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Abstract

We consider a system with a single queue and multiple server pools of heterogenous
exponential servers. The system operates under a policy that always routes a job to the
pool with longest cumulative idleness among pools with available servers, in an attempt to
achieve fairness toward servers. It is easy to find examples of a system with a fixed number
of servers, for which fairness is not achieved by this policy in any reasonable sense. Our
main result shows that in the many-server regime of Halfin and Whitt, the policy does
attain equalization of cumulative idleness, and that the equalization time, defined within
any given precision level, remains bounded in the limit. An important feature of this policy
is that it acts ‘blindly’, in that it requires no information on the service or arrival rates.

Keywords: Blind control; Diffusion limits; Halfin-Whitt regime; Fairness; Many-server
systems

1 Introduction

The performance and optimization of systems with a large number of servers has attracted
much attention in recent years. This is due to their applicability—for example to call centers—
as well as to their interesting structure. Since exact analysis proves impossible in most cases,
large part of research has focused on asymptotics. Particularly, the many-server diffusion
regime introduced by Halfin and Whitt [9] has been widely studied and is the subject of ongoing
research. Under this regime, both the arrival rates and the number of servers are scaled up
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in a fixed proportion, while maintaining a critically loaded system. A unique property of
this regime is that it allows for the total number of customers to sometimes rise above and
sometimes fall behind the number of servers, with non-negligible probability. For this reason
it is often considered more realistic for some applications than the conventional heavy traffic
regime (where the service rates are scaled up rather than the number of servers) under which
the number of customers exceeds that of servers except for a negligible set of times.

In this paper we consider a system with a single queue and a fixed number, l, of server
pools of heterogenous exponential servers. For i = 1, . . . , l we denote by Ii the idleness process
for pool i, representing the number of pool-i servers that are free, and by Ji =

∫ ·
0 Ii(t)dt the

cumulative idleness process for pool i, representing the overall duration of time when a server
has been idle since time zero, summed over all pool-i servers. The system operates under a
policy that always routes a job to the pool with longest cumulative idleness among pools with
available servers (more generally, we analyze the longest weighted cumulative idleness policy).
This is done in an attempt to drive the processes Ji(t) to take nearly equal value for all i, as t
becomes large, thus achieving a certain form of fairness toward servers. We refer to this as the
Longest Idle Pool First (LIPF) policy. It is easy to exhibit examples with a fixed number of
servers, in which fairness is not achieved by LIPF in any reasonable sense (see Example 2.1).
Our main result (Theorems 2.2 and 2.3) is that in the Halfin-Whitt regime, the policy does
attain equalization of cumulative idleness, and that the equalization time, defined within any
given precision level, remains bounded in the limit.

A feature of LIPF that appears to be convenient, is that it requires no information on the
service or arrival rates. In applications, it is a common practice to use a reminiscent of this
policy, namely one that always routes to the server whose cumulative idleness is longest, as
a job assignment paradigm [1]. In call center applications the motivation for fairness comes
from operational considerations of human servers, but the same idea may be justified also
in computer systems, where the notion of load balancing is standard. Following common
nomenclature, we call a policy that does not use any information on the parameters a blind
policy. This term may also refer to a situations where the control does not have access to the
complete information about the system state, and in our model both apply.

Fairness towards customers in queueing systems is a rather broad and well-studied area: see
e.g. [5, 13] and references therein. Very few papers have treated the subject of fairness toward
servers (the reader is referred to [1] and references therein). Armony and Ward [1] consider
the problem of optimal routing to minimize steady state delay costs subject to constraints that
ensure idleness is distributed among the pools according to a given proportion. They find a
policy that is asymptotically optimal for the problem in the Halfin-Whitt regime. Although
[1] and the present paper are both motivated by fairness toward servers, the contributions of
the two papers are quite different. First, the mathematical problem formulations are obviously
different, as [1] finds a policy that optimizes a criterion whereas the current paper’s contribution
is on the performance analysis of a single policy, namely LIPF. A particular aspect of the
problem formulation of [1] is that it allows the policy to access system parameters (such as
service and arrival rates), and the parameters are in fact crucially used in the solution to the
problem. In contract, LIPF is a blind policy. Another major difference is that [1] formulate the
problem in steady state, whereas, as will be seen in the next section, the present paper analyzes
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the model in the Halfin-Whitt asymptotics on a large, but fixed time horizon. Understanding
the transient behavior, by analyzing a given model over a finite time horizon, may for some
purposes be more accurate than steady state analysis.

Tseytlin [12] considers a policy where each arriving customer joins pool i with probability
Ii/

∑
j Ij , and explicitly solves the model in steady state. The motivation of [12] as well is to

be fair to servers by achieving what is referred to there as idleness balancing. Atar [3] analyzes
a policy where jobs are routed according to the length of idleness period of each server since
last time of service, identifying the diffusion limit, and showing that the length of last idle
period is nearly equalized by the policy, among servers that are idle at a given time.

