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Abstract

The purpose of this paper is to survey techniques for constructing effective policies for
controlling complex networks, and to extend these techniques to capture special features
of wireless communication networks under different networking scenarios. Among the key
questions addressed are,

(i) The relationship between static network equilibria, and dynamic network control.

(ii) The effect of coding on control and delay through rate regions.

(iii) Routing, scheduling, and admission control.

Through several examples, ranging from multiple access systems to network coded mul-
ticast, we demonstrate that the rate region for a coded communication network may
be approximated by a simple polyhedral subset of a Euclidean space. The polyhedral
structure of the rate region, determined by the coding, enables a powerful workload relax-
ation method that is used for addressing complexity — The relaxation technique provides
approximations of a highly complex network by a far simpler one.

These approximations are the basis of a specific formulation of an h-MaxWeight policy
for network routing. Simulations show a 50% improvement in average delay performance
as compared to methods used in current practice.
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1 Introduction

One hundred years ago the Danish Scientist, Agner Krarup Erlang launched the field of
queueing theory with his paper The theory of probabilities and telephone conversations [14].
In the 2009 workshop 100 years of queueing – The Erlang centennial, we recalled how Erlang
helped to collect data to build models of telecommunication traffic, and that he was willing
to pass through manhole covers for this purpose [5]. Based on these measurements, and ideas
proposed by Johannsen in the 1907 manuscript [22], Erlang postulated probabilistic models
of traffic statistics, described in [14, 13], which is the origin of the Poisson distribution
typically assumed for arrival traffic in network models. The overall goal of his research
was to obtain predictive models for the incredibly complex telephone exchange networks he
was confronted with. Based on an M/D/1 model introduced in [13], he began the process
of characterizing delay in queueing models based on a Markovian model, that was largely
completed by Pollaczek and Khinchine in the 1930s, where average delay is expressed in their
famous formula [24].

In this paper we consider the same issues of interest to Erlang one hundred years ago. We
are concerned with finding characterizations or bounds to understand trade-offs among delay,
energy and network capacity. In addition, we want to use this insight to formulate control
strategies for routing, scheduling, and admission control in telecommunication networks.

Following the style of Erlang’s early papers, we identify a few key questions to be consid-
ered in this paper:

A What is the relationship between static network equilibria, and dynamic network con-
trol?

B What is the role of coding on control and delay analysis?

C How can we construct effective policies for controlling complex networks?

These questions have crisp answers when the answers are based on idealized models, and in
the context of this paper, the answers are relevant even for refined network models that more
accurately describe network behavior.

In this paper ‘control’ is restricted to the decision making processes required in routing
packets in a communication network, admitting packets into the network, or determining
priorities at a node in the network. A standing assumption is that a control solution should
be based on a simple model that captures essential dynamics. If the control solution is
sufficiently robust, then it will be effective even in the presence of inevitable modeling error.

Topics A and B are addressed in Section 2. A complete answer to A is provided, and we
begin to address B by investigating the rate regions obtained under coding. This is the first
step for dynamic network control since our control policies are designed over the resulting rate
regions. To address topic C we consider model reduction techniques to reduce complexity.
The starting point is a relaxation technique introduced in the thesis of Neil Laws [27] to
obtain lower bounds on achievable delay performance for stochastic networks1 An analogous
relaxation can be used to construct a simple model for control design [34]. This however
requires a sequence of steps:

1. We first construct a low-dimensional description of the network based on a ‘workload

1See recent generalizations in [36, 17], the related LP approaches in [26, 25], and relaxation techniques
from approximate dynamic programming, such as the work of Coffman and Mitrani [9] and its offspring [3].
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relaxation’ that is a generalization of Laws’ relaxation.

2. A control solution is obtained for the relaxation, typically based on some formulation
of optimality for the relaxation.

3. The solution for the relaxation is translated to obtain an effective policy for the original
network.

The translation step might appear to be the most challenging. We borrow ideas from the
MaxWeight policies of Tassiulas and Ephremides [40, 39, 37, 16] and state space collapse from
heavy traffic theory [23, 4] to obtain a simple and effective approach to step 3. This approach
to policy translation was introduced in [29], and developed further in [34]. The main ideas
are summarized in Section 3, along with further background on MaxWeight policies.

2 Rate regions in network models

Until Section 3 we consider deterministic aspects of network control based on a fluid model.

2.1 Fluid models

In their most abstract form, a fluid model is a controlled differential equation with convex
state and velocity constraints. The queue levels at time t are denoted qi(t), 1 ≤ i ≤ ℓ, or
in vector form q(t) ∈ R

ℓ
+. There is a fixed arrival rate vector α ∈ R

ℓ
+, and a convex set of

achievable rates R ⊂ R
ℓ such that,

d
dtq(t) = −r(t) + α, t ≥ 0,

with r(t) ∈ R for each t. On letting V denote the velocity space V = {−r + α : r ∈ R}, and
v(t) = −r(t) + α ∈ V, we denote,

d
dtq(t) = v(t), t ≥ 0.

The following assumptions are imposed throughout the paper:

The rate region R is convex, with non-empty interior.
This set contains the origin and the arrival-rate vector α.

