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STATIONARY ANALYSIS OF THE SHORTEST QUEUE

PROBLEM

PLINIO S. DESTER, CHRISTINE FRICKER, AND DANIELLE TIBI

Abstract. A simple analytical solution is proposed for the stationary loss
system of two parallel queues with finite capacity K, in which new customers
join the shortest queue, or one of the two with equal probability if their lengths
are equal. The arrival process is Poisson, service times at each queue have ex-
ponential distributions with the same parameter, and both queues have equal

capacity. Using standard generating function arguments, a simple expression
for the blocking probability is derived, which as far as we know is original.
Using coupling arguments and explicit formulas, comparisons with related loss
systems are then provided. Bounds are similarly obtained for the average total
number of customers, with the stationary distribution explicitly determined on
{K, . . . , 2K}, and elsewhere upper bounded. Furthermore, from the balance
equations, all stationary probabilities are obtained as explicit combinations of
their values at states (0, k) for 0 ≤ k ≤ K. These expressions extend to the infi-
nite capacity and asymmetric cases, i.e., when the queues have different service
rates. For the initial symmetric finite capacity model, the stationary probabil-
ities of states (0, k) can be obtained recursively from the blocking probability.
In the other cases, they are implicitly determined through a functional equa-
tion that characterizes their generating function. The whole approach shows
that the stationary distribution of the infinite capacity symmetric process is
the limit of the corresponding finite capacity distributions. For the infinite
capacity symmetric model, we provide an elementary proof of a result by Co-
hen which gives the solution of the functional equation in terms of an infinite
product with explicit zeroes and poles.

1. Introduction

The join–the-shortest-queue (JSQ) policy is used for load-balancing purposes in
stochastic networks. Yet for systems involving such a mechanism, an exact sta-
tionary analysis is far from trivial. The simplest model with two queues, known as
two queues in parallel or join-the-shortest-queue model, has itself given rise to an
abundant literature. Most of it, from the first paper by Haight [20] to the complete
solution by Flatto and MacKean [16] and by Cohen [8], is devoted to the infinite ca-
pacity model. The latter indeed raises interesting issues of complex analysis. The
approach initiated by Kingman [25] is to characterize the invariant distribution
through its bivariate generating function F (x, y), which can be expressed in terms
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of the univariate functions F (x, 0) and F (0, y). Those are characterized via func-
tional equations. Using complex variable arguments, [25] proves that both functions
have a meromorphic continuation in the complex plane, and then determines their
poles and residues. As a by-product, using partial fraction expansion, the station-
ary probabilities of states (0, k) and (k, k) for k ∈ N are derived as infinite sums,
involving these poles and residues. Asymptotics are then derived for the stationary
probabilities (in the limit of large states) and for the waiting time distribution at
stationarity (in the heavy-traffic limit). In the same spirit, [16] and [8] further ob-
tain different expressions for F (x, 0) and F (0, y). In [16], those are formulated for
(x, y) on a particular Riemann surface, using a uniformizing variable. Asymptotics
are further provided for the stationary probabilities, improving those of [25], and for
the mean number of customers. In [8], both generating functions are represented as
infinite products, derived from their zeroes and poles by using the Weierstrass fac-
torization theorem. All stationary probabilities are then expressed as infinite sums
involving the poles and residues of F (x, 0) and F (0, y), generalizing the expressions
in [25]. Next, [9] extends Kingman’s results to the model where the queues have
two different service rates, determining the poles and residues of the meromorphic
functions of interest. The compensation approach (see [2, 3, 5]) produces explicit
expressions for the stationary probabilities as infinite series of product forms. It
more generally applies to a whole class of two-dimensional nearest-neighbor random
walks. The structure of this series representation is suited for approximations and
numerical evaluation. For JSQ, it is shown in [7] that the series derived via the
compensation method coincide with those given by the analytical approach. In [13],
Fayolle and Iasnogorodski characterize the meromorphic continuations of F (x, 0)
and F (0, y) through a Riemann-Hilbert boundary value problem. See also [14,
Chapter 10] and the references therein. From this description, Kurkova and Suhov
[28] obtain asymptotics for the stationary probabilities in a model where customers
join the shortest queue only with some given probability. For the same model, the
decay of stationary probabilities is analyzed via the matrix analytic method by Li et
al. [30] (see also references therein), through the Markov additive approach by Foley
and Mc Donald [17], in heavy traffic [36] and via large deviations [37] by Turner.
In [26], Knessl et al. derive heuristics from the balance equations. Other heuristic
approaches have been developed, aiming at numerical results, like the power series
algorithm (see Hooghiemstra et al. [22], Blanc [6]), that are quite accurate, but fail
to have a theoretical justification. Similar computational procedures are proposed
by Rao and Posner [33].

Bounds on the stationary probabilities and mean total number of customers are
derived by Halfin [21]. Van Houtum et al. [38] obtain bounds via stochastic compar-
ison of cost structures. For the JSQ model of n queues, Winston [43] proves that,
among policies that immediately assign customers to a queue, JSQ is optimal for
Poisson arrivals and exponential service times: It maximizes, in terms of stochastic
order, the number of customers served in a given time interval. Weber [41] extends
this result to a more general class of service times with non-decreasing hazard rate
and a general arrival process. In [42], Whitt exhibits counterexamples for general
service time distributions. For n queues, large deviation results are obtained by
Ridder and Schwartz [34] and Puhalskii and Vladimirov [32]. When the number
of queues n scales with the global arrival rate λn, Eschenfeldt and Gamarnik [12]
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study the behavior in the Halfin-Whitt regime, i.e., (1 − λn)
√
n → β. See also

references on the heavy-traffic regime therein.
Variants have also been investigated, like jockeying, where customers can change

queue during service (see, for example, [4]), or the shortest-queue-first model, where
they join the queue with minimum workload [19], or serve-the-longest-queue model,
SLQ, where one server moves between two queues, joining the longest one when
completing a service [15].

The finite capacity version of the shortest queue problem was first investigated
by Conolly [10] and then by Tarabia [35] who uses matrix analysis methods. Both
analyze the steady-state probabilities with a view to giving numerical results. Based
on singular perturbation expansions within the balance equations, Knessl and Yao
[27] derive asymptotics of the stationary probabilities as the capacity K gets large,
rescaling the state space into a size-one square. They obtain different behaviors
according to different regions of the state space, and their results are, on the whole,
numerically accurate even for small values of K.

The prime objective of the present paper is to derive simple expressions for the
steady-state probabilities of the JSQ system with finite capacity K. Since some
of the results remain valid for infinite capacities and non-equal service rates, the
scope has been extended to include those cases. This work is motivated by the
issue of approximating large real systems with a local choice strategy, such as
vehicle-sharing networks, as considered in [11]. It is classical that for a system of
N identical one-server queues with Poisson arrivals, if customers join the shortest
queue among two queues chosen at random, then in the mean-field limiting regime
of large N , the stationary number of customers per queue falls from exponential to
double-exponential decrease ([31, 40] and others). This demonstrates the so-called
power of two choice. Similar balancing policies could be used to improve resource
availability in bike-sharing systems. In this regard, a system where users return
bikes to the less loaded of two stations chosen at random among all the stations
has been studied in Fricker and Gast [18]. Obviously, only a local choice policy
makes sense in practice, but the underlying dynamics are analytically intractable.
To circumvent the difficulty, these can be handled by clustering the network into
groups of stations which can collaborate, say, for simplicity groups of two. Within
this framework, mean-field limits involve the stationary mean number of customers
of the typical object, that is, the JSQ model studied here.

The shortest queue problem is first considered for two one-server queues with
finite capacity K. A simple exact expression for the blocking probability, together
with the probability that a particular queue is empty, is obtained by adapting King-
man’s generating function method, here using the functional equation for F (0, y)
at some specially chosen values. This result extends to the case of an additional
constraint on the total number of customers admitted in the system. The blocking
probability is next quantitatively analyzed and compared, on the one hand, to the
loss probability of two independent M/M/1/K queues, and on the other hand,
to that of one unique two-server queue with double capacity, i.e., an M/M/2/2K
queue. The comparison is made through stochastic ordering and evaluating the
uniform distance between blocking probabilities. Asymptotics are also derived in
the different ranges of values of the parameters. The stationary number of cus-
tomers in the system is then analyzed. Part of its distribution is explicit, and its
mean is given accurate bounds, notably involving the explicit blocking probability.
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Independently of the blocking probability result, the balance equations are next
solved via a recursive procedure involving discrete convolution products. All sta-
tionary probabilities are then obtained as explicit combinations of their particular
values at states (0, k) for k = 0, . . . ,K. These expressions straightforwardly extend
to the models with either infinite capacity or different service rates, thus providing
a unified statement for the finite/infinite or symmetric/asymmetric models. In the
symmetric case, this makes it possible to prove that the stationary distribution of
the infinite capacity process, when ergodic, is the limit of that of the finite capacity
K model, as K goes to infinity. The unknown stationary probabilities of states
(0, k) –and (k, 0) for the asymmetrical case– are characterized through functional
equations. This alternative to the classical description of the stationary distribu-
tion through its generating function has the advantage that only F (0, y) is involved.
For the symmetric infinite capacity case, a short and elementary proof of the infi-
nite product representation of F (0, y) by Cohen [8] is given. This proof essentially
avoids the use of complex variable arguments by finding an obvious solution of the
functional equation and then proving uniqueness under a condition of analyticity
in some disk.

Let us mention that the whole analysis can be adapted to the dual serve-the-
longest-queue (SLQ) model. More precisely, when the capacity K of the queues
is finite, the two models are derived from each other by exchanging occupied and
vacant space in each queue. As a result, the stationary blocking probability of the
JSQ model is equal to the stationary probability of idleness of the server in the
corresponding SLQ model.

The JSQ model is a particular example of a non-homogeneous quasi-birth-and-
death process. Our expressions for the stationary probabilities as linear combina-
tions of those of “level zero” amount to identifying a set of rate matrices. Those
have entries of both signs, which excludes probabilistic interpretations. The method
consists in solving separately a homogeneous subsystem of the balance equations.
This is made possible, through convolution products, due to the absence of upward
transitions inside some contour. This technique can extend to other models with no
upward –or no downward– one-step transitions, except on a boundary, such as those
considered in [39]. It constitutes a simple alternative to the lattice path counting
procedure. Note that for JSQ, the specific positions of the upward jumps mean that
the reordered queue-length process is successively lumpable, as defined in [23]. In-
deed, the larger component can increase to some level n only through the entrance
state (n − 1, n). Yet, our analysis is entirely different from the successive lumping
algorithm, since we first solve the set of balance equations that do not involve the
one-step transitions toward the entrance states, while those are involved in building
accessory processes at each stage of the successive lumping algorithm. Moreover, it
seems that explicit formulas for the stationary probabilities are out of reach for the
latter approach. Note also that for JSQ with infinite capacity, there is no initial
stage to begin the algorithm. More generally, rate matrices for non-homogeneous
QBD are usually characterized through a recursive scheme that is only solved nu-
merically, requiring space truncation arguments when the set of levels is infinite
(see [24, 29]). The present direct approach to the invariant measure of JSQ is thus
original. It also differs radically from the compensation method. The latter indeed
derives successive approximations by a series of product form terms, while we ob-
tain finite sums of non-product terms. Those are explicit, except for coefficients
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given by the stationary probabilities along the axes, that are characterized through
either recursion, or a functional equation for their generating function. Regarding
JSQ, as far as we know from the literature, no previous work has thus addressed
its different variants together with the same approach.