Gurvich and Whitt [8] study a parallel server system of a more general structure, that
allows for multiple buffers, and consider a class of routing policies, referred to as Queue-
and Idleness-Ratio (QIR) controls, that attempt to bring both the queuelength and idleness
processes to a predetermined proportion. This is shown to be achieved in the Halfin-Whitt
regime. Specializing to the case studied here, of a single buffer (and multiple pools), and letting
ui, i = 1, . . . , l be a given vector of proportions, their result asserts that under a suitable QIR
policy, for each i, the process Ii − ui

∑
i Ii, normalized in diffusion scale, converges to zero in

probability, uniformly on compact time intervals. This clearly implies an analogous statement
about the processes Ji, and thus fairness is in fact achieved by QIR in a sense very similar to
what is achieved by LIPF. We mention upfront that achieving fairness has not been the goal of
[8] in developing their result. Nevertheless, it is important to explain how our result relates to
such an interpretation of [8], in view of the fact that it can be used for this purpose. We make
several comments about this comparison. First, LIPF appears to be natural for the purpose
of equalizing the cumulative idleness processes, since these processes are its observables. At
the modeling level, our setting allows for each pool to contain heterogenous servers and for
the arrivals to be according to a renewal process, assumptions not covered by [8] (nor by [1],
[12]). The LIPF seems to enjoy an advantage over QIR in terms of robustness: the processes Ii

change much faster than the cumulative idleness Ji, requiring any implementation of the latter
a high rate of information to be transferred between the server stations and the system control
unit. This is not the case with the LIPF policy, that is robust in that small delays between
the time when the processes are observed and the time when the information is received by
the control unit, lead to small degradation in terms of the fairness metric. We make a precise
statement about such a robustness property in the last section (Theorem 4.2). Finally, we
note that the proof in [8] is quite involved, and in turn relies on additional general state space
collapse results from [7] as well as results from [2]. The proof offered here, regarding LIPF, is
in contrast elementary and short, and illustrates that the analysis of this policy, at least in the
more limited setting of a single buffer, does not require convergence or state space collapse,
but is a direct consequence of properties of the policy and some basic technical results such as
tightness.

We would like to further emphasize the aspect of blind control because we believe it is of
interest in a much wider context. One of the key assumptions in many recent works on large
queueing systems is that all model parameters are known exactly by the controller. Such an
assumption about service rate, for example, is obviously invalid for call center applications,
where servers are human. In fact, this assumption rarely holds even when servers are comput-
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ers, since there are always external influences which affect service and arrival rates. Ideally,
one would hope for an optimal policy that requires minimal information about the parameters,
and will not be sensitive to their values.

In the context of the conventional heavy traffic theory, since the number of servers is fixed
and time is accelerated, one can obtain accurate information on service time distribution by
sampling service periods in a fixed, short time interval, so that the efficacy of policies that use
such estimates seems natural. However, in the Halfin-Whitt limit, since time is not accelerated,
one cannot hope to obtain good estimators for all system parameters over a fixed interval of
time. This provides motivation for the present study, where the policy does not even attempt
to estimate parameters. This was also the motivation for the approach taken in Atar and
Shwartz [4], that relies on partial sampling from the service time distribution, demonstrating
how nearly optimal blind policies can be constructed based on the size of the server population.
Recent work of Stolyar and Tezcan [11] provides an alternative look, proposing a robust rout-
ing scheme for a multi-buffer multi-pool setting in the Halfin-Whitt regime, which optimally
balances load on the server pools without the knowledge of the input rates.

As an application of our results we describe a model of a distributed collection of pools
with a central control, but where the information needed for LIPF to operate is mostly local,
and only minimal information about idleness is passed to the central controller.

The rest of this paper is organized as follows. The setting and main results appear in Section
2. Section 3 contains the proof. Finally, Section 4 provides extensions of the main result under
relaxed assumptions on the arrival process as well as to the case of delayed information, and
discusses implementation in a distributed set up.

2 Setting, notation and main result

Customers arrive at a system according to a renewal process denoted by A(t). It is assumed
that the inter-arrival times are positive and have finite second moment. Each arrival has a
single noninterruptible service requirement. Arriving customers are routed to one of l pools,
and within the pool to a particular server, according to a routing policy, provided a free server
is available: if not, they are queued in a buffer with infinite room. Customers from the buffer
are routed to servers according to a first-come-first-served rule. We consider work conserving
routing policy, so that no server may be idle when at least one customer is in the buffer. Each
customer leaves the system when its service requirement is fully processed.

There are N servers, arranged in l pools, so that the number of servers in pool i is Ni, for
i ∈ L := {1, . . . , l}. The servers are labeled 1, . . . , N , and the set of k’s for which server k is
in pool i is denotes by Ki. We write K for {1, . . . , N}, so ∪iKi = K, and |Ki| = Ni, i ∈ L.
Server k serves according to an exponential service time distribution with rate µk.