(1)

The rate region depends on factors such as,

(i) Network topology, which may be a design choice.

(ii) Allowable routing decisions at each node.

(iii) The use of coding, and the type of coding strategy.

In particular, the use of coding can greatly expand the region R.
For the purposes of computation, the rate region is conceptualized in terms of achievable

equilibria for the fluid model. Suppose that for a given α ∈ R, there is vector r ∈ R for which
the system is at rest,

d
dtq(t) = −r + α = 0

Then we conclude that α = r ∈ R. The network load for a given α is defined by

ρ•(α) = min{ρ : ρ−1α ∈ R}. (2)
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Given our assumption that R is convex and contains the origin, this representation can be
inverted to give

R = {α : ρ•(α) ≤ 1}. (3)

In most applications we can work with a more structured fluid model defined as,

d
dtq(t) = Bζ(t) + α, t ≥ 0 (4)

where ζ(t) ∈ R
ℓu is a vector of allocation rates. In simple scheduling models we have B =

−[I −RT]M where R is a routing matrix with binary entries, and M is a diagonal matrix of
maximal service rates. The allocation rates are restricted to a polyhedron of the form,

U := {u ∈ R
ℓm : u ≥ 0, Cu ≤ 1}. (5)

The constituency matrix C is an ℓm×ℓu matrix with binary entries. The rows of C correspond
to resources r = 1, . . . , ℓm. The rate region is thus given by,

R = {[I − RT]u : u ∈ U}

In these models the rate region R and the velocity set V are polyhedral. The form of V is
expressed in terms of generalized workload vectors {ξs : 1 ≤ s ≤ ℓv}. On denoting ρs = αTξs,
there are binary elements {os : 1 ≤ s ≤ ℓv} such that the velocity space can be expressed as
the intersection of half-spaces,

V = {v ∈ R
ℓ : vTξs ≥ −(os − ρs), 1 ≤ s ≤ ℓv}. (6)

In these models the network load can be expressed as the maximum of ρs over those s
satisfying os = 1 (see [34, Theorem 6.1.1]).

In communication models without routing, the region R is precisely the multiple access
rate region. In models found in wireless applications we find that a polyhedral model may
be appropriate, but complex in the presence of multiple access interference combined with
coding [11, 10]. In wireless models with fading, the region R may not polyhedral.

This is the starting point to addressing question A: What is the relationship between static
network equilibria, and dynamic network control? The rate region is typically envisioned as
a static property of the network. Here it is a first step towards building a dynamic model of
the network for purposes of control design.

We say that the fluid model is stabilizable if for each x ∈ R
ℓ
+, there is a trajectory (q, r)

that is feasible for the fluid model, and a time T < ∞ such that q(t) = 0 for t ≥ T . For a
stabilizable fluid model we consider the following optimality problem: We let c : R

ℓ → R+

denote a norm (typically the ℓ1-norm), and denote the value function,

J∗(x) = inf

∫
∞

0
c(q(t)) dt, q(0) = x, (7)

where the infimum is over all feasible (q, r). This choice of optimality criterion is motivated by
the fact that the value function J∗ approximates the relative value function for an associated
average-cost optimization problem for a stochastic model [30, 31, 8].

However, computation of J∗ is infeasible in all but the simplest models. To obtain an
approximation to this optimal control problem we relax the constraints on v(t) in the fluid
model. Details of this approach can be found in [32, 33, 29, 34], and will be reviewed briefly
in the following examples.
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2.2 Interference constraints and combinatorial complexity

We first consider a system with routing only and no coding. This is the most common setting
considered in network control in the literature. Shown in Fig. 1 is a network with 18 separate
arrival processes, and 40 nodes. To model interference we adopt the half-duplex constraint
model in which no node can send and receive simultaneously.

0 0.1 0.2 0.3

0.1

0 0.1 0.2 0.3

0

0

0.1

0 0.1 0.2

0

0.1

0.2

R2

R3

R1

R4

R1

R9

Figure 1: Shown on the left is a network with 40 nodes, 18 flows, and 720 buffers. On the right is shown three
examples of two-dimensional “slices” of the rate region R that is obtained under the half-duplex constraint.
Even with many flows and hundreds of buffers, the rate region is not very complex

To construct a model of the form (4) we require a separate buffer for each flow at each
node. This leads to fluid model in which ℓ = 40 × 18 = 720 (!). Shown on the right hand
side of Fig. 1 are three examples of two-dimensional slices of the region R (restricted to the
positive orthant), computed using the formula (3). These results suggest that the rate region
may be approximated by a polyhedron with a moderate number of faces. This is motivation
for the workload relaxation introduced next for a simpler multiple access model.

2.3 Multiple Access Model

The constraint imposed in Section 2.2 is extremely pessimistic — By analogy, consider a
party in which each guest feels that he or she can speak only if everyone else in the room
is silent. Party guests can effectively filter out conversations of others while participating in
their private conversations, and this efficiency can be replicated in communication systems
through coding.

