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Abstract This paper analyzes a generic class of two-node queueing systems. A first
queue is fed by an on—off Markov fluid source; the input of a second queue is a
function of the state of the Markov fluid source as well, but now also of the first queue
being empty or not. This model covers the classical two-node tandem queue and
the two-class priority queue as special cases. Relying predominantly on probabilistic
argumentation, the steady-state buffer content of both queues is determined (in terms
of its Laplace transform). Interpreting the buffer content of the second queue in terms
of busy periods of the first queue, the (exact) tail asymptotics of the distribution of the
second queue are found. Two regimes can be distinguished: a first in which the state
of the first queue (that is, being empty or not) hardly plays a role, and a second in
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which it explicitly does. This dichotomy can be understood by using large-deviations
heuristics.

Keywords Large-deviation - Markovian fluid source - Tail asymptotics - Tandem
queue
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1 Introduction

In a variety of operational applications, one needs to analyze the performance expe-
rienced by traffic streams flowing through a network—one could think of production
systems, logistic systems, communication networks, etc. Queueing theory offers a
natural framework for this. More specifically, in queueing theory, the network nodes
are modeled as queues at which traffic arrives, these queues are served according to
some discipline, and after being served the output of one node can serve as input for
a next node or leave the system. Also, nodes could operate under scheduling disci-
plines that are more sophisticated than simply first-in-first-out; one could for instance
prioritize certain traffic streams.

Queueing theory aims at analyzing the performance (in terms of loss, delay,
throughput, etc.) of these nodes. However, most studies address performance issues
just for single nodes, and do not consider end-to-end metrics. In some cases, it is
well understood how the probabilistic properties of the traffic stream are affected by
traversing a node (for instance in M/M/1-type of networks where the output streams
have the same statistical properties as the input stream), but in many situations just
partial results are available. The same applies to queues operating under non-standard
scheduling disciplines.

In the present paper we consider a network of two queues, that, interestingly, cov-
ers the two-node tandem queue and the priority queue as special cases (and, in fact,
a variety of combinations of these two). The first queue is fed by an on—off Markov-
ian fluid source, and can be analyzed by standard techniques. The input of the second
queue, however, is strongly affected by the buffer content of the first queue: it is again
a function of the state of the Markov fluid source, but now also of the first queue be-
ing empty or not. The fact that the second queue cannot be solved in isolation from
the first queue, makes this queue considerably harder to analyze.

The main contribution of our work is that we explicitly characterize the distrib-
ution of the buffer content of this second queue (in terms of its Laplace transform).
We do so exclusively relying on elementary probabilistic techniques; for instance, no
martingale methods are needed. Remarkably, we can express the buffer content of the
second queue in terms of the busy period of the first queue, which yields appealing
probabilistic interpretations. As a second contribution we also derive the tail asymp-
totics of the second queue, and this we do without resorting to techniques from com-
plex function analysis. In addition, we provide the intuition behind these asymptotic
results; a number of regimes can be distinguished, and large-deviations argumenta-
tion can be used to develop understanding for these.
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Our results touch on those derived in several other papers. Rough (that is, loga-
rithmic) asymptotics for tandem networks (but the results partially generalize to the
framework of the present paper) were derived in Chang et al. [3]—albeit in a discrete-
time setting—and Mandjes [13]. With Q5 being the steady-state buffer content of the
downstream queue, they identify the limit —0 of x~!logP(Q» > x), implying that
P(Q> > x) = f(x)exp(—6x) for some (unknown) subexponential function f(-) (i.e.,
log f(x)/x — 0 as x — o0). A main conclusion from these papers is that essentially
two regimes exist: one in which the first queue is ‘transparent,’ in that its behavior
hardly affects the overflow asymptotics of the second queue, and one in which the
impact of the buffer content of the first queue is more explicitly visible.

Abate and Whitt [2] consider asymptotics, for compound Poisson input, of a
priority system, and they also identify the two regimes. Importantly, the asymptot-
ics in [2] are ‘exact,” in that an (explicitly given) function g(-) is found such that
P(Q; > x)/g(x) — 1 as x — oo, with O, being the steady-state buffer content of
the low-priority queue. More precisely, in the transparent regime mentioned above,
the exact asymptotics are of the type o exp(—sx) for positive constants «, s, whereas
in the other regime they look like o’/ (x+/x) exp(—s’x) for positive constants o/, s’.
Our results indicate that this dichotomy carries over to the more general two-node
network that we briefly introduced above.

Exact analyses of the buffer content distribution of the second queue, in a tandem
setting, are given by Scheinhardt and Zwart [18] and Kella [10], predominantly re-
lying on martingale techniques; see also [12] and [17] for related results. Dieker and
Mandjes [7] consider networks in which the input is a Markov additive process (that
is, a Markov-modulated Lévy process), and in this sense more general than just an
on—off Markov fluid source; their results are, however, considerably less explicit, and
they do not consider tail asymptotics either.

The paper is organized as follows. Section 2 introduces our model. It also shows
that a number of important queueing systems are covered as special cases. In Sect. 3
we concentrate on the Laplace transform of the buffer content of the second queue,
and we probabilistically interpret the result. The remainder of the paper is devoted
to the analysis of the tail asymptotics of the buffer content of the second queue.
First we present (Sect. 4) heuristics for the logarithmic asymptotics: relying on a
large-deviations motivation, we show why one would expect two regimes to appear.
These regimes are indeed identified in Sect. 5: using the probabilistic interpretation
mentioned above, we characterize the exact tail asymptotics of the buffer content of
the second queue. Section 6 concludes.

2 Model and preliminaries

In this section we will first introduce the model and some interesting special cases.
Then we present preliminary results concerning stability of the system and the distri-
bution of the first queue.

Thus, consider a stochastic fluid model with two infinite capacity buffers, which
have at time ¢ respective contents Q;(¢), i = 1, 2, see Fig. 1. The first buffer is fed
by a Markovian on—off source {/(¢) € {0, 1}, ¢ > 0} with mean off-time 8~! and
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I(t) =0
+dy +err (if I(t) = 1 and Q1(t) > 0)
I (if 1(t) =1) }+C+o (if I(t) = 1 and Q1(t) = 0)
I6] «
awm || || 75
1 , _ 2 ) _
1) =1 (if I(t) = 0) (if Q1(t) =0)
— source — — first queue — — second queue —

Fig. 1 The fluid model

mean on-time ~!. Writing the steady state of this process as I without time index
t (as we will henceforth do for all stochastic processes), we clearly have P(/ =0) =
1-PU=1)=a/(x+P).

