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Abstract. An obvious way to simulate a Lévy process X is to sample its increments
over time 1/n, thus constructing an approximating random walk X(n). This paper
considers the error of such approximation after the two-sided reflection map is applied,
with focus on the value of the resulting process Y and regulators L,U at the lower and
upper barriers at some fixed time. Under the weak assumption that Xε/aε has a non-
trivial weak limit for some scaling function aε as ε ↓ 0, it is proved in particular that

(Y1 − Y (n)
n )/a1/n converges weakly to ±V , where the sign depends on the last barrier

visited. Here the limit V is the same as in the problem concerning approximation of
the supremum as recently described by Ivanovs (2017). Some further insight in the
distribution of V is provided both theoretically and numerically.

1. Introduction

Consider a non-monotone Lévy process X and its two-sided reflection with respect to
the interval [0, b] and initial position x:

(1.1) Yt = x+Xt + Lt − Ut, t ≥ 0.

Here (Y, L, U) is the solution of the Skorokhod problem, i.e. L and U are the unique
non-decreasing processes (often called regulators at Lower and Upper barriers) such that
Yt ∈ [0, b] and

∫
[0,∞)

1{Yt>0}dLt =
∫

[0,∞)
1{Yt<1}dUt = 0. Importantly, the two-sided

reflection can be constructed by alternating one-sided reflection at the upper and lower
barriers [4, Ch. XIV.3], and so −L and U evolve locally as the running infimum and
supremum of X, respectively. In queueing theory the process Y is commonly used to
model a queue with a finite buffer, whereas in collective risk theory U,L and Y are often
interpreted as cumulative dividends, capital injections and the resulting surplus process,
respectively.

A survey and a comprehensive list of references is given in [5] with emphasis on steady-
state features such as the stationary distribution and the loss rate limt→∞ Ut/t. For a
textbook reference on Lévy-driven queues, see [9]. The focus of this paper is on the
distribution of YT for a fixed time horizon T > 0. Without loss of generality we may (and
do) fix b = 1 and T = 1, because under appropriate rescaling of time and space the new
process X ′t = XTt/b is again a Lévy process.

Let X
(n)
i = Xi/n for i = 0, . . . , n be the random walk approximating Xt, t ∈ [0, 1],

which similarly leads to the two-sided reflected (discrete-time) process:

(1.2) Y
(n)
i = x+X

(n)
i + L

(n)
i − U

(n)
i ,

alternatively described via the recursion

Y
(n)
i = max

(
0,min(1, Y

(n)
i−1 +X

(n)
i −X

(n)
i−1)
)
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2 S. ASMUSSEN AND J. IVANOVS

for i ≥ 1. Our main quantity of interest is ∆(n) = Y1 − Y
(n)
n , the discretization error

corresponding to the distribution of Y1, see Figure 1.
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Figure 1. Example of a reflected sample path (black) and its discretized
version (red) for n = 100.

A key observation for understanding the impact of discretization is the formulas

(1.3) Xi/n − inf
s≤i/n

Xs, X
(n)
i −min

j≤i
X

(n)
j = Xi/n −min

j≤i
Xj/n

for the one-sided reflected version started at 0 and its discretized version. They show
that the discretized version is pushed less away from 0 and hence will stay below the
continuous time version. For the two-sided problem, explicit formulas expressing Y, L, U
in terms of X also exist, see [5] for a summary, but they seem too complicated to be
of much practical use. Nevertheless, in view of (1.3) one may expect for the two-sided
reflected process that the sign of the error ∆(n) for large enough n depends on the last
barrier visited. This is indeed confirmed by Figure 1. Note, however, that switching
between the barriers may occur with a rather long delay, and for smaller values of n the
pattern of switching is likely to be different for the two processes; we return to this point
later.

Further intuition is provided by the easy observation that the limiting behaviour of
the discretization error must also depend on the local behaviour of the underlying Lévy
process X: the error rate is bigger when X is more volatile. Thus one may expect that
processes with a non-zero Brownian component are the worst ones to discretize in terms of
the error rate, which is indeed true as explained in Section 2. This paper heavily relies on
the recent results in [11] concerning discretization error when computing the supremum of
a Lévy process, which in its turn employs the machinery of weak convergence of stochastic
processes [18]. Here we avoid using technical concepts from [11] and mainly focus on the
consequences for the intricate two-sided reflection.



