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Abstract: This paper studies a class of transport equations arising from
stochastic models in congestion control. This class contains two cases of loss
point process models: the rate-independent Poisson case where the packet loss
rate is independent of the throughput of the flow and the rate-dependent case
where the point process of losses has an intensity which is a function of the
instantaneous rate. This class of equations covers both the case of persistent
and of non-persistent flows. We give a direct proof of the fact that there is
a unique density solving the associated differential equation and we provide a
closed form expression for this density and for its mean value.
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Sur les Solutions Stationnaires d’une Classe
d’Equations de Transport Utilisées en Controéle
de Congestion

Résumé : Nous étudions dans cet article une classe d’équations de transport
qui apparaissent dans des modéles stochastiques de mécanismes de controle de
congestion. Cette classe couvre deux modéles de processus ponctuels de pertes:
le cas ou les pertes forment un processus de Poisson, et celui ol ce processus
ponctuel a une intensité qui est une fonction du débit instantané du flot. Elle
couvre aussi le cas des flots persistants comme celui des non-persistants. Pour
cette classe, nous donnons une preuve directe de 'unicité des densités solutions
de I’équation différentielle décrivant I’état stationnaire, ainsi qu’une expression
explicite pour cette densité et pour sa valeur moyenne.

Mots-clés : Controle de flot, évitement de congestion, TCP, HTTP, AIMD,
processus stochastique, processus ponctuel de Poisson, intensité stochastique,
densité stationnaire, changement de mesure.
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1 Introduction

The aim of the present paper is to give a comprehensive mathematical treat-
ment of a class of differential equations that characterize the steady state of
some transport partial differential equations (PDEs) associated with the dy-
namics of TCP flows. We establish a generic equation that contains most
features considered in the literature: persistent and non persistent flows, rate
dependent and rate independent losses, as well as the case with slow start and
timeouts.
The following ordinary differential equation (ODE) was considered in [3]

df (2)
dz

with 3 > 0. This ODE represents the throughput density of a TCP connection
in statistical equilibrium when a router drops its packets with constant proba-
bility 5. The rate at which its packets are dropped is  times the throughput
so we call (1) rate-dependent. By the congestion control mechanism of TCP
[2] this is also the rate at which the throughput is cut in half. The function f
represents the density of transmission rates in statistical equilibrium.

The intuition is as follows. The proportion of the throughputs in an interval
[z, z + dz] is approximately f(z)dz. These suffer a loss at a rate 5z and hence
the rate at which mass leaves the interval [z, z+dz] is 5z f(2)dz approximately.
Mass enters this interval because of losses among throughputs in the interval
[22,2(z+dz)] at rate 2z f(22)-2dz approximately. Mass also enters and leaves
the interval because of the linear increase in the transmission rates and the
rate of change of the mass in [z, z 4 dz] is approximately #d—f)dz. Equation (1)
is the corresponding balance equation.

These equations also come up in the equilibrium distribution of the weights
of a population of cells since the weights grow linearly until mitosis cuts the
weight in half (see [1]).

The following solution of (1) was obtained by inspection in [3] and using
Mellin transforms in [5]:

f(z) = 20v/B> ape (377

n>0

= PBlzf(22) = 2f(2)), 220, (1)
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4 F. Baccelli, K.B. Kim & D. McDonald

n

- 4
with Qb = (\/ 2w HkZl(]‘ — 2_2k+1)) ! and with ag = 1 and anp = (—1)nl£[1m
The associated transient equation is the following non-local transport PDE:

a%f(t,z) + %f(t,z) = B(4zf(t,22) — zf(t,2)), =z,t>0.

This PDE has been generalized in several directions. In particular |6] has
considered this equation with 4z f(t,22) — 2 f(t, z) replaced by 2b(22) f(t,2z) —
b(z)f(t,z) where b(z) is a general function. The existence of a solution as
well as the exponential rate of convergence of the solution to the associated
equilibrium ODE are shown. References to related work on such equations
(which are often referred to as fragmentation equations) are given.

