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Abstract

We consider a model of queues in discrete time, with batch services and arrivals. The

case where arrival and service batches both have Bernoulli distributions corresponds to

a discrete-time M/M/1 queue, and the case where both have geometric distributions has

also been previously studied. We describe a common extension to a more general class

where the batches are the product of a Bernoulli and a geometric, and use reversibility

arguments to prove versions of Burke’s theorem for these models. Extensions to models

with continuous time or continuous workload are also described. As an application, we

show how these results can be combined with methods of Seppäläinen and O’Connell to

provide exact solutions for a new class of first-passage percolation problems.

1 Introduction

We consider a model of queues in discrete time, with batch services and arrivals. At the
beginning of time slot n, there are Xn customers in the queue. A number An of customers
then arrive, increasing the queue length to Xn + An. After this an amount Sn of service is
available, so that Dn = min(Sn, Xn + An) customers depart from the queue. Typically, we
assume that the sequences An and Sn are random.

This model has been studied in various contexts (sometimes described as a storage model
rather than a queue [3]). There is a close correspondence between this model and another
type of queueing model, in which the data Sn represent inter-arrival times between successive
customers and the data An represent service requirements of customers.

The case where the sequences Sn and An are independent and both consist of i.i.d.
Bernoulli random variables corresponds to an M/M/1 queue in discrete time. The case
where the Bernoulli distributions are replaced by geometric distributions has also been stud-
ied previously [2, 3, 10].

We generalise these two situations to the case where the distributions are a product of a
Bernoulli and a geometric.

We show that for appropriate choices of the parameters, the queue is reversible in equi-
librium, and that various forms of Burke’s theorem hold: for example, the departure process
has the same distribution as the arrival process, and the queue-length at a given time is
independent of the departure process before that time. The stationary distribution of the
queue-length is also given by a product of a Bernoulli and a geometric.

These properties make it easy to describe the stationary behaviour of several such queues
in tandem. As an application, we show how this can be used to calculate rates of growth for
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certain first-passage percolation problems. This uses techniques developed by Seppäläinen
[12] and O’Connell [10], and extends the class of “exactly solvable” first-passage percolation
models.

In Section 2 we describe the basic queueing model in more detail. In Section 3 we collect
some definitions regarding probability distributions, in particular the distribution obtained
by multiplying a Bernoulli and a geometric.

In Section 4 we state and prove the reversibility results and versions of Burke’s theorem,
for queues with Bernoulli-geometric arrival and service processes. We discuss related results
concerning systems of queues in tandem. We also note results about the stationary distribu-
tion of the queue-length in the case where only the arrival process is assumed to have this
form, and the service process consists of any i.i.d. sequence.

As well as extending the Bernoulli and geometric cases, the Bernoulli-geometric model
has another useful feature, that by taking a limit as the parameter of the Bernoulli tends
to 0 one can easily arrive at various continuous-time models in which arriving customers
or offered service occur at times corresponding to points of Poisson processes. Taking an
alternative limit, one can also consider models with continuous workload, where arrival and
service batches are exponential rather than geometric. These extensions are indicated in
Section 4.4.

In Section 5 we describe the application to first-passage percolation models, and give exact
expressions for some time-constants.

2 Queueing model with batch services and arrivals

We describe the main queueing model of the paper.
The queue is driven by an arrival process (An, n ∈ Z) and a service process (Sn, n ∈ Z).
At time-slot n ∈ Z, An customers arrive at the queue. Then service is available for Sn

customers; if the queue-length is at least Sn, then Sn customers are served, while if the queue
length is less than Sn then all the customers are served.

Let Xn be the queue length after the service Sn−1, before the arrival An. From the
description of the queue above, we have the basic recurrences

Xn+1 = [Xn +An − Sn]+ (2.1)

(where [x]+ denotes max{x, 0}). Similarly if Yn is the queue length after the arrival An and
before the service Sn, then Yn = Xn +An, and

Yn+1 = [Yn − Sn]+ +An+1. (2.2)

In this paper we will almost always consider the case where the arrival and service processes
are independent, and (An, n ∈ Z) and (Sn, n ∈ Z) are both i.i.d. sequences, with EAn <

ESn. In this case (in fact, much more generally) we can define the queue-length sequence
(Xn, n ∈ Z) by

Xn = max
m≤n

n−1∑
r=m

(Ar − Sr) (2.3)
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departure Dn

Xn+1Xn Yn Yn+1Yn−1

departure Dn−1

arrival An arrival An+1

(service Sn−1 available) (service Sn available)

Figure 2.1: The evolution of the queue with batch services and arrivals

(where a sum from n to n − 1 is understood to be 0). This quantity is almost surely finite
since the common mean of the Sn is larger than that of the An. Then the sequence (Xn)
satisfies the recurrences (2.1), and that (Xn) is a stationary Markov chain.

