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Abstract

We analyze the latency or sojourn time L(m,n) for the last customer in a batch of n cus-

tomers to exit from the m-th queue in a tandem of m queues in the setting where the queues

are in equilibrium before the batch of customers arrives at the first queue. We first characterize

the distribution of L(m,n) exactly for every m and n, under the assumption that the queues

have unlimited buffers and that each server has customer independent, exponentially distributed

service times with an arbitrary, known rate. We then evaluate the first two leading order terms

of the distributions in the large m and n limit and bring into sharp focus the existence of phase

transitions in the system behavior. The phase transition occurs due to the presence of either

slow bottleneck servers or a high external arrival rate. We determine the critical thresholds for

the service rate and the arrival rate, respectively, about which this phase transition occurs; it

turns out that they are the same. This critical threshold depends, in a manner we make explicit,

on the individual service rates, the number of customers and the number of queues but not on

the external arrival rate.

1 Introduction

Tandem queues are important models for production systems [31] and communication networks

[52]. The fact that the output process of a server is the arrival process for the subsequent queue

makes tandem queues difficult to analyze. There are several results in the literature on the waiting

time [43] of customers in such queues [24, 47], moment generating functions [23], scaling properties

[13], heavy traffic approximations [27] and bounds thereof [50, 36, 37], to list a few. These results

capture the behavior of a single randomly selected customer. In this paper, in contrast, we are

interested in the latency or sojourn time of a batch of n customers entering a system of m tandem

queues with unlimited buffers that are in equilibrium due to an external arrival process of rate α

at the first queue before the first customer of the batch arrives; the same setup with α = 0 was

considered by Glynn and Whitt in their seminal paper [25] and more recently by Baccelli, Borovkov

and Mairesse in [2]. The batch latency analysis problem is motivated by networking applications
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such as peer-to-peer sharing where a (large) file is transferred from a source to a destination over

a large multi-hop network [14, 16].

This setting is considerably more difficult to analyze at a level that captures what happens as

the “wave” of customers traverses the network. Of particular relevance to this work is using the

analysis to provide insights on what happens when a few bottleneck servers are particularly slow

or when the rate α of the external arrival process is relatively large.

In this paper, we leverage recent results from directed last passage percolation (DLPP) and

random matrix theory (e.g. [28, 40, 12]) to show that the latency distribution equals that of the

largest eigenvalue of a specially constructed random matrix (see Theorem 2.1).

We then employ m,n → ∞ asymptotics to uncover a phase transition which separates a regime

in which the presence of slow bottleneck servers results in a latency that differs from the case

where there are no slow servers. It is shown that the leading order of the latency is affected only

if the slowest server has the service rate below a critical threshold. We also show that the next

order fluctuations change in this case with different order of the variance. The analysis highlights

why optimizing the service rates of a limited or o(n) number of bottleneck servers might produce

asymptotically vanishing gains in the latency reduction achieved.

A similar phase transition occurs with respect to the external arrival rate α. In this case the

leading order of the latency is affected if α is higher than a critical threshold. It is shown that this

critical threshold is the same as the one that arises from the slow server phase transition analysis.

The paper is organized as follows. In Section 2, we state the problem addressed in this paper

formally and present the main results. Some examples where our results may be applied along with

a numerical computation are discussed in Section 3. The proofs of the main results are provided in

Sections 4 and 6. Section 5 contains an intuitive explanation for the origin of the phase transition.

2 Main results

2.1 Problem

Consider a tandem of m queues associated with m servers labeled from left to right as S1, . . . , Sm.

We assume that each queue is M/M/1 and that the service time at server i is exponentially

distributed with a customer-independent rate equal to µi. Each customer starts at queue 1. After

being served by S1, the customer joins queue 2 and waits for the turn to be served by S2. After

being served, the customer then joins queue 3 and so on until the customer exists queue m. We

assume that the queue buffers are infinitely long and there are no external arrivals in the system

except to queue 1. The arrival process to the first queue is an independent Poisson process of rate

α ≥ 0. Suppose that the system is in equilibrium. We assume that α < µi for all i so that the

queues are stable.

Now suppose that we send in a batch of n customers to queue 1. We assume that this arrival is

according to the arrival Poisson process: we may think that when a new customer arrives at queue

1 according to the Poisson process, we send in n − 1 more customers immediately. Let L(m,n)

denote the latency or sojourn time for the last of the batch of n customers to exit from the last

queue m. Here the time is measured from the instance when the n customers arrive at queue 1. If
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we assume that the batch of customers is sent in at an arbitrary time, rather than as a part of the

arrival Poisson process, it is easy to see that the asymptotic results in this section still hold even

though the exact result, Theorem 2.1, does not hold.

We note that the α = 0 case corresponds to the setting where the queues are initially empty.

The batch of n customers are sent into queue 1 and the latency is measured from this point.

2.2 Exact distribution

The standard complex normal distribution is denoted by CN (0, 1). The notation x ∼ CN (0, 1)

means that x = u+ i v where u and v are i.i.d. N (0, 1/2).

Theorem 2.1 (Exact distribution). Define the diagonal matrices

Σ = diag(1/µ1, . . . , 1/µm) and Γ = diag (1/(µ1 − α), . . . , 1/(µm − α)) .

Let G and g denote an m×(n−1) matrix and an m×1 vector of i.i.d. CN (0, 1) entries, respectively.

Consider the random Hermitian matrix

W = Γ1/2gg∗Γ1/2 +Σ1/2GG∗Σ1/2.

Then we have that for all n and m,

L(m,n)
D
= Λmax(W ).

Here Λmax(W ) denotes the largest eigenvalue of W and
D
= denotes equality in distribution.

This result follows from interpreting the tandem queues model in terms of directed last passage

percolation (DLPP) model [47, 25, 42] and then using a result due to Borodin and Péché [12] on

the relation between certain DLPP models and random matrices. See Section 4.

Remark 2.1. Note that since the normal distribution is rotationally invariant, the distribution of

the eigenvalues of W is unchanged even if we re-arrange the ordering of µi’s. Hence we find that

the distribution of L(m,n) does not depend on the ordering of µi’s, a fact first proved in [51].

2.3 Asymptotic result I. Leading order

We first introduce some definitions and assumptions. Let

µ(m) ≤ · · · ≤ µ(2) ≤ µ(1) (1)

be an ordered re-arrangement of the services rates µ1, · · · , µm. Consider the probability measure

(the spectral measure for the service rates)

Hm =
1

m

m
∑

i=1

δµi =
1

m

m
∑

i=1

δµ(i)
. (2)
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Assume that there is a compactly supported probability measure H such that

Hm → H weakly (3)

as m → ∞ (i.e.
∫

R
g(x)dHm(x) →

∫

R
g(x)dH(x) for all bounded continuous functions g.) This

includes examples such as (a) µi = 1 for all i, (b) µi0 = µ < 1 and µi = 1 for all i 6= i0, and

(c) µi = F−1( i
m) for F (x) :=

∫ x
−∞ f(y)dy for a piecewise-continuous, non-negative and compactly

support function f(y) with total mass 1. We denote the support of Hm and H by supp(Hm) and

supp(H) respectively. Note that the minimum of supp(Hm) is µ(m).

Define the function

lm(z) := m

∫

dHm(y)

y − z
+

n

z
, z /∈ supp(Hm). (4)

See Figure 1 for an example. It is easy to see that l′′m(z) > 0 for z ∈ (0, µ(m)). Since l′m(z) → −∞
as z ↓ 0 and l′m(z) → +∞ as z ↑ µ(m), there is a unique point z ∈ (0, µ(m)) such that l′m(z) = 0.

We denote this point by λm;

m

∫

dHm(y)

(y − λm)2
− n

λ2
m

= 0, 0 < λm < µ(m). (5)

Note that l′m(z) < 0 for 0 < z < λm and l′m(z) > 0 for λm < z < µ(m).

(a) (b)

Figure 1: Graphs of 1
m lm(z). (a) is when m = 3, n = 2 and µ1 = 1, µ2 = 1.5, µ3 = 2.2. (b) is when

m = 100, n = 100, µ1 =
1
3 , µ2 =

3
4 , and µi = 1 for i = 3, · · · , 100. In both cases, λm is the argmin

of lm(z) in the interval (0, µ1).

