed networks. However, we do not address
this issue in the present paper.

The following lemma shows that � j (x) has a special ge-
ometry by definition of � in (5).

Fix j and write for any p = 1, . . . , L and m = 1, . . . , C p,

b j,p
m :=

⎧⎪⎪⎨⎪⎪⎩
C p∑

s=m

(
γ[c( j)≤�

p
s ] − γ[c( j)≤k p

s ]

)
if c( j) � [�p

m] and c( j) � [k p
m];

∞ otherwise,

and set b j,p
C p+1 = 0. Note that in particular b j,p

1 = ∞ if k p
1 = 0.

Lemma 1. We have for all j and x,

� j (x) =
L⋃

p=1

C p⋃
i=1

b j,p
i >b j,p

i+1,c( j)�[�p
i ]{

(σ, t) : t ∈
[

x

b j,p
i

,
x

b j,p
i+1

)
, σ > x + t

(
a − γ[c( j)≤�

p
i ] − b j,p

i+1

) ⎫⎬⎭,

(7)

where x/0 and x/∞ should be interpreted as ∞ and 0 re-
spectively, and an empty union should be interpreted as the
empty set.

3.2. Examples

In this subsection, we work out two special cases of Theo-
rem 2 that can be found in the queueing literature. In each
case, the mappings A and B correspond to a FIFO event
graph with a single input. As already pointed out, any such
event graph fits into our framework. We refer to [24] for the
construction of the matrices corresponding to such an event
graph, and for the proof that these matrices comply with As-
sumption (M). In Section 4, we work out an example and
give the corresponding mappings A and B.

First we consider a general event graph and we let W
correspond to the (stationary) sojourn time up to some node,
i.e., for some �, W = Y (�)

(−∞,0]. In the second example we
consider the case of a two-station tandem system and we let
W be the sojourn time in the second queue.

Sojourn times in event graphs

Suppose that W = Y (�)
(−∞,0] for some given �, and that the

mappings A and B correspond to a FIFO event graph with a
single input.

Special cases of the above situation are considered in
[13, 10]. In [13], upper and lower bounds are derived, which
are shown to be tight in the irreducible case (i.e., d = 1).
In [10], the tail asymptotics for W have been found if �

is the output transition, so that W is the maximal dater;
see (3).

In the case W = Y (�)
(−∞,0], the computation of � j (x) is

straightforward:

� j (x) =
{{

(σ, t) : σ > x + t(a − γ[c( j)≤�])
}

if c( j) � [�],
∅ otherwise.

As a result, the integral given in Theorem 2 reduces to the
expression given in the following corollary. It slightly gen-
eralizes the main results of [13] and [10], since we allow for
a (weak) dependence between the service times.

Corollary 1. Under Assumptions (M), (IA), (S), (SE), (H),
and (TA), we have

P(Y (�)
(−∞,0] > x) ∼

( ∑
j : c( j)�[�]

d ( j)

a − γ[c( j)≤�]

)
F

s
(x), (8)

where γ[c( j)≤�] = maxi∈[c( j)≤�] γi .

If the sum on the right-hand side of (8) is empty, it
means in view of Assumption (M) that the matrices An , Bn
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restricted to coordinates in [≤ �] are deterministic (equal
to 0 or −∞) and we have Y (�)

(−∞,0] ≤ 0. A more interest-
ing case is

∑
j : c( j)�[�] d ( j) = 0, in which the previous equa-

tion should be understood as P(Y (�)
(−∞,0] > x) = o(F

s
(x)),

and does not yield the exact asymptotics. However, one can
then restrict the (max, plus)-linear recursion to the coordi-
nates [≤ �] and find an appropriate function F ′ that satisfies
Assumptions (SE), (H), and (TA). Then the corollary yields
the exact asymptotics in this case too, which is of the order
F

′s
(x) = o(F

s
(x)).

Queues in tandem

Consider two single server queues in tandem, with an unlim-
ited waiting space at each of the queues. It is readily seen
that the corresponding matrices are:

An =
(

ζ (1)
n −∞

ζ (1)
n + ζ (2)

n ζ (2)
n

)
, Bn =

(
ζ (1)

n

ζ (1)
n + ζ (2)

n

)
,

and that Y (i)
(−∞,0] corresponds to the time that customer 0

leaves queue i . In this case, we have γi = E[ζ (i)] and γ =
maxi γi . This example is solved by Baccelli and Foss [9],
who study the case where the service times at both sta-
tions are independent. Completely different behavior is ob-
tained in the presence of strong dependence, cf. Boxma and
Deng [14].

The following corollary deals with the tail of the sojourn
time at the second queue. Define W = Y (2)

(−∞,0] − Y (1)
(−∞,0]. A

direct application of Theorem 2 gives

1. in the case γ = γ1 > γ2,

P (W > x) = d (2)

a − γ (2)
F

s
(x) + o(F

s
(x));

2. in the case γ = γ2 > γ1,

P (W > x) = d (1)

a − γ
F

s
(

x
a − γ1

γ − γ1

)
+ d (2)

a − γ (2)
F

s
(x)

+ o(F
s
(x)).

This result corresponds to Theorems 10 and 12 of [9]
respectively.

The assumption that the mean service times are distinct
may seem unnatural, but it is essential in order to prevent
second-order effects from appearing in the formula. The sit-
uation with equal means is studied for two stations in [9],
and a central limit-type term shows up if the variances of ζ (1)

and ζ (2) are finite; see Theorem 11 of [9]. We do not deal
with this case in the present paper. Our main contribution
here is to give a proof which extends Theorems 10 and 12
of [9] to more complex systems: for example, the previous
result still holds if we replace each single server by a FIFO

event graph. Such a result requires a different proof technique
than in [9], where the specific structure of tandem queues is
exploited.

4. Application: resequencing delay

The aim of this section is to apply the results of this paper to
a somewhat more realistic problem. For the sake of clarity,
we consider a given particular network and its correspond-
ing (max, plus) representation. While this example is quite
representative for the kind of problems that our results cover,
we keep it relatively simple.

To present our model, we use the formalism of Petri nets.
We refer to [7] for a detailed explanation of Petri nets and
their (max, plus) representations.

4.1. Motivation

In many distributed applications (e.g., remote computations,
database manipulations, or data transmission over a computer
network), information integrity requires that data exchanges
between different nodes of a system be performed in a spe-
cific order. However, due to random delays over different
paths in a system, the packets or updates may arrive at the
receiver in a different order than their chronological order. In
such a case, a buffer (with infinite capacity) at the receiver
has to store misordered packets temporarily. We refer to this
buffer as the resequencing buffer.