When I(¢) = 1 the first buffer increases at rate d; otherwise it decreases at rate
d_, as long as it is not empty. The second buffer is driven by the first one and the
input source in the following way: its content increases at rate c4 (co, respectively)
when the first buffer is not empty and 7(t) =1 (/(t) = 0); otherwise it decreases at
rate c_ (of course, provided that it is not empty).

Some special cases. We now show that a number of standard models are specific
cases of our generic model.

e Model 1: Priority system. While I () = 0 there is no input to the first buffer and
the input rate to the second buffer is pyg > 0. While 7 (¢) = 1 the input rates to the
first and the second buffers are p; > 0 and py; > 0, respectively. The first buffer
receives strict priority and is served at rate ¢ > 0. The second buffer is served at
rate ¢ > 0 only when the first one is empty. To avoid trivialities we assume that
Pp1 > ¢, so that the first buffer is not always empty.

e Model 2: Priority/tandem system. This is a modification of the first model where
type one fluid is served at rate ¢; > 0 and the output of the first buffer is input to
the second. The second buffer is again served at rate ¢ > 0 only when the first one
is empty. Again we assume that p; > cy.

e Model 3: Tandem/priority system. This is a tandem fluid model with priorities. The
two fluid buffers, with constant output rates ¢; > 0 and ¢, > 0, are placed in series.
The first one is fed by the on—off source: while /() = 1 the input rate is p; > ci.
The output of the first buffer is the (only) input to the second. The second buffer is
served only when the first is empty.

e Model 4: Tandem system. This is a classical tandem fluid model, as was also studied
in [12, 17]. It is the same as model 3 with the modification that the second buffer
is always served at rate c; > 0, provided that it is not empty. Here we assume that
p1>c1>cp>0.

The correspondence between these four models and the general model can be
summarized as follows:
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Model 1 Model 2 Model 3 Model 4
di pr—c P1—C1 P1L—cl P1—cl
d_ c cl c1 cl
C+1 P21 c1+p21 1 ¢l —c2
C+0 P20 c1+p20 1 [ )
c— ¢—p2 €2 = P20 2 2

Stability conditions The stability condition of the first queue is d4P(I = 1) <
d_P(I =0), which is equivalent to

ad_ — Bdy > 0. 2.1

Under (2.1) the stationary distribution of (1 (¢), Q1(¢)) is known to exist and is given
by (see e.g. [17])

P(I=0,0; <x)= —— — P s,
a+pf oa+pd-

PU=1,01<v)= L — L artipiir,
a+B oa+p

where «/d; — B/d— is positive due to (2.1). The utilization of the first buffer is
defined as p; :=P(Q1 > 0) and is given by
B d_+di

pl:a+ﬂd7_' (2.2)

Similarly, stability of the second queue is ensured if and only if the input rate is
smaller than the output rate; so the condition ¢4 P(/ = 1) + c4oP(I =0, 01 > 0) <
c_P(Q1 =0) should be satisfied, or equivalently

B B d: < B d++d_>
Cr1—— + 40 — <c_[1l-—),
a+p a+Bd- a+pB d-

which can also be written as

ad_ B
- Z>0. (2.3)
C+1d7 +C+()d+ +Cfd+ C_

Notice that (2.1) is implied by (2.3), as can be seen by multiplying the latter with
c_d4. Hence, under (2.3), the stationary distribution of (/(¢), Q1(¢), Q2(t)) exists.
The distribution of Q; being known, this paper focuses on the distribution of Q, and
its tail asymptotics.

3 Distribution of queue 2

In this section we express the distribution of Q> in terms of other, known distribu-
tions. In particular, we present an explicit expression for the Laplace transform (LT)
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Q1(1)

Q2(t)

Fig. 2 Sample-path of the two-node queueing system

of Q2 in Theorem 3.6. The approach is based on Kella and Whitt [9], where we
condition on the state of the first buffer.

3.1 Distribution of queue 2 when queue 1 is idle

We consider the buffer content process Q> (¢) and delete the busy periods of queue
1 from the time axis. The resulting process, which has positive jumps at the begin-
ning of each idle period of queue 1, will be called W (¢). In fact it is identical to the
workload process in an M/G/1 queue, drained at rate c_, with arrival rate 8, in which
the service times are distributed as the typical increase of the second buffer content
during a busy period of the first buffer.

To analyze this increase, we relate it to the length of a busy period of buffer 1,
denoted by B (realize that these busy periods are independent and identically dis-
tributed random variables). Consider then a typical sample path during a busy period
of buffer 1 with length B, and let N denote the number of times the source turns
on during this busy period (including the one that initiates the busy period), and let
X;, Y, i=1,..., N, denote the lengths of the source’s respective on-times and off-
times during this busy period, see Fig. 2. (Notice that Y only includes the part of the
off-time that overlaps with the busy period of buffer 1.) Then we have the following
two equations:

N N N N
diY Xi=d ) Y, and Y X;+) Y;=B.
i=1 i=1 i=1 i=1

We thus find that ZlNzl Xi=d_/(d-+dy)-Band ZlNz1 Yi=dy/(d-+d;)-B,so
that we have for the total increase during B,

al al d cy1d_ +cyod
+16¢— +0¢+
C-I—l;Xi'i_c-l—O;Yizw'B, (31)
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where = denotes equality in distribution. Notice that the factor in front of B may be
viewed as the (weighted) average increase rate of the second buffer content during a
busy period of queue 1. In special cases where c1g = c4] = c4, as in models 3 and 4,
it is immediately clear that the increase should indeed be c B. In the remainder we
shall also use the shorthand notation cy to denote the weighted average of ¢4 and
c+1 when they are not equal.

Turning back to the process W (¢), when scaling time to arrive at a standard M/G/1
queue drained at rate 1, we have the following result for the distribution of the steady-

state random variable W 4 (021 01=0).