The paper is organized as follows. Section 2 analyzes the symmetric finite capac-
ity model, first focusing on the blocking probability, then on the mean total number
of customers, and next characterizing the whole invariant distribution. Section 3
deals with the symmetric infinite capacity case, to which the last part of Section
2 is extended. Weak convergence of the finite capacity stationary distribution, as
K goes to infinity, is established under ergodicity of the infinite capacity process.
The alternative proof to the result of [8] is then provided. Finally, Section 4 states
similar characterizations of the invariant distribution for the asymmetric, finite or
infinite capacity models.

The symmetric model, which is the one mainly considered, consists of two one-
server queues, each having capacity K that may be finite or infinite. Service times
at both queues are exponentially distributed with the same parameter that can be
set equal to 1 without loss of generality. Customers arrive according to a Poisson
process with parameter 2ρ and join the shortest queue, or either queue with prob-
ability 1/2 if both are equal. If K < ∞, then when both files have length K, new
customers are rejected and definitively lost.

2. The finite capacity model

Here, the queues have the same finite capacityK (K ∈ N). Therefore, when both
queues have K customers, any new arriving customer is definitively rejected from
the system. Denoting by Li(t), for i = 1, 2 and t ≥ 0, the number of customers
at queue i at time t, the queue-length process (L1(t), L2(t))t≥0 is Markov with
state space SK = {0, . . . ,K}2. Its Q-matrix, denoted QK , is characterized by the
following jumps and rates, where e1 and e2 are the units vectors in R2 :

• for v = (k, k),

QK(v, v + e1) = QK(v, v + e2) = ρ 11{k<K}

QK(v, v − e1) = QK(v, v − e2) = 11{k>0}

• for v = (j, k) with j < k, and v′ = (k, j),

QK(v, v + e1) = 2ρ = QK(v′, v′ + e2)
QK(v, v − e1) = 11{j>0} = QK(v′, v′ − e2)
QK(v, v − e2) = 1 = QK(v′, v′ − e1)

,

as represented in Figure 1 –where by symmetry, the lower half-space is omitted.
The process is clearly irreducible, thus admitting a unique invariant probability

distribution πK , which is the object of interest in this section. By symmetry,

πK(j, k) = πK(k, j) for (j, k) ∈ SK ,

and the balance equations are reduced to

(1)





(
11{k>0} + ρ 11{k<K}

)
πK(k, k) = 2ρ 11{k>0} πK(k − 1, k)

+ 11{k<K} πK(k, k + 1), k = 0, . . . ,K,
(
11{j>0} + 1 + 2ρ

)
πK(j, k) = 2ρ 11{j>0} πK(j − 1, k) + πK(j + 1, k)

+ 11{k<K} πK(j, k + 1) + ρ 11{k=j+1}πK(j, j), 0 ≤ j < k ≤ K.
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Figure 1. Transition rates of Markov process (L1, L2)

2.1. Stationary blocking probability. The classical approach to the invariant
distribution for infinite K (see [8, 16, 25]) is through the bivariate generating func-
tion of the stationary queue-length vector. The same method will here be used
for K < ∞, leading to the determination of the stationary blocking probability
πK(K,K). Define for x, y ∈ C,

FK(x, y)
def
= E

(
xL1yL2−L111{L1≤L2}

)
=

∑

0≤j≤k≤K

πK(j, k)xjyk−j ,

where (L1, L2) denotes the queue-length vector at stationarity.
Proceeding as in [25], one can convert the balance equations into a functional

equation that characterizes FK . Note that, contrary to the infinite capacity case,
FK is here defined for all complex values of x and y. Apart from this notable
difference, the computation is similar to [25] and leads to the following relation:

(2)
(
y2 − 2(1 + ρ)xy + (1 + 2ρx)x

)
FK(x, y) = y(y − x)AK(y)

−
(
ρy2 + (1 + ρ)y − 1− 2ρx

)
xBK(x) + ρ xK+1y(y − 1)πK(K,K),

where AK and BK are univariate generating functions given by

AK(y) = FK(0, y) =

K∑

k=0

πK(0, k) yk and BK(x) = FK(x, 0) =

K∑

j=0

πK(j, j)xj .

[Relation (2) is identical to the one derived by Kingman for K = ∞, except for the
additional term here involving the blocking probability πK(K,K).]
FK is thus determined as a function of AK , BK and πK(K,K). We now use the

standard argument that whenever the left-hand side vanishes, the right-hand side
must also vanish. In particular,

y(y−x)AK(y) −
(
ρy2+(1+ρ)y−1−2ρx

)
xBK(x) + ρxK+1y(y−1)πK(K,K) = 0
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for all x, y ∈ C such that px(y) = 0, where px is defined for x ∈ C by

(3) px(Y )
def
= Y 2 − 2(1 + ρ)xY + (1 + 2ρx)x.

Now, for fixed x, denote by y and z the two (possibly equal) roots of px. Elimi-
nating BK(x) within both relations obtained for couples (x, y) and (x, z) yields

(
ρz2 + (1 + ρ)z − 1− 2ρx

)(
y(y − x)AK(y) + ρ xK+1y(y − 1)πK(K,K)

)
=

(
ρy2 + (1 + ρ)y − 1− 2ρx

)(
z(z − x)AK(z) + ρ xK+1z(z − 1)πK(K,K)

)
.

Using px(y) = 0, we get ρy2 + (1 + ρ)y − 1− 2ρx = (1 + 2ρx)
(
(1 + ρ)y − (1 + ρx)

)

and the analogue with z in place of y, so that for 1 + 2ρx 6= 0,

(4)
(
(1 + ρ)z − (1 + ρx)

)(
y(y − x)AK(y) + ρ xK+1y(y − 1)πK(K,K)

)
=

(
(1 + ρ)y − (1 + ρx)

)(
z(z − x)AK(z) + ρ xK+1z(z − 1)πK(K,K)

)
.

Next, on the one hand, we use y + z = 2(1 + ρ)x and again px(z) = 0 to get

(y−x)
(
(1+ρ)z−(1+ρx)

)
=
(
(1+2ρ)x−z

)(
(1+ρ)z−(1+ρx)

)
= (x−1)(ρx−z),

and the same with y and z exchanged. On the other hand, from relations yz =
(1 + 2ρx)x and y + z = 2(1 + ρ)x, we derive

z(z − 1)
(
(1 + ρ)y − (1 + ρx)

)
− y(y − 1)

(
(1 + ρ)z − (1 + ρx)

)
= (x− 1)(y − z).

Equation (4) then yields, for x 6= 1 and 1 + 2ρx 6= 0,

yAK(y)(ρx− z)− zAK(z)(ρx− y) = ρ xK+1(y − z)πK(K,K),

or equivalently, multiplying by 2(1 + ρ) and using again 2(1 + ρ)x = y + z,
(
ρy− (2+ ρ)z

)
yAK(y)−

(
ρz− (2+ ρ)y

)
zAK(z) = 2ρ(1+ ρ)xK+1(y− z)πK(K,K).

This equation is analogous to the one derived in [25] for K = ∞, in which case the
right-hand side is zero. One can go one step further, noting that,

y
(
ρy − (2 + ρ)z

)
= 2ρx

(
ρy − z − 1 + ρ

ρ

)
,

[using again px(y) = 0, together with yz = (1 + 2ρx)x]. We finally get that

(5) φ(y, z)AK(y)− φ(z, y)AK(z) = (1 + ρ)xK(y − z)πK(K,K)

for all x ∈ C \ {0, 1,−(2ρ)−1}, where y, z are the roots of px and

(6) φ(y, z) = ρy − z − 1 + ρ

ρ
, y, z ∈ C.

Now from continuity of the set of roots of a polynomial with respect to its coeffi-
cients, equation (5) extends to all complex values of x.

Using equation (5), the computation of πK(K,K) will be made possible thanks
to a particularly nice property. Indeed, for two special values of x, the two associ-
ated pairs of roots have a common element y, which is coupled, on one side, with
some z such that φ(z, y) = 0, and on the other side with 1, at which AK can be
independently evaluated.
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Theorem 1. For ρ > 0,

πK(K,K) =





(1− ρ)(2 − ρ)

ρ−2K + (1− ρ)(2ρ)−K − ρ(2− ρ)
for ρ /∈ {1, 2}

(
2K + 2−K

)−1
for ρ = 1

(
2− (K + 2)2−(2K+1)

)−1
for ρ = 2,

or equivalently,

(7) πK(K,K) =
2ρ2K

2
∑2K

k=0 ρ
k −∑K−1

k=0 (ρ/2)k
·

Proof. For x = 1/ρ2, the roots of px are y = 1/ρ and z = (2 + ρ)/ρ2, which satisfy
φ(z, y) = 0. Relation (5) then yields

(8) AK(1/ρ) = ρ−2KπK(K,K).

Now, 1/ρ is also a root of px for x = 1/2ρ, the other root here being 1. We then
get, from (5),

(2− ρ)AK(1)−AK(1/ρ) = (1− ρ)(2ρ)−KπK(K,K).

By summing both relations, we have that

(9) (2− ρ)AK(1) =
(
ρ−2K + (1 − ρ)(2ρ)−K

)
πK(K,K).

Another expression of AK(1) can be obtained, using the relations

(10) 2FK(x, y)−BK(x) = E

(
xmin(L1,L2)ymax(L1,L2)−min(L1,L2)

)

for x, y ∈ C, that result from symmetry, and

FK(x, x) = (1 + ρx)BK(x)− ρ xK+1πK(K,K), x ∈ C,

together with

(1− 2ρx)FK(x, 1) = AK(1)− 2ρxBK(x), x ∈ C,

that result from (2). In particular, for x = y = 1, one gets

2FK(1, 1)−BK(1) = 1,

FK(1, 1) = (1 + ρ)BK(1)− ρπK(K,K)

and

(1− 2ρ)FK(1, 1) = AK(1)− 2ρBK(1).

From the last three relations, one easily derives that

(11) AK(1) = 1− ρ
(
1− πK(K,K)

)
,

which, together with relation (9), yields
(
ρ−2K + (1− ρ)(2ρ)−K − ρ(2− ρ)

)
πK(K,K) = (1 − ρ)(2− ρ).

Since πK(K,K) is defined for all positive values of ρ, the first factor in the left-hand
side must vanish only at ρ = 1 or 2. The expression of πK(K,K) is thus determined
for ρ /∈ {1, 2}. Values at 1 and 2 are obtained by taking limits, using continuity
of πK(K,K) with respect to ρ > 0. Indeed, (πK(j, k), 0 ≤ j, k ≤ K) is continu-
ous with respect to ρ > 0, as the unique solution of a system of linear equations
with continuous coefficients, which consists of the balance equations together with∑

j,k πK(j, k) = 1.
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The alternate expression of πK(K,K), valid for all ρ, is derived by writing

ρ−2K + (1− ρ)(2ρ)−K − ρ(2− ρ) = ρ−2K
(
1 + (1− ρ)(ρ/2)K

)
− ρ(2− ρ)

= ρ−2K
(
1− (ρ/2)K + (2− ρ)(ρ/2)K

)
− ρ(2− ρ)

= (2 − ρ)ρ−2K

(
(ρ/2)K − ρ2K+1 +

1

2

K−1∑

k=0

(ρ/2)k

)

= (2− ρ)ρ−2K

(
(ρ/2− 1)

K−1∑

k=0

(ρ/2)k − (ρ− 1)

2K∑

k=0

ρk +
1

2

K−1∑

k=0

(ρ/2)k

)

= (1− ρ)(2− ρ)ρ−2K

(
2K∑

k=0

ρk − 1

2

K−1∑

k=0

(ρ/2)k

)
.

�

Remark 1. Note that the proof of Theorem 1 additionally provides, through equa-
tion (11), the stationary probability AK(1) that queue 1 (resp. 2) is empty.

