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Abstract

We consider a system with N unit-service-rate queues in tandem, with exogenous arrivals of rate λ
at queue 1, under a back-pressure (MaxWeight) algorithm: service at queue n is blocked unless its queue
length is greater than that of next queue n+1. The question addressed is how steady-state queues scale
as N → ∞. We show that the answer depends on whether λ is below or above the critical value 1/4: in
the former case queues remain uniformly stochastically bounded, while otherwise they grow to infinity.

The problem is essentially reduced to the behavior of the system with infinite number of queues in
tandem, which is studied using tools from interacting particle systems theory. In particular, the criticality
of load 1/4 is closely related to the fact that this is the maximum possible flux (flow rate) of a stationary
totally asymmetric simple exclusion process.

Key words and phrases: Queueing networks, Interacting particle systems, Stability, Back-pressure, MaxWeight,
Infinite tandem queues, TASEP
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1 Introduction

In this paper we consider a system with N single-server queues in tandem, with exogenous Poisson arrival
process at queue 1 and customers leaving after service in queue N . All service times have exponential
distribution with unit mean. The waiting room in each queue is unlimited, but the system operates under
the following back-pressure policy: service of queue n is blocked (stopped) unless its queue length is greater
than that of “next-hop” queue n+ 1. The system is stable as long as input rate λ < 1. The main question
we address is: Given load λ < 1 is fixed, how steady-state queue lengths increase (scale) as N → ∞.

Our main motivation comes from the fact that general back-pressure (BP) policies (sometimes also called
MaxWeight), originally introduced by Tassiulas and Ephremides [13] and received much attention in the
literature (cf. [12, 4] for recent reviews), are very attractive for application in communication and service
networks. This is due to the adaptive nature of BP policies – they can ensure maximum possible network
throughput, without a priori knowledge of flow input rates. Key mechanism in BP policies, giving it the
adaptivity (and the name), is that the “priority” of a traffic flow f at a given network node n is “proportional”
to the difference between flow f queue lengths at node n and the next node on the route; in particular,
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unless this queue-differential is positive, flow f service at n can be blocked. This mechanism, however, has
a drawback, namely it can lead to a large queue build-up along a flow route, since, roughly speaking, the
queue “needs” to increase as we move back from a flow destination node to its source. Such “bad scaling”
behavior of BP algorithm is emphasized in [3], and is not very surprising (see also our Proposition 2 and
bound (3)). One approach to mitigate this scaling problem in practical systems is proposed in [2, 3], where
it is suggested to “run” BP algorithm on virtual queues as opposed to physical ones.

It is of interest to understand fundamental scaling properties of BP algorithm. In this paper, we address
this problem for a simple system – a single flow served by N queues in tandem. We show that, perhaps
somewhat surprisingly, the scaling behavior of BP is not always bad. Namely, if load is below some critical
level, λ < 1/4 for our model, all queues remain uniformly stochastically bounded for all N . (In fact, we show
that the stochastic bound has exponentially decaying tail; see Theorem 1(i).) When λ > 1/4, the queues
increase to infinity with N (see Theorem 1(ii)).

The problem of asymptotic behavior of queues as N → ∞ is essentially reduced (see Proposition 4) to the
behavior of the system with infinite number of queues in tandem. Such infinite-tandem model is within the
framework of interacting particle systems [7, 8] – methods and results of the corresponding theory will be our
main tools. As we will see, the criticality of load 1/4 is closely related to the fact that 1/4 is the maximum
possible flux (average flow rate) of a stationary totally asymmetric simple exclusion process (TASEP). In the
subcritical case, λ < 1/4, a stationary regime exists such that only a finite (random) number of “left-most”
queues can be greater than 1, the rest of the queues have at most one customer and the process “there”
behaves like TASEP (see Theorems 8 and 9). In the supercritical case, λ > 1/4, each queue grows without
bound with time (see Theorem 10).

Infinite series of queues in tandem is a much studied model in the literature (cf. [11] and references therein),
under a variety of assumptions. In particular, [11] studies an infinite system under a class of blocking policies
(which are different from the BP policy in our model), where blocking is caused by limited waiting space
(finite buffer) in the queues; there, the phenomenon of critical load, below which the system is stable, also
exists.