DISCRETIZATION ERROR FOR A TWO-SIDED REFLECTED LÉVY PROCESS 3

Notationally, the event that the lower barrier was visited last will be written as {ρ(n)
L >

ρ
(n)
U }, where

ρ
(n)
L = min{i ≤ n : L

(n)
i = L(n)

n }, ρ
(n)
U = min{i ≤ n : U

(n)
i = U (n)

n },

are the last times when L(n) and U (n) increase, respectively. Note that ρ
(n)
L = ρ

(n)
U = 0

corresponds to the scenario when reflection has not been applied up to and including
step n. Finally, let N (n) be the number of switches between the barriers counting the
first time when one of the regulators increases. More precisely, it is the largest number
k such that there exists a sequence of times 0 < i1 < · · · < ik ≤ n at which L(n) or
U (n) increase and do so alternatingly. We use ρL, ρU and N to denote the corresponding
quantities of the continuous time system. In some cases it is possible that the original
reflected process touches the barrier and then leaves it without necessitating increase of
the relevant regulator; such epochs are not considered as barrier switching epochs.

2. The main result

The basic assumption underlying our main result is that the following weak convergence
holds:

(2.4) Xε/aε
d→ X̂1 as ε ↓ 0

for some scaling function aε > 0 and a random variable X̂1, not identically 0, which
then must be infinitely divisible [13, Thm. 15.12(ii)]. This convergence readily extends to

convergence of processes (Xtε/aε)t≥0
d→ (X̂t)t≥0 on the Skorokhod space [13, Thm. 16.11],

which can be seen as zooming-in on the process X. Necessarily, X̂ is 1/α-self-similar
Lévy process with α ∈ (0, 2] and then aε is regularly varying at 0 with index 1/α. Thus

there are only the following possibilities for the limit process X̂: (i) (driftless) Brownian
motion with α = 2, (ii) linear drift with α = 1 or (iii) strictly α-stable Lévy process with
α ∈ (0, 2). A complete characterization of the respective domains of attraction can be
found in [11].

Remark 1. It is noted that (2.4) is a weak regularity assumption satisfied for almost
every Lévy processes of practical interest. In particular, it is always satisfied if the Brow-
nian component is present, i.e. σ > 0, irrespective of the Lévy measure. In this case, one

can take aε = σ
√
ε so that the limit process X̂ is a standard Brownian motion. More-

over, (2.4) is satisfied by processes of bounded variation on compacts with non-zero drift

component, in which case X̂ is a linear drift process. In all the other cases, one needs to
look at the behaviour of the Lévy measure Π(dx) at 0, see [11] for details, and the limit
may be any of (i) – (iii) mentioned above. A sufficient condition is that the functions
Π(x,∞),Π(−∞,−x) are regularly varying at 0 with index −α for α ∈ (0, 1) ∪ (1, 2] and
their ratio has a limit in [0,∞]. Finally, assumption (2.4) is not satisfied by the follow-
ing standard classes of Lévy processes: (a) driftless compound Poisson process (trivial
case) and its neighbour (b) driftless variance gamma process; in both cases the functions
Π(x,∞),Π(−∞,−x) are slowly varying at 0.

In [11] it is shown that under the assumption (2.4) it holds that

(2.5)
1

an−1

(
sup
t∈[0,1]

Xt − max
i=0,...,n

Xi/n

)
d→ V > 0, n→∞

on the event that the supremum is not achieved at the endpoints of the interval [0, 1];
the case of a Brownian motion X with drift was analyzed long before in [6]. The limiting
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random variable V is defined using the laws of X̂ ‘conditioned’ to be positive and ‘condi-
tioned’ to be negative and an independent uniform time shift, see [11] for the exact defini-

tion. In particular, when X̂ is standard Brownian motion we may take V = mini∈ZBΥ+i

as in [6], where (Bt)t≥0, (B−t)t≥0 are two independent copies of a 3-dimensional Bessel
process and Υ is an independent [0, 1]-uniform random variable. Importantly, the anal-
ogous result concerning discretization error of the infimum holds true, that is, in (2.5)
we may replace sup,max, V by inf,min,−V , respectively. Some further comments and
numerical illustrations concerning the distribution of V are provided in Section 5.