Remark 2. The property, here used for y = 1/ρ, that equation px(y) = 0 has in
general two solutions x ∈ C for given y –because px(y) is a degree-two polynomial
with respect to x– will be used in the next section for building infinite chains of
coupled roots.

We can extend our result to a system where there is a constraint on the total
number of customers in the system, rather than separate constraints for each queue.
To solve both cases of even and odd total capacity, we need to consider the following
variant of our original model. Here again the queues have capacity K, but the
system cannot accept more than 2K−1 customers. The state space is thus reduced
to {0, . . . ,K}2 \ {(K,K)} and the transitions and rates are the same as previously,
except that those from (K−1,K) and (K,K−1) to (K,K) and vice versa no longer
exist. Denoting π̃K the stationary distribution, the stationary blocking probability
is given by π̃K(K−1,K)+π̃K(K,K−1) = 2 π̃K(K−1,K) and can be determined by
following the same steps as for πK(K,K). The result is given in the next theorem.

Theorem 2. For ρ > 0,

2 π̃K(K − 1,K) =
2ρ2K−1

2
∑2K−1

k=0 ρk −∑K−1
k=0 (ρ/2)k

=
(1 − ρ)(2− ρ)

ρ−(2K−1) + ρ(1 − ρ)(2ρ)−K − ρ(2− ρ)
if ρ 6= 1, 2.

Proof. It is similar to that of Theorem 1. Defining for x, y ∈ C,

F̃K(x, y)
def
=

∑

0≤j≤k≤K, (j,k) 6=(K,K)

π̃K(j, k)xjyk−j

ÃK(y) =

K∑

k=0

π̃K(0, k) yk and B̃K(x) =

K−1∑

j=0

π̃K(j, j)xj ,
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we prove the following relation, analogous to (2): For x, y ∈ C,

(
y2 − 2(1 + ρ)xy + (1 + 2ρx)x

)
F̃K(x, y) = y(y − x) ÃK(y)

−
(
ρy2 + (1 + ρ)y − 1− 2ρx

)
xB̃K(x) + 2ρ xKy(x− y) π̃K(K − 1,K),

from which we derive that, if y, z are the roots of any polynomial px, then

φ(y, z)ÃK(y)− φ(z, y)ÃK(z) = 2ρ (1 + ρ)xK(y − z) π̃K(K − 1,K).

The theorem then follows by using the same particular values for x as in the proof
of Theorem 1.

�

From Theorems 1 and 2, one can derive the stationary blocking probability of
a system of two identical M/M/1 queues under JSQ, but with the constraint that
the total number of customers in the system cannot exceed some value M . Indeed,
since under JSQ the maximum of the two queues can increase only when both are
equal, the associate queue-length Markov process is not irreducible: Defining

S′
M

def
=





{0, . . . ,M/2}2 if M is even,

{0, . . . , M+1
2 }2 \ {

(
M+1

2 , M+1
2

)
} if M is odd,

then for all M , the set S′
M is closed under the dynamics and the process eventually

ends its life in this set. Once in S′
M , the process behaves as the standard JSQ for

evenM , and as the variant in Theorem 2 for oddM . Since in both cases, S′
M is the

only absorbing irreducible component, the process has a unique stationary distribu-
tion given by that of JSQ (or its variant) in S′

M . The stationary blocking probability
is then given by πM/2(M/2,M/2) if M is even, and by 2 π̃M+1

2

(
M−1

2 , M+1
2

)
if M

is odd.
Note that the same result holds for a system of two identical queues with a

double constraint max(L1, L2) ≤ K and L1 + L2 ≤ M , where M < 2K. The
system eventually ends in the set S′

M , and has the same steady state as under the
sole constraint L1 + L2 ≤M .

2.2. Asymptotics of the blocking probability and comparison with related

models. Asymptotics of the blocking probabilities are given by Proposition 1. The
JSQ system is then compared with both systems of two independent M/M/1/K
queues and one two-server M/M/2/2K queue. Here all servers have rate 1, each
one-server queue has arrival rate ρ, while the two-server queue has arrival rate
2ρ. Such a comparison is natural. Indeed, the first system of two independent
queues corresponds to two queues without cooperation. Its blocking probability
is the common blocking probability of the two queues. (One may indeed consider
that customers arrive according to a global Poisson flow with parameter 2ρ and
choose either of the two queues with equal probability.) On the contrary, the
second system is the case of fully shared resources: The two servers serve the
total flow of customers. A stochastic ordering is established in Proposition 2. It
yields inequalities between the different blocking probabilities, whose differences
are, moreover, controlled by Proposition 3.
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Proposition 1. The following asymptotics hold. For fixed K,

πK(K,K) =

{
2ρ2K+O

(
ρ2K+1

)
as ρ→ 0,

1− 1/ρ+O
(
ρ−(K+1)

)
as ρ→ +∞.

For fixed ρ, as K tends to +∞,

πK(K,K) =






ρ2K(1− ρ)(2− ρ) +O
(
(ρ3/2)K

)
if ρ < 1/2,

ρ2K(1− ρ)(2− ρ) +O
(
ρ4K

)
if 1/2 ≤ ρ < 1,

(2K)−1 +O
(
K−2 2−K

)
if ρ = 1,

1− 1/ρ+O
(
ρ−2K

)
if 1 < ρ < 2,

1/2 +O
(
K 2−2K

)
if ρ = 2,

1− 1/ρ+O
(
(2ρ)−K

)
if ρ > 2.

Proof. It is easily obtained from the explicit expression for π(K,K) given in The-
orem 1. �

The JSQ model can be coupled with the M/M/2/2K queue in such a way that
the total number of customers always remains larger in JSQ than in the other
system. Actually, the difference between the two appears only when one of the
queues becomes empty in the JSQ model. In this case, one server idles in the JSQ
model, while, if some customer is waiting in the other queue, the server immediately
begins a new service in the coupled M/M/2/2K queue. The intuition is that
this difference is negligible if the traffic is not very low, and if it is, the blocking
probabilities are both very small. The conclusion of the section is that the blocking
probabilities for the JSQ policy and for the M/M/2/2K queue are indeed very
close for any range of values of ρ.

On the other hand, JSQ can be coupled with one M/M/1/K queue with arrival
rate 2ρ and service rate 2, in such a way that the latter queue dominates the
amount of customers exceeding K in JSQ. Here, the difference lies in the fact that
the total number of customers in JSQ can become smaller than K. Nevertheless,
the blocking probabilities, as functions of ρ, turn out to be uniformly close as K
gets large.

Let N(t) be the total number of customers present at time t in the JSQ system,
and let N(t), N(t) and N(t) be the numbers of customers at time t in, respectively,

an M/M/1/K queue with arrival rate 2ρ and service rate 2, an M/M/2/2K queue
with arrival rate 2ρ and service rate 1, and an M/M/1/2K queue with parameters
2ρ and 2.

Proposition 2. The four processes N,N,N and N can be coupled together in such
a way that the inequalities

(12) N(t) ≤ N(t) ≤ N(t) ≤ K +N(t)

are satisfied at all positive times t if they hold at t = 0.

Proof. The four processes can be built from four independent Poisson processes,
N i

a,N i
d, i = 1, 2, where N 1

a ,N 2
a each have parameter ρ, and N 1

d ,N 2
d , parameter 1.

For all systems, N 1
a +N 2

a represents the global flow of arrivals. More particularly
for the JSQ system, N i

a (i = 1, 2) is the part of the total flow that is directed
to file i in case of equality of the two files. For the M/M/1/K and M/M/1/2K
queues, N 1

d +N 2
d is the service process associated with the unique server. While for
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both JSQ and the M/M/2/2K queue, N 1
d and N 2

d represent the service processes
of each of the two servers. The following details are important for the coupling
(N,N). In JSQ, N 1

d (that is, one of the two servers) is dedicated to the queue
with maximal length, or to queue 1 in case of equality; while N 2

d (that is, the other
server) operates at the queue with minimal length, or at queue 2 when both are
equal. As for the M/M/2/2K process, N 1

d operates when there is at least one
customer present, while N 2

d only does when at least 2 customers are present. These
choices lead to the following expressions of the increments of the different processes.
First for JSQ,

dL1(t) = 11L1(t−)<L2(t−)

(
N 1

a (dt) +N 2
a (dt)

)
+ 11L1(t−)=L2(t−)<K N 1

a (dt)

− 11L2(t−)∨1≤L1(t−) N 1
d (dt) − 111≤L1(t−)<L2(t−) N 2

d (dt)

dL2(t) = 11L2(t−)<L1(t−)

(
N 1

a (dt) +N 2
a (dt)

)
+ 11L1(t−)=L2(t−)<K N 2

a (dt)

− 11L1(t−)<L2(t−) N 1
d (dt) − 111≤L2(t−)≤L1(t−) N 2

d (dt).

We get by summation

dN(t) = 11N(t−)<2K

(
N 1

a (dt) +N 2
a (dt)

)

− 11N(t−)≥1 N 1
d (dt)− 11L1(t−)∧L2(t−)≥1 N 2

d (dt)

Here and throughout the paper, we use the symbols ∨ and ∧ to denote, respectively,
the maximum and the minimum of two real numbers.

Next, for the three other processes,

dN(t) = 11N(t−)<2K

(
N 1

a (dt) +N 2
a (dt)

)
− 11N(t−)≥1 N 1

d (dt)− 11N(t−)≥2 N 2
d (dt),

dN(t) = 11N(t−)<2K

(
N 1

a (dt) +N 2
a (dt)

)
− 11N(t−)≥1

(
N 1

d (dt) +N 2
d (dt)

)
,

dN(t) = 11N(t−)<K

(
N 1

a (dt) +N 2
a (dt)

)
− 11N(t−)≥1

(
N 1

d (dt) +N 2
d (dt)

)
.

From these expressions, it is easily proved that, for any increasing point t of either
of the processes N i

a,N i
d, i = 1, 2, if the inequalities N(t−) ≤ N(t−) ≤ N(t−) ≤

K + N(t−) hold, then they are still valid at t. That is, the inequalities (12) are
preserved in time. Indeed, N,N,N and N have jumps ±1, and no upward jump of
one process can coincide with a downward jump of another one. So, for example, the
first inequality N(t−) ≤ N(t−) can turn into N(t) > N(t) only if N(t−) = N(t−)

and dN(t) > dN(t). Same for the other inequalities. But this clearly cannot

occur at increasing points of N 1
a or N 2

a (if some equality holds at t−, both the
considered processes undergo the same positive jumps from N 1

a or N 2
a ). As for

increasing points of N 1
d , they preserve both N ≤ N ≤ N , for analogous reasons,

and N ≤ N + K because N(t−) = N(t−) + K implies that N(t−) ≥ 1. Lastly,
at increasing points of N 2

d , the inequality N ≤ N is clearly preserved. The same

holds for inequality N ≤ N , because if N(t−) = N(t−) = L1(t
−) + L2(t

−) and
L1(t

−) ∧ L2(t
−) ≥ 1, then N(t−) ≥ 2. And N ≤ N +K is also preserved because

if N(t−) = N(t−) + K and N(t−) ≥ 1, then L1(t
−) + L2(t

−) ≥ K + 1, and so,
necessarily, L1(t

−) ∧ L2(t
−) ≥ 1. The proof of (12) is complete.

�
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For ρ > 0 andK ≥ 1, we denote by νK the geometric distribution with parameter
ρ on {0, · · · ,K}, and by ν′ the stationary distribution of the M/M/2/2K queue
with arrival rate 2ρ and service rates 1, given by

(13) ν′(0) =
1

2
∑2K

k=0 ρ
k − 1

and ν′(n) = 2ν′(0)ρn for 1 ≤ n ≤ 2K.