The rest of the paper is organized as follows. Section 2 presents the formal model and main result. The
“reduction” of our problem to the behavior of infinite system, and basic properties of the latter, are given
in Section 3. The subcritical and supercritical load cases are treated in Sections 4 and 5, respectively. In
Section 6 we remark on more general input processes.

2 Formal Model and Main Result

Consider a series of N servers (sites), numbered 1, . . . , N , each with unlimited queueing room. A Poisson
flow of customers, of rate λ > 0, arrives at server 1, and each customer has to be served consecutively by
the series of servers, from 1 to N; after service by N -th server, a customer leaves the system. The service
time of any customer at each server is exponentially distributed, with mean value 1; all service times are
independent of each other and of the input process. To be specific, assume that each site serves customers
in first-come-first-serve order – given Markov assumptions, this will not limit generality of results.

Let us denote by Q
(N)
n (t), n = 1, . . . , N , t ≥ 0, the queue length at n-th server at time t. The superscript N

indicates the number of servers, which will be the parameter we vary.

Consider the following back-pressure (BP) algorithm: site n is actually serving a customer (which is the

head-of-the-line customer from its queue) at time t if and only if Q
(N)
n (t) > Q

(N)
n+1(t). (We use convention

that Q
(N)
N+1(t) ≡ 0.) In other words, the service at site n is blocked unless the queue at site n+ 1 is smaller.

The random process (Q(N)(t) ≡ (Q
(N)
n (t), n = 1, 2, . . . , N), t ≥ 0), describing evolution of the queues, is

a countable irreducible continuos-time Markov chain. Stability of this process - ergodicity of the Markov

2



chain - is guaranteed under condition λ < 1 – this follows from well-known properties of BP algorithms (cf.
[4]). Therefore the unique stationary distribution exists; we denote by Q(N)(∞) a random system state in
the stationary regime.

The question we address is how steady-state queues Q
(N)
n (∞) grow (scale) as N → ∞, more specifically

whether or not they remain stochastically bounded. It is easy to observe that if condition

Q(N)
n (t) + 1 ≥ max

k>n
Q

(N)
k (t), ∀n ≥ 1, (1)

holds for t = t0, then it holds for all t ≥ t0 as well; in particular, it does hold in the stationary regime. Thus,

Q
(N)
1 (∞) + 1 is an upper bound on all queues. Therefore, we can concentrate on the question of whether

or not Q
(N)
1 (∞) remains stochastically bounded as N → ∞. (If it does not, it is easy to see that, for any

n, Q
(N)
n (∞) goes to infinity in probability.) We show that the answer depends on whether or not the input

rate λ is below or above the critical value 1/4. Namely, our main result is the following

Theorem 1. (i) If λ < 1/4, then there exist C1 > 0 and C2 > 0 such that, uniformly on N ,

P{Q
(N)
1 (∞) > r} ≤ C1e

−C2r. (2)

(ii) If λ > 1/4, then Q
(N)
1 (∞) → ∞ in probability as N → ∞.

Statements (i) and (ii) will follow from Theorems 8 and 10, respectively, which concern with the corresponding
infinite-tandem system.

Note that the fact that tight uniform bound (2) cannot possibly hold for all λ < 1 is fairly obvious. Observe
that in the stationary regime the average rate at which customers move from site n to n+1, for any n ≤ N ,
is λ. Therefore, we have

Proposition 2. If λ < 1, then for any n = 1, . . . , N ,

P{Q(N)
n (∞) > Q

(N)
n+1(∞)} = λ.

Then, using (1),

EQ(N)
n (∞)− EQ

(N)
n+1(∞) ≥ 2λ− 1, n = 1, . . . , N.

Thus, in the case λ > 1/2, we have at least linear growth of the first queue expected value:

EQ
(N)
1 (∞) ≥ (2λ− 1)N. (3)

3 Basic Properties of Infinite-Tandem Queues under Back-pressure

algorithm

Consider a system just like the one in Section 2, except there is an infinite number of servers (sites) in tandem,
indexed n = 1, 2, . . .. Arriving customers never leave – they just keep moving from site to site, to the “right”.
We denote by Qn(t), n = 1, 2, . . ., t ≥ 0, the queue length at site n at time t, by Q(t) ≡ (Qn(t), n = 1, 2, . . .)
the state of the entire system at time t. It will be convenient to assume that the phase space for each
queue (site) n state Qn is the compact set Z̄+ = Z+ ∪ {∞} with Z+ being the set of non-negative integers
and with metric, e.g., |e−i − e−j|. (We use convention ∞− 1 = ∞, so that the back-pressure algorithm is
well-defined.) The state space of Markov process (Q(t), t ≥ 0) is Z̄S