In the rate-independent case of [5], the ODE is

YO — pares - ). =20 2)

with # > 0 and its solution (obtained by Mellin transforms in Lemma 2 [5]) is

f(z2) = @B) ape P

n>0
: L : T 2
with ¢ = (Hk21(1 —27%)) " and with a, = (—1) gm and ag = 1.
In the rate-dependent case, the non-persistent equation introduced in [4] is

T / " f(w)de SAG) — pf(2) + B2(47(22) — F(2)

0

where 0 > 0, A is a probability density function, © > 0 and § > 0. Here, the
constant p measures exogenous losses which cause the transmission rate to be
instantaneously cut to zero, like timeouts in the TCP context or transmission
completions in the HT'TP context. The constant 6 measures the rate at which
transmission rates instantaneously increase from 0, where the increase has
density A. This is a simplified representation of the slow-start mechanism
after a timeout or a transmission completion (see [4]). The case with 6 = 0 is

INRIA



Equilibria of a Class of Transport Equations in Congestion Control 5

that where there is no slow start. [4] provides the density solution when § = 0
and the mean value for all § > 0 using Mellin transforms.

In the present paper, we consider the more general non-persistent equation
which allows more general rate-dependences

VO s1(pAG) — ™ 1) + 827 F02) — ). 220, (3)
where § > 0, T(f) = [;° 277" f(z)dz, A is a probability density function with
JoAR)dz=1,p>0,7v>1,3>0,p>1,and p+ > 0. The associated
transport PDE is defined in the same way.

Throughout the rest of this paper, we look for a solution f(z) of (3) which
is a density such that T'(f) is finite. We give a direct proof that there is a
unique density solving (3) and we give closed form expressions for this density
and its mean value.

Integrating (3) from zero to infinity gives

F0) = (n=8)T(f) = 0 or p

(since there exists a subsequence z;, — oo such that lim f(z,) = 0 since f is

Vv

0

integrable). '
The special case with 6 = p = 0, namely
df (z _
B~ s - e, 220 ()

will be called the persistent equation. It describes a persistent source in con-
gestion avoidance without slow-start and where the rate dependence is propor-
tional to 277!, The persistent equation includes (1) and (2) as special cases.

In the next section, we summarize the two main results of this paper. A
detailed proof is given in the following two sections. Finally, we study the
associated PDE.

2 Main Results

Let ['(t) = [, «'"'e "dx denote Euler’s Gamma function. The following the-
orem summarizes our results on the persistent ODE (4):

RR n° 5653



6 F. Baccelli, K.B. Kim & D. McDonald

Theorem 1 Ify> 1, p > 1, § > 0, the unique density solution to (4) is

ANAE! 1 Bgnn
flz) = 7(5) F(l/v)H(l—e—k—l/W);bne AR

k>0

where 0 = p7, by =1 and b, = (_1)711_[(91@0%1)
k=1

The b, ’s are the coefficients of the ezrpansion
H(l —07*x) = Z bux".
k>0 n>0
The mean value of this density is
o0 YT (2 1— k=2
/ zf(2)dz = (é) %7 L Lo —k—1/ ) (6)
0 Y U'(1/9) [Tiso(L — 6 )
The following theorem summarizes our results on the non-persistent ODE

(3):

Theorem 2 Lety > 1, p> 1, u>6>0,5>0, u+ 5 >0 and A be a
density such that

/ A(z)ewtﬁ) “dz < oo (7)
0
Then the unique density solution to (3) is the function
1 Bo\" EE P
10 = a2 (1) wa) ©)

n>0

with

(n4m)

do(2) = ) e 5/0 ZAm(x)dx—i— (1 —0)

m>0

(Y
Cmn = <m) Hl—e_l and

=1

p+B g—m

Ap(z) = Alx)e - "7,

INRIA



Equilibria of a Class of Transport Equations in Congestion Control 7

The constant C' which normalizes (8) to be a density is

_ 1 _ B pky
¢ - 72,g)(1 e M) (Zcm

m2>0
(5/ Zm(x)/ By (u)du dx+(u—5)D(l)))
0 v /0™
with
_ B,
€ ol
Bi(u) = =

o - ()5 1)

~ o (16742752
/ z2f(2)dz g
0 Lo (1 . @—k—l/vm>

() /:o Bo(u)du dx + (j1 — 5)0(2))

v /0™

]
$
(%Y

T3
|

g
$
S
T3
|

() /:O B (u)du dx + (j1 — 5)0(1)) |

v /0™

As we shall see later, for both the persistent and the non-persistent case,
the solution of the rate-dependent case can actually be built from that of the
rate-independent case by a mere change of measure. It is why we start with
the latter case below.