It results from Proposition 2 that

(14) ν2K(2K) ≤ ν′(2K) ≤ πK(K,K) ≤ νK(K).

Note that those inequalities are readily recovered from the following explicit
values of the different blocking probabilities: For ρ > 0,

νK(K) =
ρK

∑K
k=0 ρ

k
, ν′(2K) =

2ρ2K

2
∑2K

k=0 ρ
k − 1

and

πK(K,K) =
2ρ2K

2
∑2K

k=0 ρ
k −∑K−1

k=0 (ρ/2)k
·

The next proposition provides bounds on the uniform norms of νK(K)−πK(K,K)
and πK(K,K) − ν′(2K). Those show that πK(K,K), as a function of ρ, is at
distance of the order of K−1 from νK(K) and K−2 from ν′(2K). Note that νK(K)
is the blocking probability in the system of two independent M/M/1/K queues
with arrival rates ρ and service rates 1.

Proposition 3. For any K ≥ 1,

K + 2−K − 1

(K + 1)(2K + 2−K)
≤ sup

ρ>0

(
νK(K)− πK(K,K)

)
≤ 1

K + 1

2−1 − 2−K

(2K + 2−1)(2K + 2−K)
≤ sup

ρ>0

(
πK(K,K)− ν′(2K)

)
≤ 2

K2
·

Proof. The lower bounds are trivially obtained by taking values at ρ = 1. As for
the upper bounds, we first use the inequality

νK(K)− πK(K,K) ≤ νK(K)− ν2K(2K) (ρ > 0)

that results from (14). This yields, for ρ > 0,

νK(K)− πK(K,K) ≤ ρK
∑K

k=0 ρ
k
− ρ2K
∑2K

k=0 ρ
k
=

ρK
∑K−1

k=0 ρk(∑K
k=0 ρ

k
)(∑2K

k=0 ρ
k
)

≤ ρK
∑2K

k=0 ρ
k

≤ min

(
ρK

∑K
k=0 ρ

k
,

ρK
∑2K

k=K ρk

)
≤ 1

K + 1
.

Here, for ρ < 1 we have used ρK/(
∑K

k=0 ρ
k) = (

∑K
k=0 ρ

−k)−1, and for ρ ≥ 1,

ρK/(
∑2K

k=K ρk) = (
∑K

k=0 ρ
k)−1.

Now for πK(K,K)− ν′(2K), one can compute

πK(K,K) − ν′(2K) = ρ2K+1

∑K−2
k=0 (ρ/2)k(

2
∑2K

k=0 ρ
k − 1

)(
2
∑2K

k=0 ρ
k −∑K−1

k=0 (ρ/2)k
) ·
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Then using 2
∑2K

k=0 ρ
k − 1 ≥ 2

∑2K
k=0 ρ

k − 2 = 2ρ
∑2K−1

k=0 ρk, and

2

2K∑

k=0

ρk −
K−1∑

k=0

(ρ/2)k ≥
2K∑

k=0

ρk +

K−1∑

k=0

(
ρk − (ρ/2)k

)
≥

2K∑

k=0

ρk,

one gets

πK(K,K)− ν′(2K) ≤ ρ2K
∑K−2

k=0 (ρ/2)k

2
(∑2K−1

k=0 ρk
)(∑2K

k=0 ρ
k
) ·

We next consider two cases. First, if ρ < 3/2, then
∑K−2

k=0 (ρ/2)k ≤∑∞
k=0(3/4)

k =
4, so that

πK(K,K)− ν′(2K) ≤ 2

(
ρK

∑2K−1
k=0 ρk

)2

·

Analogously to the argument previously used for ν(K)− πK(K,K),

ρK
∑2K−1

k=0 ρk
≤ min

(
ρK

∑K
k=1 ρ

k
,

ρK
∑2K−1

k=K ρk

)
≤ 1

K
,

where the last step results from considering both cases ρ < 1 and 1 ≤ ρ < 3/2. One
gets, for ρ < 3/2,

πK(K,K)− ν′(2K) ≤ 2

K2
.

Now for ρ ≥ 3/2, using
∑K−2

k=0 (ρ/2)k ≤ ∑K−1
k=0 ρk and

2K−1∑

k=0

ρk = (1 + ρK)

K−1∑

k=0

ρk

gives

πK(K,K)− ν′(2K) ≤ ρ2K

2 (1 + ρK)
(∑2K

k=0 ρ
k
) ≤ 1

2 (1 + (3/2)K)
·

It is easily checked that
1

2 (1 + (3/2)K)
≤ 2

K2
holds for all K ≥ 1, and this com-

pletes the proof.
�

Figure 2 shows that, as regards the relative error on the blocking probability,
only the approximation by the M/M/2/2K queue is satisfactory for all values of
ρ. Nevertheless, for ρ > 1, as K grows, both approximations become accurate.

2.3. The total number of customers in the system. An upper bound on the
stationary mean total number of customers in the JSQ system is derived from the
following lemma. Note that the probabilities at values larger than or equal to K
are here explicit.

Lemma 1. The total number of customers NK at steady state in the JSQ model
is such that

P(NK = n) ≤ πK(K,K)

ρ2K
ρn, 0 ≤ n < K,

P(NK = n) =
πK(K,K)

ρ2K
ρn, K ≤ n ≤ 2K,

where πK(K,K) is given by Theorem 1.
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Figure 2. Ratios of blocking probabilities of the M/M/1/K and
M/M/2/2K queues with respect to the JSQ blocking probability
as a function of the arrival-to-service rate ratio ρ, for K = 5 and
K = 30.

Proof. From equation (10),

(15)

2K∑

n=0

P(NK = n)xn = 2FK(x2, x)−BK(x2).

Using equation (2) and the definition of AK , we can show that for x 6= 0, x 6= 1,
x 6= 1/ρ,

(16) 2FK(x2, x) −BK(x2) =

∑K
k=0 πK(0, k)xk − ρx2K+1πK(K,K)

1− ρx
.

Expanding the denominator of the right-hand side of equation (16) and rear-
ranging the sums, it holds that, for |x| < 1/ρ,

2K∑

n=0

P(NK = n)xn =
∑

n≥0

(
n∧K∑

k=0

πK(0, k)ρn−k

)
xn −

∑

n>2K

ρn−2KπK(K,K)xn

=

2K∑

n=0

(
n∧K∑

k=0

πK(0, k)ρ−k

)
ρnxn,(17)

where we have used equation (8) to cancel the terms which have n > 2K. Finally,
by comparing both sides of equation (17) it follows that, for 0 ≤ n ≤ 2K,

P(NK = n) =

(
n∧K∑

k=0

πK(0, k)ρ−k

)
ρn ≤ AK(1/ρ) ρn,

where we have equality if n ≥ K. Using equation (8) again ends the proof. �

Proposition 4. The stationary mean number E(NK) of customers in the system
can be bounded as follows, for ρ > 0, ρ 6= 1,

2ρ
(
1− (1 + 2K (1− ρ)) ρ2K

)

(1− ρ) (1 + ρ− 2 ρ2K+1)
≤ E(NK) ≤

(
2K(ρ− 1) + ρ−2K − 1

) ρ πK(K,K)

(ρ− 1)2
,
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where πK(K,K) is given by Theorem 1, and for ρ = 1,

K (2K + 1)

2K + 1/2
≤ E(NK) ≤ K (2K + 1)

2K + 2−K
.

Proof. The upper bound follows directly from Lemma 1 and the definition of
E(NK). The lower bound is simply the stationary mean number of customers in an
M/M/2/2K queue; see equation (13). It is smaller than E(NK) by the coupling ar-
gument introduced in Section 2.2. Bounds for ρ = 1 are obtained by extending the
previous expressions by continuity. Indeed, as mentioned in the proof of Theorem
1, (πK(j, k), 0 ≤ j, k ≤ K) is continuous with respect to ρ > 0. �

In Figure 3, we check the tightness of the bounds presented in Proposition 4.
The fact that the JSQ policy achieves a stationary mean number of customers very
close to that of the M/M/2/2K queue (lower bound) is remarkable. Furthermore,
when ρ → +∞, the difference between the upper and the lower bounds is of the
order of 4K(2ρ)−K−1 +O(ρ−K−2).
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Figure 3. Ratios of the upper and lower bounds with respect to
the stationary mean number of customers E(NK) in the system,
at equilibrium, for K = 5 and K = 30.

Remark 3. For K = ∞, 0 < ρ < 1 (which is the condition for existence of a
steady state), using Remark 7 of Section 3 that comes next, one can show that

E(N∞) ≤ ρ (2− ρ)

1− ρ
.

This is, in fact, a tighter upper bound and has a simpler form than the one presented
in [21], which is valid only for 1

2 ≤ ρ < 1 (see Figure 4).

To prove this inequality we need an equivalent form of Lemma 1 for the infinite
capacity case, which is

(18) P(N∞ = n) ≤ (2− ρ)(1 − ρ) ρn,

for 0 < ρ < 1, n ≥ 0. Then, the result about E(N∞) is immediate. To prove
equation (18), we start from

P(N∞ = n) =

(
n∑

k=0

π∞(0, k)ρ−k

)
ρn,
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which can be found by following the same steps as in Lemma 1, but for infinite
capacity. Now, Remark 7 in Section 3 will show that

∞∑

k=0

π∞(0, k)ρ−k = (2− ρ)(1− ρ),

from which equation (18) immediately follows. �

Regarding a lower bound for E(N∞), it is easily shown that the coupling argu-
ment between JSQ and the M/M/2 queue extends to infinite capacity. This yields
the lower bound presented in [21], which is given by 2ρ/(1 − ρ2). Figure 4 shows
the ratios between the different bounds and E(N∞).
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Figure 4. Ratios between the bounds and E(N∞). The dashed
curve corresponds to the bound derived in [21].

Note that Adan et al. [1] provide lower and upper bounds, in the infinite capacity
case, for the mean waiting time and mean number of customers. These bounds
result from stochastic ordering of JSQ with two related systems: the shortest queue
models with, respectively, threshold jockeying and threshold blocking. The authors
claim that those systems are easier to analyze, using the matrix geometric method
developed by Neuts, and provide numerical estimations.

2.4. The other stationary probabilities. The Markov process (L1(t), L2(t))t≥0

has the following particularity. Inside the upper triangle {(j, k) ∈ SK , j ≤ k}, it
has no upward jumps –or jumps to the north– except from sites (j, j) with j < K.
This makes it possible to solve the subsystem of balance equations at sites (j, k)
with j ≤ k − 2, in such a way as to express the stationary probabilities πK(j, k)
for j ≤ k − 1 as a function only of the unknown πK(0, k), k = 0, . . . ,K. Using the
remaining balance equations, the stationary probabilities πK(j, j) are derived in a
similar form and the πK(0, k), k = 0, . . . ,K, are finally characterized recursively.
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In the sequel, the symbol ∗ will denote the discrete convolution product, defined
for any complex-valued functions ϕ and ψ on N by

(ϕ ∗ ψ)(n) =
n∑

m=0

ϕ(m)ψ(n−m), n ∈ N,

and for k ≥ 1, ϕ∗k represents the k-fold convolution of ϕ with itself. The following
relation will be used

(19) τ(ϕ ∗ ψ) = (τϕ) ∗ ψ + ϕ(0)τψ,

for any ϕ and ψ on N, where τ denotes the translation operator on C
N, defined by

(τϕ)(n) = ϕ(n+ 1), n ∈ N.