In this section, we analyze the waiting time of a packet in
the resequencing buffer; this is referred to as the resequencing
delay. Insights into this delay can then be used for dimen-
sioning the resequencing buffer. In our model, misordering
is caused by (random) multi-path routing. A similar frame-
work has been studied by Jean-Marie and Gün [20], where
the misordering network consists of K parallel M/G I/1
queues and the corresponding distribution of the resequenc-
ing delay is derived. Xia and Tse [30] have recently consid-
ered a 2 − M/M/1 queueing system and derive large de-
viation results for the resequencing queue size. Han and
Makowski [18] examine a system of K parallel queues
and study the resequencing delay for several service time
distributions. In the present subexponential framework, we
derive the exact asymptotics for the resequencing delay and
allow for a more general network with possible feedback
mechanisms.

For more background, references, and other approaches
to the resequencing problem, we refer to [2, 12, 23, 29].

4.2. Model description

We start with a description of the model. We first recall the
example that appeared in [13]; it is a tandem queue with
blocking (TQB), see Figure 1.
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Fig. 1 Tandem queues with blocking.

The TQB system corresponds to two single server sta-
tions in tandem. Each station consists of a server, an input
buffer, and an output buffer; while the server is represented
by a recycled timed transition in Figure 1, the two buffers
correspond to the places on the left and right of this tran-
sition respectively. There is a blocking mechanism which
prevents that more than two packets are present in station
1 at any time, with a similar constraint on the total number
of packets in station 2. This is implemented as follows: as
long as there are two packets in station 1, entrance into the
input buffer of station 1 is forbidden, and arrivals of the input
stream are buffered in an external buffer of infinite capacity.
The leftmost place in Figure 1 represents this buffer. Simi-
larly, as long as there are two packets in station 2, transfer
from station 1 to station 2 is forbidden, and packets of sta-
tion 1 are buffered in the output buffer of station 1. This basic
blocking mechanism can be found in several applications: it
is referred to as window flow control in communications en-
gineering and kanban blocking in manufacturing.

We use this system as a subsystem of our network,
cf. Figure 2.

In this case, the mappings A and B can be chosen as
follows (a proof is left to the reader):

A(ζ ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζ (1) −∞ −∞ −∞ −∞ −∞ −∞ −∞
−∞ 0 −∞ −∞ 0 −∞ −∞ −∞
−∞ −∞ 0 −∞ −∞ 0 −∞ −∞
ζ (1,2) ζ (2) −∞ ζ (2) −∞ −∞ −∞ −∞
ζ (1,2) ζ (2) 0 ζ (2) 0 −∞ −∞ −∞
ζ (1,2,3) ζ (2,3) ζ (3) ζ (2,3) −∞ ζ (3) −∞ −∞
ζ (1,4) −∞ −∞ −∞ −∞ −∞ ζ (4) −∞

ζ (1,23∨4,5) ζ (2,3,5) ζ (3,5) ζ (2,3,5) −∞ ζ (3,5) ζ (4,5) ζ (5)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B(ζ ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ζ (1)

−∞
−∞
ζ (1,2)

ζ (1,2)

ζ (1,2,3)

ζ (1,4)

ζ (1,23∨4,5)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where ζ (i, j) = ζ (i) + ζ ( j) and ζ (1,23∨4,5) = ζ (1) + max{ζ (2) +
ζ (3), ζ (4)} + ζ (5). This network belongs to the framework of
[10] and hence the mappings A and B automatically satisfy

Assumption (M). We have four communication classes:

C1 = [c(1)] = {1}, C2 = [c(2)] = [c(3)] = {2, . . . , 6},
C3 = [c(4)] = {7}, C4 = [c(5)] = {8}.

Note that the Petri net of Figure 2 does not have a unique
(max, plus) representation; a different representation is found
by permutating the coordinates {2, . . . , 6}. However, if the
coordinates are associated with transitions as we did in the
above mappings A and B, Y (1)

(−∞,k] corresponds to departure
time of packet k from node 1 (corresponding to communi-
cation class C1), Y (6)

(−∞,k] from the TQB system, Y (7)
(−∞,k] from

node 3 and Y (8)
(−∞,k] from node 4.

In order to take into account routing decisions, we take a
slightly different stochastic framework than in [10]. In our
example, we want to model a situation where a packet that
leaves the first node is randomly routed up (to node 3) or down
(to the TQB system). Once packet k reaches the receiver, it
leaves the system if all packets j with j < k have already
left the system. Otherwise it stays in the resequencing buffer,
where it waits for the packets with number less than k.

A different kind of routing is described by the Petri net
of Figure 2. There, each time a packet (say k) finishes its
service ζ

(1)
k in node 1, there is one packet sent up and one

packet sent down simultaneously (by definition of a Petri
net). The ‘up’-packet (‘down’-packet) is then also the k-th
packet for node 3 (for the TQB system). The k-th packet
joins the queue of node 4 once both packets have left node

Fig. 2 A network model.
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3 and the TQB system respectively, i.e., it joins at epoch

max
{

Y (6)
(−∞,k], Y (7)

(−∞,k]

}
. Node 4 is then a standard ·/G/1/∞

queue.
Since the routing mechanism of our model is different

from Figure 2, we need a trick to still apply our results. The
idea is to introduce clones, i.e., packets that behave like real
packets except that they never require any service time: their
service time is null. Suppose that the real route of packet k is
up. Then at the end of its service in the first node, a clone is
sent to the TQB system. Since ζ

(2)
k = ζ

(3)
k = 0, it is clear that

packets k and k − 1 leave the TQB system simultaneously:
Y (6)

(−∞,k] = Y (6)
(−∞,k−1]. Similarly, if the real route of packet k

is down, then a clone is sent up.
Even though the ‘real’ packets can arrive in an arbitrary

order at the places to the left of the timed transition in node
4, they are always ordered in the output place of node 4. In
other words, the packets leave the network in sequence, and
the stationary resequencing delay is given by

R = max
{

Y (8)
(−∞,0] − Y (6)

(−∞,0], Y (8)
(−∞,0] − Y (7)

(−∞,0]

}
.

It corresponds to the time spent by a ‘real’ packet in the
resequencing buffer. In particular, if we take ζ

(5)
k = 0 for all

k, this delay is purely due to multi-path routing.
The cloning procedure clearly has an impact on the distri-

butions of the service times. Indeed, a dependence struc-
ture has been introduced (given the route of packet k,
all other services are artificially set to zero). It turns out
that we can still apply our results, as shown in the next
subsection.

4.3. Asymptotics for the resequencing delay

Let σn = (σ (1)
n , . . . σ (5)

n ) be an i.i.d. sequence of mutually
independent random variables satisfying Assumption (SE)
with a distribution F . Let {rn}n∈Z be a sequence of i.i.d. ran-
dom variables, independent of everything else, with values
in {up, down}. We write P(rn = up) = 1 − P(rn = down) =:
p, and assume that 0 < p < 1. We also define

ζ (1)
n := σ (1)

n , ζ (2)
n := σ (2)

n 11{rn=down}, ζ (3)
n := σ (3)

n 11{rn=down},

ζ (4)
n := σ (4)

n 11{rn=up}, ζ (5)
n := σ (5)

n .