Consider the multiple-access system illustrated in Fig. 2, where two users transmit to a
single receiver. The two users share a single channel which is corrupted by additive white
Gaussian noise (AWGN), denoted by N in the figure. The queueing system has two buffers
that receive arriving packets of data modeled as the i.i.d. sequences Ai = (Ai(1), Ai(2), ...),
with finite mean αi = E[Ai(t)], i = 1, 2. Data at queue i is stored in its respective queue until
it is coded and sent to the receiver. The output of the system seen at the receiver is given by
Y (t) = X1(t) + X2(t) + N(t), where N is i.i.d. Gaussian with finite second moment σ2

N , and
independent of the two inputs {X1,X2}. It is assumed that user i is subject to the average
power constraint E[Xi(t)

2] ≤ Pi.
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Figure 2: Multiple-access communication system with two users and a single receive

In this example and others, there are two steps required for network control: A possibly
combinatorial problem at the lower level defines the set R of achievable rates. At a higher
level, we have a queueing model where the rates in R are chosen as a function of time based
on cost considerations on a longer time-horizon.

R1

R2

µ − µ1

µ2

µ − µ2 µ1

Figure 3: Achievable rates in
the multiple access model.

The set of all possible data rates is given by the Cover-Wyner
region illustrated in Fig. 3 [11]. Any pair (R1, R2) ∈ R within this
simple pentagonal region can be achieved through independent
coding at the two buffers.2 The rate region is a strict subset of R

in the absence of multiple-access coding: The triangular region in
the positive orthant consisting of points below the line connecting
µ1 and µ2.

To complete the construction of the fluid model, we construct
the matrices B and C and the vector α consistently with the rate
region shown in Fig. 3. We let ‘µ’ denote a maximal processing rate: µ1 = C(P1) and
µ2 = C(P2), where C(P ) = 1

2 log(1 + P/σ2
N ) for any P ≥ 0. The dynamics of the two

dimensional fluid model are expressed,

d
dtq1(t) = −µ1ζ1(t) + α1

d
dtq2(t) = −µ2ζ2(t) + α2

The matrix B and the constituency matrix C are given by,

B = −

[
µ1 0
0 µ2

]
, C =




1 0
0 1

µ1/µ µ2/µ



 , (8)

where µ = C(P1 +P2). The constituency matrix C has three rows, corresponding to the three
faces of the rate region R.

There are several representations for the rate region. We have R = {−Bu : u ∈ U} where
U is given in (5). We can also obtain an expression for the rate region in terms of workload.
Recall that R = −V0, where V0 = {v ∈ R

ℓ : vTξs ≥ −os, 1 ≤ s ≤ ℓv} is the velocity space
for the arrival-free model (with α = 0). The vector ξs is called a workload vector if os = 1.
There are three workload vectors in this model,

ξ1 = (1/µ1, 0)
T ξ2 = (0, 1/µ2)

T ξ3 = (1/µ, 1/µ)T (9)

The velocity space for the fluid model is obtained by shifting V0 by the mean arrival rate
vector α. That is, V = {V0 + α} := {v + α, v ∈ V0}. A typical case is illustrated in Fig. 4.

2The Cover-Wyner region is constructed under the assumption that each queue has an infinite supply of
bits for coding. Strict limits on delay will result in a smaller rate region.
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v1

v2

V

Figure 4: Velocity space for
the multiple access model.

It is assumed that a cost function c : R
2
+ → R+ is given that

is convex, and vanishes only at the origin. For simplicity we shall
concentrate on a linear cost function of the form c(x) = c1x1 + c2x2,
with ci > 0 for each i. Our interest is in minimizing the average cost
over all policies.

We obtain an approximate solution using a workload relaxation.
Shown on the left hand side of Fig. 5 is the half-space V̂ that defines
a one-dimensional workload relaxation using the workload vector ξ3,
and on the right is a two dimensional relaxation that maintains the two constraints defined by
ξ1 and ξ3. In either case, the fluid model is defined to be the controlled model in continuous
time, whose velocity is constrained to the region V̂,

d
dt q̂(t) = v̂(t), v̂(t) ∈ V̂, t ≥ 0.

A relaxation for the stochastic model is defined similarly [34].
There are many results establishing solidarity between a relaxation and the original

stochastic model. The strongest such result is obtained for a general class of queueing net-
work models in [29]: If in the one dimensional relaxation the workload vector is chosen
corresponding to the highest load, then under general conditions a policy for the stochastic
model based on the optimal policy for the relaxation will be approximately optimal, with
logarithmic regret as the load tends to unity.

We now focus on the one-dimensional relaxation for the fluid model, based on the workload
vector ξ3. There is a policy that is pathwise optimal in this case. To see why, first note that
the movement of q̂(t) is unconstrained in directions orthogonal to ξ3 (the velocity space for
q̂(t) is a half-space defined by ξ3). Hence, in an optimal solution, the cost c(q̂∗(t)) will be
minimal among all values c(x) for which ξ3T

x = ξ3T
q̂∗(t).