All processes defined below are assumed to have right-continuous sample paths.

For k ∈ K and t ≥ 0, let I(k)(t) take the value 1 if server k is idle at time t, and let it be 0
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otherwise. Set Z(k) = 1− I(k). Let

J(k)(t) =
∫ t

0
I(k)(s)ds, k ∈ K, t ≥ 0.

Denote by Ii(t) the number of idle servers from pool i at time t, for i ∈ L (see (1)) and define
Zi(t) in a similar manner. Then both Ii and Zi are stochastic processes taking values in [0, Ni],
and

Ii =
∑

k∈Ki

I(k) = Ni − Zi, i ∈ L. (1)

The modeling of service completions will require usage of standard Poisson processes Si, i ∈ L.
The number of service completions by pool-i servers until time t is denoted by Di(t), and is
represented as

Di(t) = Si(Ti(t)),

where Ti is defined as

Ti(t) =
∑

k∈Ki

µk

∫ t

0
Z(k)(s)ds, i ∈ L, t ≥ 0. (2)

The number-in-system and the number-in-buffer processes are denoted by X and Q, respec-
tively. The initial configuration, namely,

({I(k)(0), k ∈ K}, Q(0)),

and the processes A and Si, i ∈ L, are assumed to be mutually independent l + 2 entities.

We will say that a routing policy is work conserving if for all t ≥ 0,

Q(t) = (X(t)−N)+, or equivalently I(t) = (N −X(t))+.

Note that this imposes an assumption on the initial configuration as well as on the policy.

Let
Ji :=

∑

k∈Ki

J(k), i ∈ L, J =
∑

i∈L

Ji.

Then Ji(t) represents the overall idleness time accumulated by servers from pool i until time
t. A vector u = (u1, . . . , ul), where ui ∈ (0, 1) and

∑
i ui = 1, will be called a target vector.

Given a target vector u, we will consider a family of policies that keep track of the Ji processes
and attempt to drive the relative idleness Ji(t)/J(t) toward ui, for each i. More precisely, let
a target vector u be given, and let vi = u−1

i , i ∈ L. We say that a policy is u-greedy if

• The policy is work conserving; i.e., when a server becomes available and there is a cus-
tomer in the queue, a customer is routed to the server. When a customer arrives to find
some available servers, it is routed to one of them.

• If a customer is to be routed at time t to an available server, and AV (t) ⊂ L denotes
the set of pools containing available servers at this time, it is routed to any one of the
available servers from a pool i ∈ AV (t) for which

viJi(t) ≥ vjJj(t), for all j ∈ AV (t). (3)
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Example 2.1 (a) Consider a system with Poisson arrivals at rate λ ∈ (0, 1), and two servers
with deterministic service times, 1 and r. We argue that for large values of r a policy that
is work conserving and always routes to the server with longest cumulative idleness first, is
unfair toward the slow server. It will be clear that the argument can be generalized to any finite
number of servers, and to quite general service time distributions, but we do not provide these
details. A quasi-stationary analysis of the system within a service period of the slow server,
say [t, t + r], shows that the cumulative idleness time of the fast server during the interval is
proportional to r. If the slow server completes service at some time t1, and t2 denotes the first
time after t1 when two arrivals occur within less than a unit of time, then the distribution of
t2− t1 does not depend on r. Moreover, by time t2 the slow server will necessarily be assigned
a new job. This shows that, as r becomes large, the fast and, respectively, slow server enjoys
idleness at a proportion of O(1) and O(1/r) on average.

(b) Next, consider two pools of servers, where pool 1 [resp., 2] contains a fixed number, n, of
servers with deterministic service time 1 [resp., r, where r is some large number]. Consider
again Poisson arrivals, where now λ ∈ (0, n) is fixed. The system is assumed to work under
LIPF. Consider a specific server from pool 2. If it completes service at some time t1, then it
must enter a new service cycle no later than when 2n new arrivals occur within a window of one
unit of time; thus similarly to case (a), the duration of vacation following t1 is stochastically
bounded by a distribution that is independent of r. As a result, the idleness proportion for
each of the slow servers is O(1/r) for large values of r. On the other hand, since the system
is sub-critically loaded, the average idleness proportion for pool-1 servers must be bounded
below as r becomes large. We conclude that LIPF does not achieve fairness in the situation
described here. ¦

This example provides motivation to study under what conditions a u-greedy policy achieves
equalization with respect to a given target vector u. Our asymptotic results regard this question
in a many-server heavy traffic regime.

To formulate the notion of a large number of servers, we consider a sequence of systems,
parameterized by n, where the number of servers in the nth system is proportional to n;
particularly, Nn

i = bνinc, where νi are some positive constants. In the sequel, the notation
of all processes and system parameters introduced thus far will be used with a superscript n,
denoting dependence on the parameter; there is no need however to parameterize the standard
Poisson processes, and they will still be denoted by Si.