Lemma 3.1 W is distributed as the steady-state workload of an M/G/1 queue
drained at unit rate, with arrival rate B/c_ and service times distributed as c, B,
where B is the typical busy period of the first buffer, and

cy1d— +cyody

=— 32
Ct 4 +d, (3.2)

The LT of W is given by

(1—Lc,EB)s
Ee™W = 3 — 3 ) (3.3)
C—Ee‘“+3 - +s

Proof The form of Ee™" is immediate from the Pollaczek—Khinchine formula. [J

To obtain the distribution of B, we consider the buffer content process Q1(¢) and
delete the on-periods X; from the time axis, in a similar way as we constructed the
process W(¢) from the process Q»(¢). The resulting process is now identical to the
workload process in an M/M/1 queue drained at rate d_ with arrival rate 8 and mean
service time d4/a. In this case we prefer to scale the buffer space to arrive at a
standard M/M/1 queue drained at rate 1; this queue then also has arrival rate g, but
mean service time d /(ad_). The total busy period of the first queue, including the
on-times, is then (dy + d_)/d times the busy period of this M/M/1 queue, which
we denote as P. This leads to the following.

Lemma 3.2 The busy period B of queue 1 is distributed as m times P, the busy

period of an M/M/1 queue with arrival rate 8 and service rate ad— /d,i.e., B - P,
where

dy +d-
= %. (3.4)
+
The LT and mean of B are given by
B+ +ms — [ (B+ 5=+ ms? — 4B
Ee 8 = 2 , and (3.5
d_+d
Ep= -4 (3.6)
ad_ — ﬂd+
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Proof To show (3.5), note that the LT Ee % of the busy period of an M/M/1 queue
with arrival rate A and service rate u is found by solving (under the condition that it
should have value 1 for s = 0)

)»(]Eef‘”u)2 — A+ pu+s)Ee P +pu=0; 3.7)

it is therefore given by

ysp _ Rt its = Ot pts)? -4
B 2A '

E (3.8)

It suffices to choose A = 8 and u = d_o/d+ in this expression, and then evaluate it
at ms to find Ee~$Z . Equation (3.6) follows from the fact that EP = 1/(u — ). [

Corollary 3.3 The LT of W can be rewritten as

— (1 Belds +d_>)
c_ ad_ —Bdy

x<l+'3/c_ P ble ’ Eesc+3) (3.9)

Sp S+ a (I+mey/c)sps+sp

where
. ad_ B
sp T C+(d_ +d+)+c_d+ C—-

(3.10)

Proof After substitution of (3.5) and (3.6) into (3.3), we find a square root in the
denominator. By multiplying numerator and denominator with a factor

d_ d_ d_
/3ﬁ—i—o;,—+—|—mc+s+\/(,3+°;—++mc+s)2—4ﬁad—+ B
£ P s @an
c_ 2B c_

this square root vanishes, while the square root that arises in the numerator can be
written in terms of Ee =2 After some rewriting the result follows. U

3.2 Distribution of queue 2 when queue 1 is busy

Our next concern is to find the distribution of O, during busy periods of the first
buffer. To do so, let us consider an arbitrary point in time ¢ during a busy period
of buffer 1 (i.e., buffer 1 is non-empty), and define A as the amount of fluid that
flowed into buffer 2 since the start of the current busy period. Since the amount of
fluid in buffer 2 at the beginning of a busy period of queue 1 is the waiting time in
the corresponding M/G/1 queue, we have by PASTA that it has the same distribution

as W. Hence we have (Q; | Q1 > 0) w + A, with W and A independent, and all
we need to do is find the distribution of A.

Before proceeding, recall that, if we consider the buffer content process Q1(-)
and delete the on-periods X; from the time axis, then it is identical to the workload
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process in the M/M/1 queue drained at rate d_— with arrival rate 8 and mean service
time d4 /«. This relation with the M/M/1 is crucial for what follows.

The fraction of time the source is off (on) during a busy period is equal to
di/(d- +dy) (resp. d—/(d— + d4+)) due to the discussion above (3.1). Hence, with
probability dy /(d— + d), the source is off at time ¢. In that case let Y denote the
length of the (whole) off-period at time ¢, the random variable N > 1 being the num-
ber of on-periods before the current off-period. Then we have, sample-path-wise,

N N-1
A=C+1ZX1‘+C+0<ZY1'+AY>, (3.12)
i—1 i=1

where Ay denotes the age of Yy at time #; an empty sum is interpreted as 0. Note
that, with V denoting the content of buffer 1 at time 7, then

N N-—1
di Y X Zd(ZYi+AY> +V,
i=1

i=1

since the left-hand side is the total increase in buffer 1 during on-times from the start
of the busy period up to time ¢, and the right-hand side is the total decrease in buffer
1 during off-times up to time ¢ plus what is left in the buffer at time 7. Substitution
into (3.12) and then using (3.4) and (3.2) yields

N—1
A V+< + d‘) dvi+A
=Ct1— C+0 T C41—— 1 Y
dr A l
v N—-1
=C+1d—+mC+<ZY,‘+AY).
+

i=1

Note that the random variables on the right-hand side are dependent, but as we will
see below, conditionally they are independent.

We proceed by conditioning on the number of jobs in the corresponding M/M/1
queue at the arbitrary point in time ¢ during the busy period. The probability p,, that
there are n jobs in the system at time ¢ is

pm=0=pp" ', n=1,2,...,

where

_ Pdx

= ) 3.13
pi= (3.13)

Given that there are n jobs in the system at time ¢, it follows from the memoryless
property that

n
14 gd+ZXi,
i=1
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and V and ZlNz_ll Y; + Ay are (conditionally) independent. Further, the age of the

busy period ZIN= _11 Y; 4+ Ay is the same as the remaining busy period of the time-
reversed M/M/1 queue, and since the M/M/1 is reversible, the remaining busy period
is the sum of n busy periods of an M/M/1 (with the same parameters as the original
M/M/1). Hence, given that there are n jobs in the system at time ¢,

N—-1 n
Z Y+ Ay & ZPi,
i=1 i=1

where P; is a busy period in an M/M/1 with arrival rate § and mean service
time dy/(d_co). Putting all ingredients together, we find that with probability p, -
di/(d-+dy),

n n
d
A =C+1 ZXZ +mC+ZPi.
i=1 i=1

Now assume that at the arbitrary point in time ¢ the source is on. Then we have

N N
A=C+1<2Xi+Ax>+C+OZYi, (3.14)
i=1 i=1

where N > 0 is the number of on-periods before the current on-period (possibly tak-
ing the value 0) and Ax denotes the age of X at time ¢. Further,

N N
d+in =d_ZY,~ +V, (3.15)
i=1 i=1

where V now denotes the amount of fluid in the first buffer at the beginning of X1,
or in the M/M/1 queue, it denotes the amount of work in the system just prior to the
(N +1)-st arrival in the busy period. Substitution of (3.15) into (3.14) and again using
(3.4) and (3.2) yields

N
Vv
A:C+1Z+C+1Ax+mC+ZY,’.

i=1

Note that the (N + 1)-st arrival in the busy period of the M/M/1 queue is (statistically)
the same as an arbitrarily chosen one, so the probability that there are n jobs in the
system just prior to the arrival is equal to

gpn=0=p)", n=0,1,....