In order to apply our main theorem, we first argue that our
set of assumptions are satisfied. We have

P(ζ ( j)
1 > x) ∼ d ( j) F(x), for j = 1, 5,

P(ζ ( j)
1 > x) ∼ (1 − p)d ( j) F(x), for j = 2, 3,

P(ζ (4)
1 > x) ∼ pd (4) F(x).

Since 0 < p < 1, Assumption (SE) is satisfied (although the
d ( j) are different). Now we have

P

(
m∑

j=1

ζ
( j)
1 >x

)
= pP

(
σ

(1)
1 + σ

(4)
1 + σ

(5)
1 > x

)
+ (1 − p)P

(
σ

(1)
1 + σ

(2)
1 + σ

(3)
1 + σ

(5)
1 >x

)
∼ [

d (1) + (1 − p)
(
d (2) + d (3))

+ pd (4) + d (5)] F(x),

and similarly for the maximum instead of the sum; therefore,
Assumption (H) is satisfied. To show that Assumption (TA)
holds, we note that

P

(
ζ

( j)
0 > x + n(a − γ ),

∑
k �= j

ζ
(k)
0 > zn

)

≤ P
(
σ

( j)
0 > x + n(a − γ )

)
P

(∑
k

σ
(k)
0 > zn

)
.

After summing over n, we see that this is majorized by (recall
that Nx is defined in (4) and set zx := zNx ),

∑
n<Nx

P
(
σ

( j)
0 > x + n(a − γ )

)

+P

(∑
k

σ
(k)
0 > zx

) ∑
n≥Nx

P
(
σ

( j)
0 > x + n(a − γ )

)
.

Both terms are readily seen to be o(F
s
(x)).

If we assume that our system is stable, we are in posi-
tion to apply our main theorem, Theorem 2. Note that we
have

γ1 = E[ζ (1)
1 ], γ3 = E[ζ (4)

1 ], γ4 = E[ζ (5)
1 ],

but γ2 is much more intricate to compute (see [7] for more
references on Lyapunov exponents). We consider now the
case where ζ (5) = γ4 = 0 and γ1 < γ2 < γ3 < a.

The computation of the domains � j (x) is straightforward:

�1(x) =
{

(σ, t) : σ > x + t(a − γ3), t >
x

γ3 − γ2

}
,

� j (x) = {(σ, t) : σ > x + t(a − γ2)} for j = 2, 3,

�4(x) = {(σ, t) : σ > x + t(a − γ3)} .
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Therefore, Theorem 2 gives the following result:

P(R > x) = d (1)

a − γ3
F

s
(

a − γ2

γ3 − γ2
x

)
+

(
(1 − p)(d (2) + d (3))

a − γ2
+ pd (4)

a − γ3

)
F

s
(x)

+ o(F
s
(x)).

In particular, if max(d (2), d (3), d (4)) > 0, then we obtain
the exact asymptotics. If max(d (2), d (3), d (4)) = 0 (in which
case automatically d (1) > 0 by (SE)), we still have the exact
asymptotics if we assume in addition to the subexponentiality
the dominated variation of Fs , namely

lim inf
x→∞

F
s
(2x)

F
s
(x)

> 0,

which is the case if F is regularly varying, for instance.
In [23], the case of two queues in parallel is studied in more

detail. In particular, using similar techniques, the asymptotics
of the resequencing buffer is obtained and shown to differ
slightly from the asymptotics of the resequencing delay.

5. The limit theorem: proof of Theorem 1

Before proving Theorem 1, we first recall a first-order er-
godic theorem that can be found in Section 7.2 of [7]. Under
Assumption (IA), we have the following limits,

lim
n→∞

(D[−n+1,0] ⊗ B−n)( j)

n
= γ[≤ j] a.s., ∀ j

lim
n→∞

T−n

n
= −a a.s.

Since (D[−�nt�+1,0] ⊗ B−�nt�)( j)/n and −T−�nt�/n are both
nondecreasing as functions of t for any n, they converge
locally uniformly to γ[≤ j]t and at respectively; this is Dini’s
theorem.

Recall that we have

Y ( j)
[−n,0] = max

0≤p≤n

(
(D[−p+1,0] ⊗ B−p)( j) + T−p

)
,

and thanks to Assumption (S), we have γ[≤ j] ≤ γ < a. The
following lemma follows.

Lemma 2. Under Assumptions (IA) and (S), we have,

lim
n→∞

Y ( j)
[−n,0]

n
= 0 a.s., ∀ j.

We can now prove Theorem 1.

Proof of Theorem 1. Let Rn be the region defined by (we
may fix j),

Rn = {ζ : ζ (k) ≤ zn, k �= j}.

The idea is to derive bounds on Y (�)
[−n,0](ζ ) that hold uniformly

for ζ in Rn .
First consider the case c( j) �� [�]. The computation of

Y (�)
[−n,0](ζ ) involves only the restriction of the matrices to co-

ordinates i ≤ [�] and does not involve ζ ( j), cf. Assumption
(M3). Hence the same argument that leads to Lemma 2 gives
supζ∈Rn

Y (�)
[−n,0](ζ ) = o(n) almost surely.

We consider now the case c( j) � [�]. We have
the decomposition Y (�)

[−n,0](ζ ) = Y (�)
[−n+1,0] ⊕ H (1, n, ζ ) ⊕

H (2, n, ζ ), where

H (1, n, ζ ) := max
i∈[≤�]∩[c( j)≤]c

D(�,i)
[−n+1,0] + B(i)(ζ ) + T−n,

H (2, n, ζ ) := max
i∈[c( j)≤�]

D(�,i)
[−n+1,0] + B(i)(ζ ) + T−n.

For the first term, which does not depend on ζ , Lemma 2
yields Y (�)

[−n+1,0] = o(n). We now turn our attention to the
other terms, for which we make use of the facts that

∀i ∈ [c( j) ≤ �], lim
n→∞

D(�,i)
[−n+1,0]

n
= γ[c( j)≤�] ≤ γ[≤�] < a,

∀i ∈ [≤ �], lim
n→∞

D(�,i)
[−n+1,0]

n
≤ γ[≤�] < a.

Thanks to (M1), we have for any i ∈ [c( j) ≤]c and any
ζ ∈ Rn ,

B(i)(ζ ) ≤ max
j

A(i, j)(ζ ) ≤ (m − 1)zn,

where the last inequality follows from (M3). Hence we have

lim
n→∞

supζ∈Rn
H (1, n, ζ )

n
≤ γ[≤�] − a < 0.