Theorem 2.2 (Asymptotic result I. Leading order). Assume (3). Let lm(z) and λm be defined as

in (4)) and (5)) respectively. Recall that α is the arrival rate and assume that α < lim infm µ(m).

From the definition, λm < µ(m). The following asymptotic result holds in probability as m,n → ∞
such that m/n → γ ∈ (0,∞).

(a) If α < lim inf
m→∞

λm and lim inf
m→∞

(µ(m) − λm) > 0, then

L(m,n)

lm(λm)
→ 1. (6)
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(b) If lim sup
m→∞

λm < α, then

L(m,n)

lm(α)
→ 1. (7)

(c) Suppose that lim sup
m→∞

(µ(m) − λm) = 0 and there is a fixed r (which does not grow in m) such

that µ(m) = · · · = µ(m−r+1) and lim inf
m→∞

(µ(m−r) − µ(m−r+1)) > 0. Furthermore, assume that

lim inf
m→∞

(λ(r)
m − µ(m)) > 0 where λ

(r)
m is the unique real root of the equation (l

(r)
m )′(z) = 0 in

z ∈ (0, µ(m−r)) where

l(r)m (z) := m

∫

dH
(r)
m (y)

y − z
+

n

z
, H(r)

m :=
1

m

m−r
∑

i=1

δµ(i)
. (8)

Then

L(m,n)

l
(r)
m (µ(m))

→ 1. (9)

The above theorem can be simplified if we assume that the limit of µ(m) as m → ∞ exists.

Corollary 2.1 (Easier conditions when µ(m) → µinf). Suppose that µ(m) → µinf as m → ∞ for

some µinf > α. Set

l(z) := m

∫

dH(y)

y − z
+

n

z
, z /∈ supp(H), (10)

and let λ be the unique solution to l′(z) = 0 in z ∈ (0, inf suppH);

m

∫

dH(y)

(y − λ)2
− n

λ2
= 0, λ ∈ (0, inf supp(H)). (11)

(Hence l(z) is the analogue of lm(z) with Hm replaced by H in (3), and λ is the analogue of λm. See

Figure 2 for an example.) Then the following asymptotic result holds in probability as m,n → ∞
such that m/n → γ ∈ (0,∞).

(i) If λ ∈ (α, µinf), then
L(m,n)
l(λ) → 1.

(ii) If λ ∈ (0, α), then L(m,n)
l(α) → 1.

(iii) If λ > µinf , and if µ(m) = · · · = µ(m−r+1) for some fixed r and lim inf
m→∞

(µ(m−r) − µinf) > 0,

then L(m,n)
l(µinf )

→ 1.

Proof. Note that as Hm → H weakly, µ(m) ≤ inf supp(H), and hence µinf ≤ inf supp(H). If

λ < µinf , it is easy to check, using the fact that µinf = lim
m→∞

inf supp(Hm) and using the analyticity

of lm(z) for z ∈ (0, inf supp(Hm)), that λm → λ, and also 1
m (lm(z)− l(λ)) → 0 for each z ∈ (0, µinf).

Hence we are in the case (a) or (b) of Theorem 2.2 depending on α < λ < µinf or λ < α, and the

above results for (i) and (ii) follow. On the other hand if λ > µinf , then it is also easy to check
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that for any compact interval of (0, µinf), there is no zero of the equation (5) for all large enough

m. This means that lim sup
m→∞

(µ(m) − λm) → 0, and hence we find that the conditions for the case

(c) of Theorem 2.2 are satisfied. It is also direct to check that 1
m (l

(r)
m (z) − l(z)) → 0 for each

z ∈ (0, lim inf
m→∞

µ(m−r)) since l
(r)
m (z) is analytic in any closed interval in this interval for all large

enough m. Thus the case (iii) follows.

(a) (b)

Figure 2: We assume that µ1 =
1
3 , µ2 =

3
4 , and µi = 1 for i ≥ 3. Then Hm = 1

mδ 1
3
+ 1

mδ 3
4
+ m−2

m δ1

and H = δ1. (a) is the graph of 1
m lm(z) when m = n = 100. (b) is the graph of 1

m l(z) when

m = n = 100.

2.4 Asymptotic result II. Second order

The next theorem is about the second order asymptotics. We evaluate the law of the asymptotic

fluctuations. Let TW2 denote the complex Tracy-Widom random variable from random matrix

theory [48]. There are other Tracy-Widom random variables, TWβ , and the subscript 2 in TW2

signifies that this random variable is related to the so-called complex case in random matrix theory.

See (52) below for an explicit formula of TW2 and Section 8 for additional information. The notation
D−→ means convergence in distribution.

Theorem 2.3 (Asymptotic result II. Second order). With the same notations and assumptions in

Theorem 2.2, we have the following asymptotic result.

(a) If α < lim inf
m→∞

λm and lim inf
m→∞

(µ(m) − λm) > 0, then

L(m,n)− lm(λm)

(l′′m(λm)/2)1/3
D−→ TW2. (12)

(b) If lim sup
m→∞

λm < α, then

L(m,n)− lm(α)

(l′m(α))1/2
D−→ N (0, 1). (13)

6



(c) Suppose that lim sup
m→∞

(µ(m)−λm) = 0 and that lim inf
m→∞

(µ(m−1)−µ(m)) > 0. Furthermore, assume

that lim inf
m→∞

(λ(1)
m − µ(m)) > 0 where λ

(r)
m and l

(r)
m (z) are defined in Theorem 2.2 (c). Then

L(m,n)− l
(1)
m (µ(m))

(−(l
(1)
m )′(µ(m)))1/2

D−→ N (0, 1). (14)

Note that the denominator in (12) is O(m1/3) while the denominators in (13) and (14) are

O(m1/2). Hence the order of the fluctuations in the case (a) is different from the cases (b) and (c).

Remark 2.2. In the case (c), if µ(m) = · · · = µ(m−r+1) and lim inf
m→∞

(µ(m−r) − µ(m−r+1)) > 0 for a

fixed r, then we have the same scaling but a different limiting distribution. The new distribution

is same as the largest eigenvalue of the so-called r × r matrix from the Gaussian unitary ensemble

[33].

The above theorem can be simplified as follows under some extra conditions. The proof of this

Corollary is similar to the argument in the proof of Corollary 2.2 and we skip it.

Corollary 2.2 (Easier conditions when µ(m) → µinf). Suppose that µ(m) → µinf as m → ∞ for

some value µinf as in Corollary 2.1. Furthermore, assume that

lm(z) − l(z) = o(m1/3) for any compact interval of z ∈ (0, µ(m)) (15)

and

l(1)m (z)− l(z) = o(m1/2) for any compact interval of z ∈ (0, µ(m−1)) (16)

where l(z) is defined in (10). Let λ be defined in (11). Then we have:

(i) If λ ∈ (α, µinf), then
L(m,n)− l(λ)

(l′′(λ)/2)1/3
D−→ TW2. (17)

(ii) If λ ∈ (0, α), then

L(m,n)− l(α)

(l′(α))1/2
D−→ N (0, 1). (18)

(iii) If λ > µinf and lim inf
m→∞

(µ(m−1) − µinf) > 0, then

L(m,n)− l(µinf)

(−l′(µinf))1/2
D−→ N (0, 1). (19)
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2.5 Related results from random matrix theory

Phase transitions have also been studied in random matrix theory, especially for the so-called ‘spiked

random matrix’ models. These models are of particular interest for principal component analysis

in statistics [30] and in this context the phase transition was first obtained in [4]. By Theorem 2.1,

such results in random matrix theory can be interpreted as results for tandem queues. The following

cases have been studied:

(1) α = 0 and µ1 = · · · = µm in [28],

(2) α = 0 and µr+1 = · · · = µm for a fixed number r in [4, 5, 41, 7, 8],

(3) µ1 −α → 0, µr+1 = · · · = µm for a fixed number r and µ2, · · · , µr converge to a certain critical

value in [21, 12].