The rate of arrival λn is assumed to satisfy λn/n → λ ∈ (0,∞) and moreover,

λ̂n =:
λn − λn√

n
→ λ̂ ∈ R. (4)

The parameters µn
k are assumed to satisfy

µ ≤ µn
k ≤ µ, k ∈ Kn, n ∈ N, (5)

where 0 < µ < µ < ∞ are constants. In addition, it is assumed that the limits

µ̄n :=
1
n

∑

k∈Kn

µn
k → µ ∈ [µ, µ], (6)
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and
µ̂n :=

1√
n

∑

k∈Kn

(µn
k − µ) → µ̂ ∈ R, (7)

exist. The ‘heavy traffic’ assumption makes the system critically loaded by relating the arrival
and service rates as

λ = µ. (8)

We will also denote βn = λ̂n − µ̂n and assume its limit satisfies

β̂ := λ̂− µ̂ < 0. (9)

Note that the random variable Xn(0) is given by Qn(0)+Zn(0). The ‘second order asymp-
totics’ of Xn(0) is assumed to satisfy

X̂n(0) := n−
1
2 (Xn(0)−Nn) is a tight sequence of random variables. (10)

Define Ĵn := n−
1
2 Jn. Given ε > 0 let γn(ε) := inf{t : Ĵn(t) ≥ ε}. Our main result

states that under a u-greedy policy, given any level of precision, equalization of the cumulative
idleness processes is achieved soon after γn(ε), in the large n limit, with large probability.

Theorem 2.2 Let u be a given target vector, and let π be any u-greedy policy. Then under π,
for every ε > 0 and T > 0,

lim
n→∞P

{
max

i,j∈L,i6=j
sup

s∈[0,T ]

∣∣∣viĴ
n
i (s)− vj Ĵ

n
j (s)

∣∣∣ ≥ ε
}

= 0.

Moreover, for any t ≥ 0, the random variables γn = γn(ε) are tight, and one has

lim inf
n→∞ P

{
γn < ∞ and max

i∈L

∣∣∣J
n
i (γn + t)

Jn(γn + t)
− ui

∣∣∣ ≤ ε
}
≥ 1− ε.

Note that measuring fairness in terms of ratios is meaningful only when Jn > 0. This is why
the formulation of the last assertion above involves γn. As will be clear from the proof of
the result, in case that the random variables X̂n(0) (10) are further assumed to be bounded
above by some −δ < 0, the random times γn(ε) will be small with probability tending to 1
(as n → ∞), provided that ε is sufficiently small. In this case, the above result asserts that
equalization is attained soon after time zero.

The following is almost an immediate consequence of the above result. Its purpose is to
emphasizes that equalization is in fact achieved (with high probability) after sufficiently large
time.

Theorem 2.3 Under the hypotheses of Theorem 2.2, for every ε > 0 there exists T such that
for every T1 ∈ [T,∞),

lim inf
n→∞ P

{
Jn(T ) > 0 and max

i∈L
sup

s∈[T,T1]

∣∣∣J
n
i (s)

Jn(s)
− ui

∣∣∣ ≤ ε
}
≥ 1− ε.
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3 Proof

The main result will be proved by diffusion scale analysis. To this end, we define processes at
diffusion scale, as follows. We denote centered, normalized versions of the processes, for i ∈ L
and t ≥ 0, by

În
i (t) =

In
i (t)√

n
, Q̂n(t) =

Qn(t)√
n

, (11)

Ân(t) =
An(t)− λnt√

n
, Ŝn

i (t) =
Si(nt)− nt√

n
, X̂n(t) =

Xn(t)−Nn

√
n

, (12)

and
În(t) =

In(t)√
n

, Ĵn(t) =
Jn(t)√

n
. (13)

The fluid-scale process

T̄i(t) =
1
n

Tn
i (t), i ∈ L (14)

will also be used.

Lemma 3.1 Define

Fn(t) =
1√
n

∑

k∈K

µk

∫ t

0
In
(k)(s)ds, (15)

Wn(t) = Ân(t)−
l∑

i=1

Ŝn
i (T̄n

i (t)) (16)

β̂n =
1√
n

(
λn −

∑

k∈K

µk

)
. (17)

Then
X̂n(t)− X̂n(0) = Wn(t) + β̂nt + Fn(t), t ≥ 0. (18)

Proof: We have for every t that Xn(t) = Xn(0) + An(t)−∑
i∈L Dn

i (t), by definition of these
processes. Thus

Xn(t) = Xn(0) + An(t)−
l∑

i=1

Si(Tn
i (t)). (19)

Hence

Xn(t) − Nn − (Xn(0) − Nn) = [An(t) − λnt] + λnt −
l∑

i=1

[Si(Tn
i (t)) − Tn

i (t)] −
l∑

i=1

Tn
i (t).