Theorem 3. (i) For 0 ≤ j < k ≤ K,

(20) πK(j, k) =

K∑

l=k

πK(0, l)
(
g∗(l−k+1)(j)− g∗(l−k+1)(j + 1)

)

and

πK(k, k) = −1

ρ

K∑

l=k+1

πK(0, l) g∗(l−k)(k + 1) 0 ≤ k < K,

where

g(i) = −ξ
i
+ − ξi−
ξ+ − ξ−

(i ∈ N) and ξ± = 1 + ρ±
√
1 + ρ2.

(ii) The stationary probabilities πK(0, l) for l = 0, . . . ,K are characterized by
the following relations

(21) πK(0,K) =
πK(K,K)

2ρ (g(K − 1)− g(K))

and for k = 0, . . . ,K − 1,

(22)

K∑

l=k

πK(0, l)
(
g∗(l−k+1)(k + 2)− (2 + ρ) g∗(l−k+1)(k + 1)

)
= 0

Proof. The balance equation for each site (j, k) with j ≤ k − 2 is

πK(j + 1, k) −
(
11{j>0} + 1 + 2ρ

)
πK(j, k) + 2ρ 11{j>0} πK(j − 1, k)

= −11{k<K} πK(j, k + 1).

For k = K, the right-hand side is zero and equations at 1 ≤ j ≤ K − 2 amount
to a homogeneous two-step linear recursion relation, which is solved in terms of the
roots ξ± of the polynomial X2 − 2(1 + ρ)X + 2ρ. Using the boundary condition
given by the balance equation at (0,K), this finally yields, for 0 ≤ j ≤ K − 1,

(23) πK(j,K) = πK(0,K)
(ξ+ − 1)ξj+ + (1 − ξ−)ξ

j
−

ξ+ − ξ−

= πK(0,K)
(
g(j)− g(j + 1)

)
.

The value of πK(0,K) is actually known from πK(K,K), given by Theorem 1,
together with the balance equation at (K,K) : πK(K,K) = 2ρ πK(K − 1,K) and
formula (23) at j = K − 1. This leads to (21).
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We now solve the balance equations at (k, j), for some fixed k < K and 0 ≤ j ≤
k − 2. First, from the definition of g as a linear combination of the two sequences
(ξj+) and (ξj−) we have that

(24) τ2g − 2(1 + ρ) τg + 2ρ g = 0.

Convolution by arbitrary ψ ∈ CN yields

(25) τ2(g ∗ ψ)− 2(1 + ρ) τ(g ∗ ψ) + 2ρ g ∗ ψ = − τψ.

Here we have used relation (19), together with g(0) = 0 and g(1) = −1, which
imply

(τg) ∗ ψ = τ(g ∗ ψ) and (τ2g) ∗ ψ = τ2(g ∗ ψ) + τψ.

In particular, for ψ defined by

ψ(j) = πK(j, k + 1) for 0 ≤ j ≤ k − 1, arbitrary for j ≥ k,

we get a two-step linear recursion for u
def
= g ∗ ψ, or, abusing notation, u = g ∗

πK(·, k + 1):

u(j + 1)− 2(1 + ρ)u(j) + 2ρu(j − 1) = − πK(j, k + 1) for j = 1, . . . , k − 2.

From the balance equations the same relations hold with πK(· , k) in place of u, so
both functions restricted to {0, . . . , k− 1} must differ only by some linear combina-

tion of the two sequences (ξj+) and (ξj−). Using the balance equation at (0, k), one
finally gets, for j = 0, . . . k − 1,

πK(j, k) = πK(0, k)
(
g(j)− g(j + 1)

)
+
(
πK(·, k + 1) ∗ g

)
(j),

or in other words,

πK(· , k) = πK(0, k)(g − τg) + πK(·, k + 1) ∗ g.
Iteration, together with relation (19), yields for k ∈ {0, . . . , k − 1}

π(· , k) = π(· ,K) ∗ g∗(K−k) +

K−1∑

l=k

π(0, l) · (g − τg) ∗ g∗(l−k).

Here g∗(0)(0) = 1 and g∗(0)(j) = 0 for j ≥ 1. Finally using (23) proves (20).
To derive the diagonal values πK(k, k), it is convenient to use the following

relation

(26) πK(k, k) =
1

ρ

k∑

j=0

πK(j, k + 1), k = 0, . . . ,K − 1,

that results from summing up all balance equations in the square {0, . . . , k}2. In-
deed, for any subset D of the state space SK , summation of the balance equations
at sites in D yields

∑

(l,l′)∈D×(SK\D)

πK(l)QK(l, l′) =
∑

(l,l′)∈(SK\D)×D

πK(l)QK(l, l′).

The simple form of the relation for D = {0, . . . , k}2 is due to the fact that there
are only two jumps to the outside of D, namely, from (k, k) to (k, k + 1) and to
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(k + 1, k). Relations (26) and (20) yield

πK(k, k) =
1

ρ

K∑

l=k+1

πK(0, l)

k∑

j=0

(
g∗(l−k)(j)− g∗(l−k)(j + 1)

)

=
1

ρ

K∑

l=k+1

πK(0, l)
(
g∗(l−k)(0)−g∗(l−k)(k+1)

)
= −1

ρ

K∑

l=k+1

πK(0, l) g∗(l−k)(k+1)

since g(0) = 0 implies g∗l(0) = 0 for all l ≥ 1. Part (i) of the theorem is proved.
As for (ii), relation (21) has already been proved. Next, using relation (26)

together with the balance equation at (k, k), one gets for 0 < k < K,

(27) πK(k − 1, k) =
1

2ρ2


πK(k, k + 1) + (1 + ρ)

k−1∑

j=0

πK(j, k + 1)


 .

Now, using (20) on both sides, we get (recall that g∗l(0) = 0 for l ≥ 1)

2ρ2
K∑

l=k

πK(0, l)
(
g∗(l−k+1)(k − 1)− g∗(l−k+1)(k)

)

= −
K∑

l=k+1

πK(0, l)
(
ρ g∗(l−k)(k) + g∗(l−k)(k + 1)

)
,

or, equivalently,

K∑

l=k

πK(0, l)
(
2ρ2
(
g∗(l−k+1)(k − 1)− g∗(l−k+1)(k)

)

+ 11{l>k}

(
ρ g∗(l−k)(k) + g∗(l−k)(k + 1)

))
= 0.

This relation can be rewritten as (22) by using relation (25), here with g∗l for l ≥ 1
in place of arbitrary ψ. Indeed, (25) together with (24) gives

(28) g∗(l+1)(k+ 2)− 2(1+ ρ) g∗(l+1)(k+1)+ 2ρ g∗(l+1)(k) = −11{l>0} g
∗l(k+1),

for all k ∈ N. It results that, for k > 0,

− 11{l>0}

(
ρ g∗l(k) + g∗l(k + 1)

)

= ρ g∗(l+1)(k + 1)− 2ρ (1 + ρ) g∗(l+1)(k) + 2ρ2 g∗(l+1)(k − 1)

+ g∗(l+1)(k + 2)− 2(1 + ρ) g∗(l+1)(k + 1) + 2ρ g∗(l+1)(k)

= g∗(l+1)(k + 2)− (2 + ρ) g∗(l+1)(k + 1) + 2ρ2
(
g∗(l+1)(k − 1)− g∗(l+1)(k)

)
.

We then derive (22). The proof of the theorem is complete. �

Remark 4. The functional equation (5) provides an alternative to (ii) of Theorem 3
by characterizing the sequence (π(0, k), 0 ≤ k ≤ K) through its generating function
AK . Indeed, since AK is a degree K polynomial, it is determined by its values at
K + 1 different points. Now, as will be clear in the next section, one can build an
infinite sequence (vn, n ≥ 1), in which all terms are different, and such that

v1 =
1

ρ
, v2 = 1 and for n ≥ 1, vn and vn+1 are the roots of some px.



STATIONARY ANALYSIS OF THE SHORTEST QUEUE PROBLEM 21

Moreover, φ(vn+1, vn) 6= 0 for all n ≥ 1. So, from the initial value AK(1/ρ) =
ρ−2KπK(K,K), where πK(K,K) is given by Theorem 1, iterating equation (5)
determines recursively all the AK(vn), hence AK .

To make our results as explicit as possible, we now give expressions for the
convolution powers g∗k.

A first expression of g∗k for k ≥ 1 can be obtained from g = (ξ−−ξ+)−1(h+−h−),
where h+ and h− denote the following elementary functions on N

h+(j) = ξj+ and h−(j) = ξj−, j ∈ N.

We get, for k ≥ 1,

g∗k = (ξ− − ξ+)
−k

k∑

l=0

(−1)l
(
k

l

)
h
∗(k−l)
+ ∗ h∗l− .

Now for k ≥ 1, h∗k± can be formulated explicitly as

(29) h∗k+ (j) =

(
j + k − 1

k − 1

)
ξj+ and h∗k− (j) =

(
j + k − 1

k − 1

)
ξj−, j ∈ N,

as is easily proven recursively, using the relation

j∑

i=0

(
i+ p

p

)
=

(
i+ p+ 1

p+ 1

)
, j, p ∈ N.

As a result, for k ≥ 1 and j ∈ N,

g∗k(j) = (ξ− − ξ+)
−k

((
j + k − 1

k − 1

)
ξj+ + (−1)k

(
j + k − 1

k − 1

)
ξj−

+

k−1∑

l=1

(−1)l
(
k

l

) j∑

i=0

(
i+ k − l− 1

k − l − 1

)(
j − i+ l − 1

l − 1

)
ξi+ξ

j−i
−

)
.

A more concise expression can be obtained by using the alternative relation

g(j) = −(h+ ∗ h−)(j − 1) for j ≥ 1 and g(0) = 0.

Indeed for j ≥ 1,

g(j) = −(ξ+ − ξ−)
−1(ξj+ − ξj−) = −

j−1∑

i=0

ξi+ξ
j−1−i
− = −

j−1∑

i=0

h+(i)h−(j − 1− i).

Denote by σ the operator on CN defined by

(σf)(j) = f(j − 1) for j ≥ 1 and (σf)(0) = 0,

for any complex-valued function f on N. Then g can be written as

g = −σ (h+ ∗ h−).
Note that σ commutes with convolution : σ(ϕ ∗ ψ) = (σϕ) ∗ ψ for any ϕ and ψ
defined on N. One then gets

g∗k = (−1)kσk(h∗k+ ∗ h∗k− ),
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that is,

g∗k(j) =






(−1)k(h∗k+ ∗ h∗k− )(j − k) for j ≥ k

0 for j < k.

Using (29) finally gives

g∗k(j) = (−1)k
j−k∑

i=0

(
i+ k − 1

k − 1

)(
j − i− 1

k − 1

)
ξi+ ξ

j−k−i
− for j ≥ k.

3. The infinite capacity model

The model with two infinite capacity queues is now considered. Here, no rejection
can occur. The queue-length process is Markov with state space N

2. Its Q-matrix
coincides at each (j, k) ∈ N2 with any of the matrices QK with K > max(j, k). The
process is ergodic under the condition ρ < 1, which will be assumed to be satisfied.
By symmetry of the dynamics, the invariant distribution π satisfies

π(j, k) = π(k, j) for j, k ∈ N,

together with the following set of reduced balance equations




(
11{k>0} + ρ

)
π(k, k) = 2ρ 11{k>0} π(k − 1, k) + π(k, k + 1), k ≥ 0,

(
11{j>0} + 1 + 2ρ

)
π(j, k) = 2ρ 11{j>0} πK(j − 1, k) + π(j + 1, k)

+ π(j, k + 1) + ρ 11{k=j+1}π(j, j), 0 ≤ j < k.

(30)

The following extension of Theorem 3 holds.

Theorem 4. The invariant distribution π satisfies the following.