From Theorem 2.1, one can see that the case when µ1 = · · · = µm and α > 0 is almost the same

as the case when α = 0 and only µ1 is different from other service rates. Thus, case (2) above also

includes the case when

(4) α > 0 and µ1 = · · · = µm.

For the above case, both the leading order and the second order asymptotics are known. For general

µi’s, the following cases have been studied:

(5) the leading order term when α = 0 and µi are general in [35],

(6) the second order term when α = 0 and µi are general but satisfy the so-called sub-criticality

condition, which yields a convergence to TW2, in [19].

In this paper we obtain the asymptotic results for the general setting where α > 0 and µ1, . . . , µm

are arbitrary. This general case does not follow from existing results in the literature.

3 Examples and discussions

Example 3.1 (Equal service rates, initially empty queues). Suppose µ1 = · · · = µm =: µ for a

fixed µ and α = 0. Clearly Corollary 2.1 applies with µinf = µ, H = δµ, and l(z) = m
µ−z + n

z .

(We also have Hm = δµ.) The equation (11) becomes m
(µ−λ)2

− n
λ2 = 0 for λ ∈ (0, µ). Solving this

algebraic equation we obtain

λ =

√
n√

m+
√
n
µ. (20)

Since λ < µ = µinf , case (iii) does not occur. Case (ii) also does not occur since α = 0. Therefore

from case (i) we find that

L(m,n) ≈ (
√
m+

√
n)2

µ
(21)

as m,n → ∞ such that m/n → γ ∈ (0,∞).
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Example 3.2 (Equal service rates, queues in equilibrium). The only change from the previous

example is that α > 0. Hence case (ii) may occur and we find that

L(m,n) ≈







(
√
m+

√
n)2

µ if α <
√
n√

m+
√
n
µ,

m
µ−α + n

α if α >
√
n√

m+
√
n
µ.

(22)

Example 3.2 shows a phase transition phenomenon. When α is below the threshold
√
n√

m+
√
n
µ,

the latency L(m,n) is same as that of the system with initially empty queues. The existing

customers do not contribute to the leading order asymptotic of L(m,n). (Actually they do not

contributed even to the second leading order asymptotic; see Corollary 2.2 and Example 3.6.) On

the other hand, if α is above the threshold, then we see the effect of the existing customers. Note

that the first customer in the batch of n customers sees a geometrically distributed random number

of customers in each queue since the queues are in equilibrium. This results that the time for this

customer stays in each queue is exponential of rate µ − α. Hence the expectation of the time it

takes this customer exit from all the queues is m
µ−α . The asymptotic formula m

µ−α + n
α in (22) is

larger than this number. This is natural since n is same order as m and therefore the other n− 1

customers contribute to the leading order asymptotic of L(m,n). See Section 5 for an intuitive

reason for the value of the critical threshold for α and the asymptotic latency m
µ−α + n

α .

In the next examples, we assume that α ≥ 0.

Example 3.3 (Quantized service times). Let f(y) be a piecewise-continuous, non-negative and

compactly support function with total mass 1 Suppose that µi = F−1( i
m ) for F (x) :=

∫ x
−∞ f(y)dy.

Then µ(m) → µinf = sup{x : F (x) = 0} and dH(x) = f(x)dx. Thus Corollary 2.1 applies and case

(iii) does not occur. Let λ be the unique solution to the equation

m

∫

f(y)

(y − λ)2
dy − n

λ2
= 0, λ ∈ (0, µinf). (23)

Then

L(m,n) ≈
{

m
∫ f(y)

y−λdy + n
λ if α < λ,

m
∫ f(y)

y−αdy + n
α if α > λ.

(24)

Example 3.4 (One slow server). Suppose that all service rates are equal except for one server

whose rate is smaller than the rest. From Remark 2.1, we may assume that the slow server is

the first server without loss of generality. Set µ1 = µ′ and µ2 = · · · = µm =: µ where µ, µ′ are
fixed numbers such that α < µ′ < µ. Then as µ(m) = µ′ is a constant, Corollary 2.1 applies with

µinf = µ′. We have Hm = 1
mδµ′ + (1 − 1

m)δµ → H = δµ. This is same H as in the Example 3.1.

Thus we find that λ =
√
n√

m+
√
n
µ as before. The difference is that since µinf = µ′ is different from

µ, the case (iii) can occur. We obtain

L(m,n) ≈















(
√
m+

√
n)2

µ if α <
√
n√

m+
√
n
µ < µ′,

m
µ−α + n

α if
√
n√

m+
√
n
µ < α,

m
µ−µ′ +

n
µ′ if µ′ <

√
n√

m+
√
n
µ.

(25)

Figure 3 numerically validates the theoretical predictions.
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Figure 3: A heat-map of the Kolmogorov-Smirnov (KS) distance between the empirical cdf’s of

1000 realizations of the L(m,n) statistic of two systems both of which have n = m = 1000 and m−1

servers with rates µ2 = . . . = µm. The baseline system has µ1 = 1 and the external arrival rate

α = 0. The active system has µ1 and α that are varied in the range specified by the plot. Using the

KS distance we can assess if the underlying probability distributions for the L(m,n) statistic for

the two systems described differ. A value close to 0 indicates that the distributions are ‘near’ while

a value closer to 1 indicates that they are ‘far’. Note the phase transitions that separate regimes

where the distributions are similar from regimes where the distributions are different; the dashed

lines correspond to the predicted value of the phase transition (see Example 3.4). The portion of

the heat-map where the KS distance equals −1 corresponds to the (inadmissible) setting where

α > µ.

10



−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

L(m,n) recentered−and−rescaled

P
D

F

 

 
Simulation
TW

2
 distribution

(a) Subcritical regime: n = m = 100, µ1, . . . µm = 1, α = 0.3
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(b) Supercritical regime: n = m = 100, µ1, . . . , µm = 1, α = 0.7.

Figure 4: Comparison of the empirical pdf’s computed over 50, 000 realizations of the L(m,n)

statistic of two systems both of which have n = m = 100 and all m servers with rates µ1 = . . . =

µm = 1. In (a), the external arrival rate α = 0.3 and we compare the empirical distribution of the

L(m,n) statistic, rescaled and recentered as described in Example 3.6, with the pdf of the TW2

distribution, computed as described in Section 8. In (b), the external arrival rate α = 0.7 and we

compare the empirical distribution of the L(m,n) statistic, rescaled and recentered as described in

Example 3.6, with the pdf of the normal distribution. See Section 8 for a discussion of the properties

of the TW2 distribution; Figure 11 compares the TW2 distribution with the normal distribution.
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This example illustrates another phase transition. The last equation in (25) shows that the

leading order asymptotic of L(m,n) changes if the rate µ′ of the slow server is below a threshold. If

this rate is small enough, i.e. below the threshold
√
n√

m+
√
n
µ, then the time spent by the customers

in this queue is significant large and it affects the total exit time. However, if the rate is above the

threshold, the effect of the single slow server is not detectable in terms of the leading order (and

second order indeed) asymptotic of L(m,n), as seen in the first two equations in (25). Note that

this threshold is same as the one for α.

Example 3.5 (Two slow servers). Assume µ1 = µ′, µ2 = µ′′, and µ3 = · · · = µm =: µ where

α < µ′ < µ′′ < µ. Then we can apply Corollary 2.1, and we have H = δµ, µinf = µ′, and

λ =
√
n√

m+
√
n
µ. Using Corollary 2.1, we have exactly the same result as (25). Note that for the case

(iii) in which the slow servers affect the batch latency, the leading order of the exit time depends

only on the lowest service rate, not the second lowest service rate. It is easy to check that (25) also

holds if µ′ = µ′′ < µ or if there are three slow servers, etc.

Hence the two key parameters are α and the rate of the slowest server.

Example 3.6 (Second order asymptotics). For Examples 3.4 and 3.5, Corollary 2.2 implies that

L(m,n) ≈















(
√
m+

√
n)2

µ +
√
m+

√
n

µ

(

1√
m

+ 1√
n

)1/3
TW2 if α <

√
n√

m+
√
n
µ < µ′,

(

m
µ−α + n

α

)

+
(

m
(µ−α)2

− n
α2

)1/2N (0, 1) if
√
n√

m+
√
n
µ < α,

(

m
µ−µ′ +

n
µ′

)

+
(

n
(µ′)2

− m
(µ−µ′)2

)1/2N (0, 1) if µ′ <
√
n√

m+
√
n
µ.