Since Zn
(k) + In

(k) = 1,

l∑

i=1

Tn
i (t) =

∑

k∈K

µk

∫ t

0
Zn

(k)(s) ds =
∑

k∈K

µk −
∑

k∈K

µk

∫ t

0
In
(k)(s) ds,
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and dividing by
√

n,

X̂n(t)− X̂n(0) = Ân(t)−
l∑

i=1

Ŝn
i (T̄n

i (t)) +

(
λnt√

n
−

∑

k∈K

µk

)
+

1√
n

∑

k∈K

µk

∫ t

0
In
(k)(s) ds

which yields (18).

Throughout, we let |f |∗t = sup0≤s≤t |f(s)|. Denote the modulus of continuity of a function
f by

wθ(f, δ) := sup
0≤s≤t≤(s+δ)∧θ

|f(t)− f(s)|, f : [0, θ] → R, δ > 0.

A sequence of processes defined on [0, θ], with sample paths in the Skorohod space, is said
to be C-tight if it is tight, and every subsequential limit has continuous sample paths with
probability one. C-tightness of, say {Xn}, implies tightness of |Xn|∗θ and the convergence in
probability wθ(Xn, δ) → 0, for every δ (see [6, Section 18]). These facts will be used in the
sequel in conjunction with the application of the following lemma.

Lemma 3.2 Given any θ ∈ (0,∞), the sequence of random variables

|Ân|∗θ ∨max
i
|Ŝn

i ◦ T̄n
i |∗θ ∨max

i
|În

i |∗θ, n ∈ N,

is tight. In fact, {Ân}n∈N and, for every i ∈ L, {Ŝn
i ◦ T̄n

i }n∈N, are C-tight. Furthermore, given
any ε1, ε2 > 0 there exists t1 such that

lim sup
n→∞

P (|Rn|∗t ≥ ε1t) ≤ ε2, t ≥ t1, (20)

where Rn is any one of the processes Ân or Ŝn
i ◦ T̄n

i .

Proof: First, we note by (2) that for any t ≤ θ,

T̄n
i (t) ≤ µ

n
θNn

i ≤ µθνi,

since Zn
i is bounded by Nn

i . Hence

|Ŝn
i (T̄n

i )|∗θ = sup
0≤t≤θ

|Ŝn
i (T̄n

i (t))| ≤ |Ŝn
i |∗µθνi

.

It is well known that the scaled renewal processes Ân and Ŝn
i converge in distribution, uniformly

on compacts, to independent zero mean Brownian motions with diffusion coefficients λ1/2 and,
respectively, 1 [6, Section 17]. Thus {|Ân|∗θ}n, {|Ŝn

i ◦ T̄n
i |∗θ}n are tight.

We next prove that {|În
i |∗θ}n is tight. By (5) and (15),

0 ≤ Fn(t) ≤ µ

∫ t

0
În(s)ds = µ

∫ t

0
X̂n(s)−ds.
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Thus by (18), given θ, we have for every t ∈ [0, θ]

|X̂n(t)| ≤ |X̂n(0)|+ |Wn|∗θ + |β̂n|θ + µ

∫ t

0
|X̂n(s)|ds.

By Gronwall’s inequality ([10] page 36)

|X̂n|∗θ ≤ (|X̂n(0)|+ |Wn|∗θ + |β̂n|θ) eµθ.

Since we already established tightness of the sup norm of terms in the sum defining Wn, since
β̂n are bounded (cf. (4), (7), (8) and (17)), and X̂n(0) are tight by assumption, it follows that
|X̂n|∗θ are tight, and thus so are |În

i |∗θ.
We argue that the processes Ŝn

i ◦ T̄n
i are C-tight. Denote Mn

i =
∑

k∈Ki
µn

k/n and note that
Nn

i are given as bνinc and µk are bounded, whence Mn
i are bounded. By (2),

|T̄n
i (t)−Mn

i t| ≤ µ̄θ√
n
|În

i |∗θ, t ∈ [0, θ].

Consider a subsequence on which Mn
i converges to some M ∈ [0,∞). In view of the tightness

of |În
i |∗θ, it follows that T̄i converges in distribution to Mt. Combined with the convergence

in distribution of Ŝn
i to a Brownian motion and an application of the random change of time

lemma [6, p. 151], this shows that Ŝn
i ◦ T̄n

i are C-tight.

Finally, (20) is an immediate consequence of the fact that uniformly-on-compacts subse-
quential limits of any of the processes Ân and Ŝn

i ◦ T̄n
i are all Brownian motions with zero drift

and bounded diffusion coefficient.

Lemma 3.3 Consider a target vector u and any u-greedy policy. Fix p, q ∈ L, p 6= q and
θ ∈ (0,∞). Let ∆n(t) = vpĴ

n
p (t) − vqĴ

n
q (t). Then, for any θ, |∆n|∗θ → 0 in probability as

n →∞.