3 The Rate-Independent Case (v = 1)
In the rate-independent case, (3) is given by

d];(;) = SA(z) — puf(2) + BOF(0z) — f(2), z>0, (9)

RR n° 5653



8 F. Baccelli, K.B. Kim & D. McDonald

where > 1 (since we look for a density, T(f) = [;* f(z)dz = 1).
Multiplying (9) by exp(—sz) and integrating from zero to oo gives the
following expression for the Laplace transform f(s):

sfis) = £(0) = 0A(s) = pufls) + B8(F(5) — F(5))

that is

0
where A is the Laplace transform of the density A. By iteration it follows that

Z]‘[k 0 ,u+6+s/0k) ' (f(OHM(e%))
*E(#ﬂwk)f(ﬁ)

3.1 The persistent case (1 =6 = 0)

£(0) + 5A(s) LB A(S)

Js) = pw+pB+s ,u+6+sf

In the persistent case, letting N tend to infinity, we get

~

fls) = H6+S/Gk~f<o>

k>0

% ﬁﬂ I (10)

k>0
with f = [ f(z)dz =1.

We remark that f is the Laplace transform of a sum of independent ge-
ometric random variables Ej, with parameter 56*. Note that the sum of the
means » ;- 6=%/3 < oo so this random variable exists and has a positive

density.
We thus have a solution for (2) with § = 2. The ODE is

df (2)
dz

= BOf(02) = f(2), z2=0. (11)

INRIA
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The solution can also be found by the Mellin transform as in [5]:

f(z) = B be ¥ (12)

n>0

-1
with ¢ = (Ha - e—k)) .
k>1

We can check this inversion by calculating the Laplace transform of (12):

wﬂZb/ e B = WZU+5@”

n>0

The residue of the pole —30" is 1)3b,. The residue of fgiven by (10) at the
pole — (30" is

n—1
n 5o Bo*
59 H(ﬁek 69") Il (ﬂek 59”)

k>n+1

nn 1 1 pk—n
= o (y=pe) 1T (55 5)

k=0 k>nt1

s 0 ok
)

=1 k>1
= ﬁ'bn'¢k

Thus we see the Laplace transform of f is indeed (10).

3.2 The non-persistent case (u > ¢ > 0)

Letting N — oo we get

o) = ;H:zo(uf;—ks/%) (10 +62(5)) (13)

- S (-24230) (-75) () Tt

n>0

RR n° 5653



10 F. Baccelli, K.B. Kim & D. McDonald

In (9) we can define independent random variables V', Ey, k = 0,1,...,
N and X where V has density A, the E,’s are exponential with parameter

(u+ B)0%, N is geometric with P(N = n) = (1 — m) (uﬁ%ﬁ) and X takes

the values 0 or 1 with probabilities (1 —/u) and §/p. By inspection, f is the
Laplace transform FE exp(—sW) of the random variable

W= (1-X)> E, + X<0—N + ZE)

We have therefore established the existence and uniqueness of a density solu-
tion to (9).

We can calculate the inverse of the Laplace transform given at (13). First
remark that the density giving the transform

n

H p+ 0
it i s/0F
can be written as g,(z de nexp(—(pu+ 3)0%2) where
- 0
din = (p+8)b H 5= with 1.

=1 i=1

This holds because the transform of dem exp(—(u + B)0%2) is
k=0

Yo ()

k=0

INRIA
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where dj, ,, are found by using

_ ST (1 + B - (1 + 50
din = (p+P3)0 g((wr@)ei—(wﬁ)@k) 11 ((u+ﬁ)9i—(u+5)9’“

i1=k+1

_ (M+5)0’f§(1_19k_¢) ﬁ (%)

i=k+1

— (M+6)ﬁ(1_99i)7ﬁ€<9i0_i1).

i=1 i=1

Let N(-) denote the measure (1 — %) do(dx) + %A(x)da:. The density of the
variable W at y, conditioned on N = n, is given by

oy

077,
/ yg <y— £> N(dz) = / de 6—(u+ﬁ)ek(y—e%)N(dx)
o o R "

n on
- deme—(wﬁ)?ky/ ye(u+ﬂ)w/9”"“;\z(dx)_
k=0 0

Note that the above integral exists by the assumption (7), i.e.,

I e t9)z A(2)dz < co. Now summing over n we have the density for W
at y:

Z (1 __F ) ( s )n zn: dy, e~ WHPery /any e(u+ﬁ)x/9”‘kN(d$)
p+B) \p+p) =" 0

n>0

- _ Z & ’ —(u+B3)0Fy
- %;(Hﬁ)b’“(l u+6> (u+6) o

ﬁ n—k [n—k 1 0"y e
> (:59) (}]11_ )/ N

0
n>k
B ) ( g )ke—(u+6)9’“y
+ 3 + 3

— S+ o 1- -

k>0 H
RR n° 5653
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12 F. Baccelli, K.B. Kim & D. McDonald

4 The Rate-Dependent Case (v > 1)
4.1 The persistent case (1 =6 = 0)
Define h to be a density solution of (11) with /3 replaced by 3/~ so

— 5256 50")z (14)

n>0

Next, for all positive constants C, f(z) = C~'h(27) satisfies
df(Z) _ C—ldh(z’y)
dz dz
= C'_lyz“’_lé (Oh(027) — h(27))
g

= C7B (P h((p2)") — h(2")) where p7 =0
= B2 (0" fpz) = f(2)).
So if one takes C such that fo z)dz =1, then f is a density which satisfies
(4).
We can understand this transformation as a change of measure. Let I be

a random variable with distribution h given by (14). We note that for any
bounded function ¢,

L [o(IY) I 1
EE {7[1—1/7} = / ¢(zl/v)vzl 1/’yh(z)dz
= L[ o

— / o(w) f (w)duw
Elo(7)]

where J is a random variable with a density given by f(z).

INRIA
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We can use this change of measure to compute the normalizing constant:

1
C = E{;ﬁ:ﬁ}
1 />~ 1
— ;/0 T_ﬂwh(z)dz

Vo >z o1 B g
= ?an/o Jimi/; &P —;92 dz

. (0 1 i 1/7_1/00 1/y—1
= Vzbnen G i v exp(—v)dv

n>0

w 5 1/y—1 1 1 n
-23) )z ()

SN0}

Hence (5) is a density solution to (4). By a similar argument, taking ¢(/) = I,
we get that the mean value of f is

> B[P
/0 z2f(2)dz = o
= —/ 227 h(2)dz
0

f /m st B
= —— b, 2 exp(——0"z)dz
072; 0 ( gl )

2/v-1 o
= %Zb"ein (%) /0 v2/" "L exp(—v)dv
n>0
B 'Qb 5 2/v—1 9 1 n
- &) Gz ()
1-2/
OO

k>0

RR n° 5653



14 F. Baccelli, K.B. Kim & D. McDonald

This proves (6).

We prove now that the unique density solution of (4) is (5).

Suppose there is a density solution f of (4). Define h via f(z) = C~'h(z")
to be a solution of (11). Since f is integrable this means co > C~* [ h(27)dz =

fo s)ds = TH< ) where H (u foo u=1h(s)ds is the Mellin

transform of h. Multiplying both sides of (11) by 2" and integrating with
respect to z on the positive half line we get

uH(u) = fHu+1)(1—67").

Since H(l/v) < oo we see H(u) < oo for all u by iteration. This means
Jooh(z)dz = H(1) < oo so h can be normalized to a density. However we
have shown that there is only one density satisfying (11) so A is in fact (11).
We conclude that there is only one density solution to (4) because two density
solutions in the rate-dependent case would give two density solutions in the
rate-independent case using the transformation. We have just proved this is
impossible and this proves uniqueness and completes the proof of Theorem 1.

4.2 The non-persistent case (¢ > § > 0)

Let A be some density. Then 171% is a density too. Let h be the density
vz
solution of

a1 ( (A(zl/v)) _uh(z) 1 BOR(02) — W))) , (15)

dz( ?) v 211/

We assume h(0) = p— 0 > 0.
Let f(z) = C~'h(z"), where C normalizes f to a density, and p” = #. Then
we have

de) = Oy A(2) — 2 f(2) + B2 (07 flp2) — f(2))
= OT(F)A(2) — p2" " f(2) + B2 (07 f(p2) — f(2)),

where we used the fact that

1

T(f) = /Omzw_lC_lh(z“’)dz = o

INRIA
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Then when denoting h(z) the unique solution of (15) which is a density,
we see that f(z) is a positive solution of (3). Hence if f(z) is integrable, it is
a density for some normalizing constant C'.