+, S = {1, 2, . . .}, with product topology;
the process is formally defined within the framework of interacting particle systems (cf. Section I.3 of [7],
specifically Theorem I.3.9). We will use some sligtly abusive notations: Q(·) for the process (Q(t), t ≥ 0),
and Q = (Qn, n = 1, 2, . . .) ∈ Z̄

S
+ for elements of the phase space; and will denote ‖Q‖ =

∑
n Qn.
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Throughout the paper we will also use the following representation of process Q(·), which is standard for
Markov interacting-particle systems and is convenient for coupling (cf. [7, 8]) of different versions of the
processes. First, assume that there is a site associated with each integer n ∈ Z, not just positive n. (We will
use this convention in Section 4.) The underlying probability space is such that there is a unit rate Poisson
processes Πn for each site n; these processes are independent from each other and of the input flow Poisson
process. Then, if time τ ≥ 0 is a point of the Poisson process Πn, a customer moves from queue n to queue
n+ 1 at τ if Qn(τ−) > Qn+1(τ−), otherwise the move is suppressed.

The finite system of Section 2, with N sites, will be viewed as an infinite one, but with the modification that
any customer reaching site N + 1 is immediately removed from the system, and with Qn(t) ≡ 0 for n > N
(and n ≤ 0).

It is easy to check that an analog of (1) holds for the infinite system as well. Namely, if

Qn(t) + 1 ≥ sup
k>n

Qk(t), ∀n ≥ 1, (4)

holds for t = t0 ≥ 0, then it holds for all t ≥ t0 as well.

Now we state basic monotonicity properties of the infinite system. (They are easily proved by contradiction,
using coupling on the common probability space defined above.) The inequality Q ≤ Q′ is understood
component-wise; the order relation Q � Q′ means that both ‖Q‖ and ‖Q′‖ are finite and

∑

k≥n

Qk ≤
∑

k≥n

Q′
k, ∀n.

Lemma 3. If Q(0) ≤ Q′(0) [respectively, Q(0) � Q′(0)], then the processes Q(·) and Q′(·) can be coupled
so that Q(t) ≤ Q′(t) [respectively, Q(t) � Q′(t)] for all t ≥ 0.

As a corollary of Lemma 3, we obtain the following

Proposition 4. Consider the infinite system and the finite systems, for each N = 1, 2, . . ., all with zero
initial state (with all queues being 0). Then,
(i) All corresponding processes can be coupled so that for all t ≥ 0,

Q(1)(t) ≤ Q(2)(t) ≤ . . . Q(N)(t) ≤ . . . ≤ Q(t),

Q(1)(t) � Q(2)(t) � . . . Q(N)(t) � . . . � Q(t).

(ii) Process Q(·) is stochastically non-decreasing in t (in the sense of ≤ order), and process Q(N)(·) is
stochastically non-decreasing in both t and N .
(iii) We have convergences in distribution

Q(N)(t) ⇒ Q(N)(∞), as t → ∞, (5)

Q(N)(∞) ⇒ Q(∞), as N → ∞, (6)

where the sequence in the left-hand side is stochastically non-decreasing and Q(∞) just denotes its limit,

Q(t) ⇒ Q(∞), as t → ∞. (7)

(iv) The distribution of the limit Q(∞) is a stationary distribution (namely, the lower invariant measure) of
Markov process Q(·).
(v) Condition (4) holds for all t ≥ 0 and for the stationary state Q(∞).

Proposition 4(iii) of course implies that Q
(N)
1 (∞) is stochastically non-decreasing, converging in distribution

to Q1(∞) and therefore, to prove Theorem 1, we can study the distribution of Q1(∞). (If it happens that

Q1(∞) = ∞, this implies Q
(N)
1 (∞) → ∞ in probability as N → ∞.)
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We will need one more monotonicity property, which is also a corollary of Lemma 3. Its meaning is very
simple: if in addition to process Q(·) we consider another process Q′(·) which is constructed the same way
as Q(·), but with some additional exclusions (“obstructions”) on the movement of the customers, then Q′(·)
will stay “behind” Q(·) in the sense of � order.