Conditioning on the number of jobs in the M/M/1 system being n, we have

n
14 gd+ZXi,
i=1
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while Ay has the same distribution as any of the X;, and the random variables V, Ay
and Zf\’: 1 Y; are (conditionally) independent. Also, we have again (by using time-
reversibility)

So, summarizing, with probability g, - d_/(d— + d),
d n+1 n
A =C+1 ZXZ +n’ZC+ZPi.
i=1 i=1

Finally, putting the results during off and on periods together, and using the fact

that mP < B, we obtain the following result.

Lemma 3.4 The distribution of A is given by

Lo [en T Xt ey DI B wp. (1= p)p"dy /@t d), n=0,1,..,
e Y X4 e Y B wp. (1= p)p"d—/(d-+di), n=0,1,...,

where the X; are distributed as the on-times and the B; are distributed as the busy
periods of queue 1. The X; and B; are independent.

The LT of A is found as

A diEe 58 4 d_

00 a n+1
— n
T 200 () e s
- n=0

E

_ (= pam™'d_/dy + e+ B)

3.17
a+cyps — paEesc+B G.17)

A more insightful form is presented next.

Corollary 3.5 The LT of A is given by

C C —C a/c C
Ee—sA:R(SC+)_+<1+ +1 +0( fevi v Blewo v Ee_SC+B> ’
cyl mey y v+s oy y+s

where y :=a/cq1 + B/c4o and

Proof We first replace s by s/mc in (3.17) since we prefer to work with Ee™5F =

Ee~¢/™B Multiplying numerator and denominator by 1 — Ee~*” and using that
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Ee—5? satisfies (3.7) with A = B and u =d_o/d;+ (see the proof of Lemma 3.2), we
can rewrite the above expression as

E S 4 Rs) Cct 14 (dy/d-) -Ee™sP
expl ———A ) =R(s) —
PU e cr1 14 (dy/d-)(cro/c41) - EesP’

where R(s) is the LT of the residual busy period in an M/M/1 queue with arrival rate
B and mean service time d /(d_«), that is,

A ad_ 1 —Ee—sF
Rs)=\——-8)——.
d+ N
The last term in the above expression can be rewritten as

14 (dy/d_) -EesP
1+ (dy/d-)(cto/ct1) - Ee=sP

—1+<1—Ci)>d—+ Be”
cy1/)d-1+(dy/d-)(cqo/cq1) - Be=sP

d d_ A <
=1+<1—CL°>—+<A“ TRl Ee”)>,
c+1/d-\y+s dycioy+s
where in the last step we removed the square root from the denominator by exploiting
the explicit form for Ee~*”, see (3.8). The constant y is given by

. d_c d.c
P ::A(l + —i) +u<1 + iio).
dy cto d—cq1
Summarizing, and substituting A and w, we find
Eexp<—iA> - ﬁ(s)ci(l + (1 - cio)( o e P B(s))).
mcy Ct1 C41 y+s cyoy+s

Finally, replacing s by smc4 and, in addition, letting y = 7/(mcy) and R(s) =
R(sm) yields the desired result. Il

Remark From the proof and the fact that B 4 m P, it can be understood that R(s) is
the LT of B*, the residual busy period of buffer 1. In fact, when co = c41 = ¢4, we

find that Ee 4 = R(c,.s) and hence A 4 ¢4 B*, as should be the case.
3.3 Result
We are now ready to present the main result of this section.

Theorem 3.6 The stationary content of buffer 2 can be decomposed as, with p given
through (2.2),

0 4a | w wp. 1 —p1,
2TIW+A wpopr
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Here, W is distributed as the workload of an M/G/1 queue with arrival rate 8/c_ and
service times distributed as c+ B, and A is distributed as the geometric sum involving
on-times and busy periods as in Lemma 3.4. Finally, all random variables involved
are independent.

Hence, the LT of the stationary content of buffer 2 is given, with p1 given through
(2.2), by

Ee 592 = (1 - p; + p1Ee**)Ee ", (3.19)

where Ee™W and Ee™%4 are given in Corollaries 3.3 and 3.5 respectively.
Proof Immediate from the preceding. |
3.4 Properties of the Laplace transform of Q»

As an introduction to the next sections, this subsection concentrates on the singular-
ities of the LT of 0». We do so, as it is expected that the largest negative singularity
(that is, closest to 0) is the exponential rate at which the probability P(Q» > x) decays
as x — 090, 1.e.,

1
lim —logP(Q7 > x).
X—>00 X

We do not give a formal proof of this at this stage, as it will follow from the exact
asymptotics in Sect. 5.

There may be two types of singularities for the LT in (3.19), as presented in the
following lemmas, viz. poles and branching points.

Lemma 3.7 Ee 22 has a branching point at s = —sy, where

_ /B — Jad-)?
Sp = >

cy1d_ +cqody

0, (3.20)

for all parameter values that satisfy the stability condition (2.3).

Proof The LT of the busy period of an M/M/1 has branching points at s = —(+/A
ﬁ)z, see the proof of Lemma 3.2. Therefore the branching points of Ee*“+8 (and
by (3.19) also those of Ee~*22) are given by the solutions to

2
mc+s=—<\/E:l: %),
\ d+

so that the largest of these is —sp as given in (3.20). g
Lemma 3.8 Ee 22 has a pole at s = —s;,, where
od— B
K} - — >0, (3.21)

P - C+]d7 + C+0d+ + C7d+ C_
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for all parameter values that satisfy (2.3) and the following criterion:
ac’d_dy < B(cird_ +cypody +c_dy)>. (3.22)
If (3.22) is not fulfilled, Ee~*22 has no negative pole.