Let Dn be the number departing from the queue at the time of the service Sn. So

Dn = min(Yn, Sn)

= Yn −Xn+1

= Xn +An −Xn+1

= Yn +An+1 − Yn+1.

Let Un be the unused service at the time of the service Sn. So

Un = Sn −Dn

= [Sn − Yn]+.

See Figure 2.1 for a representation of the evolution of the queue along with its inputs and
outputs.

We also introduce some further quantities whose interpretation is ostensibly less natural
(but see Section 2.1). Write In = Un + An+1 for the unused service plus next arrival, and
Tn = Un +An for the unused service plus previous arrival.

Note that although we have talked in terms of “numbers of customers”, there is no reason
why the variables have to take integer values. We will also consider the case where An and
Sn are non-negative real-valued random variables; here one might talk of “amount of work”,
say, rather than “number of customers”.

This model of a discrete-time queue with batch services and arrivals has been considered in
various contexts, for example by Bedekar and Azizog̃lu [2], Ganesh, O’Connell and Prabhakar
[4], Draief, O’Connell and Mairesse [3], and O’Connell [10].

Models that have been studied include the case where arrival batches and service batches
are Bernoulli distributed, and the case where both have a geometric distribution; see the
next sections for further details. The main result in this paper is to extend the versions of
Burke’s theorem obtained in these cases to the case of a distribution which is the product of
a Bernoulli and a geometric.
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2.1 Dual queueing model

Our main batch queueing model is closely related to an alternative (and in fact more widely-
studied) model of a single-server queue with first-in-first-out service discipline.

This dual model uses the same variables and recurrences as above, but with different
interpretations. Now An represents the amount of time required by the nth customer for
service, and Sn is the interarrival time between customers n and n+ 1.

Let Xn be the waiting time of customer n between his arrival at the queue and the start
of his service. Then Xn obeys the same recurrence as at (2.1) above. Now Yn is the total time
spent by customer n in the queue (including service), and Dn is the time spent by customer
n at the back of the queue. Un is the idle time of the server between departure of customer n
and arrival of customer n+ 1, In is the interdeparture time between customers n and n+ 1,
and Tn is the time between the starts of service of customers n and n+ 1.

See Draief, Mairesse and O’Connell [3] for extensive discussions of the relations between
the two models.

2.2 Geometric case

We assume that the processes (An, n ∈ Z) and (Sn, n ∈ Z) are independent, and that each
process is an i.i.d. sequence.

Suppose now that both An and Sn have geometric distribution, with P(An = k) = α(1−
α)k−1 and P(Sn = k) = β(1− β)k−1 for k = 1, 2, . . . . For stability of the process, we require
β < α.

In this case, the single-server queue of Section 2.1 is an M/M/1 queue in discrete time. A
version of Burke’s theorem was proved for this model by Hsu and Burke in [6]. Among other
properties one has that the arrival and departure processes have the same law, which (in the
notation of Section 2.1) says that (Sn, n ∈ Z) d= (In, n ∈ Z).

On the other hand, Bedekar and Azizog̃lu [2] showed an analogous input-output theorem
for the batch-queueing model; namely, that (An, n ∈ Z) d= (Dn, n ∈ Z).

These results are unified by Draief, Mairesse and O’Connell [3], who obtain a joint Burke’s
theorem for the two models, namely that

((An, Sn), n ∈ Z) d= ((Dn, In), n ∈ Z). (2.4)

The same result also applies if the distributions of An and Sn are exponential rather than
geometric.

2.3 Bernoulli case

Suppose instead that An and Sn both have Bernoulli distribution, with p = P(An = 1) =
1 − P(An = 0) and q = P(Sn = 1) = 1 − P(Sn = 0). For stability of the process, we require
p < q.

In our main batch-queue model, this means that each arrival batch is either empty or
contains a single customer, and at each slot the available service is either 1 or 0.

In this case, the batch-queue model in fact corresponds to an M/M/1 queue in discrete
time (hence to the dual queueing model in the geometric case of Section 2.2), since the
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intervals between arrivals of successive customers are geometric (with mean 1/p) and the
service time of a customer once he reaches the front of the queue is also geometric (with mean
1/q). So the statement that (Sn) d= (In) in the geometric case of Section 2.2 corresponds to
the statement that (An) d= (Dn) in the Bernoulli case.