Now we consider H (2, n, ζ ). Assumption (M) implies that
there exists some κ ∈ c( j) such that

ζ ( j) = A(κ,κ)(ζ ) ≤ B(κ)(ζ ) = max
j

A(κ, j)(ζ )

≤ ζ ( j) + (m − 1)zn. (9)

The first inequality leads to

H (2, n, ζ ) − [
ζ ( j) + n(γ[c( j)≤�] − a)

]
≥ D(�,κ)

[−n+1,0] − nγ[c( j)≤�] + T−n + na,
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and since the second inequality in (9) is valid for any κ , we
have

H (2, n, ζ ) − [
ζ ( j) + n(γ[c( j)≤�] − a)

]
≤ max

i∈[c( j)≤�]
D(�,i)

[−n+1,0] − nγ[c( j)≤�]

+ max
i

B(i)(ζ ) − ζ ( j) + T−n + na

≤ max
i∈[c( j)≤�]

D(�,i)
[−n+1,0] − nγ[c( j)≤�] + (m − 1)zn + T−n + na.

In conclusion, we showed that there exists a sequence {ηn}
tending to 0 such that,

sup
ζ∈Rn

∣∣∣Y (�)
[−n+1,0] ∨ H (1, n, ζ )

∣∣∣ ≤ nηn,

sup
ζ∈Rn

∣∣H (2, n, ζ ) − [
ζ ( j) + n(γ[c( j)≤�] − a)

]∣∣ ≤ nηn.

It is readily seen that this implies the theorem. �

6. Subexponential asymptotics: proof of Theorem 2

6.1. Preliminaries and idea of the proof

Before giving the intuition behind our proof, we need an aux-
iliary result for which the foundations were laid in Section 5.

Assumption (TA) gives a sequence {zn} tending to ∞ such
that zn = o(n). Thanks to Theorem 1, there exists a sequence
εn tending to 0 such that for j = 1, . . . , m, the probability of
the event

K j
n :=

⎧⎪⎪⎨⎪⎪⎩ sup
ζ :ζ ( j)≥n(a−γ )
ζ (k)≤zn ,k �= j

∥∥∥∥Y[−n,0](ζ ) − f ( j, ζ ( j), n)

n

∥∥∥∥ < εn

⎫⎪⎪⎬⎪⎪⎭
tends to one as n → ∞. For notational convenience, we also
define K̄ j

n := K j
n ∩

{
ζ

(k)
−n ≤ zn, k �= j

}
.

The following proposition entails that a large value of W
is caused by a large service requirement somewhere in the
distant past. Write

G j (x) :=
∑
n≥Nx

P
(

W[−n,0] > x, ζ
( j)
−n > x + n(a − γ ), K̄ j

n

)
,

and G(x) := ∑
j=1,...,m: d ( j)>0 G j (x).

Proposition 1. Suppose that Assumptions (M), (IA), (S),
(SE), (H), and (TA) hold.

For any yx → ∞ such that yx = o(x), for x → ∞, we
have

P (W > x) ≥ G(x + yx ) + o(F
s
(x)),

P (W > x) ≤ G(x − yx ) + o(F
s
(x)).

In particular, if G is long-tailed, we have P (W > x) =
G(x) + o(F

s
(x)).

We now have all the basic elements for the proof of The-

orem 2. Indeed, on the event K̄ j
n ∩

{
ζ

( j)
−n > x + n(a − γ )

}
,

we can replace Y[−n,0] by its approximation from our limit
theorem in the expression of W[−n,0], and we get

P
(

W[−n,0] > x, ζ
( j)
−n > x + n(a − γ ), K̄ j

n

)
≈ P

(
(ζ ( j)

−n , n) ∈ � j (x)
)

,

where � j (x) is defined in (6). Since this approximation can-
not be used when � j (x) = ∅, this case requires a separate
analysis.

The rest of the proof is divided into two parts. First, in
Section 6.2, we use the above arguments to show that if � j �=
∅, then G j (x) = H j (x) + o(F

s
(x)), where

H j (x) =
∫

(σ,t)∈� j (x)
P(ζ ( j) ∈ dσ )dt.

Then, in Section 6.3, we prove that G j (x) = o(F
s
(x)) in

the complementary case under the additional assumption
that the Lyapunov exponents γ� are all distinct. This proves
Theorem 2.

Proof of Proposition 1. The proof relies on Theorem 8 of
[9]. Assumptions (IA), (H) and (SE) are the same as in [9]
when replacing Y ( j)

i by ζ
( j)
i . It has been proved in [10] that

Assumption (AA) of [9] can be relaxed and that Theorem 8
is still valid under the so-called Assumption (AA’), which is
satisfied in our framework, see Lemma 3 of [10]. Now define
the events

K j
n,x := K j

n ∩ {Z(−∞,−n−1] ≤ yx/C},

which are independent of ζ−n . Moreover, the probability of
this event tends to one (uniformly in n ≥ Nx ) since

P(K j
n,x ) ≥ P(K j

n ) + P
(
Z(−∞,−n−1] ≤ yx/C

) − 1,

and the second term on the right hand side does not depend
on n. Finally, we have W ≤ Z(−∞,0] = Z , where Z is defined
in (3) and is the stationary maximal dater of some monotone
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separable network (see Section 2.1). Hence Theorem 8 of [9]
gives

P(W > x)

=
m∑

j=1

∑
n≥Nx

P
(

W > x, ζ
( j)
−n > x + n(a − γ ), K j

n,x

)
+ o(F

s
(x)). (10)

We first deal with the case d ( j) = 0. We have

∑
n≥Nx

P
(

W > x, ζ
( j)
−n > x + n(a − γ ), K j

n,x

)
≤

∑
n≥Nx

P
(
ζ

( j)
−n > x + n(a − γ )

)
≤ 1

a − γ

∫ ∞

x
P

(
ζ

( j)
1 > y

)
dy = o(F

s
(x)),

meaning that the sum in (10) can be restricted to the j for
which d ( j) > 0.

Now note that we have the following inequalities for
any i :

Y (i)
[−n,0] ≤ Y (i)

(−∞,0] ≤ Y (i)
(−∞,−n−1] + Y (i)

[−n,0],

from which we derive (recall that C = ∑
p C p)

W[−n,0] − C Z(−∞,−n−1] ≤ W ≤ W[−n,0] + C Z(−∞,−n−1].

Hence on K j
n,x , we have |W − W[−n,0]| ≤ yx and then

∑
n≥Nx

P
(

W > x, ζ
( j)
−n > x + n(a − γ ), K j

n,x

)
≤

∑
n≥Nx

P
(

W[−n,0] > x − yx , ζ
( j)
−n > x + n(a − γ ), K j

n,x

)

≤ G j (x−yx ) +
∑
n≥Nx

P

(
ζ

( j)
−n > x+n(a−γ ),

∑
k �= j

ζ
(k)
−n > zn

)
.

The last term is o(F
s
(x)) by (TA) and we get the upper bound

of the proposition.
For the lower bound, we again use (10), and observe

that

P
(

W > x, ζ
( j)
−n > x + n(a − γ ), K j

n,x

)
≥ G j (x + yx )P(Z(−∞,−n−1] ≤ yx/C).