π(j, k) =

2k−1∑

l=k

π(0, l) ·
(
g∗(l−k+1)(j)− g∗(l−k+1)(j + 1)

)
for 0 ≤ j < k,

π(k, k) = −1

ρ

2k+1∑

l=k+1

π(0, l) g∗(l−k)(k + 1) for k ∈ N.

Proof. The balance equations at (j, k) with 0 ≤ j ≤ k− 2 are the same as for finite
K with K > k. Thus, the same recursion relation as in the proof of Theorem 3 :

π(j, k) = π(0, k)
(
g(j)− g(j + 1)

)
+
(
π(·, k + 1) ∗ g

)
(j)

holds for j = 0, . . . k−1. As in the finite capacity case, this relation can be iterated
from some fixed level k, here up to any K > k. One gets

π(· , k) = π(· ,K) ∗ g∗(K−k) +

K−1∑

l=k

π(0, l) · (g − τg) ∗ g∗(l−k) on {0, . . . , k − 1}.

Now, taking the limit as K → ∞ is simple, since g∗m(j) = 0 if j < m, hence

(g − τg) ∗ g∗m(j) = 0 if 0 ≤ j < m.
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Actually, for K ≥ 2k (so that K − k > k − 1), the expression reduces to

π(j, k) =
2k−1∑

l=k

π(0, l) ·
(
(g − τg) ∗ g∗(l−k)

)
(j)

=

2k−1∑

l=k

π(0, l) ·
(
g∗(l−k+1)(j)− g∗(l−k+1)(j + 1)

)

for 0 ≤ j < k. Alternatively, one can equivalently write

π(j, k) =

∞∑

l=k

π(0, l) ·
(
g∗(l−k+1)(j)− g∗(l−k+1)(j + 1)

)

or

π(j, k) =

j+k∑

l=k

π(0, l) ·
(
g∗(l−k+1)(j)− g∗(l−k+1)(j + 1)

)
.

The second part of the theorem is derived, as for finite K, from relation (26), that
also holds here, for π and any k ∈ N.

�

There is no equivalent here to part (ii) of Theorem 3, because there is no “top-
value” π(0,K) to start from. Actually, if one proceeds as in the proof of (22), the
resulting system of equations that relate together the π(0, k)’s no longer determines
those values uniquely –it even has an infinite-dimensional set of solutions.

Nevertheless, the stationary probabilities π(0, k) have been characterized in the
literature, through their generating function

A(y) =

∞∑

k=0

π(0, k) yk, y ∈ C.

The most explicit formulation of A(y) is given in [8], through an infinite product. It
is recalled below as Theorem 6. An original, simple proof is here moreover proposed,
that reduces the use of complex analysis tools to one uniqueness argument.

Remark 5. The expressions for π(j, k) for j < k in Theorem 4 have the follow-

ing equivalent formulation: Defining G(z) =

∞∑

j=0

g(j) zj =
−z

1− 2(1 + ρ)z + 2ρz2

for z ∈ C, the generating function given, for fixed k ≥ 1, by

k−1∑

j=0

π(j, k) zj (z ∈ C)

consists of the first k terms of the following generating function:

∞∑

j=0

zj
2k−1∑

l=k

π(0, l)·
(
g∗(l−k+1)(j)− g∗(l−k+1)(j + 1)

)
=

(z − 1)G(z)

z

2k−1∑

l=k

π(0, l)G(z)l−k,

or equivalently of

Hk(z)
def
=

(z − 1)G(z)

z

∞∑

l=k

π(0, l)G(z)l−k,



24 S. DESTER, FRICKER, AND TIBI

since terms with index l ≥ 2k in Hk(z) have a factor zk, due to G(0) = g(0) = 0.
From this, one can recover the asymptotics obtained by Kingman in [25] :

π(j, k) ∼ C(2 + ρ)j−kρ2k and π(k, k) ∼ C′ρ2k,

for two constants C and C′, as k, j grow to infinity with j < k. The second relation
can be derived from the first one by using the balance equations at (k, k). As for
π(j, k) for j < k, the asymptotic expression results from partial fraction decom-
position of the meromorphic continuation of A, for which the pole with smallest
modulus is (2 + ρ)/ρ2 (see [25, 8] or Theorem 6 below), together with the following
computation:

G(z)

z

(
G(z)− 2 + ρ

ρ2

)−1

=
ρ

2(2 + ρ)

((
z − 1

2 + ρ

)(
z − 2 + ρ

2ρ

))−1

,

noting that 1/(2 + ρ) is the smaller pole in the last rational expression.

Classically, the starting point of the analysis is a functional equation satisfied by
A, that was first derived in [25] and is stated below as Theorem 5. It is analogous
to equation (5) of the finite capacity case, for which we have followed the same
steps as Kingman. Other authors ([16, 8]) rather use the relation between A and
B, where

B(x) =
∞∑

k=0

π(k, k)xk, x ∈ C,

that is the analogue for infinite capacity of our relation between AK and BK –from
which (5) was derived by eliminating BK . But in our opinion, this approach makes
things less readable.

Theorem 5. (Kingman)
(i) A(y) is defined for all y ∈ C such that |y| < 1 + 2ρ.
(ii) For x in some neighborhood of 0 in C, the roots y, z of the polynomial px

defined in (3) satisfy

(31) A(y)φ(y, z) = A(z)φ(z, y),

where φ is given by (6).

Proof. For k ∈ N, define Tk =

∞∑

j=0

π(j, j + k) =
∑

h−j=k

π(j, h).

By summing all balance equations in the domain {(j, h) ∈ N2, h − j ≤ k} for
k ≥ 1, one gets :

(32) (1 + 2ρ)Tk+1 = Tk − π(0, k) for k ≥ 1,

from which it results that

(1 + 2ρ)Tk+1 < Tk for k ≥ 1,

so that
∞∑

k=0

Tk r
k < +∞ if 0 ≤ r < 1 + 2ρ.

Now (i) follows from inequalities π(0, k) < Tk for k ≥ 1, that also result from (32).
The proof of (ii) –see [25]– is similar to that of equation (5). �
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Note that for k = 0 equation (32) is replaced by

(1 + 2ρ)T1 = (1 + ρ)T0 − π(0, 0).

Summing all equations from k = 0 to infinity yields

(1 + ρ)T0 −A(1) = 2ρ

∞∑

k=1

Tk.

Besides, since equation (26) is still valid, here for all k ∈ N, with π in place of πK ,
we first get by summation over k ∈ N

∑

j=k

π(j, k) =
1

ρ

∑

0≤j<k

π(j, k),

and then using 1 =
∑

(j,k)∈N2

π(j, k) =
∑

j=k

π(j, k) + 2
∑

0≤j<k

π(j, k) ,

T0 =

∞∑

k=0

π(k, k) =
1

1 + 2ρ
and

∞∑

k=1

Tk =
∑

0≤j<k

π(j, k) =
ρ

1 + 2ρ
·

Thus A(1) is determined and given by

(33) A(1) = 1− ρ.

In view of the next convergence result, it is convenient to complete Theorem 5
with a uniqueness result which proof is contained in the proof of Theorem 6 that
concludes this section.

Lemma 2. A(y) is the unique analytic function in the domain |y| < 1 + 2ρ that
satisfies (ii) of Theorem 5 and

A(1) = 1− ρ.

The following result is a consequence of Theorem 3, Theorem 4 and Lemma 2.
Here, πK (for K ∈ N) is considered as a measure on N2.

Corollary 1. For ρ < 1, πK converges weakly to π as K goes to infinity.

Proof. Assuming that ρ < 1, we prove that for each (j, k) ∈ N2, πK(j, k) converges
to π(j, k) as K tends to infinity. In view of Theorem 3 (i) and Theorem 4, it is
enough to show that for each l ∈ N, limK→∞ πK(0, l) = π(0, l). Note indeed that
since g∗m(j) = 0 for j < m, Theorem 3 (i) can be written, for 0 ≤ j < k ≤ K, as

πK(j, k) =

(2k−1)∧K∑

l=k

πK(0, l) ·
(
g∗(l−k+1)(j)− g∗(l−k+1)(j + 1)

)
,

and πK(k, k) = −1

ρ

(2k+1)∧K∑

l=k+1

πK(0, l) g∗(l−k)(k + 1) for 0 ≤ k ≤ K.

We now set πK(0, l) = 0 for l > K and define, for K ∈ N, the probability measure
qK on N by

qK(l) =
πK(0, l)

AK(1)
(l ∈ N).
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Using equation (5) with x = 1 (for which the roots of px are 1 and 1 + 2ρ) yields

AK(1 + 2ρ) =
(1 + ρ)AK(1)− 2ρ2πK(K,K)

(1− ρ)(1 + 2ρ)
.

Together with equation (11) and limK→∞ πK(K,K) = 0 for ρ < 1 (see Proposition
1 in Section 2.2), this gives the following limits:

lim
K→∞

AK(1) = 1− ρ and lim
K→∞

AK(1 + 2ρ) =
(1 + ρ)

(1 + 2ρ)
.

In particular, one gets M
def
= supK AK(1 + 2ρ) < ∞ and δ

def
= infK AK(1) > 0.

Then, qK(l) ≤ (1 + 2ρ)−lAK(1 + 2ρ)/AK(1) ≤ M
δ (1 + 2ρ)−l for K, l ∈ N, so that

lim
L→∞

sup
K

∞∑

l=L

qK(l) = 0.

It then results from Prokhorov’s theorem that the sequence of probability measures
(qK) is tight.

Now consider any weakly converging subsequence of (qK) and denote by q its
limit. For simplicity, we abusively denote qK the generic term of this subsequence.
Weak convergence implies that for z ∈ C with |z| < 1,

Q(z)
def
=

∞∑

l=0

q(l) zl = lim
K→∞

∞∑

l=0

qK(l) zl = lim
K→∞

AK(z)

AK(1)
,

and so, for |z| < 1, limK→∞AK(z) = (1 − ρ)Q(z). Taking the limit K → ∞ in
equation (5) and using again limK→∞ πK(K,K) = 0 then gives

φ(y, z)Q(y)− φ(z, y)Q(z) = 0

if |y| < 1, |z| < 1 and y, z are the roots of some polynomial px. Now Q is analytic
in the domain |z| < 1 + 2ρ, since Fatou’s lemma gives
∞∑

l=0

q(l)(1+2ρ)l ≤ lim
K→∞

∞∑

l=0

qK(l)(1+2ρ)l = lim
K→∞

AK(1 + 2ρ)

AK(1)
=

(1 + ρ)

(1− ρ)(1 + 2ρ)
<∞.

The function (1−ρ)Q then satisfies the two conditions of Lemma 2 that characterize
A. So (1− ρ)Q = A, that is, (1− ρ)−1π is the only possible limit of a subsequence
of (pK). By the tightness property, it results that (pK) converges to (1− ρ)−1π, or
else, that (πK) converges to π.

�

Some notations and preliminary observations are now required in order to for-
mulate Cohen’s result. First define

C = {(y, z) ∈ C
2, ∃x ∈ C, px has roots y and z}

= {(y, z) ∈ C
2, ∃x ∈ C, y + z = 2(1 + ρ)x and yz = (1 + 2ρx)x}
= {(y, z) ∈ C

2, 2(1 + ρ)2yz = (y + z) (1 + ρ+ ρ(y + z))}.
C is a Riemann surface which is invariant under the symmetry (y, z) 7→ (z, y). Let
define a and b by

a =
1 + ρ

2 (1 + ρ2)
and b =

1

2
√
1 + ρ2
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and note that 0 < b < a. Then C is equivalently characterized by the following
equation

(34)
(2a− y − z)2

a2
− (y − z)2

b2
= 4.