Proof Since Ee~*+8 has no poles, Ee 22 as given in (3.19) only may have poles
at the value(s) of s for which either SEe ™+ — B 4+ c_s =0 or a + c415 —
paEe¢+5B =0, see (3.3) and (3.17) respectively. The latter equation leads to

ad_ 2 ad_ od_
B+——+mcys | —4—— =B — —— + (mcy +2cq18/a)s,
dy dy dy

which cannot hold for negative s due to (2.1). The other equation leads to

ad_ 2 od_ od_
B+ ——+mers | —4——=—B+ — 4+ (mc+ +2c_)s. (3.23)
d+ d+ d+

After squaring both sides, and dividing by 4s we obtain s = —sp as in (3.21), but only
if the right-hand side of (3.23) is positive, which is equivalent to (3.22). The fact that
sp > 0 follows from the stability condition (2.3). O

Remark In the proof of Lemma 3.8 we used the LT of W in (3.3). The alternative
form in (3.9) seems to suggest that Ee~*" always has a pole at s = —sp, but this is
not the case. The reason is that in the proof of Corollary 3.3 we multiplied with the
factor (3.11), which equals zero for s = —sp, if (3.22) does not hold.

Lemma 3.9 For the quantities in (3.20) and (3.21) we have
Sp S Sba

where equality holds if and only if (3.22) holds with equality. Therefore, if the pole
—Sp exists, it is larger than or equal to the branching point —sy.

Proof Using the expressions for s, and sy, and using (3.2) to alleviate the notational
burden somewhat, we have

N ad_ N (VBd; — Jad_)?
—Sp+Sp=— —
P T T T id_+dy) +ed, ci(d_+dy)

Bd ad_ Bdy +ad_ 2 apd d_

o C_d+ B C+(d_ +d+) + C_d+ C+(d_ +d+) B C+(d_ +d+)

_ Woed_(c-dy) — V/Bdy (c4(d- +dy) + c_dy))? -0
c—di(c4(d-+dy)) (c4(d-+dy)+c-dy)  —

Obviously, the numerator of this expression is always positive, being zero only when
(3.22) holds with equality. O
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Thus we can distinguish between the following cases:

1. Equation (3.22) holds with strict inequality; hence the pole —s;, exists and since it
is larger than —sp, we conjecture it determines the logarithmic asymptotics (dom-
inating the branching point);

2. Equation (3.22) does not hold; hence a pole does not exist, so the branching point
—sp supposedly determines the logarithmic asymptotics.

In Sect. 5 we will prove these claims. In fact, we even provide exact asymptotics (that
is, we identify a function f(-) such that P(Q2 > x)/f (x) — 1 as x — 00); the form
of this function will obviously depend on the case involved. It turns out there is a
third case, namely the situation in which (3.22) holds with equality; then pole and
branching point coincide, and determine the logarithmic asymptotics. For the latter
(boundary) case similar techniques can be used, leading to yet another form for the
function f(-).

4 Intuition behind overflow behavior

In this section we use the theory of large deviations to further substantiate our ed-
ucated guess about the type of asymptotic behavior for the second queue content.
Indeed, we find that the singularities found in the previous section determine the de-
cay, again depending on whether or not the criterion in (3.22) holds. Moreover, the
current approach yields insight in the interpretation of the two different outcomes.

Let y € [0, 1] denote the fraction of time the source is on. Then one could define
some sort of ‘cost’ (per unit of time) of generating traffic at rate y by [11]

1(y) = (Voy = V/BA = y)*.

Indeed, when inserting y := B/(« + B)—which corresponds with the source’s ‘av-
erage mode’—one obtains cost 0. As we will see below, this cost heuristic is rather
helpful when generating guesses for decay rates.

First queue To demonstrate how the approach works, let us first consider the decay
rate of the first queue. Supposing that the source is on a fraction y of the time (y €
[0, 1]), the first queue grows roughly at a rate d1y —d_(1 — y) =: r(y). In order to
let the buffer build up, y needs to be larger than §; :=d_/(dy + d_). As argued in,
among several other references, [11], it holds that

1 1
lim —logP(Q1 > x) = — inf (y)'
X—00 X y=81 r(y)

The interpretation is the following: if the source is on a fraction y of time, then
it takes x /r(y) time to exceed level x. The y that minimizes 7 (y)/r(y) is the most
likely fraction of time the source is on during the trajectory to overflow. This approach
extends to a large class of inputs; notably, these need to be short-range dependent [8].
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Tandem A similar approach can be followed in case of a tandem queue, i.e., model 4
in Sect. 2. If the source is on (that is, generating traffic at rate p;) a fraction y of the
time, the first queue grows at rate p1y — c¢j if y > ¢1/p1, and otherwise it remains
empty. This implies that the rate of the growth of the second queue is ¢; — ¢p if y >
c1/ p1 (as traffic leaves the first queue atarate c1), and p1y —c2 if ca/p1 <y < c1/p1
(as traffic leaves the first queue at rate p;y). We thus (heuristically) obtain

1(y)
in ,
8? Sygééu) r(y)

1
lim —logP(Q2 > x)=—
X—00 X

where Sgé) :=c¢»/p1 and Séu) :=c1/p1, and r(y) :=min{p1y, c1} — 2.

Put differently: the most likely fraction of time the source is on, is, during the
path to overflow, not larger than c¢1/p;. A fraction larger than c¢1/p; leads to queue 1
building up, but does not help building up queue 2 (compared to a fraction of exactly
c1/p1)- This heuristic was made rigorous in [13]; see also [3].

Performing the minimization, one obtains the decay rate as the minimal cost value,
which equals

2

o . acypi

Sp = —ﬁ, ifc; > ¢ = 5 2 3
pr—c 2 acy + B(p1—c2)

and

5= (VB(p1 —c1) — Jaer)?
(c1—c2)p1
else. These results can be understood as follows. If ¢ is relatively large, then the
first queue is essentially ‘transparent,” in that it does not ‘shape’ the traffic that flows
into the second queue—the decay rate is the same as if the traffic stream feeds im-
mediately in the second queue (and does not depend on the particular value of cy).
If ¢ is relatively small, the buildup of the second queue is hampered by the fact that
traffic can leave the first queue at a rate of at most c; as a result, traffic is most likely
generated at a rate of exactly ¢, leading to overflow (over level x) in the second
queue around time x/(c; — c2)—here ¢ plays a crucial role. This dichotomy has

been observed for Markov fluid sources in [13], but also for other input processes;
see [5, 14].