Again this can be extended to a sort of joint input-output theorem for the two models in
the Bernoulli case; namely one has that

((An, Sn), n ∈ Z) d= ((Dn, Tn), n ∈ Z). (2.5)

This result is contained in the proof of Theorem 4.1 of König, O’Connell and Roch [8].
Note the difference between (2.4) and (2.5). In the geometric case, the output theorem for

the single-server queue involves the interdeparture process (In), while in the Bernoulli case it
involves instead the process (Tn) of intervals between starts of service. One can see that In
is not Bernoulli in the Bernoulli case (indeed, one may have In = 2); also, one can see that
Tn and Tn+1 are not independent in the geometric case so that (2.5) certainly does not hold
there.

In Theorem 4.1, we’ll show that the common part of (2.4) and (2.5), namely the result that
(An) d= (Dn), extends to a class of cases where the distributions of An and Sn are products
of a geometric distribution and a Bernoulli distribution.

3 Bernoulli-geometric distribution

We first introduce some notation. X is said to have Bernoulli distribution with parameter p
if P(X = 1) = p and P(X = 0) = 1− p.

We say that X has Geom+ distribution with parameter α ∈ (0, 1) if

P(X = k) = α(1− α)k−1

for k ≥ 1. If X has Geom+(α) distribution then X−1 is said to have Geom0(α) distribution.
Now we define a Bernoulli-geometric distribution, with parameters p and α. A random

variable with this distribution has the distribution of the product of two independent random
variables, one with Ber(p) distribution and the other with Geom+(α) distribution. That is,
A ∼ Ber(p)Geom(α) if

P(A = k) =

1− p, k = 0

pα(1− α)k−1, k ≥ 1.

We have EA = p/α, and the probability generating function of A is given by

E (zA) =
(1− p)− (1− p− α)z

1− (1− α)z
.

The distribution of A, conditioned on being non-zero, is simply Geom+(α).
In passing, note that such a random variable A may also be represented as a geometric

number of independent geometrics, in the case p < α. Namely, let V ∼ Geom0(p), and
let Wi be i.i.d. Geom+(γ), where γ = (α − p)/(1 − p), and independent of V . Then define
R = W1 +W2 + · · ·+WV . One has R d= A.
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Alternatively, let V ∼ Geom0(r) where r = (1−p)p/(1−pα), and let Wi be i.i.d. Geom0(γ),
where γ is as above, and independent of V . As before, define R = W1 + · · ·+WV ; again one
gets R d= A.

4 Bernoulli-geometric queues

We consider a queue with arrival process An, n ∈ Z where An are i.i.d. Ber(p)Geom(α), and a
service process Sn, n ∈ Z independent of the arrival process and with Sn i.i.d. Ber(q)Geom(β).

For stability we clearly need ESn > EAn, i.e. pβ < qα.
In general, the queue-length process is not reversible. For example, if α is small and β

is large, then one tends to see infrequent but large arrival batches, and frequent but small
departure batches.

However, under a further condition, which in effect reduces the number of parameters from
4 to 3, we show reversibility and various other related properties. The relevant condition is
that

α

1− α
p

1− p
=

β

1− β
q

1− q
. (4.1)

Note that combined with the stability condition pβ < qα, condition (4.1) implies that β < α

and p < q.
For a given service distribution, condition (4.1) gives one degree of freedom for the arrival

distribution. In particular, suppose q and β are fixed, giving an overall service intensity of
q/β. Then for any λ < q/β, there exists a unique pair p, α satisfying (4.1) and such that the
arrival intensity p/α is equal to λ. We further discuss the relevance of (4.1) to the reversibility
of the queueing process in Section 4.5.

Theorem 4.1 Suppose that pβ < qα, and (4.1) holds.

(i) The queue-length processes (Xn) and (Yn) are reversible; moreover, they are jointly
reversible in the sense that

(. . . , X−1, Y−1, X0, Y0, X1, Y1, . . . )
d= (. . . , X2, Y1, X1, Y0, X0, Y−1, . . . ). (4.2)

(ii) The departure process (Dn, n ∈ Z) has the same law as the arrival process (An, n ∈ Z).

(iii) The stationary distributions of the queue-length processes (before and after service) are
given by

Xn ∼ Ber (c) Geom (γ) ,

where
c =

β

1− β
1− α
α

, γ =
α− β
1− β

,

and
Yn ∼ Ber(p+ c− pc)Geom (γ) .

(iv) For all n, the queue length Xn at time n is independent of the process of departures
(Di, i < n) before time n.
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From (iii), one has

EX =
β(1− α)
α(α− β)

, EY = EX +
p

α
.