Proof: To simplify the notation, we remove the superscript n from most of the notation (there
will be no confusion). We start by analyzing a scenario where no jobs are routed to a certain
pool within a given interval. More precisely, fix n ∈ N and let η and ζ be [0, θ]-valued random
variables such that η ≤ ζ. Fix i ∈ L and let H be any event under which

• Q = 0 within the interval [η, ζ]; and

• no jobs are routed to pool i within the same interval.

Write Li for L \ {i}. Then, with the notation Y [a, b] = Y (b)− Y (a), we will show that, on the
event H,

∑

j∈Li

Îj [η, ζ] + Â[η, ζ]−
∑

j∈Li

Ŝj ◦ T̄j [η, ζ]− 1√
n

∑

j∈Li

∑

k∈Kj

µk

∫ ζ

η
Z(k)(s)ds +

λn

√
n

(ζ − η) = 0. (21)
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By equation (19),

X[η, ζ] = A[η, ζ]−
∑

j∈L

Dj [η, ζ] = A[η, ζ]−
∑

j∈L

Sj ◦ Tj [η, ζ].

By definition of the processes X, Q and Zj , we have X = Q +
∑

j∈L Zj . Since Q vanishes on
the interval [η, ζ], we have

X[η, ζ] =
∑

j∈L

Zj [η, ζ].

Also, since no jobs are routed to pool i, we have

Zi[η, ζ] = −Di[η, ζ] = −Si ◦ Ti[η, ζ].

Combining the above three equations,
∑

j∈Li

Zj [η, ζ] = A[η, ζ]−
∑

j∈Li

Sj ◦ Tj [η, ζ].

Using Zj + Ij = Nj , j ∈ L, we have

−
∑

j∈Li

Ij [η, ζ] = [A[η, ζ]− λn(ζ − η)] + λn(ζ − η)

−
∑

j∈Li

[Sj(nT̄j(ζ))− nT̄j(ζ)] +
∑

j∈Li

[Sj(nT̄j(η))− nT̄j(η)]−
∑

j∈Li

Tj [η, ζ],

and dividing by
√

n and using the definitions of the processes involved (2), (11)–(14), yields
(21).

In what follows, fix an arbitrary ε > 0. Note that ∆(0) = 0, and let

τ = τn = inf{t | ∆(t) ≥ ε},
and E = En = {τ ≤ θ}. To prove the lemma, it suffices to show that P (E) → 0 as n → ∞.
Let us define on the event E

σ = σn = sup{t | t < τ,∆(t) ≤ ε/2}, κ = κn = inf{t ∈ [σ, τ ] | Ip(t) = 0}.
Note that on E we always have σ ∈ [0, τ ]. The random variable κ represents the first time
between σ and τ when all servers from pool p are occupied. If this never happens within [σ, τ ],
we have, by definition, κ = ∞.

For B ∈ F , we write PE(B) = P (E ∩ B). The proof proceeds in three steps, where Steps
1 and 2 are based on (21).

Step 1. We will show that for every δ > 0,

PE(κ ∧ τ − σ > δ) → 0 as n →∞. (22)

Fixing δ, we will use the foregoing analysis concerning the event H, with

H = E ∩ {κ ∧ τ − σ > δ}.
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We take η = σ, and ζ = κ ∧ τ . Under H, by the definition of κ, at any time within [σ, κ ∧ τ)
at least one server from pool p is idle. Consequently, on this time interval, no customer is in
the queue (by work conservation), and pool q receives no jobs (by (3) and the fact ∆ > 0).
This discussion shows that H satisfies both bullet conditions from the first part of the proof.
Consequently (21) is valid with i = q.

Let R denote the sum of the first three terms on the l.h.s. of (21). From Lemma 3.2, the
sequence of random variables {R1H}n∈N is tight. Using (21) and the inequality Z(k) ≤ 1, we
have on H,

R +
( λn

√
n
− 1√

n

∑

j∈Lq

∑

k∈Kj

µk

)
(ζ − η) ≤ 0.

Using the notation β̂n (17), and the inequality
∑

k∈Kq
µk ≥ µNq ≥ µνqn/2,

R + (β̂n +
√

nµνq/2)(ζ − η) ≤ 0.

Since R1H are tight, β̂n converge (cf. (4), (7)), and µνq > 0, it follows that PE(ζ−η > δ) → 0,
establishing (22).

Step2. We will show that for every γ > 0,

PE(τ > κ, sup
t∈[κ,τ ]

Ip(t) > n1/2γ) → 0. (23)

We use again the analysis from the first part of the proof. This time let H = E ∩ {τ >
κ, supt∈[κ,τ ] Ip(t) > n1/2γ}. On H define

τ1 = inf{t ∈ [κ, τ ] | Ip(t) > n1/2γ}, σ1 = sup{t ∈ [κ, τ1] | Ip(t) < n1/2γ/2},

and note that on H one has κ ≤ σ1 ≤ τ1 ≤ τ . On the event H, within the time interval [σ1, τ1],
Ip > 0, and so Q = 0, and no jobs are routed to pool q. Consequently, the bullet conditions
about H hold true with η = σ1 and ζ = τ1. We can thus again use (21) with i = q. By
definition of the times σ1 and τ1, we have that the first term in (21) is bounded below by γ/2,
on H. We again use the inequality Z(k) ≤ 1 as well as the lower bound µ on µk, k ∈ Kq, in
(21), to obtain the inequality (on H):

γ/2 + W̃ [η, ζ] + µνqn
1/2(ζ − η) ≤ 0, (24)

where
W̃ (t) := Â(t)−

∑

j∈Lq

Ŝj ◦ T̄j(t) + β̂nt.