(26)

Figure 4 validates the distributional characterization in Example 3.6 for the setting where

µ1 = . . . = µm = 1 and n = m so that when α < 0.5 we expect the TW2 distribution whereas

when α > 0.5 we expect a standard normal distribution for the recentered and rescaled L(m,n)

distribution.

4 Proof of Theorem 2.1

In a tandem of queues, let w(i, j) denote the service time for customer j at server i. Here we label

the customers in the order that they exit the system and label the servers in the usual order. The

exit time L(i, j) of customer j from queue i satisfies a recursive relation

L(i, j) = max{L(i− 1, j), L(i, j − 1)}+ w(i, j), i, j ∈ Z. (27)

This recursion can be found in the seminal paper by Glynn and Whitt [25] wherein the authors

attribute the formulation to Tembe and Wolff [47]. Note that this recursion holds for any service

times w(i, j).

The above recursion can be recast [25] as the following directed last passage percolation (DLPP)

problem :

L(i, j) = max
π∈P (i,j)

(

∑

(k,ℓ)∈π
w(k, ℓ)

)

, (28)
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where P (i, j) is the set of ‘up/right paths’ ending at (i, j) i.e. π ∈ P (i, j) if π = {(ks, ℓs)}0s=−∞ such

that (k0, ℓ0) = (i, j) and (ks, ℓs) − (ks−1, ℓs−1) is either (1, 0) or (0, 1) for all s ≤ 0. Here we take

w(k, ℓ) = 0 if there is no customer k or if the customer k starts at the server labeled larger than ℓ

at the initial time so that the customer k does not need any service from the server ℓ. The above

identity can be obtained by noting that the right-hand-side of (28) satisfies the same recurrence as

L(i, j) in (27). In the context of DLPP, L(m,n) is referred as the ‘last passage time’ to the site

(m,n) and w(i, j) are called weights (see, for example, [28, 22, 15]).

Certain DLPP models with special weights are called ‘solvable’ and they are defined as follows.

Definition 4.1 (Solvable DLPP models). Let ai and bi, i = 1, 2, · · · , be the real numbers in

(−∞,∞] such that ai + bj > 0 for all i, j ≥ 1. For i, j ≥ 1, let w(i, j) be independent exponential

random variables with rate ai + bj (so that the mean is 1/(ai + bj).) For other i, j in Z
2, we set

w(i, j) = 0. The DLPP model with these weights are defined as solvable.

A special property of these solvable DLPP models is that they are related to certain random

matrices. The following result is due to Borodin and Péché [12]. The case when all ai and bi are

same was first obtained by Johansson in [28].

Proposition 4.1 ([12]). Let L(m,n) be the last passage time for the solvable DLPP model. On the

other hand, let X be an m× n matrix with independent entries distributed as

Xij ∼ CN
(

0,
1

ai + bj

)

. (29)

Then

L(m,n)
D
= Λmax(XX∗), m, n ≥ 1, (30)

where Λmax denotes the largest eigenvalue.

Another special property of the solvable DLPP models is that the cdf of L(m,n) can be obtained

explicitly for all m,n. This will be stated in Proposition 6.1.

Our setting of tandem in equilibrium can be thought of a special case of the solvable DLPP

problem as follows. Note that the exit time of a customer who arrives via an external Poissonian

arrival process of rate α at an M/M/1 queue in equilibrium with service rate µi (where α < µi) is

exponentially distributed with rate µi − α. Moreover, if the same customer arrives at a tandem of

m M/M/1 queues in equilibrium, then the exit time of the customer from all queues is distributed

as X1 + · · · +Xm where Xi are independent exponential random variables with rate µi − α. This

means that it is as if the customer arrives at a tandem of m queues which are all empty but the

service rate is changed to µi − α. Hence if a batch of n customers arrive to a tandem of m queues

in equilibrium, then in terms of the latency L(m,n) it is as if the queues are initially all empty, the

service rates for the first of the n customers are µi − α, and the service rates for the other n − 1

following customers are µi. Thus the weight w(i, j) is exponential with rate µi for i = 1, . . . ,m,

j = 2, . . . , n while w(i, 1) is exponential with rate µi − α for i = 1, . . . ,m. All other w(i, j) = 0.

Hence,

13



Proposition 4.2. The latency L(m,n) for the model in Section 2 is distributed as the last passage

time of the solvable DLPP model with

ai = µi, for i = 1, . . . ,m, b1 = −α, bj = 0, for j = 2, . . . , n, (31)

and all other ai = bj = ∞.

The same idea was used in [42] to map an interacting particle system starting in equilibrium to

a solvable DLPP model.

Theorem 2.1 now follows from this proposition and Proposition 4.1.

We note that there are a few results on the asymptotics of the last passage time for i.i.d. weights

other than exponential random variables: [25, 44, 6, 9, 46, 26]. These results can be interpreted as

the results for the latency of a batch of customers in a tandem of queues which are initially empty

and the service rates are i.i.d.

5 Intuition for the critical threshold

The value of the critical threshold in the Examples in Section 3 can be understood using the DLPP

formulation if we already know the asymptotic of L(m,n) when α = 0. Consider the setup of

Example 3.2 when all µi are µ. Then the rate of w(i, j) for DLPP model is µ−α for j = 1 and is µ

for j ≥ 2. Let us use the notation Lα(m,n) in order to indicate the dependence on α. Suppose we

already know that L0(m,n) ≈ (
√
m+

√
n)2

µ . Now a path π in the formula (28) consists of two parts,

one from (1, 1) to some point (p, 1) and the other from (p, 2) to (m,n). See Figure 5 (a). Here p

may be 1.

3

2

1

21

3

m

n

p

(a)

3

1

21 m

n

p

q

(b)

Figure 5: (a) An up/right path π for Example 3.2. (b) An up/right path for Example 3.5 when

α = 0

The expectation of the sum of w(k, ℓ) along the first part is p
µ−α using the sum of independent

exponential random variables. On the other hand, the second part lies in a rectangle of size

(m − p + 1) × (n − 1) where all rates are µ. If we choose the maximal path in this part, its

expectation is (
√
m−p+1+

√
n−1)2

µ using the formula for L0. Now since p can be any point, we expect
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that

Lα(m,n) = max
p∈{1,··· ,m}

(

p

µ− α
+

(
√
m− p+ 1 +

√
n− 1)2

µ

)

≈ max
0≤x≤1

(

mx

µ− α
+

(
√

m(1− x) +
√
n)2

µ

)

.

(32)

It is easy to check that the maximum occurs at x = 0 if α ≤ λ and occurs at x = 1− n(µ−α)2

mα2 ∈ (0, 1)

if α > λ where λ =
√
n√

m+
√
n
µ. This gives the threshold for α. The maximum is given by (

√
m+

√
n)2

µ

in the first case and by m
µ−α + n

α in the second case which is consistent to (22). This is same

argument given in Section 6 of [4].

The threshold for the rate of the slow servers in Example 3.4 and Example 3.5 can be understood

in a similar way. In the setting of Example 3.5, when α = 0, the up/right path consists of three

parts as indicated in Figure 5 (b), and we are lead to

L(m,n) ≈ max
0≤x≤y≤1

(

nx

µ′ +
n(y − x)

µ′′ +
(
√
m+

√

n(1− y))2

µ

)

. (33)

Recall that µ′ < µ′′ < µ. A direct calculation shows that the maximum occurs when x = y

and the maximum does not depend on µ′′. This shows that the latency depends only on the

slowest rate, not the other slow rates. If µ′ >
√
n√

m+
√
n
µ, then the maximum is (

√
m+

√
n)2

µ which is

attained at x = y = 0, and if µ′ <
√
n√

m+
√
n
µ, then the maximum is m

µ−µ′ +
n
µ′ which is attained at

x = y = 1 − m
n (

µ′

µ−µ′ )2. This calculation is consistent to Example 3.5. If α > 0, then one needs to

take a maximum of (33) and (32).