Proof of Theorem 4.1. To show the reversibility in (i) and the stationary distribution for Xn

in (iii), it is enough to show that for all k,m, r, with m ≥ k and m ≥ r,

π(k)P(Y0 = m|X0 = k)P(X1 = r|Y0 = m) = π(r)P(Y0 = m|X0 = r)P(X1 = k|Y0 = m),
(4.3)

where π is the probability mass function for the distribution of Xn given in (iii).
If k = r, this is obvious. The cases k < r and k > r are symmetric, and one only needs to

check one, say k < r.
Note that

P(Y0 = m|X0 = k) = P(A = m− k),

while

P(X1 = r|Y0 = m) =

P(S ≥ m− r), r = 0

P(S = m− r), r > 0
.

Further one has by assumption that

π(x) =

1− c, x = 0

cγ(1− γ)x−1, x ≥ 1
, P(A = x) =

1− p, x = 0

pα(1− α)x−1, x ≥ 1
,

P(S = x) =

1− q, x = 0

qβ(1− β)x−1, x ≥ 1
, P(S ≥ x) =

1, x = 0

q(1− β)x−1, x ≥ 1
.

Now one can for example divide into four further cases: (1) k > 0,m = r; (2) k > 0,m > r;
(3) k = 0,m = r; (4) k = 0,m > r, and check (4.3) directly in each case.

For example, in case (1), we can use the forms of the probability distributions above to
give

π(k)P(Y0 = m|X0 = k)P(X1 = m|Y0 = m)

= π(k)P(A = m− k)P(S = 0)

= cγ(1− γ)m−1(1− p)qβ(1− β)m−k−1

[
p

1− p
α

1− α
1− q
q

1− β
β

] [
1− α

(1− β)(1− γ)

]m−k
= cγ(1− γ)m−1(1− p)qβ(1− β)m−k−1

= π(m)P(A = 0)P(S = m− k)

= π(m)P(Y0 = m|X0 = m)P(X1 = k|Y0 = m).

Two lines from the end, we used condition (4.1) and the fact that (1−β)(1−γ)
1−α = 1 (which

follows from the definition of γ).
The other three cases follow similarly and we omit the details.
The stationary distribution for Yn in (iii) follows from the distribution of Xn and the

fact that Yn = Xn +An with Xn and An independent (for example, multiply the generating
functions).
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Given the reversibility, the properties in (ii) and (iv) can be deduced using the same
arguments that have been used to establish Burke’s theorem in various settings (originally by
Reich for the continuous-time M/M/1 queue [11]).

First note that Dn = Yn −Xn+1 and An = Yn −Xn. Hence the reversibility property in
(i) implies that (Dn)n∈Z and (A−n)n∈Z have the same distribution. But An are i.i.d. random
variables, so (A−n)n∈Z and (An)n∈Z in turn have the same distribution, giving (ii).

Now note that, by (2.3) for example, we can write Xn as a function of (Ai)i<n and (Si)i<n.
Hence Xn is independent of (Ai)i≥n. But, using (i) again, the collection

(Xn;An, An+1, An+2, . . . ) = (Xn;Yn −Xn, Yn+1 −Xn+1, Yn+2 −Xn+2, . . . )

has the same distribution as the collection

(Xn;Dn−1, Dn−2, Dn−3, . . . ) = (Xn;Yn−1 −Xn, Yn−2 −Xn−1, Yn−3 −Xn+2, . . . ) .

Thus indeed Xn is independent of (Di)i<n as required for (iv). �

4.1 Fixed points

Consider a queueing server defined by a given distribution of the service process. We may
ask for distributions of the arrival process with the following property: when such an arrival
process is fed into the queue (independently of the service process), the resulting departure
process has the same law as the arrival process. Such a distribution of the arrival process is
called a fixed point for the given service process.

Starting from Burke’s theorem for a continuous-time M/M/1 queue, questions concerning
fixed points have been extensively studied in the context of single-server queues such as
the model of Section 2.1 – see for example [9] and references therein. They have also been
considered, although less often, in the context of the model of batch arrivals and services in
discrete time considered here – see for example [4].

Part (ii) of Theorem 4.1 is such a fixed point result. Fix a service process of BerGeom
type, specified by the parameters q and β. Let µ = q/β = ESn be the service intensity. Then
for each λ < µ, there exists an arrival process which is a fixed point of the queue, and which
has arrival intensity EAn = λ (simply choose p and α to satisfy p/α = λ along with condition
(4.1) – there is a unique way to do this).