Recall that β̂n → β̂. By Lemma 3.2, the processes {W̃}n∈N are C-tight. Let us denote
H1 = H ∩ {ζ − η ≤ n−1/4} and H2 = H ∩ {ζ − η > n−1/4}. Then by (24), we have

P (H1) ≤ P (γ/2− wθ(W̃ , n−1/4) ≤ 0)

and
P (H2) ≤ P (−2|W̃ |∗θ + µνin

1/4 ≤ 0).

12



In view of the C-tightness, it follows that both P (H1) and P (H2) converge to zero as n →∞.
This shows that P (H) → 0, and (23) follows.

Step 3. We conclude by combining Steps 1 and 2. On E, we clearly have

Ĵp(τ)− Ĵp(σ) ≤ (κ ∧ τ − σ)|Îp|∗θ + 1{τ>κ} θ sup
[κ,τ ]

Îp. (25)

Now, using the fact that Ĵq is nondecreasing and then (25), denoting ε′ = ε/(4vp),

P (E) = P (τn ≤ θ) = PE(∆(τ)−∆(σ) ≥ ε/2)

≤ PE(Ĵp(τ)− Ĵp(σ) ≥ 2ε′)

≤ PE((κ ∧ τ − σ)|Îp|∗θ ≥ ε′) + PE(τ > κ, θ sup
[κ,τ ]

Îp ≥ ε′).

By Step 1 and the tightness of |Îp|∗θ the first term converges to 0, and by Step 2 so does the
second term.

In fact, the proof of Lemma 3.3 establishes the following.

Corollary 3.4 Fix p, q ∈ L, p 6= q, θ ∈ (0,∞) and ε > 0. Define ∆n(t) = vpĴ
n
p (t)− vqĴ

n
q (t).

Then under any (work conserving) policy that gives priority to pool p over pool q whenever
∆n(t) > ε, for any δ > 0,

P
(|(∆n)+|∗θ > ε + δ

) → 0

as n →∞.

Lemma 3.5 For every η, ε > 0, there is t1 > 0 such that for all t > t1,

lim inf
n

P (Ĵn(t) ≥ η) ≥ 1− ε.

Proof: Recall equations (15)–(18). On the event En,t = {Ĵ(t) < η} one has

Fn(t) =
∑

k∈K

µkĴ(k)(t) ≤ µ̄η

and
t∫

0

X̂−(s)ds =

t∫

0

Î(s)ds = Ĵ(t) ≤ η.

Hence

−η ≤
t∫

0

X̂(s)ds ≤ X̂(0)t +

t∫

0

Wn(s)ds +
1
2
β̂nt2 + µ̄ηt,

and dividing by t, we have on En,t

−η

t
− X̂(0)− µ̄η − 1

2
β̂nt ≤ 1

t
[ |Â|∗t +

∑

i

|Ŝi ◦ T̄i|∗t ]. (26)
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Recalling that β̂n → β̂ < 0 by (9), and that X̂(0) are tight, the result follows on applying the
last assertion of Lemma 3.2.

Proof of Theorems 2.2 and 2.3: Let ε > 0 and t ≥ 0 be given. The first statement is an
immediate consequence of Lemma 3.3. Tightness of γn(ε) follows from Lemma 3.5. Let θ be
so large that γn = γn(ε) < θ − t with probability at least 1 − ε/2, for all sufficiently large n.
Fix θ1 ≥ θ. Let δ > 0 be given, and consider the event maxi,j |viĴ

n
i − vj Ĵ

n
j |∗θ1

≤ δ. By Lemma
3.3, this event has probability at least 1− ε/2, for all sufficiently large n. A simple calculation
shows that if ai ≥ 0, i ∈ L are given numbers that sum up to a > 0, and maxi,j |viai−vjaj | ≤ δ
then maxi |(ai/a) − ui| ≤ δ/a. Hence for all sufficiently large n, with probability of at least
1− ε, one has

γn + t < θ and max
i∈L

∣∣∣ Ĵ
n
i (γn + t)

Ĵn(γn + t)
− ui

∣∣∣ ≤ δ

Ĵn(γn + t)
≤ δ

ε
,

where we used the fact Ĵn(γ) = ε and that the process Ĵn is nondecreasing. Theorem 2.2
follows upon setting δ = ε2.