Our two-node model We can follow the same recipe for our two-node queueing
system. It is readily verified that

_WM+dU

d
V(y)=C+1)’+C+0')"—+—C<1 y

d_
as cy1y+cqoyd+ /d_ is the input rate of the second queue (when the fraction of time
the source is on y) while c_P(Q1 =0) =c_(1 — y(d+ +d-)/d_) is its service rate,
see (2.2). With

5(3) — C— 5(u) — d_
’ cy1+(crotc)-dyfd_+c’ 3 d_+d,’
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the above line of reasoning gives

I(y)
mn .
50 <y<s® 1 (Y)

1
lim —logP(Qs > x) = — 4.1)
X—>00 X

With y* the optimizer on the right-hand side of the above variational problem,
we distinguish two cases: y* = 8§u) and y* € [6?, Séu)). We first solve the ‘uncon-
strained’ problem

I
inf (y).
yzsgk) r()’)

Tedious computations yield that the minimum is attained at

_ actd? 42)
YT A2 4 Bleprd_+crody +odi)? '
If this value is smaller than 8§"), ie.,
2 2
actd” d
“4.3)

< — 9
0602_613 + ,B(C'Jrldf + C+0d+ + C7d+)2 d_+ d+

then we obviously have that y* equals (4.2). But now, remarkably, observe that cri-
terion (4.3) is equivalent to (3.22)! Then it is readily verified that in this situation
the decay rate in (4.1) equals the pole sp, as given in (3.21). In the other case, i.e.,
y*=d_/(d- + d;), the decay rate in (4.1) equals the branching point sy, as given in
(3.20). Thus, in both cases we find the same decay rate as through the explicit deriva-
tion above, and also the criterion that determines which of the two dominates is the
same. Heuristics regarding the path to overflow are similar to those presented for the
tandem.

5 Exact asymptotics

In this section we will prove the exact asymptotics of the density fg, (x) of the second
queue content as x — 00. The proof will be based on Theorem 3.6, for which we will
derive the exact asymptotics of fy (x) and f4(x). We then combine this knowledge
to find the asymptotics of Q. We first focus on the cases in which pole and branching
point do not coincide, leaving the boundary case for the last subsection.

We start off stating a number of useful results. The first, dealing with the M/M/1
busy-period distribution, can be found in, e.g., [4].

Lemma 5.1 For the density of the busy period P of an M/M/1 queue with arrival
rate A and service rate |, we have

() = =™ T (20/hgt) ~ Kpt 32~ WDy o

oy
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where
1 1

Kpi=————+.
2 /)t
For the density of the residual busy period R we have

P(P > 1) 1

\/_fP(t)

RO =—F% (ﬁ—ﬂ)zEPfP()_£+f
and thus
Fr(0) ~ Kt ™32~ WV oo
where

f+f
ff

The other useful lemma follows below. Although most, if not all, of this lemma is
known, see e.g. [2, 16]; we include it, since it plays an important role in what follows.
We also provide a proof in the appendix, which elegantly shows how large values of
X + Y are typically attained; e.g., in case (ii) this typically happens due to a large
value of X or Y, but not by both taking large values (even though X and Y are not
heavy-tailed).

Kgr:=

Lemma 5.2 Let X and Y be independent random variables with densities satisfying
fx(x)~ Kxx Pe %%, fr(x)~Kyx 9e™™,

as x — oo, for some constants p,q > 0and 0,7, Kx, Ky > 0.

(i) If either o < t holds, or it holds that 0 =t and p < q and q > 1, then we have
as x — 0o,

Fxay(x) ~Ee®Y fx(x) ~Ee’Y KyxPe %

(i1) If both o =1 and p = q > 1 hold, then we have as x — 00,
Fxer () ~Ee™ fx(x) + Ee™ fy (x) ~ (KxEe™" + KyEe”*)x™Pe™7%.
5.1 Exact asymptotics of the density of W

Our starting point is the LT of W in (3.9), from which we immediately obtain the
density as

) — (1_ B cilds +d- )) B

~ ad_— ﬂd+

C_
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- <1_ﬁ6+(d++d_)>£<
N c— 1+mc+/c

/ fC+B(u)esP”du)e R

c— ad_ — Bd+
(1 Berdrtd)\ B
c— ad_—fdy Jc_
Eeoc+B
= Sptt g pr,
* ( 14+mcy/c— + l+mc+/c_ / fe,pw)e u)e

where f., p(u) denotes the density of ¢y B. Since ¢ B 4 cymP, where P is the
busy period of an M/M/1 with arrival rate 8 and service rate od_/d, it holds by
Lemma 5.1 that

do _ed_+Bdy /ad_Bd
fc+B(u) fP = IB + dytd— . “+ I ziia ﬂ hs
cym otd, c+ dy+d-

and as u — 0o,

Kp [ u \ ad_ 2, ,
fern () ~ —— (—) eXp<—< 2o \/E) —) =K, gu e,
+

mcy4 \mc4
K U [mey (od- 174
“BToN wp \pdy)

The above implies that as x — oo (note that s, — s, < 0 by Lemma 3.9 and the
assumption that sp # sp),

with

/ Je,pw)e™ du ~ ﬁ x2S, 5.1

Furthermore, using (3.5) we can write

EeschrB

A 4mey /e

1 Sl —meysy— J(B+ S —meysp)? —4B%E
S 2

2 c—+mcy ad_ ad_ 2_4 ad_
3 B— —B— g tmecisp+ [ (B+ 7 —mcysp) BT
- c_+mc '

2=
Since
ad_ c— +mc ad_ c_
B+ T —mc+sp:ﬂ7+ _——,
+ c_ dy c— +mcy
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the above simplifies to

o c—tmey  ad_  c_ c_tmey  ad_  c_ 2
B Eerc+8 . B c_ dy c—tmcy + \/('B c_ dy c,+mc+)
- c—+mcy
1 4+mcy/c— 22—+
c_tmey  ad_  c_ c_tmey  ad_  c_
_ B [ dy c_+mcy +18 c dy c,+mc+|
- 2/3 c—+mcy .
c_
Hence,
EeSPC"'B 1 — ad_ c .fﬁc,-i—mar - od_ c_
- —1 = Bd+ (c_4+mcy)? c— = dy c—Fmcy>
+mey /e 0 otherwise.
Since the condition
/367 +mc4 - ad_ c_
c_ T dy c—+mey

is equivalent to condition (3.22), the density of W can be written as

(1 Berditd )\ B
fi(x) = (1 Leldiid )C_
pod 2 e\
X( ~ Bdy (C_+mc+)2 c_ +mey / fe.B(u)e u>e ,

if (3.22) holds, or otherwise as

— B cildy +d-) Spit SpX
fW(X)—<1—C—_ wd_— pd, )(C_+mc+/ fe,we du)e .