Since P
(
Z(−∞,−n−1] ≤ yx/C

) = P (Z ≤ yx/C) does not de-
pend on n and tends to one as x tends to infinity, we
have

P
(
Z(−∞,−n−1] > yx/C

)
G j (x + yx )

≤ P (Z > yx/C) G j (x)

≤ P (Z > yx/C)
∑
n≥Nx

P
(
ζ

( j)
−n > x + n(a − γ )

)
.

The desired lower bound follows from the fact that this is
o(F

s
(x)).

The last statement of the proposition is a direct conse-
quence of the fact that if G is long-tailed, one can choose yx

such that G(x ± yx ) ∼ G(x). �

6.2. The case � j �= ∅

In this subsection, we fix some j such that � j �= ∅ and d ( j) >

0, and we prove that G j (x) = H j (x) + o(F
s
(x)). This gives

us the behavior of P(W > x) with Proposition 1, since we still
have freedom to choose yx , as long as it tends to infinity and
yx = o(x). Since both H j and F

s
are long-tailed (for H j this

can be deduced from Lemma 1), we may select yx such that
H j (x ± yx ) = H j (x) + o(F

s
(x)) and F

s
(x ± yx ) ∼ F

s
(x).

Both the upper and lower bound of Proposition 1 then reduce
to H (x) + o(F

s
(x)).

We start with the upper bound. By definition of K̄ j
n and

� j , we have

G j (x) ≤
∑
n≥Nx

P
(

(σ ( j)
0 , n) ∈ � j (x − nεn)

)
.

To see that this does not exceed H j (x) + o(F
s
(x)), the key

ingredient is Lemma 1. The details are left to the reader, as
one can mimic the proof in Section 3.3 of [11].

We now find a lower bound on G j (x) of the form H j (x) +
o(F

s
(x)). To this end, we use a similar reasoning as for the

upper bound:

P
(

W[−n,0] > x, K̄ j
n , ζ

( j)
−n > x + n(a − γ )

)
≥ P

(
(ζ ( j)

−n , n) ∈ � j (x + nεn), K̄ j
n , ζ

( j)
−n > x + n(a − γ )

)
≥ P

(
(ζ ( j)

−n , n) ∈ � j (x + nεn)
)

−P
(
ζ

( j)
−n > x + n(a − γ ), (K̄ j

n )c
)

,
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since (ζ ( j)
−n , n) ∈ � j (x + nεn) implies ζ

( j)
−n > x + nεn +

n(a − γ ) by Lemma 1. Now we have

P
(
ζ

( j)
−n > x + n(a − γ ), (K̄ j

n )c
)

≤ P

(
ζ

( j)
−n > x + n(a − γ ),

∑
k �= j

ζ
(k)
−n ≥ zn

)

+ [
1 − P(K j

n )
]
P

(
ζ

( j)
−n > x + n(a − γ )

)
.

After summing over n, we see that the first term is
o(F

s
(x)) thanks to Assumption (TA), and that the sec-

ond term is o(F
s
(x)) as a consequence of the obser-

vation that 1 − P(K j
n ) ≤ 1 − P(K j

Nx
). It remains to show

that P
(

(ζ ( j)
−n , n) ∈ � j (x + nεn)

)
= H j (x) + o(F

s
(x)), for

which we again refer to [11].

6.3. The case � j = ∅

In this subsection, we fix some j such that � j = ∅ and d ( j) >

0, and we prove that G j (x) = o(F
s
(x)) under the additional

assumption that γ1, . . . , γd are all distinct. This suffices to
obtain G j (x − yx ) = o(F

s
(x)) by choosing yx appropriately.

In fact, one cannot hope that always G j (x) = o(F
s
(x)) if

� j = ∅. For instance, Theorem 11 of [9] shows that a second-
order phenomenon plays a role.

Let us now briefly outline the idea of all proofs in
this subsection. On the event K̄ j

n , we derive upper bounds
W̃[−n,0] on W[−n,0], so that W̃[−n,0] and ζ

( j)
−n are independent.

Then

G j (x) ≤
∑
n≥Nx

P
(
W̃[−n,0] > x

)
P

(
ζ ( j) > x + n(a − γ )

)
.

Then we derive a further upper bound W̃ on W̃[−n,0] that
holds uniformly in n. The claim then follows after proving
that W̃ is almost surely finite and noting that the sum is of
order F

s
(x).

We may restrict ourselves to the case L = 1, C1 = 1 with-
out loss of generality. Indeed, G j (x) is upper bounded by
(recall that C := ∑

p C p)

L∑
p=1

C p∑
i=1

∑
n≥Nx

P
(

Y
(�p

i )
[−n,0] − Y

(k p
i )

[−n,0] > x/C,

ζ
( j)
−n > x + n(a − γ ), K̄ j

n

)
.

For every p and i , the above argument for N = 1 pro-
vides a finite random variable W̃p,i such that this does not

exceed

L∑
p=1

C p∑
i=1

P
(
W̃p,i > x/C

) ∑
n≥Nx

P
(
ζ

( j)
0 > x + n(a − γ )

)
.

The third sum is of the order F
s
(x), as desired.

The above argument shows that the value of C is irrelevant
in the analysis; therefore, we focus on finding upper bounds
on∑
n≥Nx

P
(

Y (�)
[−n,0] − Y (k)

[−n,0] > x, ζ
( j)
−n > x + n(a − γ )

)
.

In this case, there are three reasons for � j to be empty: first,
the fluid limit may vanish because � ∈ [≤ c( j)]\c( j), second
because [k] = [�], and, third, because c( j) � [k] �= [�] and
γ[c( j)≤�] = γ[c( j)≤k]. The following lemma deals with the first
case.

Lemma 3. Let L = C1 = 1. Suppose � ∈ [≤ c( j)]\c( j).
Then we have G j (x) = o(F

s
(x)).

Proof: The computation of Y (�)
[−n,0] involves only the restric-

tion of the matrices to classes [≤ �] and does not involve ζ
( j)
−n

in view of Assumption (M3). Hence, we have by (M1)

Y (�)
[−n,0] ≤ max

i,k∈[≤�]
A(i,k)

−n + Y (�)
[−n+1,0] ≤

∑
k �= j

ζ
(k)
−n + Y (�)

[−n+1,0].

Note that the term Y (�)
[−n+1,0] is independent of ζ−n . This yields

P
(

Y (�)
[−n,0] − Y (k)

[−n,0] > x, ζ
( j)
−n > x + n(a − γ ), K̄ j

n

)
≤ P

(
Y (�)

[−n+1,0] > x − mzn

)
P

(
ζ

( j)
0 > x + n(a − γ )

)
≤ P

(
Y (�)

(−∞,0] > x − mzNx

)
P

(
ζ

( j)
0 > x + n(a − γ )

)
,

for n ≥ Nx . Since we can assume that Nx ≤ x , we have zNx =
o(x). The claim follows after summing over n. �

The following lemma deals with the second case.