This motivates the effective cost, defined for w ∈ R+ by,

c(w) = min{c(x) : ξ3T
x = w, x ∈ R

2
+} (10)

The basic feasible solutions of the linear program (10) are

x∗1 =
(1
0

)
µw, x∗2 =

(0
1

)
µw,

and the effective cost is thus c(w) = µw min(c1, c2).
In an optimal solution we have c(q̂∗(t)) = c(ŵ∗(t)) for all t > 0, where ŵ∗(t) := ξ3T

q̂∗(t).

3ξ

V̂

3ξ

1ξ

v1

v2

V

V̂
v1

v2

V

Figure 5: Two instances of the relaxed velocity space for the multiple access model.

Supposing further that c1 < c2, the optimal solution will satisfy q̂∗2(t) = 0 and q̂∗1(t) =
µŵ(t) = µŵ(0) − µ(1 − ρ3)t for 0 < t ≤ ŵ(0)/(1 − ρ3), where ρ3 = ξ3T

α. The resulting
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infinite-horizon cost is a quadratic function of the initial workload:

Ĵ∗(x) =

∫
∞

0
c(q̂∗(t)) dt = 1

2µc1
w2

1 − ρ3
, q̂∗(0) = x, w = ξ3T

x, x ∈ R
2
+. (11)

We consider next the two dimensional relaxation based on the workload vectors ξ1 and ξ3.
For linear cost, the effective cost is in the solution to the linear program,

c(w) = min c1x1 + c2x2

s.t. ξ1T
x = w1

ξ3T
x = w3 x ≥ 0.

(12)

We can invert the constraint equations to obtain x as a function of w. On letting Ξ denote
the 2 × 2 matrix with rows ξ1T

and ξ3T
, we have

(
x1

x2

)
= Ξ−1

(
w1

w3

)
=

(
µ1w1

µw3 − µ1w1

)
,

provided w is feasible, which requires w ∈ W = {(w1, w3) ∈ R
2
+ : w1 ≥ 0, w3 ≥ µ1w1/µ}.

The effective cost is defined for feasible w by

c(w) = cTΞ−1x = (c1 − c2)µ1w1 + c2µw3.

The monotone region W
+ is defined to be the set of all w ∈ W such that c(w′) ≥ c(w)

whenever w′ ≥ w (component-wise). The effective cost is called monotone if W
+ = W. In

this example, the effective cost is monotone if and only if c1 ≥ c2. In this case there exists a
pathwise optimal solution for the relaxation in which the components of the workload process
are minimal.

If c1 < c2 then W
+ is a strict subset of W. In such cases an optimal solution minimizing

the infinite horizon cost Ĵ∗ will be defined by a cone W
∗ satisfying W

+ ⊂ W
∗ ⊂ W, with

ŵ∗(t) ∈ W
∗ for all t > 0, where ŵ∗(t) = Ξq̂∗(t) [34].

2.4 Single-flow communication network

To see how relaxations may be constructed for networks we consider the simplest formulation
of the routing model, in which coding among different connections is disallowed. The impact
of coding in a network setting will be addressed in the following subsection.

In a fluid model, the ℓ-dimensional vector of queue-lengths evolves according to the dif-
ferential equation,

d+

dtqi(t) = αi +
ℓ∑

k=1

ζkiµki −
ℓ∑

j=1

ζijµij (13)

where µki is the maximal rate on the link joining nodes k and i, and the rate constraints are
decoupled,

U := {0 ≤ ζij ≤ 1, 1 ≤ i, j ≤ ℓ}.

Consider the single-user routing model shown in Fig. 6. The capacities on each of seven
links are as indicated. The links are uni-directional so, for example, we have µ5,4 = 0. The

8



1

2

3 4

5

1
α

µ1,2 = 2

µ1,3 = 10

µ2,5 = 1

µ3,2 = 5

µ3,4 = 2

µ3,5 = 2

µ4,5 = 10

µ5 = 100

Figure 6: Single-user routing model with min-cut A = {1, 2, 3}.

imposition of the rate µ5 = 100 at node 5 is for the purposes of constructing a linear fluid
model of the form (4).

We first look at this model from the point of view of the Min-Cut Max-Flow Theorem.
Based on this result we can conclude that the maximal rate α∗

1 that the network can support
in equilibrium is the sum of the rates on the minimal cut shown:

α∗

1 = µ(A,Ac) = 5.

The fluid model is stabilizable for any arrival rate satisfying α1 < 5, and the network load is
given by ρ• = α1/5.

The conclusion ρ• = α1/5 can also be reached by constructing the workload vectors that
define V. To construct a fluid model we first order the vector of activity rates as follows,

ζ = (ζ1,2, ζ1,3, ζ2,5, ζ3,2, ζ3,4, ζ3,5, ζ1,2, ζ5)
T

so that (13) is of the form (4) with α = (α1, 0, 0, 0, 0)
T , and

B =





−2 −10 0 0 0 0 0 0
2 0 −1 5 0 0 0 0
0 10 0 −5 −2 −2 0 0
0 0 0 0 2 0 −10 0
0 0 1 0 0 2 10 −100





The workload vector ξ = (1/5, 1/5, 1/5, 0, 0)T consistently expresses the load by ρ• = αTξ =
α1/5. For given x ∈ R

5
+, the workload w = ξTx is given by,

w =
1

µ(A,Ac)
Total fluid above network cut

where µ(A,Ac) = 5 is the maximal rate that fluid can flow across the cut.
Just as in the multiple-access example we can construct a one-dimensional workload

relaxation, and compute the associated optimal policy.