With a small abuse of terminology we say that X is regular for (0,∞) if it enters (0,∞)
immediately, and irregular otherwise. Precise conditions for regularity can be found in,
for example, [15, Thm. 6.5]. In particular, any X of unbounded variation on compacts is
regular for both half lines (0,∞) and (−∞, 0). Moreover, if X is irregular for one half line
then it must be regular for the other unless X is a driftless compound Poisson process,
which is excluded from the following by assuming (2.4). The importance of regularity
is underlined by the well known fact that Y1 has mass at 0 or at 1 if X is irregular for
(0,∞) or for (−∞, 0), respectively. In addition, it is shown in [11] that if X is irregular

for (0,∞) (for (−∞, 0)) and (2.4) holds, then necessarily X̂ is decreasing (increasing),

and so the limit distribution in (2.5) has a simple form: V
d
= |X̂Υ|. We are now ready to

state our main result.

Theorem 1. Assume that X is regular for both half lines and that (2.4) holds. Then as
n→∞ we have that

1

an−1

(
Y1 − Y (n)

n

)∣∣∣∣ {ρ(n)
L > ρ

(n)
U

}
d→ V,(2.6)

1

an−1

(
Y1 − Y (n)

n

)∣∣∣∣ {ρ(n)
U > ρ

(n)
L

}
d→ −V.(2.7)

Furthermore, for any k ≥ 1 and Y0 ∈ (0, 1)

1

an−1

(
L1 − L(n)

n , U1 − U (n)
n

)∣∣∣∣ {N (n) = k, ρ
(n)
L > ρ

(n)
U

}
(2.8)

d→

(
k∑
i=1

Vi,

k−1∑
i=1

Vi

)
,

1

an−1

(
L1 − L(n)

n , U1 − U (n)
n

)∣∣∣∣ {N (n) = k, ρ
(n)
U > ρ

(n)
L

}
(2.9)

d→

(
k−1∑
i=1

Vi,

k∑
i=1

Vi

)
,

where the Vi are independent and distributed as V . Moreover, the convergence in the above
statements is mixing in the sense of Rényi [16], i.e. these results hold when additionally
conditioning on any event B of positive probability.

If X is irregular for (0,∞) then the above results hold true if: in (2.6) and in (2.8) we

additionally condition on Y
(n)
n 6= 0, and in (2.8) and in (2.9) we additionally condition

on

S(n) =
{
6 ∃i ∈ [1, n− 1] : Y

(n)
i−1 = 0, Y

(n)
i = 1, Y

(n)
j < 1∀j ∈ [i+ 1, ni]

}
,

where ni = min{j ∈ [i+ 1, n] : Y
(n)
j = 0 or j = n}.

The analogous statement is true in the case when X is irregular for (−∞, 0).
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Let us provide some comments concerning Theorem 1. Firstly, for the regulators L and
U the discretization error accumulates as the number of switches between the barriers
grows, see (2.8) and (2.9) . These additional errors, however, cancel out when comput-
ing ∆(n), see (1.1) and (1.2). Intuitively, this error regenerates at every barrier switching
epoch.

Importantly, the events upon which we condition can be modified into the correspond-
ing events for the original process without affecting the result. That is, in (2.6) we may
instead condition on {ρL > ρU}, and on {ρL > ρU , Y1 6= 0} when X is irregular for (0,∞).
The event S corresponding to S(n) asserts that there does not exists a time t ∈ (0, 1)
such that t is a point of increase of both L and U and that following this time U does
not increase before L does. In other words, we need to exclude the possibility that Y
jumps from the lower barrier to the upper barrier (necessitating increase of U) and then
hits the lower barrier again (or the time runs out), because in this case there will be a
certain dependence between Vi’s, see the proof for details. When X is regular for (0,∞)
then {Y1 6= 0} and S hold with probability 1 and so the additional conditioning is not
required. Also if X is irregular for (0,∞) and its positive jumps are bounded by 1 then
S holds, and again there is no need for extra conditioning on S(n).