Proposition 5. Consider a fixed realization of the process Q(·), which includes a fixed finite initial state
Q(0) and realizations of the input process (at site 1) and of all processes Πn, n ≥ 1. Now, suppose further
that in the realizations of processes Πn, some of the points (jumps) are marked as “valid” (in an arbitrary
way) and the remaining points are “invalid”. Consider another realization Q′(·), with the same initial state
Q′(0) = Q(0), and constructed in the same way as Q(t), except invalid points of processes Πn are “ignored”
(cause no action). Then,

Q′(t) � Q(t), ∀t ≥ 0,

and, in particular, Q′
1(t) ≥ Q1(t) for all t.

4 Subcritical case: λ < 1/4

Suppose λ < 1/4. We will construct a process Q′(·), coupled with Q(·) so that Proposition 5 holds path-wise,
and such that we can obtain a stochastic upper bound on Q′

1(t).

Consider process Q(·), with zero initial state ‖Q(0)‖ = 0, constructed on the probability space described in
Section 3. We will extend the probability space to define a stationary totally asymmetric simple exclusion
process (TASEP, cf. Chapter VIII of [7]), with sites being integers n ∈ Z, and particles moving to the “right”.
Specifically, let us choose arbitrary (density) ρ ≤ 1/2, such that µ = ρ(1− ρ) > λ. Let Yn(t) ∈ {0, 1} denote
the number of particles of TASEP at site n at time t ≥ 0. We augment the probability space so that,
independently of all other driving processes, at time 0 each site n ∈ Z contains a particle, Yn(0) = 1, with
probability ρ and does not contain one, Yn(0) = 0, with probability 1−ρ. The movement of TASEP particles
will be driven by the same Poisson processes Πn, that drive process Q(·). (The exogenous input process at
site 1 does not affect TASEP.) If time τ is a point (jump) of Πn associated with site n, then the particle
located at n (if any) attempts to jump to site n+1 – it actually does jump if site n+1 is empty, and it stays
at n otherwise. It is well known that if the initial state Y (0) has Benoulli distribution as defined above,
then the TASEP process Y (·) is stationary (cf. Theorem VIII.2.1 of [7]). The flux of this process, i.e. the
average departure rate of particles from a given site, is µ = ρ(1− ρ); the average speed of a given (“tagged”)
particle is v = 1− ρ. (For example, ρ = 1/2 gives the maximum possible flux µ = 1/4 > λ; this is where the
condition λ < 1/4 comes from: λ needs to be less than the flux of a stationary TASEP.)

The process Q′(·) has the same (zero) initial state as Q(·), and is constructed the same way as Q(·) except
for an additional exclusion: a customer (particle) from queue (site) 1 cannot move to queue 2 at time τ
unless a particle of the TASEP jumps from site 1 to 2 at τ . We now record basic properties of process Q′(·).

Proposition 6. (i) Q′(t) � Q(t) and Q′
1(t) ≥ Q1(t) for all t ≥ 0 (by Proposition 5).

(ii) For any n ≥ 2 and any t ≥ 0, Q′
n(t) ≤ Yn(t). In other words, at all sites to the right of 1, process Q′(·)

stays “within TASEP”; in particular, there can be at most one particle in each site n ≥ 2.
(iii) A particle jump from site 1 to 2 in the process Q′(·) happens at time τ if and only if Q′

1(τ−) ≥ 1 and
there is a jump of TASEP particle from 1 to 2 at time τ .
(iv) Process Q′(·) is stochastically non-decreasing with t.