It is possible to make the above intuitive argument rigorous for all the examples discussed in

Section 3. However since we would like to prove general asymptotic theorems for much wider

settings, we do not attempt to use the above argument and use a different approach discussed in

the next section.

6 Proof of Theorems 2.2 and 2.3

We now prove Theorems 2.2 and 2.3. Note that Theorem 2.2 follows from Theorem 2.3, except for

the case (c) when r > 1. This case follows from Remark 2.2 instead for which we comment at the

end how the proof should be modified. Hence we focus on the proof of Theorem 2.3.

6.1 Formula of cumulative distribution function

The starting point of the asymptotic analysis is an explicit formula of the cdf of L(m,n). We state

the cdf for general solvable model and then specialize it to our case. Recall the parameters ai, bj
in Proposition 4.1. Define the kernel

K(ξ, η) =
−1

(2π)2

∫ ∫
( m
∏

i=1

ai − w

ai − z

)( n
∏

j=1

bj + z

bj + w

)

eηw−ξz

w − z
dzdw, ξ, η ∈ R. (34)
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Here the contours are simple closed curves in the complex plane C, oriented counter-clockwise, such

that the contour of z contains all ai’s inside, the contour of w contains all −bj’s inside, and they

do not intersect. See Figure 6. Note that the condition ai + bj > 0 guarantees that such contours

exist. Now let Kx be the integral operator on the L2((x,∞)) defined by the kernel K(ξ, η):

ama1-b1 -bn

Figure 6: Contours for (34)

(Kxf)(ξ) =

∫ ∞

x
K(ξ, η)f(η)dη, for f ∈ L2((x,∞)). (35)

Then we have:

Proposition 6.1 ([28], [40]). For x > 0,

P{L(m,n) ≤ x} = det(1−Kx). (36)

Here the determinant is the Fredholm determinant of the operator Kx. It can be expressed

explicitly as

det(1−Kx) = 1 +

∞
∑

k=1

(−1)k

k!

∫

(x,∞)k
det

(

K(ξi, ξj
)

)ki,j=1dξ1 · · · dξk. (37)

However, we do not use this expansion here. We only use the fact that if a sequence of operators

Tn converges to T in trace norm, then det(1 − Tn) converges to det(1 − T ). When the operators

are given by kernels, as in our case, the convergence in trace norm is obtained if the kernels and

their derivatives converge. See, for example, chapter 3 and 4 of [45].

Proposition 6.1 was first obtained by Johansson in [28] when all ai’s and bj ’s are equal. For

general ai and bj , the result was obtained for the geometric weights by Okounkov [40] (see Section

2.2.3). A simple limit to exponential weights of geometric weights yield the above proposition.

A good place where this is summarized explicitly is Theorem 3 of [12] (where one should set

r = s = p = 1). For the choice of parameters (31) of our case,

K(ξ, η) =
−1

(2π)2

∫

Σ{α,0}

∫

Σ{µi}
m
i=1

( m
∏

i=1

µi − w

µi − z

)

z − α

w − α

(

z

w

)n−1 eηw−ξz

w − z
dzdw (38)

where ΣA denotes a simple closed, counter-clockwise contour in C which encloses the points in the

set A.

Theorem 2.3 can now be obtained if we show that the kernel (38) converges, after appropriate

scaling, to the Airy kernel as m,n → ∞. This is done by applying the method of steepest-

descent. Some general references for the method of steepest-descent analysis are [20] [34]. The
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idea of steepest-descent method is to find the contour so that the real part of the exponent of the

integrand has a unique maximum so that the contribution to the integral in the large m,n limit is

obtained from a small neighborhood of this maximum point. The exponent is approximated by a

few terms of the Taylor expansion, and then the approximate integral is evaluated explicitly. The

key step is to find the appropriate contour. This is obtained first by evaluating the critical point

of the exponent and then finding the contour of the constant-phase passing through this critical

point. For the case at hand, there is a difference to the standard method of steepest-descent:

The critical point vanished to the second order instead of the first order. This leads to Airy-type

functions instead of Gaussian functions in the end. The second order vanishing of the critical point

is indeed how the centering in a limit theorem is determined. This is a typical phenomenon in the

application of the method of steepest-descent in the theory of random matrices (see e.g. [4] [19]).

In the proofs that follows, we make a special effort to highlight this key step and the associated

issue of the determination of the centering in our Theorem so that the reader may understand the

origin of the phase transitions.

6.2 Scaling and conjugation of determinant

Before we take the limit, we first recall two basic facts about Fredholm determinants [45]. The

first is that the determinant is invariant under scalings. Namely, let A be the trace class operator

acting on the space L2((t,∞)) with kernel A(a, b) and let B the scaled operator defined by the

kernel B(a, b) = rA(c+ ra, c+ rb) which acts on L2((c+ rt,∞)). Then det(1−A) = det(1−B).

The second is that the determinant is invariant under conjugations by multiplicative operators.

Let f(a) be a non-vanishing function on (t,∞). Let C(a, b) = f(a)A(a, b) 1
f(b) . Suppose that the

operator C on L2((x,∞)) defined by the kernel C(a, b) is a bounded trace-class operator. Then

det(1−A) = det(1− C).

These properties follow from the definition (37). The first property is obtained from a simple

change of variables, and the second property is a consequence of a property of the determinants of

finite matrices.

6.3 Critical points

Fix s ∈ R. Recall that we take the limit m,n → ∞ such that m/n → γ for some γ ∈ (0,∞).

For each case of Theorem 2.3, we will show that for some constants x = x(γ) and p ∈ (0, 1), the

probability P{L(m,n) ≤ xm + smp} converges to a function in s. In the analysis below, we will

determine x and p.

From (36), P{L(m,n) ≤ xm+smp} = det(1−Kxm+smp). The operator acts on the Hilbert space

L2((xm+ smp,∞)) which varies in m. From the scale invariance, we see that det(1−Kxm+smγ ) =

det(1−Kx) where Kx is defined by the scaled kernel

Kx(ξ, η) = mpK
(

xm+ smp +mpξ, xm+ smp +mpη
)

. (39)
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Note that now the Hilbert space L2((0,∞)) for the operator Kx does not depend on m. We have

P

{

L(m,n)− xm

mp
≤ s

}

= det(1−Kx). (40)

By (38), the kernel (39) equals

Kx(ξ, η) =
−mp

(2π)2

∫

Σ{α,0}

∫

Σ{µ(i)}
m
i=1

em(Fm(z;x)−Fm(w;x)) (z − α)wem
p((s+η)w−(s+ξ)z)

(w − α)z(w − z)
dzdw (41)

where

Fm(z;x) := − 1

m

m
∑

i=1

log(µ(i) − z) +
n

m
log z − xz. (42)

Now,

d

dz
Fm(z;x) = F ′

m(z;x) =
1

m

m
∑

i=1

1

µ(i) − z
+

n/m

z
− x = ℓm(z) − x,

d2

dz2
Fm(z;x) = F ′′

m(z;x) =
1

m

m
∑

i=1

1

(µ(i) − z)2
− n/m

z2
= ℓ′m(z)

(43)

where ℓm(z) := 1
m lm(z) with lm(z) defined in (4). Some examples of the graphs of ℓm(z) are in

Figure 1 in Section 2. It is easy to check that F ′′
m is a strictly increasing function in the interval

z ∈ (0, µ(m)) from −∞ to +∞, and hence F ′
m has a unique minimizer in the interval. From the

definition (5) of λm, we see that λm = argminz∈(0,µ(m))F ′
m(z;x). Note that λm is independent of

x.

The critical points of Fm (i.e. the roots of F ′
m) play a key role. We note that since F ′

m is convex

in the interval (0, µ(m)), the number of real roots of F ′
m in (0, µ(m)) is 2, 1, and 0 if x− ℓm(λm) > 0,

x− ℓm(λm) = 0, and x− ℓm(λm) < 0, respectively.