C also has a parametric description, as

(35) C =
{
(a− a cosh θ + b sinh θ, a− a cosh θ − b sinh θ), θ ∈ C

}
,

in terms of the hyperbolic functions cosh and sinh with complex variable θ

cosh(θ) =
eθ + e−θ

2
and sinh(θ) =

eθ − e−θ

2
, θ ∈ C.

We have here used the following equivalence, for (u, v) ∈ C2,

u2 − v2 = 1 ⇐⇒ ∃ θ ∈ C, (u, v) = (cosh θ, sinh θ).

Now starting from any initial couple (y, z) ∈ C, one can built a chain of couples
in C. By this we mean that there is a unique sequence (y(n))n∈Z of complex numbers
that satisfies the following two conditions.

(1) y(0) = y, y(1) = z and
(2) for all n ∈ Z, y(n−1) and y(n+1) are the two (possibly equal) solutions z of

equation (y(n), z) ∈ C, that is, of equation (34) with y(n) in place of y.

This results from the fact (see Remark 2) that for given y, equation px(y) = 0 has
two (possibly equal) solutions x ∈ C.

Along such a chain, for n ∈ Z, y(n) and y(n+1) are the roots of some px(n) . Or
reversing roles, x(n−1) and x(n) are the roots of px(y

(n)) = 0. Recall that

px(y) = y2 − 2(1 + ρ)xy + (1 + 2ρx)x = 2ρ x2 −
(
2(1 + ρ) y − 1

)
x+ y2,

so that the x(n)’s and y(n)’s are related through the following equations for n ∈ Z :

y(n) + y(n+1) = 2(1 + ρ)x(n) and x(n−1) + x(n) = (2ρ)−1
(
2(1 + ρ) y(n) − 1

)
.

From this, one can derive (by summing two consecutive equations of the first type,
and next using the second equation) that (y(n))n∈Z satisfies the two-step recursion

(36) y(n+1) − 2
1 + ρ+ ρ2

ρ
y(n) + y(n−1) = −1 + ρ

ρ
, n ∈ Z,

which is easily solved, noting that the polynomial X2 − 2
(
ρ−1 + 1 + ρ

)
X + 1 has

roots (a+b)/(a−b) and (a−b)/(a+b). We get the following formulation of Lemma
3 of [25].

Lemma 3. (Kingman)
For any (y, z) ∈ C, the associate sequence (y(n))n∈Z satisfies

y(n) = a+ α(y, z)

(
a+ b

a− b

)n

+ β(y, z)

(
a− b

a+ b

)n

, n ∈ Z,

where α(y, z), β(y, z) are such that α(y, z)β(y, z) = (a2 − b2)/4 and given by

α(y, z) =
a− b

4ab

(
a(z−y)+b(z+y)−2ab

)
, β(y, z) =

a+ b

4ab

(
a(y−z)+b(z+y)−2ab

)
.
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Remark 6. For given y, there are only two (possibly equal) chains with y(0) = y,
corresponding to the two possible choices of y(1). Those chains are equal up to
symmetry n 7→ −n.

It is easily proved using equation 2(1 + ρ)2yz = (y + z) (1 + ρ+ ρ(y + z)) of C,
that equation φ(y, z) = 0 has exactly two solutions (y, z) ∈ C, given by

(u0, u1)
def
=

(
0,−1 + ρ

ρ

)
and (v0, v1)

def
=

(
2 + ρ

ρ2
,
1

ρ

)
.

Define u = (un)n∈Z and v = (vn)n∈Z as the chains (y(n))n∈Z obtained for (y, z)
respectively equal to (u0, u1) and (v0, v1). It results from the definition of C that

u−1 = u0 = 0, u−2 = u1 = −1 + ρ

ρ
,

and more generally un = u−(n+1) for n ∈ Z, while using (36) gives

v0 =
2 + ρ

ρ2
, v1 =

1

ρ
, v2 = 1, v3 = 1 + 2ρ.

The expression of A derived in [8] can now be formulated.

Theorem 6. (Cohen) For y ∈ C with |y| < (2 + ρ)/ρ2,

A(y) = C

∏∞
n=1 (1− y/un)∏∞
n=0 (1− y/v−n)

,

where the constant C is such that

A(1) = 1− ρ.

The remaining part of this section is devoted to an elementary proof of this
theorem. But first, a few more notations and simple results are needed.

For n ∈ N and y ∈ C, we define

(37) Qn(y) = φ
(
y(n), y(n+1)

)
φ
(
y(−n), y(−n−1)

)
,

where (y(n))n∈Z is any of the two chains having y(0) = y (see Remark 6). Since
both are mutually symmetric, Qn(y) is well-defined.

The following lemma is crucial.

Lemma 4. The two real-valued sequences u and v satisfy the following properties.

1. For n ≥ 1, un ≤ u1 and v−n > v0 .

2. The series
∑∞

n=1 |un|−1 and
∑∞

n=1 v
−1
−n converge.

3. For n ≥ 1, the mapping y ∈ C 7−→ y(n)y(−n) is a degree 2 polynomial and has
roots u−n and un. In other words, for y ∈ C,

y(1)y(−1) = λ1 y

(
1− y

u1

)
and y(n)y(−n) = λn

(
1− y

un

)(
1− y

u−n

)
, n ≥ 2

where for n ≥ 1, λn is a constant.
4. For n ∈ N, Qn defined in (37) is a degree 2 polynomial and has roots u−n and
v−n. In other words, for some constants µn, n ∈ N and, for y ∈ C,

Q0(y) = µ0 y

(
1− y

v0

)
and Q1(y) = µ1 y

(
1− y

v−1

)
,
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while for n ≥ 2,

Qn(y) = µn

(
1− y

u−n

)(
1− y

v−n

)
.

Proof. From Lemma 3, one gets the following for any real-valued chain (y(n)).
If α(y, y(1)) > 0, then, for any n ∈ Z,

y(n) < y(n+1) ⇐⇒
(
a+ b

a− b

)2n

>
a− b

a+ b

β(y, y(1))

α(y, y(1))

while if α(y, y(1)) < 0, then, for any n ∈ Z,

y(n) < y(n+1) ⇐⇒
(
a+ b

a− b

)2n

<
a− b

a+ b

β(y, y(1))

α(y, y(1))
.

We recall that α(y, y(1))β(y, y(1)) = (a2−b2)/4 so that α(y, y(1)) and β(y, y(1)) have
the same sign and are non zero. Hence, if α(y, y(1)) > 0 (resp. α(y, y(1)) < 0), the
sequence (y(n))n∈Z first decreases (resp. increases), up to some time n, after which
it is nondecreasing (resp. nonincreasing). Equality y(n) = y(n+1) can moreover
occur only at this first n at which y(n) is minimum (resp. maximum). Point 1 of
the lemma then simply results from relations

u−1 = u0 = 0 > u1 = −1 + ρ

ρ
,

v2 = 1 < v1 =
1

ρ
and v2 < v3 = 1 + 2ρ.

Point 2 also results from Lemma 3, that shows that the modulus of any chain (y(n))
goes to infinity exponentially fast as |n| → +∞.

As for the two last properties, it is easily proved inductively, from relations

y(1) = 2(1 + ρ)x(0) − y(0) and y(−1) = 2(1 + ρ)x(−1) − y(0)

together with (36), that for any y (= y(0)) and n ≥ 1,

y(n) = αn + βn y
(0) + γn x

(0) and y(−n) = αn + βn y
(0) + γn x

(−1),

where αn, βn and γn (n ≥ 1) are constants. It results that

y(n)y(−n) =
(
αn + βn y

(0)
)2

+ γn

(
αn + βn y

(0)
)(
x(0) + x(−1)

)
+ γ2n x

(0)x(−1)

and using x(−1)+x(0) = (2ρ)−1
(
2(1+ρ) y(0)−1

)
and x(−1) x(0) =

(
y(0)

)2
/(2ρ), one

gets that y(n)y(−n) is polynomial with degree 2 as function of y(0). The argument
is the same for point 4 of the lemma, since φ is a bivariate affine function.

Moreover, the roots of those polynomials are easily identified, using the following
equivalences. For n ≥ 1,

y(n)y(−n) = 0 ⇐⇒ y(n) = u0 or y(−n) = u0 ⇐⇒ y = u−n or y = un,

while for n ∈ N,

φ
(
y(n), y(n+1)

)
φ
(
y(−n), y(−(n+1))

)
= 0

means that either
(
y(n), y(n+1)

)
or
(
y(−n), y(−(n+1))

)
is equal to either of the couples

(u0, u1) or (v0, v1), which is equivalent to asserting that y = u−n or y = v−n. �
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We are now ready for proving Theorem 6.

Proof. It is first proved that

(38) A(y)φ(y, z) = A(z)φ(z, y) for (y, z) ∈ C with |y| < 1 + 2ρ, |z| < 1 + 2ρ.

Next, a solution of (38) that is analytic in the open disk D(0, 1 + 2ρ) is exhibited.
It is finally proved that such a solution is unique, up to a multiplicative constant.

The first step uses the parametrized form of C given in (35), from which (ii) of
Theorem 5 can be reformulated as follows,

A(a− a cosh θ + b sinh θ)φ(a − a cosh θ + b sinh θ, a− a cosh θ − b sinh θ)

= A(a− a cosh θ − b sinh θ)φ(a− a cosh θ − b sinh θ, a− a cosh θ + b sinh θ)

for all θ in some neighborhood of 0 in C. By analyticity of both sides with respect
to θ ∈ C, equality extends to any θ at which it makes sense. This yields (38) by (i)
of Theorem 5.

Now the idea behind the construction of a particular solution of (38) is the
following. A formal, heuristic, solution to equation

A(y)φ(y, z) = A(z)φ(z, y) for (y, z) ∈ C
is given by the following infinite product

∞∏

n=0

(
φ(y(n), y(n+1))φ(y(−n), y(−n−1))

)−1

,

as function of y, where (y(n))n∈Z is any of the two chains with y(0) = y (due to
mutual symmetry of the chains, this formal product does not depend on which one
is chosen). To check this, first note that the solutions z to (y, z) ∈ C are given by
y(1) and y(−1), which respectively generate the shifted chains (y(n+1)) and (y(n−1)).
Then for example, the infinite product at y(1) differs from that at y only by one
factor, namely, φ(y, y(1)) is changed for φ(y(1), y). This shows that the relation is
satisfied at (y, y(1)).

Before caring about convergence of the product, the first problem occurs that
0 is a pole (with multiplicity 2), which should not be the case for A. But since
equation (38) is preserved by multiplying A by any function that is constant along
chains (so that its values are equal at y and z for any (y, z) ∈ C), we can multiply
- this is again heuristic - by the infinite product

y
∞∏

n=1

y(n) y(−n).

This formally removes the pole 0 (since by Lemma 4, y(1) y(−1) has root 0).
Now normalizing all factors and using Lemma 4, we get the following heuristic

solution

(39) Π(y)
def
=

y
∏∞

n=1 λ
−1
n y(n)y(−n)

∏∞
n=0 µ

−1
n φ(y(n), y(n+1))φ(y(−n), y(−n−1))

=
∏

n≥1

(
1− y

un

)∏

n≥0

(
1− y

v−n

)−1

,

where all infinite products converge, due to point 2 of Lemma 4.
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Of course, a rigorous proof must deal with finite truncations of this product. The
shift from y to y(1) then introduces edge effects ignored by the above heuristics. Yet,
the relation will be satisfied thanks to the exponential decay of (y(n)) at symmetric
rate as n goes to +∞ and −∞.