We know from Proposition 5 that Q′
1(t) is an upper bound of Q1(t). The behavior of queue length Q′

1(t) is
such that it is initially zero, Q′

1(0) = 0, the input process is Poisson with rate λ, and the “service process”
is the stationary process of TASEP particle jumps from site 1 to 2. We denote by A(t1, t2) and S(t1, t2) the
number of points (jumps) of the arrival and service processes, respectively, in the interval (t1, t2]; WLOG we
assume that these processes are defined for all real times, that is t1, t2 ∈ R, t1 ≤ t2; their average rates are
λ and µ = ES(t1, t2)/(t2 − t1), respectively. From the large deviations estimate given below in Lemma 7, it
also follows that S(−s, 0)/s → µ, s → ∞, with probability 1.
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From classical Loynes constructions [10] it is known that the distribution of Q′
1(t) is stochastically non-

decreasing with t, and as t → ∞ it weakly converges to the stationary distribution, which in turn is same as
that of random variable

Q′
1(∞)

.
= sup

s≥0
[A(−s, 0)− S(−s, 0)]. (8)

Q′
1(∞) is a proper random variable due to condition λ < µ, which guarantees that the RHS of (8) is finite

w.p.1.

Thus, we see that, as t → ∞, Q′
1(t) (and then Q1(t)) remains stochastically bounded by Q′

1(∞). Moreover,
the large deviations estimates (Lemma 7) imply exponential bound on the tail of Q′

1(∞) distribution. We
proceed with the details.

The following fact is a known property of the stationary TASEP defined above. At time 0, let us consider
the site with smallest index n0 ≥ 2 that contains a particle, and tag this particle. (Obviously, n0 − 2 has
geometric distribution.) If we consider the point process of jumps of tagged particle in time interval [0,∞),
it is a Poisson process of rate v = 1− ρ (cf. Corollary VIII.4.9 of [7]). Therefore, the location H(t) of tagged
particle at time t ≥ 0 is H(t) = 2+H1+H2(t), where H1 is geometric random variable with mean (1−ρ)/ρ,
H2(t) is Poisson r.v. with mean vt, and H1 and H2(t) are independent. From the stationarity of TASEP
we also know that, at any time t, the total number G(n) of particles at sites 2, 3, ..., n is simply the sum of
n − 1 independent Bernoulli variables with mean ρ. Using “separate” large deviations estimates for H(t)
and G(n), even though these two r.v. are not independent, we obtain the following

Lemma 7. For any δ > 0, there exist C3 > 0 and C4 > 0 such that

P{|S(0, t)− µt| > δt} ≤ C3e
−C4t. (9)

Proof. To prove bound
P{S(0, t) < (µ− δ)t} ≤ C3e

−C4t

we can choose ǫ > 0, small enough, so that

P{S(0, t) < (µ− δ)t} ≤ P{H(t) ≤ (v − ǫ)t}+ P{G((v − ǫ)t) ≤ (ρ− ǫ)(v − ǫ)t}.

Bound
P{S(0, t) > (µ+ δ)t} ≤ C3e

−C4t.

is proved similarly.

Theorem 8. Assume λ < 1/4. There exist C1 > 0 and C2 > 0 such that

P{Q′
1(∞) > r} ≤ C1e

−C2r; (10)

and then
P{Q1(∞) > r} ≤ C1e

−C2r.

Remark. Given the large deviations bound (9), the argument to prove (10) is quite standard (see [6,
5]). However, formally, [5] for example, requires a stronger condition, large deviations principle (LDP) for
S(0, t)/t; we did not find this LDP result in the literature and it is not needed for our purposes. Hence, for
completeness, we give a proof of the theorem.

Proof. It follows from the definition (8) that for any fixed d > 0

Q′
1(∞) ≤ sup

k=1,2,...
[A(−kd, 0)− S(−(k − 1)d, 0)] ≡ A(−d, 0) + sup

k=1,2,...
[A(−kd,−d)− S(−(k − 1)d, 0)] (11)

Let us fix b > 0 such that bλ < 1, and for each r > 0 we will choose d = br. Then we can write

P{Q′
1(∞) > r} ≤ P{A(−br, 0) ≥ r} +

∑

k=2,3,...

P{A(−kd,−d)− S(−(k − 1)d, 0) ≥ 0}.
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If we fix δ > 0 small enough so that λ+ δ < µ− δ and (λ+ δ)b < 1, we have

P{Q′
1(∞) > r} ≤ P{A(−br, 0) ≥ (λ + δ)br}+

∑

k=2,3,...

[P{A(−kd,−d) ≥ (λ+ δ)(k − 1)d}+ P{S(−(k − 1)d, 0) ≤ (µ− δ)(k − 1)d}].

It remains to apply large deviations bounds on A(·) and S(·) (Lemma 7).