In fact, Theorem 5 of [4] implies that this gives the unique fixed-point arrival process
which is ergodic with arrival intensity λ. Furthermore, this fixed point is attractive; loosely,
this means that if any ergodic arrival process is fed into a tandem of queueing servers with
this service distribution, the distribution of the resulting output process converges to the fixed
point as the length of the tandem grows. See [4] for precise definitions.

We note in passing that if (4.1) is satisfied, then the distribution Ber(p)Geom(α) has min-
imal relative entropy with respect to the distribution Ber(q)Geom(β), out of all distributions
with mean p/α. See the introduction of [4] for related discussions.

4.2 Tandems

Using Theorem 4.1 we can also describe the behaviour of systems of queues in tandem.
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Consider a system of R queues in tandem. Each queue has an independent service process,
S

(r)
n for the rth queue, and each of these processes is a collection of i.i.d. Ber(q)Geom(β)

random variables.
The first queue has an arrival process A(1)

n , which is independent of the service processes
and is a collection of i.i.d. Ber(p)Geom(α) random variables. We assume that p, q, α, β
satisfy (4.1) and the stability condition pβ < qα.

Now, recursively, let the arrival process to the rth queue be given by the departure process
from the (r−1)st queue, for r = 2, 3, . . . , R; that is, A(r)

n = D
(r−1)
n . Thus a customer departing

from queue r − 1 moves immediately (within the same time-slot) to the next queue.
Using Theorem 4.1 and well-known methods, we obtain the following result:

Theorem 4.2 (i) All the departure processes D(r) have the same distribution, which is
also the distribution of A(1).

(ii) The vector X(1)
n , X

(2)
n , . . . , X

(R)
n of queue-lengths of the R queues at a fixed time n is a

collection of i.i.d. random variables, whose common distribution is that given in Theorem
4.1(iii).

Proof: Part (i) is obtained by applying Theorem 4.1(ii) repeatedly. The argument to obtain
the product form result in (ii) from Theorem 4.1(iv) is exactly the same as for the familiar
case of M/M/1 queues in tandem – see for example Section 2.2 of [7]. �

The result also extends easily to cases where the parameters of the service process vary
between queues: S(r)

n ∼ Ber(qr)Geom(βr). However, all the pairs (qr, βr) must still belong to
the same one-parameter family satisfying (4.1).

We could also consider a vector of “queue-lengths before service”, Y (r)
n . Observe that the

way we have defined the system of queues in tandem, a customer may be present after arrival
and before service in several different queues at the same time-slot (since a departure from
queue r−1 at time n arrives at queue r at the same time n). So in this case, the corresponding
result is in fact that Y (1)

n , Y
(2)
n−1, . . . , Y

(R)
n−R+1 form an i.i.d. sequence. This may also be proved

by similar methods.

4.3 General service-batch distributions

In order for the reversibility properties in Theorem 4.1(i),(ii),(iv) to hold, one needs the
condition (4.1) relating the parameters of the distributions of arrival and service distributions.
However, one may wonder whether this is necessary to have a result like Theorem 4.1(iii) on
the stationary distribution of the queue-length.

In fact, such a property holds in a much more general case. We will still assume the same
sort of arrival process, but now we will consider any service process which has i.i.d. entries
which are non-negative integers.

Theorem 4.3 Suppose (Sn) and (An) are both i.i.d. sequences taking non-negative integer
values, and independent of each other, with ESn > EAn.

(a) If An has a Ber()Geom() distribution, then both Xn and Yn have Ber()Geom() distri-
butions.
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(b) If An takes values 0 and 1 only, then Xn has a Geom0 distribution.

(c) If An has a Geom0 (respectively Geom+) distribution, then also Yn has a Geom0 (re-
spectively Geom+) distribution.

Parts (b) and (c) are both special cases of part (a). Part (c) was already observed in Propo-
sition 12 of [2], and results like part (b) for M/GI/1 queues are certainly well known.

Proof: We will use a representation of the queue length as the future maximum of a random
walk. Arguments of this kind are rather classical; for example, see the book of Takàcs [13]
for many examples (often in the context of queueing theory).

Using (2.3), we can write

X0 = max
m≥0

m∑
r=1

(−S−r +A−r) , Y0 = A0 + max
m≥0

m∑
r=1

(−S−r +A−r) .

Consider for example part (b). X0 is the maximum of the walk

0,−S−1 +A−1,−S−1 +A−1 − S−2 +A−2, . . . .