Lemma 4. Let L = C1 = 1. Suppose that [k] = [�]. Then
we have G j (x) = o(F

s
(x)).

Proof: Recall that s is the dimension of the matrices An .
SinceA(i,i) > −∞ by (M2), we have for all p, and all m1, m2

with [m1] � [m2],(
D[p,p+s−1]

)(m2,m1)
> −∞.
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Observe that for p ≥ s,(
D[−p+1,0] ⊗ B−p

)(�)

= max
m

D(�,m)
[−s+1,0] + (

D[−p+1,−s] ⊗ B−p
)(m)

,

and denote the optimizing argument by m∗ ∈ [≤ �]. Clearly,(
D[−p+1,0] ⊗ B−p

)(k) ≥ D(k,m∗)
[−s+1,0]+

(
D[−p+1,−s] ⊗ B−p

)(m∗)
,

and the previous observation gives D(k,m∗)
[−s+1,0] > −∞ since

[�] = [k]. Hence, we have for p ≥ s,(
D[−p+1,0] ⊗ B−p

)(�) − (
D[−p+1,0] ⊗ B−p

)(k)

≤ D(�,m∗)
[−s+1,0] ≤

0∑
i=−s+1

∑
j

ζ
( j)
i ,

where the last inequality follows from (M3). The latter in-
equality holds trivially if p < s, so that

Y (�)
[−n,0] − Y (k)

[−n,0] ≤
0∑

i=−s+1

∑
j

ζ
( j)
i . (11)

Since this upper bound is independent of ζ−n if n is large
enough, we have for x → ∞,∑
n≥Nx

P
(

Y (�)
[−n,0] − Y (k)

[−n,0] > x, ζ
( j)
−n > x + n(a − γ )

)

≤ P

(
0∑

i=−s+1

∑
j

ζ
( j)
i > x

) ∑
n≥Nx

P
(
ζ

( j)
0 > x + n(a − γ )

)

∼ F
s
(x)

a − γ
P

(
0∑

i=1−s

∑
j

ζ
( j)
i > x

)
= o(F

s
(x)),

as claimed. �

One specific consequence of the proof is worth pointing
out. Since the upper bound in (11) is independent of n, we
have

P
(

Y (�)
(−∞,0] − Y (k)

(−∞,0] > x
)

≤ P

(
0∑

i=−s+1

∑
j

ζ
( j)
i > x

)
∼ sd F(x).

As already indicated in Section 3, this is related to the results
in [5] for closed networks.

Next we deal with the case that the fluid limit is zero while
the big event takes place in a class c( j) � [k].

Lemma 5. Let L = C1 = 1. Suppose that the Lyapunov ex-
ponents γ� are all distinct. Assume that c( j) � [k], [k] �=
[�] and that γ[c( j)≤�] = γ[c( j)≤k]. Then we have G j (x) =
o(F

s
(x)).

Proof: We start with some notation, using the graph GA as
introduced in Section 2.1. For a path ξ = (i0, i1, . . . , i p) in
GA, we set

D[a+1,a+p](ξ ) = A
(i p,i p−1)
a+p + · · · + A(i2,i1)

a+2 + A(i1,i0)
a+1 .

Define also 
(i, i ′, p) as the set of paths that start in i ,
end in i ′, and have length p, i.e., paths of the form (i =
i0, i1, . . . , i p = i ′). We can express Y (�)

[−n,0] in this notation as
follows:

Y (�)
[−n,0] =

⊕
0≤p≤n

⊕
i

max
ξ∈
(i,�,p)

D[−p+1,0](ξ ) + B(i)
−p + T−p.

If a path ξ = (i0, . . . , i p) goes through communication class
C�, i.e., if there exists ik ∈ C�, we write � ∈ [ξ ].

It is useful to introduce

Ŷ (�)
[−n,0] =

⊕
0≤p≤n

⊕
1≤i≤s

i �∈[c( j)≤] if p=n

max
ξ∈
(i,�,p)

D[−p+1,0](ξ )

+B(i)
−p + T−p.

Note that the only difference with Y (�)
[−n,0] is the additional

requirement that i �∈ [c( j) ≤] if p = n in the maximization.
We also define

Y
(�)
[−n,0] :=

⊕
i∈[c( j)≤�]

max
ξ∈
(i,�,n)

D[−n+1,0](ξ ) + B(i)
−n + T−n,

so that Y (�)
[−n,0] = Ŷ (�)

[−n,0] ⊕ Y
(�)
[−n,0].

The assumptions imply that there exists a unique ‘bottle-
neck’ communication class Cb with the property that

c( j) � Cb � [k] � [�],

γb = γ[c( j)≤�] = γ[c( j)≤k], and

b �= [�].

We write Y (�);b∈[ξ ]
[−n,0] and Y (�);b �∈[ξ ]

[−n,0] if the maximization over ξ

is only done over ξ ∈ 
(i, �, p) with b ∈ [ξ ] and b �∈ [ξ ]
respectively. The quantities with hats and bars are defined
similarly.

The following key representation of Y (�)
[−n,0] is immediate:

Y (�)
[−n,0] = max

(
Y (�);b∈[ξ ]

[−n,0] , Ŷ (�);b �∈[ξ ]
[−n,0] , Y

(�);b �∈[ξ ]
[−n,0]

)
,
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with the convention that the maximum over the empty set is

−∞ (in the definitions of Y
(�);b �∈[ξ ]
[−n,0] and Ŷ (�);b �∈[ξ ]

[−n,0] ).
It suffices to prove∑

n≥Nx

P
(

Y (�);b∈[ξ ]
[−n,0] − Y (k)

[−n,0] > x ; ζ ( j)
−n > x + n(a − γ ), K̄ j

n

)
= o(F

s
(x)), (12)

and similarly for Y (�);b∈[ξ ]
[−n,0] replaced by Ŷ (�);b �∈[ξ ]

[−n,0] and Y
(�);b �∈[ξ ]
[−n,0] .

This is proven in three steps, one for each term.

Step 1: Y (�);b∈[ξ ]
[−n,0]

We start with the proof of (12). Note that for 0 ≤ p ≤ n,⊕
i

max
ξ∈
(i,�,p)

b∈[ξ ]

D[−p+1,0](ξ ) + B(i)
−p

=
⊕
m∈Cb

⊕
0≤q≤p

(D[−p+1,−q] ⊗ B−p)(m) + D(�,m)
[−q+1,0]

≤
⊕
m∈Cb

⊕
0≤q≤p

(D[−p+1,0] ⊗ B−p)(m) + D(�,m)
[−q+1,0] − D(m,m)

[−q+1,0]

≤
⊕
m∈Cb

(D[−p+1,0] ⊗ B−p)(m)

+
⊕
m∈Cb

⊕
0≤q≤n

(
D(�,m)

[−q+1,0] − D(m,m)
[−q+1,0]

)
.