2.5 Multicast and network coding

In this section we consider coding to allow several receivers to share a connection. A common
application in networks is multicasting, i.e. the transmission of information from a source node
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s to a subset of network nodes T . Let (s,T , R) denote a multicast connection with rate R.
In general, network coding is necessary to achieve capacity [1]; practical capacity achieving
schemes have been proposed in [19, 20, 21]. Note that, for a single point-to-point connection,
a necessary and sufficient condition for a flow to be established between a sender and a
receiver is given by the min-cut max-flow conditions. Such a condition trivially remains
necessary when we consider a single sender and several receivers. However, when using
routing schemes to establish connections, one must use combinations of trees. In such trees,
the min-cut condition may not be sufficient, since in effect trees may compete with each other
for capacity. This competition for capacity among trees will render the min-cut condition
non-sufficient when trees serving different receiver nodes compete for capacity along a link.
Under network coding, however, different receivers in a multicast connection do not compete
with each other for resources. Thus, under network coding conditions, the maintenance of
min-cut conditions between the set of senders and every receiver individually is not only
necessary, but also a sufficient condition to achieve capacity.

Although network coding obviates competition for resources among receivers in a multi-
cast connection in wireless models, interference from simultaneous transmissions has to be
taken into account. In effect, interference changes the underlying network according to the
presence or absence of connections. A conservative approach for managing interference is to
assign to each node an orthogonal channel and therefore avoid interference at the price of
reduced bandwidth efficiency. The approach taken in [41], on the other hand, is a scheduling
technique designed for network coded multicast traffic. Its basic idea is, in short, to activate
subsets of neighbors in a manner that takes advantage of packets overheard by neighbors (the
so called broadcast advantage) as well as of frequency reuse in the network due to efficient
scheduling of non-conflicting transmissions. Moreover, if we have two different multicast con-
nections then, while there is no competition for capacity among receivers within a multicast
connection, there may be competition for resources among different multicast connections.
Network coding may alleviate this competition for resources, as well as reduce the resources
used for each multicast connection individually.

(0.38,0.38)

(0.21,0.21)

0.23

0.42

0.24

0.40

R1

R2

R
∗

R

Figure 7: Shown on the left hand side is a wireless network with 12 nodes, one source, and two multicast
groups, each consisting of two nodes. Shown on the right hand side are two possible rate regions: The smaller
region R

∗ is obtained using orthogonal scheduling, and the larger region is obtained using a more efficient
coding scheme [41].

To consider the interaction among users, let T1 denote one group or receivers, and T2

another set of receivers. Consider, to begin with, orthogonal scheduling and the multicast
connections (s,T1, R

∗

1), (s,T2, R
∗

2), and (s,T1 ∪ T2, R
∗

0), where for each connection the rate is
taken to be the maximal rate that can be supported by the network if only this particular
connection is present. We have plotted the rate points (R∗

1, 0) = (0.23, 0), (0, R∗

2) = (0, 0.24),
and (R∗

0, R
∗

0) = (0.21, 0.21) in Fig. 7. The extreme point (R∗

0, R
∗

0) corresponds to transmission
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to each multicast group simultaneously at rate R∗

0. Interference among users is captured by
the fact that R∗

0 is in general strictly smaller than either R∗

1 or R∗

2. Without coding we obtain
the half-duplex constraint model in which the minimum cut from the source to the users in
T1 ∪ T2 is min (R∗

1, R
∗

2).
The potential gain in capacity is illustrated in the plot on the right hand side of Fig. 7.

The rate region R
∗ is obtained using orthogonal coding, and the region R

′ is obtained using
the coding approach of [41]. Observe that the rate regions are almost rectangular. This
means that a 4-multicast with random terminals can support almost the same rate as a
2-multicast and indicates that network coded multicasting scales well with the number of
receivers. However, the main message is that attention to coding can significantly expand
the achievable rate region, as seen in this figure.

3 Relaxations and control

In this section we show how the concepts surveyed in the previous sections can be used to
obtain control solutions for a stochastic network model, and for the physical network. We
assume that rate regions have been determined through a combination of coding and local
scheduling as discussed in Section 2. This is the basis of dynamic network models over which
we design our policies.

We now introduce a stochastic model for the network, defined as a discrete time analog
of the fluid model. Suppose (A,B) is an i.i.d. process with a finite second moment. For each
t, the vector A(t) has non-negative entries with mean α, the entries of B(t) take on values
in {−1, 0, 1}, and the mean mean of B(t) is B. The queue length process is denoted Q, and
evolves in discrete time through the recursion,

Q(t + 1) = Q(t) + B(t + 1)U(t) + A(t + 1), t ≥ 0, Q(0) = x . (14)

The input U(t) is subject to the same constraints as ζ(t), which include the constraint that
the resulting process Q remains in the positive orthant R

ℓ
+. We ignore lattice constraints on

the queue-length process, so that Qi(t) is only restricted to be non-negative for each i and t.
In all of the numerical experiments described here the entries of A(t) and −B(t) are taken
Bernoulli, with means denoted E[Ai(t)] = αi, and E[Bij(t)] = −µij. The general model was
developed in [18, 34] and is now called the controlled random walk (CRW) network model.