We can now state the following.

Lemma 5.3 The asymptotic behavior of fw(x) as x — o0 is given by either of the
following.
When condition (3.22) holds with strict inequality, fw(x) ~ Kw. e ", with

2
ﬂc+<d++d—>>£<l_% = ) (5.2)

Kyp=[1-—"-"——- —
e ( c ad_—pd; Bdy (c— +mcy)?

When condition (3.22) does not hold, fw(x) ~ Kwp x732e70% with

1/4
Kwp = (1 _ P er@rtd )> Pz [exm (%> L 53
c_ ad_—Bdy Jc—+mcyrV nf \ Bdy+ Sp — Sb

Proof Immediate from the above. O

Cc_
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Remark By explicitly inverting the LT, we above found the density of W, as well
as its asymptotics. We could also have used the fact that W is the waiting time in
an M/G/1 queue (see Lemma 3.1). If the so-called Lundberg equation Ee’“+8 =
1+s/(B/c-) has a positive solution s,, which is equivalent to (3.22)—see Lemma 3.8
and its proof—the Cramér—Lundberg approximation leads to the purely exponential
form displayed in Lemma 5.3. When the Lundberg equation fails to have a positive
solution, the asymptotics could be found by applying the random walk results of,
e.g., Sect. 5.2 of Dieker [6], specialized to the M/G/1 case (with i.i.d. increments
distributed as cy B — c_Y); then we obtain the mixed polynomial-exponential form
mentioned in Lemma 5.3. In the more general setting of the GI/G/1 queue, the same
dichotomy is observed by Pakes [15], Theorem 2 (or see Sect. 5 in [1]): If the right-
most singularity of the LT of the service time is strictly negative and the LT takes a
finite value there, then there exists p* such that the asymptotics of the density of W
is purely exponential for all utilizations p with p* < p < 1, but the asymptotics is
different (e.g., exponential multiplied by a power function) for any p with p < p™*.

5.2 Exact asymptotics of the densities of A and Q>

In the following lemma we use the expression for the LT of A in Corollary 3.5 to
derive the asymptotic behavior of the density f4(x) as x — oo.

Lemma 5.4 The asymptotic behavior of the density of A as x — o0 is given by
fa(x) ~ Kax e,
where sy is the same as in Lemma 5.3 and
© 1 [mcy <ocd_>l/44/_ocd_ + JBd+
A= = _— —_—
2 7[,3 ,3d+ «/Old_ —«/ﬂd.;,_
y [ + < Cy 4 ) adycyo/cr1 + 2 /aBdrd_ — Bdy ]

e adycio/c1 +2y/aBdrd— + fd_ci1/cio

C+0  C+41

Proof We first collect the exact asymptotics for the densities of ¢+ B and cy B*.

Those of ¢4 B were already found in the previous subsection (using that c4 B 4
mcy P and using Lemma 5.1); they satisfy

3/2 —spx

fe,B(X) ~ Ko px~7'%e

Similarly, since ¢4 B* 4 mcy R, where R is the residual busy period of the related
M/M/1 queue, we can again use Lemma 5.1 to find that

_3 2 . A/ Oldf + A/ ﬁd+
Jey B (x) ~ Ke prx Ze™*  with Ke = WKWB.
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Hence, both ¢4 B and ¢y B* have asymptotic behavior as X in Lemma 5.2, with
o =sp and p = 3/2. Substitution of R(scy) = Ee*+5" in expression (3.18) yields

EefsA _ C+ Ee—sc+B* + Ct+1 —C+0 Ol/C+1
C+1 mc4q 14

4 CHLT 0 B/c+o
mcyg Y

_ —Cr *
Ee sY]Ee scy B
—sYm —scy B —scy B*

Ee ' Ee *“H7Ee*+7 |

where Y is exponentially distributed with parameter y. Looking at the above expres-
sion, we can apply Lemma 5.2 to each of the three terms on the right-hand side (notice
that s, < ) to find:

+1—croa/cr1 Y

C C
Fa(x) ~ == fo pa(x) + feo B+ (x)
C1 mc4q Yy V=%
C —C C .
4 S P /y“’y e (RGs0ei) fonn0) + B fo e ().
" —

Here the second term follows from applying part (i) witho =sp <t =y,¢=0<
p = 3/2, while for the third term we first applied part (ii) with 0 =7 =, and p =
g = 3/2, followed by part (i) as in the second term. Hence, f4(x) ~ K g4x /25,
for some constant K 4. To find this constant we note that

d_ d_
R(—spcy) =1+ ad- and Ee+B = a—,
Bd Bd+

so that we can write

c+ C+1 —C40 o B ad_

o pre it (o, B, ful )
e mei(y —sp) \C41 €40 Bd+

Using the fact that

K4 =

crod ci1d_
meyds (y — sp) = ad— =2 4 ga, = 12 foupd.d_,
cy1d- cod+

this can be rewritten to the form of K 4 as stated in the lemma. O

Finally, now that we have the asymptotic behaviors of fy (x) and f4(x) at our
disposal, we come back to Theorem 3.6, from which we have

X
For ) = (1= 0w+ o1 [ fuwta fatx = . (5.4)
We apply Lemma 5.2 again to find the following.

Theorem 5.5 The asymptotic behavior of fg,(x) as x — o0 is given by either of the
following.
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When condition (3.22) holds with strict inequality, fp,(x) ~ Ko, pe™ %, with
Koy, p =1 —pDKwp+ p1(KwpEe??).
When condition (3.22) does not hold, fg,(x) ~ Kg, v x732e70% with
Kgyb:=(1—pDKwp + p1(KaEe®" + Ky pEe™?).