6.4 Case (a)

We are yet to determine x and p. Here is a heuristic argument how we determine x. Note

the exponential term em(Fm(z;x)−Fm(w;x)) in the double integral (41). If we can deform the con-

tours to the path of steepest-descent for Fm(z;x) and the path of steepest-descent for −Fm(w;x),

and use the method of steepest-descent, the leading contribution to the double integral becomes

em(Fm(zc;x)−Fm(wc;x)) where zc and wc are the critical points. (It can be shown that since we need to

deform the original contours to the new contours analytically, the critical points zc and wc should

be in the strip 0 < Re(z) < µ(m)).) Note that the path of steepest-descent for −Fm(w;x) is the

path of steepest-ascent for Fm(w;x). Hence zc and wc are both critical points of the same function

Fm(z;x). Now unless Fm(zc;x) = Fm(wc;x), the leading term is not of order O(1). This suggests

that we should have zc = wc, which is attained if Fm has a unique critical point in (0, µ(m)). From

the discussion in the last paragraph of the previous section, this happens if we take x = ℓm(λm).
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We now set

x = ℓm(λm) (44)

and show that the application of the method of steepest-descent to (39) indeed yields the desired

asymptotic result. In this case, from the discussion at the end of the last subsection, there is only

one real root of F ′
m in (0, µ(m)), given by z = λm, and hence since F ′

m is convex in the same

interval, this implies that F ′′
m(λm;x) = 0 = F ′

m(λm;x). Via the same approach as in (43), it is

straightforward to check that F ′′′
m(z;x) > 0 in z ∈ (0, µ(m)), and hence especially F ′′′

m(λm;x) > 0.

Let Γ1 be the path of the steepest-decent of Fm(z;x) passing through the point λm. Since

F ′
m(λm;x) = F ′′

m(λm;x) = 0 and F ′′′
m(λm) > 0, we have Fm(z;x) − Fm(λm;x) = c(z − λm)3 +

O(|z − λm|4) for c > 0 locally for z near λm. Hence starting at z = λm, there are three directions,

given by the angles π/3, π, −π/3 about the positive real line, to which the real part of Fm(z;x)

decreases most rapidly, i.e. the direction of the steepest-descent. We use the path which goes

off λm at the angles π/3 and −π/3 in the complex plane. Since the paths of steepest-descent and

steepest-ascent are given by the constant-phase condition (equivalently, given by the integral curves

of the vector field F ′
m(z)), the full curve satisfies the equation Im(Fm(z;x)−Fm(λm;x)) = 0. See

the solid curve in Figure 7 for an example of the general shape of the path of steepest-descent. The

path of steepest-ascent can also be obtained in a similar way and its general shape is indicated by

the dashed curve in Figure 7. This curve goes off λm at the angles 2π/3 and −2π/3.

µ(m) µ(m−1) µ(m−2)0
λm

Figure 7: General shape of the path of steepest-descent, Γ1, (solid) and the path of steepest-ascent

, Γ2, (dashed) of Fm passing through the double critical point z = λm

We deform the contour Σ{µ(i)}mi=1
for z to Γ1 and the contour Σ{α,0} for w to Γ2. (We orient

the new contours consistent with the original contours.) During this deformation, we need to be

careful of the poles of the integrand. The poles are z = µ(i), w = α, 0, and z = w. Since we assume

that (as we are in the case (a))

α < lim inf
m→∞

λm, lim inf
m→∞

(µ(m) − λm) > 0, (45)

we see that we can deform the contours to Γ1 and Γ2 without passing through the poles z = µ(i)

and w = α, 0. About the pole z = w, even though the new contours meet at z = w = λm, we can

modify the contours locally near the critical point as follows. It can be shown that if we take the

contours Γ1 and Γ2 be λm ± O(m−1/3), respectively, near the critical point, the pole z = w does

not contribute but the method of steepest-descent still applies (see e.g. [4])
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Since the critical point z = λm is away from the poles due to (45), the main contribution to the

double integral comes from a small neighborhood of the critical point. By localizing the integral

near the critical point and expanding the exponent in a Taylor series, we find the leading asymptotic

term of Kx(ξ, η):

Kx(ξ, η) ≈
−mp

(2π)2

∫ ∫

e
m
3!
F ′′′

m (λm;x)((z−λm)3−(w−λm)3) e
mp((s+η)w−(s+ξ)z)

w − z
dzdw, (46)

where the expression f ≈ g means that f
g → 1 as m → ∞ throughout the paper. Here we used the

fact that (z−α)w
(w−α)z = 1 at z = w = λm. Changing the variables u := cm(z−λm) and v := cm(w−λm)

where cm := (m2 F ′′′
m(λm;x))1/3 = O(m1/3), the above becomes

Kx(ξ, η) ≈e−mpλmξ

[

−
mp

cm

(2π)2

∫ ∫

e
1
3
u3− 1

3
v3 e

mp

cm
((s+η)v−(s+ξ)u)

u− v
dudv

]

em
pλmη. (47)

Here the contour for u is from eπi/3∞ to e−πi/3∞, and the contour for v is from e2πi/3∞ to e4πi/3∞
such that the first is to the right of the second: see Figure 8. Since cm = O(m1/3), the term in the

Figure 8: Contours for (47)

bracket is O(1) if we take

p =
1

3
. (48)

This is how the parameter p is determined.

Now, define the Airy kernel

As(ξ, η) := − 1

(2π)2

∫ ∫

e
1
3
u3− 1

3
v3 e

(s+η)v−(s+ξ)u

u− v
dudv (49)

and the Airy operator As on L2((0,∞)) defined by the above kernel. Hence we have obtained

Kx(ξ, η) ≈e−m1/3λmξ

[

m1/3

cm
Am1/3s

cm

(m1/3

cm
ξ,

m1/3

cm
η
)

]

em
1/3λmη. (50)

By mimicking the arguments in Section 3 of [4] (see also [19]), we can show that the difference

between the left-hand side and the right-hand side, and its derivative, tends to zero uniformly.

This allows us to establish that the operator Kx converges to the operator with the above kernel in
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trace norm. Since these arguments are ‘standard’ and rather tedious, while providing no additional

insight, they provide no archival value to this paper and so we do not copy them here. Having

established convergence of Kx, we obtain, using the invariance of the Fredholm determinants under

scaling and conjugation,

det(1−Kx) ≈ det(1−Am1/3s
cm

). (51)

From (40), the left-hand side equals P
{

L(m,n) ≤ mℓm(λm) +m1/3s
}

. Therefore, after changing s

to cm
m1/3 s, we obtain

P

{

L(m,n)−mℓm(λm)

(m2 F ′′′
m(λm;x))1/3

≤ s

}

≈ det(1 −As) = P(TW2 ≤ s). (52)

The last equality is one of the definitions of the Tracy-Widom distribution [48]. Since ℓm(z) = 1
m lm,

we conclude that
L(m,n)− lm(λm)

(12 l
′′
m(λm;x))1/3

D−→ TW2, (53)

and hence Theorem 2.3 (a) is proved.

6.5 Case (b)

In this case the assumption is that

lim sup
m

λm < α. (54)

We are to determine x and the exponent p ∈ (0, 1) of (40).

If we take x as (44) and take the same new contours as in the previous section, then due to the

condition (54), the deformation from the original contour to the new contour for w-variable passes

through the pole w = α. In this case the leading contribution to the w-integral does not come from

the critical point λm, but comes from the pole α. Then since Fm(λm, x) 6= Fm(α, x), the leading

contribution to the double integral is not O(1). This means that the choice (44) is not suitable for

case (b).

Unlike the case (a) where we defined x so that there is a unique critical point of Fm in (0, µ(m)),

we now assume that we have x > ℓm(λm) so that there are two real critical values z−c < z+c in

(0, µ(m)). Note that z±c depend on x, which is to be determined. As F ′
m(z;x) = ℓm(z) − x and

ℓm(z) is convex in (0, µ(m)) (see the last three paragraphs of Section 6.3), we see that z−c ∈ (0, λm)

and z+c ∈ (λm, µ(m)). (Recall that the definition of λm does not involve x.) It is easy to check that

the path of steepest-descent of Fm passing through the critical point z+c (the future contour for

the z-integral) is locally a vertical line near z+c and the path of steepest-ascent of Fm (the future

contour for the w-integral) passing through the critical point z−c is locally a vertical linear near z−c .
The general shape of these paths are shown in Figure 9. If we deform the original contours to these

contours, the deformation of the w-integral, whose original contour is Σ{0,α}, passes the pole α due

to the condition (54).