The maximum is almost surely finite since the walk has negative drift. Any positive step of
this walk has size exactly 1 (since the An are 0 or 1 and the Sn are non-negative). Hence any
new maximum must be precisely 1 greater than the previous maximum. We may treat these
maxima as renewal times; the future evolution of the walk (relative to its current position)
has the same distribution as the original walk. Note that X0 ≥ k iff this walk reaches level k
at some point. Hence we get

P(X0 ≥ k + 1|X0 ≥ k) = P(X0 ≥ 1|X0 ≥ 0) = P(X0 ≥ 1)

for all k. Thus X0 indeed has a geometric distribution as desired (and by stationary the same
is true of Xn for all n).

For parts (a) we generalise this argument slightly. Now the arrival batches may have size
greater than 1, but we will regard such a batch as a sequence of individual steps up, each
of size 1. Since the arrival batches are BerGeom, we have the memoryless property for An:
the distribution of An − k, conditional on An ≥ k, is the same for all k ≥ 1. We regard
the walk as a sequence of steps up of size 1, separated perhaps by some number of jumps
down (which may be 0). By the memoryless property, the jumps down which separate each
pair of steps up form an i.i.d. sequence, and so we have a renewal property after each step
up, and thus in particular after each new maximum. Thus P(X0 ≥ k + 1|X0 ≥ k) doesn’t
depend on k, for k ≥ 1, and indeed X0 has a BerGeom distribution. (The difference from
the previous paragraph is that the distribution for k = 0 may be different; hence we get a
BerGeom distribution in general rather than the Geom distribution we had in the specific
case above). The same argument applies also to Y0.

In the special case (c), the arrival batches are Geom+ so that Y0 must always be strictly
positive; hence in fact Y0 is itself Geom+. If the arrival batches are Geom0, we could add 1
to every arrival batch and to every service batch to arrive at the previous case; one obtains
that Y0 + 1 is Geom+ and hence that Y0 has a Geom0 distribution. �
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4.4 Continuous models

All the results above have equivalent versions in the case where geometric distributions are
replaced by exponential distributions.

X is said to have Ber(p)Exp(α) distribution if

P(X ≥ x) =

1, x = 0

pe−αx, x > 0.

X may be represented as the product of a Bernoulli random variable and an exponential
random variable, or as the sum of a geometric number of i.i.d. exponential random variables.

Now one could write versions of Theorems 4.1 and 4.2 where the Ber()Geom() distributions
are replaced by Ber()Exp() distributions. These continuous versions can be proved directly, or
derived from the discrete versions by taking an appropriate limit under which the parameter
of the geometric distribution tends to 0. The analogous condition in place of (4.1) is that
αp/(1 − p) = βq/(1 − q). Theorem 4.3 extends similarly (and we no longer need to assume
that the services Sn take integer values).

An alternative extension is to systems in continuous time rather than discrete time. Write
the Bernoulli parameters as p = ελ and q = εµ; now let ε → 0 and rescale time by ε. This
produces a model in which arrival and service batches occur at the times of independent
Poisson processes, with parameters λ and µ respectively. Again, analogous versions of all
our main results can be straightforwardly formulated. Note that in this case, the distinction
between queue-length after service and queue-length before service disappears.

These continuous limits, both in time and in workload, are also exploited in the next
section in the context of first-passage percolation models.

4.5 Role of condition (4.1)

It may be helpful to give some brief comments about the relevance of condition (4.1) to the
reversibility of the queue-length process as in Theorem 4.1.

Consider a “busy period” of the process, i.e. an excursion away from 0. Suppose that the
sequence of arrival batches in the busy period is a1, a2, . . . , an and the sequence of departures
is d1, d2, . . . , dn. We have a1 + · · ·+an = d1 + · · ·+dn, and that a1 + · · ·+am > d1 + · · ·+dm

for m = 1, 2, . . . , n− 1. Note that this also gives in particular that a1 > 0 and dn > 0.
For reversibility of the queue, we need the likelihood of such an excursion to be invariant

under time-reversal (in which the role of arrivals and departures is exchanged). This likelihood
is given by

P
(
X0 = 0, A1 = a1, . . . , An = an, D1 = d1, . . . , Dn = dn

)
,

which may also be written as

P
(
X0 = 0, A1 = a1, . . . , An = an, S1 = d1, . . . , Sn−1 = dn−1, Sn ≥ dn

)
.

Note that when we translate from the variables Di to the variables Si, the last equality
becomes an inequality, since it is at this point that the queue-length returns to 0 and so some
part of the final service Sn may be unused.

11



First consider the case where the arrivals are i.i.d. Geom0(α) and the services are i.i.d.
Geom0(β). Then the likelihood above is equal to

αn(1− α)a1+···+anβn−1(1− β)d1+···+dn .