Proof Immediate from (5.4) and both parts of Lemma 5.2 (noting that s, < s in the
first case). U

Corollary 5.6 The asymptotic behavior of the tail probability P(Q2 > x) as x — o0
is given by either of the following. When condition (3.22) holds with strict inequality,

K
P(Qs > x) ~ — L2 p=spx (5.5)
Sp
When condition (3.22) does not hold,

K ‘
P(Qs > x) ~ —220 1 =3/2,=svx, (5.6)
Sb

Proof ITmmediate. O
5.3 Exact asymptotics of the density of Q> when sp = sp

When (3.22) holds with equality, we know from Lemma 3.9 that the pole s and the
branching point s, coincide, both being equal to

Bmc
Sph 1= —5—-
P 2
As a consequence, we find a different asymptotic behavior for fy (x), in some sense
lying in between the two outcomes in Lemma 5.3. In the derivation of the analog of
this lemma, we (again) find that

fw<x>==(1—-fic+“““+d‘)>( p ‘/m3ﬁ43<uyfwudu>e%”,

c_ ad_ — Bdy+ c— +mcy

but instead of (5.1) we now find
oo
/ fC+B(u)eSpbu du N2KC+BX71/2.
X

The asymptotic behavior of fw(x) as x — oo is therefore given by fw(x) ~
Kw,pbx’l/ze_sr’bx, with

_(y_ Berditd)\ B fezm(ad \'*
= (1= 205w i )
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Since the behavior of f4(x) is the same as before, we only need to apply the first part
of Lemma 5.2 with 0 =1 =spp, p=1/2 and ¢ =3/2 to find the following.

Theorem 5.7 When condition (3.22) holds with equality, the asymptotic behavior of
fo,(x) as x — oo is given by fp,(x) ~ Ko, pb x~12e7500% it

KQZbe =1- pl)KW,pb + p1 (KW,preSPbA).

The asymptotic behavior of the tail probability P(Q2 > x) as x — 00 is given by

K
P(Q; > x) ~ 2000 172, =spbx (5.8)
Spb

6 Concluding remarks

In this paper we considered a rather general class of two-node fluid queues, that in-
cludes the classical tandem and priority systems. In these systems the first queue
can be analyzed in isolation by applying standard techniques; the evolution of the
other queue, however, is affected by the first queue being empty or not, which
makes this queue substantially harder to analyze. We explicitly derived the buffer-
content distribution of this second queue (in terms of its Laplace transform), as
well as its tail asymptotics, relying exclusively on probabilistic argumentation. In-
terestingly, there is a sharp dichotomy, in that two asymptotic regimes can be dis-
tinguished; large-deviations theory provides an appealing interpretation of these
regimes.

A direction for further research is to broaden the class of input models. In this
paper we restricted ourselves to fairly elementary Markov fluid input, but, suggested
by e.g. [3, 13], one would expect that the dichotomy of the tail asymptotics carries
over to a considerably larger class of inputs. The recent results in [7] may give a
handle on resolving this issue.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix: Proof of Lemma 5.2

In this appendix we provide a proof of Lemma 5.2. The proof explains how large
values of X + Y are typically attained. As can be expected this happens due to X
taking a large value when the tail of X is heavier than that of Y. However, when both
tails are equally heavy, it typically happens due to a large value of either X or Y, but
not by both taking large values, even though X and Y are not heavy-tailed.
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To prove the first part of the lemma we first fix some small € > 0 and write

fx+y(x)=/0 Srw) fx(x —u)du

(1—€)x

2/0 fY(M)fx(x—u)du-l-/ fr W) fx(x —u)du

X

+/( Sr@) fx(x —u)du.

1—e)x

For the first integral in this sum we have
€X
xpe”/ Sy () fx(x —u)du
0

€x p
=/ ™" fy (u)(x — u)Pe” 7 fy (x — u)<L) du.
0 X—U

The given asymptotics of fx imply that for any § > O we have, for x sufficiently large
(and any u € [0, €x]),

Kx —8<(x—uw)le” ™™ fy(x —u) < Kx +3,
so that we find

xPe’* /Gx fr@) fx(x —u)du > /GX e fyw)(Kx — 8)du,
0 0

and hence

€X
liminfxpe”/ fr@) fx(x —u)du>Ee’V Ky.
0

X—> 00

Keeping in mind the asymptotic behavior of fy it may be good to note that Ee®? is
indeed finite when o < 7, while it is also finite when o = 7, due to ¢ > 1.

To find an upper bound for the first integral, we write it in a slightly different form;
with 6 > 0 and sufficiently large x, we have

xPe’* fo " fr ) e — w) du
=(l-e7" /O T fr @) (1 — P xPe 0 fy (x — ) d
<(l-e77 /0 " ) (x — e (e — ) d
<(- e)—f’/oéx e fy () (K x + ) du,
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and hence

X—> 00

EX
limsupxpeaxf Ffr@) fx(x —u)du < (1 —e) PEeY K.
0

For the second integral we can write

(1—e)x
limsup x?e’* / frw) fx(x —u)du
€

X—> 00 X

(-ax  p
= limsup[ — T () (x — u)Pe” T fx (x — u) du
x—00 Jex ud(x — u)?

(-or  yp
glimsup/ — UKL Kydu
x—00 Jex (ex)d(ex)P

KvK (1—e)x
= lim sup X2r f TGy =0
Yoo €PTaxd [ .

when o < 7, but also when o =t and ¢ > 1.
Finally, for the third integral we have, assuming that o < 7, that

limsup x?”e%* /x frw)fx(x —u)du
(

X—>00 1—e)x

x xP—a
< limsup/ —ue™ fy ()e @ TTTTOY £y (x —u)du
(

xX—00 1—€)x (1 — e)q
<limsup(l —e)™4 nyl’_qe("—H'TG)X —0,
X—00

assuming that € is chosen such that ¢ — 7 + t€ < 0. On the other hand, when o =7,
we have

limsup x?e”* /-x fr) fx(x —u)du
(

X—00 1—e)x

X
< limsupxp/ U Kye® ™ fy(x —u)du
(

X—>00 1—e)x

= limsupxp<[€(x —u) 1Kye® fx(u)du + fgx(x —u) 1Kye®™ fx(u) du)
0 €

X—>00

€X
=0+ limsupx”/ u P(x—u)"9KxKydu
€

X—> 00

) KxKy
= limsup
X—00 —dq

(7.1)

where the last step is due to integration by parts; note that we used p < g and g > 1.
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Taking the three terms together, we have
X
liminfx?e®* / fr@) fx(x —u)du>EeY Ky,
X—> 00 O

X
1imsupxpe“/ fr) fx(x —u)du < (1 —e) PEe°Y K,
0

X—> 00

and hence, letting € — 0,

X
lim xpe‘”‘/ fr) fx(x —u)du =Ee°Y Ky,
0

X—> 00

which proves the part (i) of the lemma. The proof of part (ii), in which o = t and
p =q > 1, is completely similar, except for the third integral. The limsup in (7.1)
now becomes < (1 —e) "7 KyEe®X, and since the liminf can be shown to be KyEe®X
(or by using the full symmetry with the first integral term), the result is easily shown.
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