We can use the same change of measure as in the persistent case. Let [ be
the random variable with distribution h defined above. We have

1
¢ =F LIH”}

1 o0
= —/ v h(y)dy
Y Jo
k+'m

B Y (utB)a
— Com 1y=1,- +ﬁek / T N(dx) dy,
Lyn(ihs) e [ 0

with

Ndz) = 2 (L/)) o (1-2) g

i /yq;l—l/’)’

> 1 1 —btBgk grtmy (utB)=
/ yl/r e y/ e 7 N(dz) dy
0 0
B / 5 N (da) / gl vy
0

x /O (k+m)

1§ [ wee (A7) [
= Wﬁ/@ e (vxl—lm)/x/gm By (u)du dx
=1/
+ L 1_é M T l
ok u v v
gy [ AW [ B
N Qk/"flu 0 ¢ v z7 /o™ AT

1 S\ (n+B\"" (1
+9’“7(1_ﬁ)(—7) F(a)'

To simplify,

RR n° 5653



16 F. Baccelli, K.B. Kim & D. McDonald

Substituting, we get
k
P 5 1
C = Gi= by | —— ) ——
Re k>0 k<:“+6) O/

= G1ﬂ (1 — Lﬁ_m_lm>
2 e w3

with

Gy = ) cm (é/ooozm(x)/:o By (u)du d

>0 2 v /om

5 NS
) 6)
K Y Y
The last series is convergent because of the assumption (7), i.e.,
oo and the fact that

o0 1 (u+8) Rl 1
[t s (7))
z/gm utTHY B+ ot

The mean value of f is

/000 z2f(2)dz

E[ﬁ/w—l]
Cvy

1 OO 2/v—1

= — h(y)d
o )Y (y)dy

H b ( B )k Z /OO 9/y—1 _—LtBgky /9k+my (MJ;B)IN<d \d
—= e — cm y e 7 ° e " x y °
Cv? g p+ B >0 0 0

k>0

0o (#tB) 2

o €7 T AR)dz <

[eS) Pkt+my
4 _utBgk (u+B)z
/ y*tem 50 y/ e 7 R(dx)dy
0 0

1  (utb)z o
— 927/7/ e o N(dx)/ W2 5 gy,
0 T

INRIA
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Substituting we get

> 1 B\ 1
|| s - Cag 2 (m) G

1% 6 —m—2/ )
- BT (1 g
2C,y2 m>0< ,u‘i‘ﬁ

with

5 ©_ 0 ptB
Gy = Cm (—/ A, (x / w2 em 5 Yy da
? Z K Jo ( ) Y /™

0 () ).

The arguments showing that the last series is convergent are similar to those

for G; above.

Moreover, by the same argument as above, we can show that H(1/v) is
finite where H the Mellin transform of h and by iteration H(u) is analytic
for all u. We again conclude there is a unique solution to the non-persistent

rate-dependent case.

Remark 1 We have f(0) = T(f)(1—0). When taking z = 0 in (8), one gets

that

F(0) = T(f)(p—9) (Z cm> (Z (%) bk>.

This leads to the following interesting identity (which can be checked directly):

forall0 <z <1,

(et (2 %)

m>0 i=1

RR n° 5653



18 F. Baccelli, K.B. Kim & D. McDonald

5 The Transient Case

Consider the following rate-independent partial differential equation:

0 0
8tf(t Z) + a_f(t7z) = 6(0f<t7 92) - f(t,Z)), z, t >0, (16)

where we suppose that f(0, z) is integrable. Defining

/ / —ul=sz g (¢ ) dtdz

~

(6 +au+9)fus) = 5F (u5) +afols) + fiw (17)

we get that

with
R = [ et and R = [ e o
0 0
Recall we are seeking a solution such that f(t,z) is a density in z for each
t. Hence f(u,0) =1/u and fo(0) = 1. Substitute s = 0 into (17) so

B+ au)/u = ﬁ/u+a+ﬁ(u)

and it follows that fi(u) = 0.
Hence

oo

flu.s) = Z (Hﬂ+0z€a+ )(ﬁ%—ai—l—#)ﬁ)(@’il)‘ (18)

k=-1

The function

() e ) i)

is the joint Laplace transform E(e~*Y W) with

k+1

k41 1 E; A
W = W(0)/0"" + — 7 and Y = E E,
o

1=0
where F; are i.i.d. exponential random variables with parameter 3/a and
W(0) is an independent random variable distributed like f(0, 2).

INRIA
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