Since the sum of the ai is equal to the sum of the di, this is invariant under the exchange
(a1, . . . , an)↔ (dn, . . . , d1) as required.

Now consider the case where Ai ∼ Ber(p)Geom(α) and Si ∼ Ber(q)Geom(β). Now the
likelihood above becomes

pnαn(1− α)a1+···+an

(
1− p
p

1− α
α

)#i:ai=0

qnβn−1(1− β)d1+···+dn

(
1− q
q

1− β
β

)#i:di=0

.

Since in general the number of ai which are zero may be different from the number of di
which are zero, this likelihood is invariant under the exchange (a1, . . . , an) ↔ (dn, . . . , d1)
only if condition (4.1) holds. Hence (4.1) is also necessary for reversibility of the queue-length
process.

By decomposing the queue-length process into its excursions and arguing in this way, we
could in fact arrive at a proof of Theorem 4.1 which avoided many of the calculations needed
in the proof given above (at the expense of complicating the structure of the proof a little).

The following property is also related to the discussion above. If A ∼ Geom0(α), then
the ratio P(A = k + 1)/P(A = k) is the same for all k ≥ 0, namely (1 − α). If instead
A ∼ Ber(p)Geom(α), then the same is true except for k = 0; in the case k = 0, the ratio is
multiplied by a further factor

α

1− α
p

1− p
. Condition (4.1) says that this “adjustment factor”

is the same for the distribution of arrivals as it is for the distribution of services.

5 First-passage percolation models

In this section we consider various directed first-passage percolation models, and use Theorems
4.1 and 4.2 to calculate exact values for time constants.

For (i, j) ≤ (k, l) ∈ Z2, denote by Π ((i, j), (k, l)) the set of “directed paths” (i, r1), (i +
1, r2), . . . , (k, rk−i+1), where l ≤ r1 ≤ r2 ≤ · · · ≤ rk − i + 1 ≤ l. These paths are strictly
increasing in the first coordinate, and weakly increasing in the second coordinate. See Figure
5 for an example.

Let Srn be a collection of i.i.d. random variables, and for each path γ ∈ Π ((i, j), (k, l)),
define the weight of the path γ by S(γ) =

∑
(n,r)∈γ S

r
n. Now we define the first-passage time

from (i, j) to (k, l) as the minimum weight over all paths from (i, j) to (k, l):

F ((i, j), (k, l)) = min
γ∈Π((i,j),(k,l))

S(γ). (5.1)

This model has various possible alternative presentations, for example in [12] as a first-
passage percolation model with weights on the edges, where weights on vertical edges are all
equal to a constant and weights on horizontal edges are i.i.d.

By Kingman’s subadditive ergodic theorem, for any x > 0, there exists a constant f(x)
such that

1
N
F ((0, 0), (bxNc, N))→ f(x) (5.2)

12
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r

Figure 5.1: An example of a directed path from (1, 1) to (8, 6).

almost surely.
In [12], it is shown that if the random variables Srn have Ber(q) distribution, then

f(x) =

0, x ≤ (1− q)/q,(√
qx−

√
1− q

)2
, x > (1− q)/q.

(5.3)

In [10], related methods are used to show that if the Srn have Geom0(β) distribution, then

f(x) =

0, x ≤ β/(1− β),
1
β

(√
1− β

√
1 + x− 1

)2
, x > β/(1− β),

(5.4)

while if the Srn have Exp(1) distribution then

f(x) =
(√

1 + x− 1
)2
. (5.5)

The method of [10] exploits a link between the percolation model and the system of batch
queues in tandem of the sort described in Section 4.2. Using this method, we can extend the
results above to the case of a Ber()Geom() distribution. As suggested by the notation, the
weights in the percolation problem correspond to service times in the queueing model.

Fix q and β and assume that all the Srn are i.i.d. Ber(q)Geom(β). In this case the service
rate at each queue is µ = q/β. For any λ < µ, we can choose p and α satisfying (4.1) and
such that p/α = λ. If the arrival batches are i.i.d. Ber(p)Geom(α) then the arrival rate is λ.