With this in mind, before applying the method of steepest-descent, we first deform the contours

of the double integral (40) so that so that w = α is outside of the contour for w. By evaluating the
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µ(m) µ(m−1) µ(m−2)0 λm

z−c z+c

Figure 9: General shape of the path of steepest-descent of Fm passing through the point z+c (solid)

and the general shape of the path of steepest-ascent passing through the point z−c (dashed)

residue at w = α, we find

Kx(ξ, η) = I + J (55)

where

I =

[−mpα

2πi

∫

Σ{µ(i)}
m
i=1

emFm(z;x)e
−mp(s+ξ)z

z
dz

]

e−mFm(α;x)+mp(s+η)α
(56)

and

J =
−mp

(2π)2

∫

Σ{0}

∫

Σ{µ(i)}
m
i=1

em(Fm(z;x)−Fm(w;x)) (z − α)wem
p((s+η)w−(s+ξ)z)

(w − α)z(w − z)
dzdw. (57)

Note that the contour for w in J contains 0 inside, but α outside. Now we deform the contours

to the paths of steepest-descent/steepest-ascent described above. Then the leading term of J

is em(Fm(z+c (x);x)−Fm(z−c (x);x)). But since F ′
m is convex in (0, µ(m)), we see that Fm(z+c (x);x) −

Fm(z−c (x);x) < 0. Thus the double integral is exponentially small for any choice of x > ℓm(λm).

Hence J = O(e−cm) for some constant c > 0.

On the other hand, the integral in I has the leading term emFm(z+c (x);x). If this term is same as

e−mFm(α;x), then I = O(1). This is achieved if z+c (x) = α, which means that α is one of the critical

points of Fm(z;x), i.e. ℓm(α) = x. We choose x to satisfy

x = ℓm(α). (58)

With the above choice of x, the method of steepest-descent yields that

I ≈
[−mp

2πi

∫

e
1
2
mF ′′

m(α;x)(z−α)2e−mp(s+ξ)zdz

]

em
p(s+η)α (59)

where the integral is localized near the critical point z+c = α. Changing the variables u :=
√

mF ′′
m(α;x)(z − α), we see that the two exponents in the integral are balanced if we take

p =
1

2
. (60)

22



With this choice of p, we find that

em
1/2αξIe−m1/2αη ≈ −1

2πiβ

∫

e
1
2
u2
e
− 1

β
(s+ξ)u

du =
1√
2πβ

e
− 1

2β2 (s+ξ)2
, (61)

and hence

I ≈ e−m1/2αξ

[ −1

2πiβ

∫

e
1
2
u2
e
− 1

β
(s+ξ)u

du

]

em
1/2αη = e−m1/2αξ

[

1√
2πβ

e
− 1

2β2 (s+ξ)2
]

em
1/2αη. (62)

Thus, we find that Kx ≈ I. Using the invariance of determinants under conjugations, we find that

P

{

L(m,n)−mℓm(α)

m1/2
≤ s

}

= det(1−Kx) ≈ det(1− G) (63)

where G is an operator on L2((0,∞)) defined by the kernel G(ξ, η) = g(ξ) = 1√
2πβ

e
− 1

2β2 (s+ξ)2
. Since

G(ξ, η) does not depend on η, it is easy to check that the only eigenfunction of G is g(η) with the

eigenvalue
∫∞
0 g(η)dη. Hence the determinant

det(1− G) = 1−
∫ ∞

0
g(η)dη =

1√
2πβ

∫ s

−∞
e
− 1

2β2 η
2

dη, (64)

which is the cdf of a normal distribution. Therefore, changing s 7→ βs, we obtain

L(m,n)− lm(α)
√

l′m(α)
≈ N (0, 1) (65)

and Theorem 2.3 (b) is proved.

6.6 Case (c)

The assumptions are

lim sup
m→∞

(µ(m) − λm) = 0, lim inf
m→∞

(µ(m−1) − µ(m)) > 0, (66)

and

lim inf
m→∞

(λ(1)
m − µ(m)) > 0. (67)

The case when µ(m) = · · · = µ(m−r+1) in Remark 2.2 will be discussed at the end.

Due to the condition (66), one of the real critical points (assuming that x > ℓm(λm) again)

becomes close to the pole µ(m) and hence we cannot argue that the main contribution is localized

near the critical point. In this case, we first change the contour Σ{µ(i)}mi=1
for the z-integral in (41)

to Σ{µ(i)}m−1
i=1

which excludes the pole µ(m). (Recall that in the previous section, we changed

the contour Σ{0,α} for the w-integral to Σ{0}.) Evaluating the residue at z = µ(m), we obtain

Kx(ξ, η) = L+M where

L = emF(1)
m (µ(m) ;x)−mp(s+ξ)µ(m)

[

mp(µ(m) − α)

2πiµ(m)

∫

Σ{0,α}

e−mF(1)
m (w;x)we

mp(s+η)w

w − α
dw

]

(68)
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and

M =
−mp

(2π)2

∫

Σ{0,α}

∫

Σ
{µ(i)}

m−1
i=1

em(F(1)
m (z;x)−F(1)

m (w;x)) (µ(m) − w)(z − α)wem
p((s+η)w−(s+ξ)z)

(µ(m) − z)(w − α)z(w − z)
dzdw,

(69)

where

F (1)
m (z;x) := − 1

m

m−1
∑

i=1

log(µ(i) − z) +
n

m
log z − xz. (70)

We set (see (8))

ℓ(1)m (z) :=
1

m

m−1
∑

i=1

1

µ(i) − z
+

n/m

z
=

1

m
l(1)(z). (71)

Then

(F (1)
m )′(z;x) = ℓ(1)m (z)− x. (72)

The function ℓ
(1)
m (z) is convex in (0, µ(m−1)) and λ

(1)
m is defined to be the unique solution of

(ℓ
(1)
m )′(z) = 0 in (0, µ(m−1)). As ℓ

(1)
m (z) = ℓm(z) − 1

m(µ(m)−z) , we have (ℓ
(1)
m )′(λm) < 0 and hence

λ
(1)
m > λm. Thus from the condition (66), we find that lim inf

n→∞
(λ(1)

m − µ(m)) ≥ 0. The condition (67)

implies that indeed here the inequality holds strictly.

Now the rest of the analysis is similar to the previous section with the role of α is now played

by µ(m). The proper choice of x is now (cf. (58))

x = ℓ(1)m (µ(m)). (73)

Then from (72) and (67), we find that there are two real roots of (F (1)
m )′(z;x) = 0 in z ∈ (0, µ(m−1)).

The smaller root is µ(m), and we denote the other root by z0 ∈ (µ(m), µ(m−1)). The path of steepest-

descent of F (1)
m passing through z0 and the path of steepest-ascent passing through µ(m) are of shape

in Figure 10.

µ(m) µ(m−1) µ(m−2)0

λm

z0

Figure 10: General shape of the path of steepest-descent of F (1)
m passing through the point z0(solid)

and the general shape of the path of steepest-ascent passing through the point µ(m) (dashed)
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Since (F (1)
m )′′(z;x) 6= 0 at z = µ(m) and at z = z0, we are lead to choose p = 1

2 . With this

choice, the evaluation of L is similar to that of I in the previous section and we obtain

L ≈ e−m1/2µ(m)ξ

[

1√
2πβ

e
− 1

2β2 (s+η)2
]

em
1/2µ(m)η, β :=

√

−(ℓ
(1)
m )′(µ(m)). (74)

On the other hand, the method of steepest-descent implies thatM is of orderO(em(F(1)
m (z0;x)−F(1)

m (µ(m);x))).