Observe that (2.6) and (2.7) cover the cases when a barrier was hit and the process at
its terminal value is away from the barrier. If this is not the case then the discretization
scheme employed does not produce any error with respect to Y1 for large enough n.
Furthermore, adding more information does not affect the limiting error distribution,
since the convergence is mixing. Finally, the event {N = k, ρL > ρU} has 0 probability
for k even (odd) when Y0 = 0 (Y0 = 1), and this is the only reason to exclude Y0 ∈ {0, 1}
in the statements (2.8) and (2.9).

Remark 2. Theorem 1 readily extends to the setting of the so-called two-sided refraction
of X, see [3]. Here refraction from above at rate γU ∈ [0, 1] in risk theory has the
interpretation of taxation at rate γU according to a loss-carry-forward scheme.

Importantly, Theorem 1 provides a way to improve the simulation results obtained
through discretization. In particular, relying on the fact that the convergence in (2.6)

and (2.7) is mixing, we propose the following procedure to rectify the samples of Y
(n)
n in

the case when X is regular for both half lines.

Algorithm 1.

• simulate (Y
(n)
n , ρ

(n)
L , ρ

(n)
U ),

• add independent realizations of an−1V to those of Y
(n)
n with ρ

(n)
L > ρ

(n)
U

• add independent realizations of −an−1V to those of Y
(n)
n with ρ

(n)
L < ρ

(n)
U

• return the rectified realizations of Y
(n)
n .

Regularity for both half lines implies that conditioning on Y
(n)
n being away from the

boundaries is not needed. This extra conditioning is irrelevant for the limit theory, but
makes a difference when using moderate n. Furthermore, the simulated realizations pro-
duced by Algorithm 1 may lie outside of [0, 1], and so further post-processing should be
considered. In Section 4 we provide some first numerical results demonstrating effective-
ness of the proposed algorithm.

3. Proof of the main result

Our proof of Theorem 1 relies on the following generalization of (2.5).
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Lemma 1. Assume (2.4) and consider two random times 0 ≤ ρ < τ <∞. Then it holds
that

(3.10)
1

an−1

(
sup
t∈[ρ,τ ]

Xt − max
i=dρne,...,bτnc

Xi/n

)∣∣∣∣∣B d→ V, as n→∞

for any positive probability event B ∈ F such that on B the supremum is achieved strictly
inside the interval [ρ, τ ], i.e. B ⊂ {supt∈[ρ,τ ] Xt > Xρ ∨Xτ− ∨Xτ}.

The same limit is obtained if sup−max is replaced by − inf + min assuming that on B
the infimum is achieved strictly inside the interval [ρ, τ ].

Moreover, for k random intervals [ρi, τi] such that 0 ≤ ρ1 < τ1 ≤ · · · ≤ ρk < τk < ∞
there is the joint convergence of the corresponding rescaled errors to the vector (V1, . . . , Vk)
with independent components, where on B the suprema/infima are achieved strictly inside
the respective intervals.

Proof. The proof of (2.5) in [11] shows, in fact, that (3.10) holds for deterministic ρ, τ
and any event B of positive probability. If all the times ρi, τi are deterministic then the
conclusion of the lemma follows from the fact that X has independent increments.

Pick δ > 0 and consider the event that for all i the supremum over [ρi, τi] is achieved
in [ρi + δ, τi − δ]; the intersection of this latter event and B will be denoted by Bδ. Note
that P(B\Bδ) → 0 as δ ↓ 0 and hence it is enough to show the claimed convergence on
the event Bδ for all δ > 0 assuming it has positive probability. Now consider (random)
integers si = dρi/δe, ti = bτi/δe and note that the supremum over [ρi, τi] must be achieved
strictly inside [siδ, tiδ] ⊂ [ρi, τi] on Bδ. Note also that the limit result does not change if
we restrict ourselves to the intervals [siδ, tiδ]. Finally, it is left to condition on the values
of all si, ti and to apply the result for deterministic times. � �

of Theorem 1. In view of (1.1) and (1.2) we obtain

Y1 − Y (n)
n = (L1 − L(n)

n )− (U1 − U (n)
n ),

because our discretization scheme implies that X
(n)
n = X1. Thus it is sufficient to estab-

lish (2.8), since (2.9) follows similarly, and these two results readily imply (2.6) and (2.7),
respectively.