(Rather than choosing λ < µ directly, we may equivalently choose α > β or choose p < q.
To express one of the three variables α, p, λ in terms of another, we have, as well as (4.1),
that

λ =
p

α
= p

[
p

1− p
1− q
q

1− β
β

+ 1
]
, (5.6)

λ =
(1− α)βq

α2(1− β − q) + αβq
. (5.7)

Recall that β and q are to be regarded as fixed throughout).
Now the results of Theorems 4.1 and 4.2 apply. In particular, the queue lengthsX1

0 , . . . , X
R
0

are i.i.d., and their expectation is given by

EXr
0 =

β

α− β
1− α
α

. (5.8)
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We may regard this expectation as a function of the arrival rate λ and write it as h(λ) to
emphasise this. We also have

h(λ) =
p

(1− p)
(1− q)
q

[
p(1− q)
β(q − p)

+ 1
]
. (5.9)

Now, in Section 3 of [10], it is shown, by working recursively from representations such as
(2.3), that

R∑
r=1

Xr
0 = sup

m≤0

{ −1∑
r=m

Ar − F ((m, 1), (−1, R))

}
,

and that by passing to the limit R→∞ and taking a Legendre transform, one obtains

f(x) = sup
0<λ<µ

{λx− h(λ)} . (5.10)

We apply this result to various cases in turn.

Example 1. The weights Srn have Ber(q)Geom(β) distribution. This is essentially the most
general case of the ones we treat: all the others will be derived by taking some sort of limit
from this case.

Using (5.10) and plugging in (5.6)-(5.9), we get

f(x) =
1
βq

sup
p∈(0,q)

{
p
[
p(1− q) + (q − p)β

]
(1− p)

[
x− 1− q

q − p

]}
(5.11)

or alternatively

f(x) = β sup
α∈(β,1)

1− α
α

[
qx

α(1− β − q) + βq
− 1
α− β

]
. (5.12)

In principle one could solve a quartic equation to put these expressions into closed form, but
the result is unlikely to be pretty. However, it is straightforward to show that f(x) = 0 if
x < (1− q)/q and f(x) > 0 otherwise.

Example 2. Now consider the case where the common distribution of the weights is
Ber(q)Exp(1). To obtain this case we can let β → 0 in the previous example and multi-
ply by β. We obtain

f(x) = sup
0<r<1

r2

[
qx

1− q + rq
− 1

1− r

]
.

Example 3. Now we consider a model where space becomes continous in one direction.
Consider taking the Bernoulli parameter q to 0, and the space parameter x to infinity. We
arrive at a model where the first space parameter i is replaced by a continuous parameter.
For each r, we have a “service process” Sr(t). This process is a jump process; events occur
at times of a Poisson process of rate 1, say, and to each event is associated a weight, which
is the amount by which the process Sr jumps up at the time of the event. These weights are
independent and each has Geom(β) distribution. In the queueing model, the weight occurring
at time t in the process Sr corresponds to the amount of service available at queue r at time
t.
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The first-passage time can now be defined by

F̃ ((s, j), (t, l)) = inf
s=uj<uj+1<···<ul<ul+1=t

l∑
r=j

[Sr(uj+1)− Sr(uj)] , (5.13)

and the time constants by

f̃(y) = lim
N→∞

1
N
F̃
((

0, 0
)
,
(
bNyc, N

))
, (5.14)

which, as at (5.2), are a.s. constant for each y.
To obtain this case from (5.11), we let q → 0 and set x = y/q. We obtain

f̃(y) = β sup
α∈(β,1)

1− α
α

[
y

α(1− β)
− 1
α− β

]
.

Example 4. We can take the two limits of Example 2 and Example 3 together. Now the
service processes will consist of weights occurring at times of a Poisson process, with each
weight having Exp(1) distribution. In this case we get

f̃(y) = sup
0<r<1

r2

[
y − 1

1− r

]
.

In this final case the translation into closed form is more reasonable; one only needs to solve
a quadratic equation, to obtain

f̃(y) =

0, y ≤ 1
1

8y2

[
8y3 + 20y2 + 7y + 1−

√
8y + 1

(
8y2 + 3y + 1

) ]
, y > 1.

Taking certain other limits or special cases in these examples recovers previously known
results. Taking q = 1 − β in (5.11) gives the case of Geom(β) weights and leads to (5.4),
and further taking β → 0 and multiplying by β gives the case of Exp(1) weights and leads
to (5.5). On the other hand, taking β → 1 in (5.11) gives Bernoulli(q) weights and leads to
(5.3).

One could also consider the continuous model of Examples 3 and 4 in the case where each
weight has value 1, so that the service processes are simply Poisson processes. To do this we
take β → 1 in Example 3, to obtain simply

f̃(y) =
([√

y − 1
]
+

)2

.

Finally, by taking an appropriate continuum limit in any of these cases, one can arrive
at the Brownian first-passage percolation model which has been quite widely studied (see for
example [1], [5]).
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