We now prove that the infinite product Π in (39) satisfies

Π(y)φ(y, z) = Π(z)φ(z, y)

for all (y, z) ∈ C such that y, z ∈ C \ {v−n, n ∈ N}. For N ∈ N, denote by ΠN the
partial product

ΠN (y)
def
=

y
∏N

n=1 λ
−1
n y(n)y(−n)

∏N
n=0 µ

−1
n φ(y(n), y(n+1))φ(y(−n), y(−n−1))

.

Due to analyticity (again using the complex variable θ instead of (y, z) ∈ C), it is
enough to consider y, z at which all factors in ΠN (y) and ΠN (z) for N ∈ N are all
non zero. Let (y, z) ∈ C be given so, and choose (y(n))n∈Z as the chain such that
y(0) = y and y(1) = z. Then

ΠN (y)
φ(y, z)

φ(z, y)
= ΠN (y)

φ(y, y(1))

φ(y(1), y)
= ΠN (y(1))

y(−N)

y(N+1)

φ(y(N+1), y(N+2))

φ(y(−N), y(−N−1))
.

Moreover, from the definition (6) of φ,

y(−N)

y(N+1)

φ(y(N+1), y(N+2))

φ(y(−N), y(−N−1))
=
ρ− y(N+2)/y(N+1) − (1 + ρ)/(ρy(N+1))

ρ− y(−N−1)/y(−N) − (1 + ρ)/(ρy(−N))
.

Now from Lemma 3, the following limits holds

lim
N→+∞

y(N)

(
a− b

a+ b

)N

= α(y, y(1)) and lim
N→∞

y(−N)

(
a− b

a+ b

)N

= β(y, y(1)),

so that (recall that α(y, z) and β(y, z) are always non zero)

lim
|N |→+∞

y(N) = +∞ and lim
|N |→+∞

y(N+2)

y(N+1)
= lim

|N |→+∞

y(−N−1)

y(−N)
=
a+ b

a− b
.

We get that

1 = lim
N→+∞

ρ− y(N+2)/y(N+1) − (1 + ρ)/(ρy(N+1))

ρ− y(−N−1)/y(−N) − (1 + ρ)/(ρy(−N))
= lim

N→+∞

ΠN (y)

ΠN (z)

φ(y, z)

φ(z, y)
,

which yields Π(y)φ(y, z) = Π(z)φ(z, y), since ΠN goes to Π as N goes to infinity.

It is now proved that A is equal to Π. First note that, from point 1 of Lemma
4, v0 = (2 + ρ)/ρ2 is the pole of Π with smallest modulus. Then, since 1 + 2ρ <
(2 + ρ)/ρ2 for all ρ ∈ [0, 1[, it results that Π is holomorphic in the open disk
D(0, 1 + 2ρ). We thus know that (38) is satisfied both for A and for Π in place of
A, and then get by taking ratios

(40)
A(y)

Π(y)
=
A(z)

Π(z)

for all (y, z) ∈ C such that |y| < 1 + 2ρ, |z| < 1 + 2ρ and Π(y)Π(z) 6= 0.
Consider now the particular subset E of C obtained by restricting θ to iR in

description (35) of C. Then, E is the set of couples (y, y) ∈ C for y on the ellipse
{a− a cos t + i b sin t, t ∈ R}. For ρ ∈ ]0, 1[, we have 2b < 2a = (1 + ρ)/(1 + ρ2) <
1+ρ < 1+2ρ, so that E is contained in the open disk D(0, 1+2ρ). This is also the
case for the bounded open domain E of the complex plane delimited by E . Note
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that E is also contained in the half plane {y ∈ C, ℜe(y) ≥ 0}, so that Π does not
vanish on E . Indeed, Π only has real negative roots, of which −(1 + ρ)/ρ is the
largest one. For (y, z) = (y, y) with y ∈ E , equation (40) becomes

(41)
A(y)

Π(y)
=
A(y)

Π(y)
for y ∈ E .

Now, A/Π is analytic in D(0, 1 + 2ρ) ∩ {y ∈ C, ℜe(y) > −(1 + ρ)/ρ}, so that
(A/Π)(y) and (A/Π)(y) are harmonic in this domain, and in particular, harmonic
over E and continuous over E ∪ E .

By uniqueness of the extension of a given continuous function on E into a con-
tinuous function on E ∪ E that is harmonic over E, we derive that (41) extends to
all y ∈ E. This means that A/Π is both holomorphic and antiholomorphic over E.
Since E is a connected open subset of C, this implies that A/Π is constant over E.
The proof is complete using relation (33). �

Remark 7. By analyticity, as used for equation (38), the functional equation (31)
extends to all (y, z) ∈ C at which it makes sense. Noting that A(1/ρ) < +∞ since
A has radius of convergence (2 + ρ)/ρ2 > 1/ρ, the functional equation (31) at
x = 1/(2ρ) then relates A(1/ρ) with A(1) and yields

A(1/ρ) = (2− ρ)A(1) = (2 − ρ)(1− ρ).

4. The asymmetric model.

Theorems 3 (i) and 4 extend to the case where the queues have different service
rates µ1 and µ2. In this asymmetric setting, one can also allow two different prob-
abilities pi, i = 1, 2, with p1 + p2 = 1, for choosing queue i when both queues have
equal length. Apart from these changes, the dynamics are the same as before. The
global arrival rate is now denoted 2λ, instead of 2ρ.

Considering both cases K < ∞ and K = ∞ at the same time, the stationary
distribution of the queue-length process will be simply denoted by π. For infinite
K, it is assumed that 2λ < µ1 +µ2, so that the process is ergodic. In Figure 5, the
Q-matrix of the process is summarized through a graphic showing the transitions
and rates for finite K. For K = ∞, the top and right borders of the square should
simply be removed.

The stationary state π is characterized by the following theorem, where π(K,K)
must be replaced by 0 if K = ∞. Here, g1 and g2 are defined on N by

g1(j) = −µ1

µ2

ξj1+ − ξj1−
ξ1+ − ξ1−

and g2(j) = −µ2

µ1

ξj2+ − ξj2−
ξ2+ − ξ2−

(j ∈ N),

where ξ1+, ξ1− are the roots of the polynomial µ2X
2 − (2λ + µ1 + µ2)X + 2λ and

ξ2+, ξ2− are those of µ1X
2 − (2λ+ µ1 + µ2)X + 2λ.

Unfortunately here, for finite K, the chain of equations that has led to the
determination of the stationary blocking probability is no longer available. Indeed,
one must now deal with two generating functions

A1(y) =

K∑

k=0

π(k, 0) yk and A2(y) =

K∑

k=0

π(0, k) yk,

in place of A or AK . The corresponding relations that replace, for x ∈ C, the func-
tional equations (5) and (31) then involve values of both A1 and A2, respectively,
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µ2

2λ

µ1

µ2

2λ

µ1

µ2

2λ

µ1

2λ

Figure 5. Transition rates of the asymmetric Markov process (L1, L2)

at pairs of roots y1, z1 and y2, z2 of two polynomials px,1 and px,2. As a result, one
gets, instead of chains of relations, a branching set of relations with a degree-four
regular tree structure.

Theorem 7. (i) π is determined by its values π(k, 0) and π(0, k) for 0 ≤ k < K+1,
through the following expressions: For 0 ≤ j < k < K + 1,

π(k, j) =
µ2

µ1

K∑

l=k

π(l, 0)
(
g
∗(l−k+1)
1 (j)− g

∗(l−k+1)
1 (j + 1)

)
,

π(j, k) =
µ1

µ2

K∑

l=k

π(0, l)
(
g
∗(l−k+1)
2 (j)− g

∗(l−k+1)
2 (j + 1)

)
.

For 0 ≤ k < K,

π(k, k) = − 1

2λ

K∑

l=k+1

(
µ2 π(l, 0) g

∗(l−k)
1 (k + 1) + µ1 π(0, l) g

∗(l−k)
2 (k + 1)

)

and for K <∞,

π(K,K) =
2λ

µ1 + µ2

(µ2

µ1
π(K, 0)

(
g1(K−1)−g1(K)

)
+
µ1

µ2
π(0,K)

(
g2(K−1)−g2(K)

))
.

(ii) The sequences (π(k, 0), 0 ≤ k < K + 1) and (π(0, k), 0 ≤ k < K + 1)
are characterized, up to some (common) multiplicative constant, by the following
relations holding for x ∈ C with |x| sufficiently small:

µ2

y1 − z1

(
(y1 − x)A1(y1)− (z1 − x)A1(z1)

)

= µ2 x
K π(K,K) +

µ2 + 2p1λx

2λ

(
µ1
A1(y1)−A1(z1)

y1 − z1
+ µ2

A2(y2)−A2(z2)

y2 − z2

)
,
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and

µ1

y2 − z2

(
(y2 − x)A2(y2)− (z2 − x)A2(z2)

)

= µ1 x
K π(K,K) +

µ1 + 2p2λx

2λ

(
µ1
A1(y1)−A1(z1)

y1 − z1
+ µ2

A2(y2)−A2(z2)

y2 − z2

)
,

where for x ∈ C, y1, z1 are the roots of the polynomial

px,1(Y ) = µ2Y
2 − (2λ+ µ1 + µ2)xY + (µ1 + 2λx)x

and y2, z2 are the roots of the polynomial

px,2(Y ) = µ1Y
2 − (2λ+ µ1 + µ2)xY + (µ2 + 2λx)x.

(iii) The characterization of (π(k, 0), 0 ≤ k < K+1) and (π(0, k), 0 ≤ k < K+1)
is complete with the following normalization relation:

µ2A1(1) + µ1A2(1) = µ1 + µ2 − 2λ(1 − π(K,K)).

Proof. We only give a sketch of the proof. Proving (i) is similar to the symmetric
case, with finite or infinite capacity. In particular, the diagonal values π(k, k) for
k < K are derived from relations

π(k, k) =
1

2λ


µ1

k∑

j=0

π(k + 1, j) + µ2

k∑

j=0

π(j, k + 1)


 (0 ≤ k < K)

that here replace (26). Those are obtained by summing all balance equations in
squares {0, . . . , k}2. For finite K, the expression of π(K,K) simply results from
the balance equation at (K,K).

As for (ii), one must use the balance equations at sites (k − 1, k) and (k, k − 1)
for 1 ≤ k < K + 1. At (k − 1, k), for example, we have

(
2λ+ µ111{k≥2} + µ2

)
π(k − 1, k) = 2λ p2 π(k − 1, k − 1) + µ1 π(k, k)

+ 2λπ(k − 2, k) 11{k≥2} + µ2 π(k − 1, k + 1) 11{k<K}.

Multiplying this equation by xk for x ∈ C and then summing up over k leads to the
second relation of (ii) (valid for small |x| only, if K = ∞, due to the use of Fubini’s
theorem). This long and tedious calculation is omitted here. We use the following
lemma, that is easily derived from relation (28) of Section 2. Note that Lemma 5
could also be used there to recover the functional equation (5) from Theorem 3(ii).

Finally, (iii) is derived in a similar way as relation (33).
�

Lemma 5. For i = 1, 2, n ∈ N and x ∈ C, define S
(i)
n (x) by

S(i)
n (x) =

n∑

k=0

xkg
∗(n−k+1)
i (k).

If x ∈ C is such that the complex roots yi and zi of the polynomial px,i are not
equal, then for n ∈ N,

S(i)
n (x) = − µi

µ3−i
x
yni − zni
yi − zi

.
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Remark 8. Reference [9] describes the poles and residues of A1(y) and A2(y), but
a nice expression as the one in Theorem 6 is missing and constitutes a challenging
issue.
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discussions and, most particularly, to one referee for invaluable comments regarding
the literature.
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