To prove Theorem 2.3, we take t = 0 in the above argument, and set T = θ. Then we
fix some T1 ≥ T and set θ1 = T1. On the event analyzed in the previous paragraph, for all
sufficiently large n, with probability at least 1− ε, we obtain

T ≥ γn (hence Ĵn(T ) ≥ ε) and max
i∈L

sup
s∈[T,T1]

∣∣∣ Ĵ
n
i (s)

Ĵn(s)
− ui

∣∣∣ ≤ δ

Ĵn(T )
≤ δ

ε
= ε.

4 Extensions and discussion

We begin by noting that the proofs hold under assumptions on the arrival process that are
weaker than the renewal structure. We then discuss two aspects of implementation, namely
delayed information transmission, and a distributed set up.

Relaxed assumptions on arrivals. The probabilistic assumption on the arrival process can
be much relaxed. Rather than assuming An are renewal processes, let us assume that the
normalized processes Ân (12) are C-tight (recall the definition from Section 3). In addition,
assume that given ε1, ε2 > 0 there exists t1 such that

lim sup
n→∞

P (|Ân|∗t ≥ ε1t) ≤ ε2, t ≥ t1 (27)

(compare with (20)). The assumptions on the parameters λn, namely (4), (8) and (9) are, of
course, kept.

Corollary 4.1 Under the relaxed assumptions on the arrival processes just described, the re-
sults of Theorems 2.2 and 2.3 are valid.
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Proof: A review of the proofs of Lemmas 3.1–3.3 shows that the C-tightness property suffices.
Lemma 3.5 relies, in addition, on the last assertion of Lemma 3.2, which has been substituted
by the assumption (27). Finally, the proof of the theorems holds verbatim.

Delayed information. Note that by Corollary 3.4, we can extend the results to policies
which are only approximately u-greedy. This implies that we may perform the routing on the
basis of (slightly) delayed information.

Theorem 4.2 Let π be any work conserving policy that gives priority at every time t > d0 to
the pool with the largest value for vpJ

n
p (t − d0), where d0 > 0 is a fixed delay. Then under π,

for every ε > 0 and T > 0,

lim
d0→0

lim
n→∞P

{
max

i,j∈L,i6=j
sup

s∈[0,T ]

∣∣viĴ
n
i (s)− vj Ĵ

n
j (s)

∣∣ > ε
}

= 0.

The meaning of the result is that when the information on the processes Ji is obtained with a
small delay, the effect with regard to the fairness performance is small.

Proof: The proof relies on the fact that we have a-priory bounds on the slope of ∆n, and thus
a small delay may cause an error with only small probability.

Note that Lemmas 3.1 and 3.2 are in force, since the only property of the policy that they
use is that it is work conserving. Fix p, q, T , and ε > 0, and let ∆n be as in Corollary 3.4.
Consider the events

Ωn
1 = {for every t ∈ [d0, T ] one has ∆n(t) > ε provided that ∆n(t− d0) > 2ε},

Ωn
2 = {|∆n|∗d0

< ε}.
Applying the corollary with δ = ε shows that

lim
n→∞P (Ωn

1 ∩Ωn
2 ∩ {|(∆n)+|∗T > 2ε}) = 0.

Recalling that ∆n is differentiable and null at zero, the probability of the complement of
Ωn

1 ∩Ωn
2 is bounded by

P (there exists t ∈ [d0, T ] such that ∆n(t) ≤ ε and ∆n(t− d0) ≥ 2ε; or |∆n|∗d0
≥ ε)

≤ P
(∣∣∣ d

dt
∆n

∣∣∣
∗

T
≥ ε

d0

)
.

However, the derivative of ∆n is bounded by maxi vi |În|∗T , which, by Lemma 3.2 is tight. As
a result, the bound in the above display tends to 0 as d0 → 0. Since p, q and ε are arbitrary,
this completes the proof.

We remark that random, pool-dependent, time varying delays may be handled in the same
way. If the maximal delay over the interval tends to 0 in probability, an analogue of the above
result is valid.
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Tree structure implementation. Consider now a system with a large number of pools.
From the point of view of managing such systems, it is desirable to reduce the amount of
information that is needed in order to decide on the routing, and possibly also reduce the
amount of computation required by the central controller. In practice, this may be of particular
importance if the facility is distributed geographically over many locations. As a model,
consider the following tree-like system of pools. Each leaf is a pool, and each node represents
a local processing center, the root being the central controller.

Since the only information the central controller requires is the index of the pool with
largest value viJi that has free servers, a u-greedy policy can be implemented as follows. Each
node sends to its parent (the closest node connected to it which is closer to the root node) a
single number - the value of viJi for that pool among its offspring (including pools or nodes
under it), with largest value viJi that has free servers. The decision by the root node is then
between a small number of values—one for each sub-node or pool directly under it. This
strategy has the advantage that most of the information is transmitted only locally—from
each leaf to the node above it. The analysis of the case of delayed information applies also to
the tree structure implementation.
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