Let us define
B(Q(t))

.
= min{n = 1, 2 . . . | Qn(t) = 0},

B′(Q(t))
.
= min{n = 1, 2 . . . |

n∑

k=1

Qk(t) < n}.

B(Q(t)) is the “busy interval” of the process Q(t): to the right of, and including, site B(Q(t)) all sites have
at most one customer and so the (instantaneous) evolution of the process follows the same “rules” as that of
TASEP. The interpretation of B′(Q(t)) is as follows: starting from the state Q(t), we take a customer from
the left-most site with 2 or more customers, and move it to the left-most empty site, and then repeat until
all sites have at most 1 customer; then site B′(Q(t)) is the left-most empty site of the modified state.

Obviously, B′(Q(t)) ≥ B(Q(t)); and it is easy to check that Q′(t) � Q(t) implies B′(Q′(t)) ≥ B′(Q(t)).
Thus, B′(Q′(t)) ≥ B(Q(t)).

Theorem 9. Assume λ < 1/4. There exist C5 > 0 and C6 > 0 such that, for all t ≥ 0

P{B′(Q′(t)) > n} ≤ C5e
−C6n,

and then
P{B(Q(t)) > n} ≤ C5e

−C6n.

Proof. The result is easily derived from the following facts: Q′
1(t) is stochastically bounded by Q′

1(∞); the
distribution of Q′

1(∞) has exponentially decaying tail (Theorem 8); process Q′(t) “stays within” stationary
TASEP of density ρ at all sites n ≥ 2; definition of B′.

Theorem 9 illustrates in particular the fact that (when λ < 1/4) the infinite-tandem system under BP
algorithm in stationary regime is such that there only a “small” number of sites (from site 1 to site B(Q(t)))
where queue can be greater than 1; while all sites to the right of B(Q(t)) have queue of at most one, and
therefore the behavior of the process “to the right of B(Q(t))” is same as that of TASEP.

5 Supercritical case: λ > 1/4

Note that if λ > 1/2 we immediately see from (3) that EQ1(∞) = limN EQ
(N)
1 (∞) = ∞. Here we prove

that, in fact, Q1(∞) is infinite w.p.1, under a weaker condition λ > 1/4. The intuition behind our argument
is as follows. Unless Q1(∞) = ∞ w.p.1, busy interval B(Q(t)) must be stochastically bounded w.p.1. Then,
in stationary regime, all sites “far enough” to the right have at most one customer (particle) in them, and
therefore the process “there” behaves as TASEP. However, a stationary TASEP cannot have flux greater
than 1/4, while the flux of our process must be λ > 1/4, a contradiction.

Theorem 10. Assume λ > 1/4. Then Q1(∞) = ∞. (And then Qn(∞) = ∞ for all n ≥ 1.)
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Proof. The proof is by contradiction – assume Q1(∞) is finite with positive probability. It is easy to see that
this is possible only if Q1(∞) < ∞ with probability 1. (Otherwise, using the facts that Q1(t) is stochastically
increasing and weakly converges to Q1(∞), and using coupling, we could show that Q1(∞) = ∞ with prob.
1.) This in turn implies that B(Q(∞)) (which is the weak limit of stochastically non-decreasing r.v. B(Q(t)))
is also finite w.p.1. (Otherwise, we again could show that Q1(∞) = ∞ with prob. 1.)

The stationary version of the process Q(·) (i.e. the one with stationary distribution equal to that of Q(∞))
we denote by Q̃(·). This process is such that: w.p.1 condition (4) holds for all t ≥ 0, and therefore all Q̃n(t)
for all t are uniformly stochastically upper bounded by Q1(∞) + 1 and then finite w.p.1; B(Q̃(t)) are finite
w.p.1 (equally distributed) random variables for all t; the flux is equal to λ, namely, EFn(t)/t = λ for any
t > 0 and n ≥ 1, where Fn(t) is the number of customers arrivals at site n in interval (0, t]. Note that
for n ≥ 2, the arrival process Fn(·) at site n is the departure process from site n − 1. This implies that
increments of processes Fn(·), n ≥ 2, are stochastically upper bounded by the increments of independent
Poisson processes Πn−1(·).