Models of this form were introduced by Lippman in [28] for networks with Poisson inter-
arrival times and service times — assumptions justified by the work of Erlang.

3.1 Policy translation

The approach to policy translation advocated in [29] is inspired by the dynamic programming
equations associated with the fluid and stochastic models. In particular, suppose that the
function J∗ defined in (7) is a smooth function of x, and let ∇J∗ denote its gradient. Then,
the total cost optimality equation (TCOE) is given by,

min
v∈V

vT∇J∗ (x) = −c(x), x ∈ X. (15)

Moreover, the minimizing v defines an optimal state feedback law v∗(t) = φ∗(q(t)), with

φ∗(x) := arg min
v∈V

vT∇J∗ (x), x ∈ X. (16)
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Similar equations define optimal policies for the CRW model with respect to a discount or
average-cost optimality criteria [34, 2]. Generally, if h : R

ℓ → R+ is a C1 function then we
define the h-myopic policy via

φ(x) = arg min
v∈V

vT∇h (x), x ∈ X,

so that φ = φ∗ if h = J∗. It is assumed throughout that h is convex, monotone, and vanishes
only at the origin. Under these assumptions it is known that the h-myopic policy is stabilizing
for the fluid model when ρ• < 1 [34].

Router

α

Figure 8: Packets will
be routed from buffer
three to buffer four
under the MaxWeight
policy, for some val-
ues of Q(t).

It would be tempting to attempt to apply an h-myopic policy to the
CRW model, with h an approximation to the solution to an optimality
equation for the CRW model, such as the fluid value function. However,
this fails because the policy might not be feasible for the stochastic model.
The problem is that in the fluid model it is possible to have service at
an empty buffer, which is impossible in a discrete-time CRW model.
However, the situation is not so dire — there are many examples of
functions h for which the h-myopic policy is feasible for the CRW model.

The MaxWeight policy provides one example. If h(x) = 1
2‖x‖

2, then
the resulting h-myopic policy coincides with the MaxWeight policy for
the models considered in [40, 39, 37, 16]. The MaxWeight policy has been
popular for scheduling and routing in view of its stability properties. Re-
cent work has developed decentralized implementations of these policies
using consensus-type algorithms (see [35]) and distributed spanning tree
constructions (see [15]).

Many generalizations have been proposed, including a more general
quadratic h(x) = 1

2xT Dx with D > 0 diagonal, or the generalization

h(x) =
∑

dix
1+δ
i (17)

with δ > 0 and di > 0 for each i. These generalizations and more recent
refinements introduced in [16, 6, 42] are used to improve the performance
of the policy with respect to delay. Results from experiments show that
significant gains are possible by including additional global information,
such as information regarding shortest paths to desired destinations.

Indeed, it has been observed that delay can be large when using the MaxWeight policy.
An explanation was provided in [38] using the network model shown in Fig. 8 as an example.
A centralized routing algorithm intended to minimize delay would never route any packets
to buffer 4. Though stabilizing, the MaxWeight algorithm will route packets to buffer 4 for
certain values of the queue length vector. This will definitely increase the average delay.

To obtain a broader class of functions for which the h-myopic policy is feasible for the
CRW model, and also stabilizing, consider again the function defined in (17). Under general
conditions, the h-MaxWeight policy is feasible for the CRW model when δ > 0, while feasi-
bility typically fails when δ = 0 (the case in which h is linear). The explanation given in [29]
is that the function h satisfies the following boundary conditions when δ is strictly positive:

∂

∂xi
h (x) = 0 whenever xi = 0. (18)
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Under these assumptions on h, including the boundary condition (18), the resulting h-myopic
policy is called the h-MaxWeight policy in [34, 29]. This boundary condition is interpreted
as zero ‘marginal disutility’ at an empty buffer, which ensures that there is a disincentive to
work on an empty queue. This property is the key for stability because starvation of resources
is avoided.

The condition (18) is easy to arrange. Suppose that h0 : R
ℓ → R+ is any function satisfying

the assumptions imposed above: h0 is convex, monotone, and vanishes only at the origin.
We can then perturb this function to obtain a function satisfying (18), while maintaining
the other desirable properties. One class of perturbations is of the form h(x) = h0(x̃) where
x̃ = (x̃1, . . . , x̃ℓ)

T ∈ R
ℓ
+, and each x̃i(x) is convex, monotone, and vanishes only at the origin.

Two examples are the exponential and logarithmic perturbations: For a given parameter
θ > 0 these are defined by, respectively,

x̃i := xi + θ(e−xi/θ − 1) (19)

x̃i := xi log(1 + xi/θ) (20)

Feasibility of the h-MaxWeight policy requires some assumptions on the velocity set V.
One set of sufficient conditions is given in Proposition 3.1.

Proposition 3.1. Suppose that the following hold for the general fluid model:

(i) ρ• < 1.