This implies the inequality

Y (�);b∈[ξ ]
[−n,0] − Y (k)

[−n,0] ≤
⊕
m∈Cb

Y (m)
[−n,0] − Y (k)

[−n,0]

+
⊕
m∈Cb

⊕
0≤q≤n

(
D(�,m)

[−q+1,0] − D(m,m)
[−q+1,0]

)
,

so that

P

( ⊕
m∈Cb

Y (m)
[−n,0] − Y (k)

[−n,0]

+
⊕
m∈Cb

⊕
0≤q≤n

D(�,m)
[−q+1,0] − D(m,m)

[−q+1,0] > x,

ζ
( j)
−n > x + n(a − γ )

)
≤

∑
m∈Cb

P(Y (m)
[−n,0] − Y (k)

[−n,0] > x/2, ζ
( j)
−n > x + n(a − γ ))

+
∑
m∈Cb

P

( ⊕
0≤q≤n

D(�,m)
[−q+1,0] − D(m,m)

[−q+1,0] > x/2,

ζ
( j)
−n > x + n(a − γ )

)
. (13)

Therefore, we may fix m ∈ Cb for the remainder of this step,
and show that the two probabilities are o(F

s
(x)) after sum-

ming over n.
Since Cb � [k], there exists u ∈ [k], v ∈ Cb such that

A(u,v) > −∞. Following the same arguments as in Lemma
4, we have (for n ≥ 2s)

Y (m)
[−n,0] −

−s−1∑
i=−2s

∑
j

ζ
( j)
i − A(u,v)

−s −
0∑

i=−s+1

∑
j

ζ
( j)
i ≤ Y (k)

[−n,0].

Hence we have Y (m)
[−n,0] ≤ Y (k)

[−n,0] + ∑0
i=−2s

∑
j ζ

( j)
i , which

implies that the first term in (13) is o(F
s
(x)).

We now show that the second term in (13) is o(F
s
(x)).

Since

⊕
0≤q≤n

(
D(�,m)

[−q+1,0] − D(m,m)
[−q+1,0]

)

is independent of ζ−n and

P

( ⊕
0≤q≤n

D(�,m)
[−q+1,0] − D(m,m)

[−q+1,0] > x

)

≤ P

(⊕
q≥0

D(�,m)
[−q+1,0] − D(m,m)

[−q+1,0] > x

)
,

it is sufficient to prove that the probability in the previous
display tends to zero as x → ∞.

For this, write 
′(m, �, q) for the subset of 
(m, �, q)
with paths that do not visit any coordinate of Cb, except for
the starting point. For any ξ = (i0, . . . , iq ) ∈ 
(m, �, q), we
define p(ξ ) by the requirement that iκ ∈ Cb for κ ≤ p(ξ )
and iκ ∈ [≤ �]\Cb for κ > p(ξ ). We also write m(ξ ) := i p(ξ ).
Using the optimizing path ξ ∗

q,m in maxξ∈
(m,�,q) D[−q+1,0](ξ )
as the argument to p and m, we get

D(�,m)
[−q+1,0] − D(m,m)

[−q+1,0] = D
(m(ξ∗

q,m ),m)
[−q+1,−q+p(ξ∗

q,m )]

+D
(�,m(ξ∗

q,m ))
[−q+p(ξ∗

q,m )+1,0] − D(m,m)
[−q+1,0]

≤ D
(�,m(ξ∗

q,m ))
[−q+p(ξ∗

q,m )+1,0] − D
(m,m(ξ∗

q,m ))
[−q+p(ξ∗

q,m )+1,0].

Since p(ξ ∗
q,m) ≥ 0 and m(ξ ∗

q,m) ∈ Cb, this implies

⊕
m∈Cb

⊕
q≥0

D(�,m)
[−q+1,0] − D(m,m)

[−q+1,0]

≤
⊕
m∈Cb

⊕
m ′∈Cb

⊕
q≥0

max
ξ∈
′(m ′,�,q)

D[−q+1,0](ξ ) − D(m,m ′)
[−q+1,0].
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Since for every m, m ′ ∈ Cb, with probability one,

lim
q→∞

maxξ∈
′(m ′,�,q) D[−q,0](ξ ) − D(m,m ′)
[−q,0]

q
= γ[Cb≤�]\Cb − γb

< 0,

we have
⊕

q≥0 D(�,m)
[−q+1,0] − D(m,m)

[−q+1,0] < ∞ almost surely,
showing (12).

Step 2: Ŷ (�);b �∈[ξ ]
[−n,0]

Now we turn to (12) with Y (�);b∈[ξ ]
[−n,0] replaced by Ŷ (�);b �∈[ξ ]

[−n,0] .
We have

Ŷ (�);b �∈[ξ ]
[−n,0] ≤ Ŷ (�)

[−n,0] ≤ max
i,κ �∈[c( j)≤]

A(i,κ)
−n + Y (�)

[−n+1,0]

≤
∑
κ �= j

ζ
(κ)
−n + Y (�)

[−n+1,0],

where we used (M1) and (M3). The rest of the proof of
the second step is similar to the case treated in Lemma 3;
therefore, we omit the proof.

Step 3: Y
(�);b �∈[ξ ]
[−n,0]

It remains to show that (12) holds with Y
(�);b �∈[ξ ]
[−n,0] instead

of Y (�);b∈[ξ ]
[−n,0] . Thanks to Assumption (M), there exists some

(non-random) u ∈ c( j) such that

Y (k)
[−n,0] ≥ D(k,u)

[−n+1,0] + B(u)
−n + T−n ≥ D(k,u)

[−n+1,0] + ζ
( j)
−n + T−n.

Moreover, we have

Y
(�);b �∈[ξ ]
[−n,0] ≤

m∑
k=1

ζ
(k)
−n +

⊕
i∈[c( j)≤]

max
ξ∈
(i,�,n)

b �∈[ξ ]

D[−n+1,0](ξ ) + T−n,

so that

Y
(�);b �∈[ξ ]
[−n,0] − Y (k)

[−n,0]

≤
∑
k �= j

ζ
(k)
−n +

⊕
i∈[c( j)≤]

max
ξ∈
(i,�,n)

b �∈[ξ ]

D[−n+1,0](ξ ) − D(k,u)
[−n+1,0].

By the same argument that was used in Lemma 3, it suffices
to show that for every i ∈ [c( j) ≤ �],

lim
x→∞ P

⎛⎜⎝⊕
n≥0

max
ξ∈
(i,�,n)

b �∈[ξ ]

D[−n+1,0](ξ )−D(k,u)
[−n+1,0] > x−mzNx

⎞⎟⎠
vanishes.

This follows from the fact that for i ∈ [c( j) ≤ �],

lim sup
n→∞

maxξ∈
(i,�,n)b �∈[ξ ] D[−n+1,0](ξ )

n

≤ γ[c( j)≤�]\Cb < γb = lim
n→∞

D(k,u)
[−n+1,0]

n
.