Consider space-shifted processes {[TmQ̃](·), [TmF ](·), [TmΠ](·)}, m = 1, 2, . . ., where [TmQ̃]i(t) = Q̃m+i(t),
i = 1, 2, . . ., t ≥ 0, and [TmF ]i(t) and [TmΠ]i(t) defined similarly. For each m this process is such that
[TmQ̃](·)] and the increments of [TmF ](·) and [TmΠ](·) are stationary. (Note that process [TmQ̃](·) is not
Markov.) This process is still well-defined if we assume that each component [TmQ̃]i(t), [TmF ]i(t) and
[TmΠ]i(t) takes values in (non-compact) space Z+ with the usual topology (because we know that they are
finite w.p.1), and with corresponding product topology in the space of values of the entire process. Note
that, since B(Q̃(t)) is finite w.p.1 and condition (4) holds, we have

lim
m→∞

P{sup
n≥1

[TmQ̃]n(t) ≤ 1} = 1, ∀t ≥ 0. (12)

Then, using properties of process Q̃(·) described earlier, in particular the fact that increments of Fn(·) are
bounded by those of Πn−1(·), it is easy to see that a process consisting of any finite subset of components
[TmQ̃]i(·), [TmF ]i(·) and [TmΠ]i(·) is tight (cf. Theorem 15.6 in [1]). Consequently, there exists a subsequence
of {m} along which the shifted process converges in distribution to a process {Q(·), F (·),Π(·)}, which has
the following (easily verifiable) structure and properties:
(a) Q(·) is stationary, with flux equal λ;
(b) Qn(t) ≤ 1 for all n and all t;
(c) the movement of customers between sites is driven by independent, unit rate Poisson processes Πi(·),
according to BP algorithm rules;
(d) By (b) and (c), Q(·) is a TASEP (with the “exogenous” arrivals at site 1 forming a stationary process,
not independent of the “rest of the process”).

Consider the following projection of process Q(·). All particles arriving at site 1 after time 0 and the particle
located at site 1 at time 0 (if any), we will call “new” particles, while all particles initially present at sites
n ≥ 2 are “old”. Let Q∗(·) denote the process “keeping track” of new particles in Q(·), namely Q∗

n(t) = 1 if
there is a new particle located at site n at time t, and Q∗

n(t) = 0 otherwise. The flux of process Q∗(·) from
site 1 to site 2 is obviously equal to the flux of Q(·), which is λ. We will compare Q∗(·) to the following
TASEP Q∗∗(·), coupled to it – with the same Poisson processes driving movement between sites. The initial
state of Q∗∗(·) is: Q∗∗

1 (0) = 1 and Q∗∗
n (0) = 0 for n ≥ 2. By definition, Q∗∗

1 (t) ≡ 1, that is if at any time a
particle moves from site 1 to 2, it is immediately replaced at site 1 by another particle. Using the path-wise
monotonicity properties given in Section 3, it is easy to see that Q∗(t) � Q∗∗(t), which implies

F ∗
2 (t) ≤ F ∗∗

2 (t), t ≥ 0,

where F ∗
2 (t) and F ∗∗

2 (t) are the numbers of particle arrivals in (0, t] at site 2 in the processes Q∗(·) and
Q∗∗(·), respectively. Then,

lim inf
t→∞

EF ∗∗
2 (t)

t
≥ lim

t→∞

EF ∗
2 (t)

t
= λ. (13)

The TASEP Q∗∗(·) is a special case of one of the processes studied in [9]. It is known (see Theorem 1.8(a)
and Theorem 1.7(b) of [9]) that the distribution of Q∗∗(t) converges to a stationary distribution, with
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the corresponding stationary process having flux 1/4. This means that limt→∞ EF ∗∗
2 (t)/t = 1/4, which

contradicts (13) since λ > 1/4. Proof is complete.

6 Remark on more general input processes

The Poisson assumption on the input process is adopted to simplify exposition. We belive our main results
can be easily generalized for the case of a stationary ergodic input process A(·), as long as large deviations
bound

P{|A(0, t)− λt| > δt} ≤ C3e
−C4t, (14)

analogous to (9), holds for any δ > 0. Moreover, if (14) does not hold, and we only have the ergodicity of
A(·), the uniform stochastic boundedness results of Theorem 8 (and then Theorem 1(i)) and Theorem 9 will
still hold, except the bounds are proper (finite w.p.1) random variables, not necessarily with exponential
tails.
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