(ii) For any v ∈ V and any i ∈ {1, . . . , ℓ}, if vi < 0 then there is a vector v+ ∈ V

satisfying
v+
i = 0 and v+

j ≤ vj for j 6= i.

Then without loss of generality, the h-myopic policy can be constructed so that for any x ∈ R
ℓ
+,

and any i, we have φi(x) ≥ 0 when xi = 0.

Proof. By definition we have

φ(x) ∈ arg min
v∈V

ℓ∑

i=1

vi
∂

∂xi
h (x), x ∈ X.

If v0 achieves the minimum, then there exists v+ satisfying v+
i = 0 whenever xi = 0 and

vi < 0, and v+
j ≤ vj otherwise. Monotonicity of h implies that v0T

∇h (x) ≥ v+T
∇h (x). ⊓⊔

To see how this applies to policy translation, we show how to translate an optimal policy
for the fluid model relaxation to the CRW model. The translation is performed in two steps.
In the first step we modify the value function for the relaxation. For a one-dimensional
relaxation, and with linear cost, the value function Ĵ∗ is a quadratic function of workload
w = ξTx. To attempt to faithfully track the relaxation we introduce a penalty term that
introduces a large cost when c(x) ≫ c(w):

h0(x) := Ĵ∗(w) +
b

2

(
c(x) − c(w)

)2
, w = ξTx, x ∈ R

ℓ
+, (21)

where b > 0 is a constant. In the second step we perturb h0 to obtain h satisfying (18).
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It is shown in [29] that the resulting h-MaxWeight policy is approximately optimal under
general conditions. While the arguments are general, this result is proven for a version
of the scheduling model described below eq. (4). Note however that to obtain such exact
performance guarantees it is necessary to demand far greater information than using the
standard MaxWeight policy. In practice tradeoffs must be made between information and
performance. Moreover, network structure may change with time, in which case the policy
must adapt to these changes.

3.2 h-MaxWeight for dynamic routing

In this final section we describe how these techniques apply to networks found in telecommu-
nication applications.

Fig. 9 shows a network with 100 nodes, two arrival streams, and one node from which
the packets from these two sources exit the network. The network was constructed by first
selecting at random the positions of nodes. A link between two nodes was created whenever
the distance was less than a threshold. These links were chosen to be uni-directional, and
each direction was also randomly selected. The capacity on a link between nodes i and j is
denoted µij . Its value was set to one of four possible values: 0.5,0.25,0.2 or 0.15. Generally,
smaller rates were assigned for links in the central region of the network.

The two dashed lines shown in Fig. 9 represent a single cut between the two inflows,
and the single outflow. The total number of packets in the shaded region coincides with the
workload (in units of packets) corresponding to this cut.

Figure 9: A network with 100 nodes. There are four classes of links, differentiated by their capacity, and
indicated in the figure by the four different styles shown. The rates of links for the solid, dashed, dotted and
dash-dot lines are 0.5,0.25,0.2 and 0.15 respectively. The two arrivals and one exit are indicated by the arrows.

In all of the numerical experiments described here, the arrival process A = {A(t) : t ≥ 1}
was taken to be an i.i.d. sequence with distribution,

P (Ai(t) = n) = αi/n, P (Ai(t) = 0) = 1 − αi/n, 1 ≤ i ≤ 2 (22)

where n is a constant used to capture variability. The mean and variance of Ai(t) are given
by, respectively,

mAi(t) = αi, σ2
Ai(t)

= nαi − α2
i . (23)
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Due to lack of space, the plots shown here are based on the model using n = 1. The entries
of −B(t) were taken to be Bernoulli with distribution,

P (−B(t)ij = 1) = µij, P (−B(t)ij = 0) = 1 − µij, 1 ≤ i, j ≤ ℓ (24)

The queue length process Q was constrained to evolve in the positive lattice Z
ℓ
+.
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Figure 10: Comparison of the average cost using the h-MaxWeight with “shortest path squared” component
shown in (26) and the ordinary MaxWeight policy. The rates for the two arrivals are 0.283 and 0.33 respectively.
The network load ρ• is 0.95. In the simulation, n is set to be 1.

Our goal is to find a policy that approximately minimizes the average cost: The cost
function is taken to be the total population, c(x) =

∑ℓ
i=1 xi. The average cost is simply

the running average of c(Q(t)). Fig. 10 compares the average cost using two policies: the
h-MaxWeight policy for a particular function h, and the ordinary MaxWeight policy. The
average cost is reduced by more than 50% with the h-MaxWeight policy in this experiment.
The function h0 is described below equation (26) that follows, and h was obtained via h(x) =
h0(x̃), with x̃ the exponential perturbation (19). Histograms of delay are shown in Fig. 11
for this example under various load conditions. Further details are provided at the end of
this section.

ρ = 0.6 ρ = 0.8 ρ = 0.95
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Figure 11: Histogram of delays experienced by packets for different loads. The arrival rates for the load 0.6,
0.8, 0.95 are (0.179,0.208),(0.238,0.278) and (0.283, 0.33), respectively. The function h in the h-MW policy
was taken to be the exponential perturbation of (26).