�

The assumption of distinct Lyapunov exponents is conve-
nient, but can be slightly relaxed. Indeed, if c( j) � [k], [k] �=
[�] and γ[c( j)≤�] = γ[c( j)≤k], it follows from the above proof
that it suffices to have the existence of a unique bottleneck
class Cb such that c( j) � Cb � [k], γb = γ[c( j)≤�] = γ[c( j)≤k],
and γ[c( j)≤�]\Cb < γb.

7. Characterization of Δ j : proof of Lemma 1

Thanks to the specific form of �, it suffices to prove the
claim for L = 1. For simplicity, we write k j := k1

j , � j := �1
j ,

C := C1, and b j
i := b j,1

i .
We start by partitioning the set � j (x) conveniently; for

this, we exploit the fact that γ[c( j)≤ki ] and γ[c( j)≤�i ] increase in
i and that γ[c( j)≤�i−1] ≤ γ[c( j)≤ki ]. Hence, since the definitions
of � j and f imply that

� j (x) ∩ {σ/t < a − γ[c( j)≤�C ]} = ∅,

we see that � j (x) can be written as(
� j (x) ∩ {σ/t ≥ a − γ[c( j)≤k1]}

)
∪

C⋃
i=2

(
� j (x) ∩ {

σ/t ∈ [
a − γ[c( j)≤ki ], a − γ[c( j)≤�i−1]

)})
∪

C⋃
i=1

(
� j (x) ∩ {

σ/t ∈ [
a − γ[c( j)≤�i ], a − γ[c( j)≤ki ]

)})
,

where all sets should be interpreted as part of the (σ, t)-
plane. We write the latter decomposition of � j (x) as SI ∪⋃C

i=2 SI I (i) ∪ ⋃C
i=1 SI I I (i). Moreover, we define for κ =

1, . . . , C the strip

Uκ :=
{

t ∈
[

x

b j
κ

,
x

b j
κ+1

)}
,

provided b j
κ > b j

κ+1; otherwise Uκ = ∅. We also set Sκ
I :=

SI ∩ Uκ , Sκ
I I (i) := SI I (i) ∩ Uκ , and Sκ

I I I (i) := SI I I (i) ∩ Uκ

for i, κ = 1, . . . , C .
The remainder of the proof is split into three parts. First we

suppose that either [c( j) ≤ k1] �= ∅, or there exists some i∗ =
2, . . . , C such that [c( j) ≤ ki∗−1] = [c( j) ≤ �i∗−1] = ∅ and

Springer



Queueing Syst (2006) 53:213–230 229

[c( j) ≤ ki∗ ] �= ∅. In the second part, we suppose that there is
some i∗ such that [c( j) ≤ ki∗ ] = ∅, while [c( j) ≤ �i∗ ] �= ∅.
The last part consists of the case that �C ∈ [≤ c( j)]\c( j).

We start with the first part. Set i∗ = 1 if [c( j) ≤ k1] �= ∅.
The union in (7) is taken from i = i∗ to C (provided b j

i >

b j
i+1). If i∗ > 1, we have by definition of f j ,

� j (x) =
{

(σ, n) ∈ R+ :
C∑

i=i∗

(
f j
�i

(σ, n) − f j
ki

(σ, n)
)

> x

}
,

so that it can be reduced to the case with Cnew = C − i∗ + 1
by choosing knew

i = ki+i∗−1 and �new
i = �i+i∗−1. In the new

scenario, we have [c( j) ≤ knew
1 ] �= ∅, so that it suffices to

suppose that i∗ = 1. As an aside, observe that all b j
i are finite

in this case, so that � j (x) and the σ -axis are disjoint.
Hence, suppose that [c( j) ≤ k1] �= ∅. It is left to the reader

to check that for i = 1, . . . , C ,

Sκ
I = {

σ/t ≥ a − γ[c( j)≤k1]
} ∩ Uκ ,

Sκ
I I (i) =

{ {σ/t ∈ [
a − γ[c( j)≤ki ], a − γ[c( j)≤�i−1]

)} ∩ Uκ if κ ≥ i ;
∅ otherwise,

Sκ
I I I (i) =

⎧⎪⎨⎪⎩
{σ/t ∈ [

a − γ[c( j)≤�i ], a − γ[c( j)≤ki ]
)} ∩ Uκ if κ > i ;{

σ/t < a − γ[c( j)≤ki ]
} ∩

{
σ > x + t

(
a − γ[c( j)≤�i ] − b j

i+1

)}
∩ Ui if κ = i ;

∅ otherwise.

This implies that � j (x) = ⋃C
κ=1 �

j
κ (x), with

� j
κ (x) := Sκ

I ∪ Sκ
I I I (1) ∪

κ⋃
i=2

(
Sκ

I I (i) ∪ Sκ
I I I (i)

)
,

where an empty union should be interpreted as an empty set.
It is not difficult to see that �

j
κ (x) can be identified with{

σ > x + t
(

a − γ[c( j)≤�κ ] − b j
κ+1

)}
∩ Uκ , as desired.

We now turn to the second part of the proof, where we
suppose that there is some i∗ such that [c( j) ≤ ki∗ ] = ∅,
while [c( j) ≤ �i∗ ] �= ∅. Again, we may suppose without loss
of generality that i∗ = 1. Set b j

1 = γ[c( j)≤�1] − γ[c( j)≤k1] + b j
2

and note that b j
1 was called b j

1 in the first part of the proof
(while now b j

1 = ∞ by definition). Therefore, the only differ-
ence is that the SI are now slightly changed; indeed, denoting
the old SI by SI , we have

SI = {
σ/t ≥ a − γ[c( j)≤k1]

}
∩

{
σ > x + t

(
a − γ[c( j)≤�1] − b j

2

)}
= SI ∪

({
σ > x + t

(
a − γ[c( j)≤�1] − b j

2

)}
∩

{
t ∈

[
0, b j

1

)})
.

Hence,� j (x) is exactly the same as in the first setting, but part

of the strip
{

t ∈
[
0, b j

1

)}
is now added. This is accomplished

in (7) by definition of b j
1 .

For the third and last part of the proof, it remains to inves-
tigate the case that �C ∈ [≤ c( j)]\c( j). Since the fluid limit
then vanishes, we have � j (x) = ∅. This is accomplished in
(7) by the convention on empty intersections.
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3. S. Asmussen, C. Klüppelberg, and K. Sigman, Sampling at subex-
ponential times, with queueing applications, Stochastic Process.
Appl. 79 (1999) 265–286.

4. S. Asmussen, H. Schmidli, and V. Schmidt, Tail probabilities for
non-standard risk and queueing processes with subexponential
jumps, Adv. in Appl. Probab. 31 (1999) 422–447.

5. H. Ayhan, Z. Palmowski, and S. Schlegel, Cyclic queueing networks
with subexponential service times, J. Appl. Probab. 41 (2004) 791–
801.
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