Since ℓ
(1)
m is convex in z ∈ (0, µ(m−1)), the exponent is negative and hence the second term is ex-

ponentially small. This argument works without any problem if lim infm(µ(m−1) − z0) > 0. (Note

that the double integral has a pole at z = µ(m−1).) Even if lim supm(µ(m−1) − z0) = 0, we can

still show that the second term is exponentially small. This is because F (1)
m (z;x) is decreasing as z

increases from µ(m) to z0 and hence it is possible to choose a z-contour which passes the real axis

in-between µ(m) and z0. We skip the details.

Therefore, we find that

P

{

L(m,n)−mℓm(µ(m))

m1/2
≤ s

}

= det(1−Kx) ≈ det(1− G) (75)

where G is an operator on L2((0,∞)) defined by the kernel G(ξ, η) = g(ξ) = 1√
2πβ

e
− 1

2β2 (s+ξ)2
as

in (63) with the new β defined in (74). From (64), we find, after changing s 7→ βs, that

L(m,n)− l
(1)
m (µ(m))

√

−(l
(1)
m )′(µ(m))

≈ N (0, 1) (76)

and Theorem 2.3 (c) is proved.

Finally we discuss Remark 2.2. If µ(m) = · · · = µ(m−r) for some r independent of m and

lim inf
m→∞

(µ(r+1) − µ(r)) > 0 as in Remark 2.2, the pole z = µ(m) is not simple but is of order r. This

changes the formula of L and M in (68) and (69). However the rest of the analysis is same except

that in the end the limit of L is of different form. The limit is det(1−G(r)) where the kernel of the

operator G(r) is a certain rank r generalization of G(ξ, η). This kernel appeared in [4] in which it

was shown that det(1 − G(r)) is the distribution function of the largest eigenvalue of r × r matrix

from the Gaussian unitary ensemble.

7 Appendix. Basics of the method of steepest-descent

The asymptotic analysis of the kernel K in Section 6 was done by using the method of steepest-

descent. For the benefit of the unfamiliar readers, here we briefly discuss some basics of the method

of steepest-descent.

We first consider the Laplace method. The method of steepest-descent can be thought of as the

Laplace method for complex functions. Suppose we are interested in the large t asymptotics of the

integral
∫

R
etf(x)dx where f : R → R is a smooth real function. Assume, furthermore, that f has a

unique maximum value obtained at x = xc (hence f ′(xc) = 0), and f ′′(xc) 6= 0. Then necessarily
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f ′′(xc) < 0, and for x close to xc, f(x) = f(xc) +
1
2f

′′(xc)(x − xx)
2 + O((x − xc)

3). Since f has a

unique maximum, we can choose a small interval I = [xc − ǫ, xc + ǫ] around xc so that the value of

the function f(x) for x outside this interval is strictly less than the minimum of f(x), x ∈ I. When

t → ∞, the value of etf(x) for x ∈ R \ I is exponentially smaller than etf(x), x ∈ I. From this, we

can imagine that
∫

R

etf(x)dx ≈
∫

I
etf(x)dx. (77)

This can be shown easily under some mild extra conditions on the behavior of f(x) as |x| → ∞.

Now in the small interval I = [xc − ǫ, xc + ǫ], we may approximate f by its Taylor expansion

f(xc) +
1
2f

′′(xc)(x− xx)
2, and hence it is plausible to expect that

∫

I
etf(x)dx ≈

∫ xc+ǫ

xc−ǫ
etf(xc)+

t
2
f ′′(xc)(x−xx)2dx. (78)

Indeed this can be shown to be true for very general functions f . Finally, the right-hand side can

be approximated by the integral over R,

∫ xc+ǫ

xc−ǫ
etf(xc)+

t
2
f ′′(xc)(x−xx)2dx ≈ etf(xc)

∫ ∞

−∞
e

t
2
f ′′(xc)(x−xx)2dx. (79)

because the last integral over R \ I is O(e−ct) for some c > 0. Combining (77), (78), and (79), and

evaluating the Gaussian integral (note that f ′′(xc) < 0), we obtain

∫

R

etf(x)dx ≈ etf(xc)

√

2π

−tf ′′(xc)
. (80)

Note that the method above can be applied without change to the integrals
∫

C etf(z)dz for a

general (smooth) contour C in the complex plane as long as f(z) is real-valued for z ∈ C.

Now suppose that we would like to evaluate the large t asymptotics of
∫

Σ etf(z)dz where Σ is a

contour in C and f : Σ → C is an analytic complex function. Write f(z) = u(z) + iv(z) where u

and v are real functions. Suppose that we were able to find a contour Σ′ such that the imaginary

part of f is a constant on Σ′: there is c ∈ R such that v(z) = c for all z ∈ Σ′. Then using the

Cauchy’s theorem, we can deform the contour Σ to Σ′ and the integral becomes eitc
∫

Σ′ e
tu(z)dz.

This integral can be evaluated asymptotically using the Laplace method if the function u(z) has

a unique maximum on Σ′. Thus we need to choose a contour Σ′ such that the imaginary part v

of f is a constant and the real part u of f has a critical point. Let us now find a condition for

such a contour. Since v is a constant on the contour, its derivative along the contour is zero. And

hence at the critical point zc of u, we should have f ′(zc) = 0 due to the Cauchy-Riemann equations.

Thus the desired contour Σ′ should pass through the critical point of f (in the complex sense).

Hence we first find the critical point(s) zc of f and then choose the contour Σ′ passing through zc
given by v(z) = constant = v(zc). Since the level curves of u and v are orthogonal (due to the

Cauchy-Riemann equation), u(z) decays as z travels away from zc along Σ′. (And this is the path

of the steepest-descent for u, and hence the method is called the method of steepest-descent.) After

we deform the original contour to the new contour, we apply the Laplace method.

26



If the function has isolated singularities, then one may need to pass through the singular points

whiling deforming the original contour to the curve of steepest-descent. In that case the contribution

from the singular points may be larger than that from the curve of steepest-descent. This happens

in case (b) and (c) in the previous section.

When we apply the Laplace method, it may happen that f ′′ also vanishes at the critical point.

Then the Gaussian integral (79) is changed to a different integral. This happens in the previous

section.

8 Appendix: The TW2 distribution

−5 0 5
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Normal distr.
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2
 distr.

Figure 11: The probability density functions of the TW2 and N (0, 1) distributions.

The TW2 (or complex Tracy-Widom) distribution can be computed from the solution of the

Painlevé II equation:

q′′ = sq + 2q3 (81)

with the boundary condition

q(s) ∼ Ai(s), as s → ∞. (82)
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The probability distribution f2(s), has pdf given by

f2(s) =
d

ds
F2(s), (83)

where

F2(s) = exp

(

−
∫ ∞

s
(x− s)q(x)2 dx

)

. (84)

These distributions can be readily computed numerically. See [18] for a simple solution and [10, 11]

for more accurate technique. The TW2 distribution has a mean of −1.771086807411 and a variance

of 0.8131947928329. The TW2 density is O(e−
4
3
|x|3/2) as x → +∞, and is O(e−c|x|3) as x → −∞

for any c < 1
12 unlike the Gaussian [48]. Figure 11 compares the ‘standard” TW2 distribution,

computed using the methods described in [10], to the standard (zero mean, unit variance) normal

distribution. Table 1 lists some quantiles of the TW2 distribution that the reader might find useful

in the context of hypothesis testing based on the distribution of L(m,n).

See [49, 1] for additional applications and context where the Tracy-Widom distributions arise.

α 1− α TW
−1
2 (1− α)

0.990000 0.010000 -3.72444594640057

0.950000 0.050000 -3.19416673215810

0.900000 0.100000 -2.90135093847591

0.700000 0.300000 -2.26618203984916

0.500000 0.500000 -1.80491240893658

0.300000 0.700000 -1.32485955606020

0.100000 0.900000 -0.59685129711735

0.050000 0.950000 -0.23247446976400

0.010000 0.990000 0.47763604739084

0.001000 0.999000 1.31441948008634

0.000100 0.999900 2.03469175457082

0.000010 0.999990 2.68220732168978

0.000001 0.999999 3.27858828203370

Table 1: The percentiles of the TW2 distribution computed using software described in [11].
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