We first consider the approach introduced in [29] using the function h0 defined in (21),

h0(x) := Ĵ∗(w) +
b

2

(
c(x) − c(w)

)2
, w = ξTx, x ∈ R

100
+ , (25)

where Ĵ∗ is a quadratic function of workload, as in (11). With this version of the h-
MaxWeight policy the average workload is reduced significantly when compared to the ordi-
nary MaxWeight policy. Results from one simulation are shown in Fig. 12. The explanation
for this is that the h-MaxWeight policy results in far fewer packets that double-back across
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Figure 12: Simulation results for the h-Maxweight using the exponential perturbation of the function h0 given
in (25).

the network cut. Denote by L(t) the number of packets that cross the cut in the upstream
direction at time t ≥ 0. The cumulative sum of this quantity was obtained for the two poli-
cies, and the results are shown in Fig. 12. It is seen that the number of “loopy packets” is
reduced by approximately one half when compared to the MaxWeight policy.

However, there is one aspect of this policy that is not satisfactory. Recall that an optimal
solution for the workload relaxation requires c(Q(t)) − c(W (t)) ≡ 0 for t > 0. The error
c(Q(t)) − c(W (t)) is proportional to the number of packets downstream of the network cut.
Hence, in an optimal solution for the relaxation, all nodes downstream of the network cut be
free of packets. The running average of c(Q(t)) − c(W (t)) was obtained for the two policies,
and the results are also displayed in Fig. 12. We see that the result is similar for either policy,
and the average value is approximately half of the total average cost.

To better approximate the idealization c(Q(t)) − c(W (t)) ≡ 0, we now introduce an
additional penalty term in h0 to more aggressively move traffic towards the exit node. The
idea is to introduce information regarding the shortest path to the exit, following a similar
modification of the MaxWeight policy introduced in [42]. For each i, denote by s(i) the
length (in hops) of the shortest path from node i to the exit node. For a given p > 0, the
corresponding vector of powers of {s(i)} is denoted by dsp = [s(1)p, s(2)p, . . . , s(ℓ)p]T . The
definition of h0 in (21) is then modified to include the linear function of x obtained as the
dot product with dsp:

h0(x) := Ĵ∗(w) +
b

2

(
c(x) − c(w)

)2
+ bspd

spT x, w = ξTx, x ∈ R
100
+ , (26)

where bsp is a constant.
Fig. 13 shows results obtained under the same conditions as described following Fig. 10,

but using this function in the definition of the h-MaxWeight policy, with p = 2 (so that
dsp

i = s(i)2). The average value of c(Q(t)) − c(W (t)) is reduced by nearly one half, as
compared to the previous version of the h-MaxWeight policy.

In each simulation the delay for each packet entering the network was also recorded. This
is the total time from arrival to the network, to the time of exit from the network. Histograms
of delay are shown in Fig. 11. This includes the network under the same statistical setting
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Figure 13: Simulation results for the h-Maxweight with shortest path component. The solid line shows result
for the MaxWeight policy, while the dashed line shows the result for the h-MaxWeight with “shortest path
squared” component shown in (26).

as in the prior experiments, with network load ρ• = 0.95. Two other experiments were
conducted with reduced arrival rates, resulting in loads ρ• = 0.6 and 0.8. The average
delay, and the variability of delay are reduced dramatically using this policy, as compared to
ordinary MaxWeight.

4 Conclusions

We have seen that a careful look at deterministic aspects of a communication network can
provide insight regarding network control, as well as practical algorithms. As illustrated by
examples, it is possible to develop models and solutions for broad classes of networks, and
take into account many network issues, including those related to multiple access interference
and coding.

There are many promising directions for future research; we highlight just two — the
interplay between network control and information theory, and the decentralized implemen-
tation of network algorithms.

Information theory characterizes the fundamental gains and limits of coding, while net-
work control is concerned primarily with policies and performance bounds. Information the-
ory is an indispensable tool to guide the design of network algorithms; however, techniques
from information theory have only recently begun to have impact on communication network
design. This tension between the two disciplines (the unconsummated union [12]), is yet to
be resolved in a satisfactory way. Working from both directions to create a more cohesive
bridge is a very promising avenue of further research. The applications described here to
multiple access communication and network coded multicasting are just two examples.

The second direction concerns the decentralized implementation of network control al-
gorithms. Centralized coordination is limited in most wireless networks owing to physical
limitations and choice of architecture. There have been two recent approaches for designing
decentralized network control algorithms. The first approach uses insights from game theory
to design dynamic update mechanisms among users competing for network resources (see for
example [7]). While being fully decentralized and flexible in modeling heterogeneous user
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metrics, this approach may lead to inefficiencies in the overall network performance due to
strategic interactions among users. In environments where there are no strategic interactions,
a more direct approach can be used that relies on optimization decomposition methods and
consensus algorithms. Some of the techniques described in the paper, in particular network
coding for multicasting, can be naturally decentralized using this approach. The construction
of decentralized implementations of the h-MaxWeight policy is also possible using consensus
algorithms, but the need for high reliability and efficiency will drive further research in this
direction.
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