It is well known [12, Eq. (2.2.13)] that the discretized process X
(n)
btnc = Xbtnc/n con-

verges to Xt in the Skorokhod topology for every sample path. Moreover, the processes

Y
(n)
btnc, L

(n)
btnc, U

(n)
btnc converge to Yt, Lt, Ut, respectively, on the level of sample paths, which

can be deduced from the fact that the running supremum and one-sided reflection maps
are continuous [18, Thm. 13.4.1/13.5.1]. Furthermore, letting

B
(n)
k = {N (n) = k, ρ

(n)
L > ρ

(n)
U }, Bk = {N = k, ρL > ρU}

we observe that P(B
(n)
k 4 Bk) → 0 as n → ∞, and so it is sufficient to prove (2.8)

when conditioning on the event Bk instead of B
(n)
k . In the following, without real loss of

generality, we also assume that the lower barrier is hit first, that is, L becomes positive
before U , and so we only consider events Bk for k odd.

Let τi for i ≤ k be the barrier switching epochs for the original process where τ0 = 0.
More precisely, we define

τ1 = inf{t > 0 : x+Xt + Lt > 1} = inf{t > 0 : Ut > 0}

to be the first time when the upper barrier is hit by the process reflected at the lower
barrier. Similarly define τ2 = inf{t > 0 : Lt > Lτ1}, τ3 = inf{t > 0 : Ut > Uτ2} and so on.
Note that on Bk we must have {τk−1 < 1 < τk} a.s. Additionally to the above, we may
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assume that for i odd there is an increase of L
(n)
j but none of U

(n)
j for j = dτi−1ne, . . . bτinc

and vice versa for i even; this must happen with probability tending to 1 as n→∞.
By splitting the sample path into the intervals [τi−1, τi ∧ 1), i = 1, . . . , k, we find under

the above assumptions that

L1 − L(n)
n =

k∑
i=1

V
(n)
i , U1 − U (n)

n =
k−1∑
i=1

V
(n)
i ,

where

V
(n)
i =

{
− inft∈[τi−1,τi∧1]Xt + minj=dτi−1ne,...,b(τi∧1)ncX

(n)
j , i is odd,

supt∈[τi−1,τi∧1] Xt −maxj=dτi−1ne,...,b(τi∧1)ncX
(n)
j , i is even.

The main observation here is that the error of L (of U) accumulated in each interval
for i odd (even) is composed of two parts: (a) the error of discretization assuming the
discretized process starts from the respective barrier and (b) the difference in effective
height of the barriers which comes from part (a) of the previous interval (it is 0 when

i = 1). In particular, in the 1st interval the error for L is indeed given by V
(n)

1 , which

implies that for the 2nd interval the upper barrier is effectively V
(n)

1 units lower for
continuously observed process. Hence the error for U accumulated in the 2nd interval is

given by V
(n)

1 +V
(n)

2 . For the 3rd interval the lower barrier is effectively V
(n)

2 units higher
for continuously observed process, and so the error for L accumulated in the 3rd interval

is V
(n)

2 + V
(n)

3 , which should be added to V
(n)

1 accumulated in the 1st interval, and so on.

Finally, note that V
(n)
k does not contribute to the error of U .

Regularity of X for both half lines implies that infima and suprema in the intervals
[τi−1, τi ∧ 1] are not achieved at the end points. The proof is now complete in this case
upon invoking Lemma 1.

The case when X is irregular for (0,∞) requires additional care. In this case it is
possible that the infimum and supremum are achieved at the right and left end points
of the intervals, respectively, but excluding times 0 and 1 (we assume that Y1 6= 0 when
ρL > ρU). This does not create any problem with respect to ∆(n) which is the limit

of V
(n)
k , because we can extend the interval [τk−1, 1] to the left. Similar reasoning goes

through with respect to the errors for L and U , unless these errors have a contribution
from the same time t = τi, i.e. such t is a point of increase of both L and U (in particular
there is a jump up of size larger than 1) and that U does not increase on (τi, τi+1 ∧ 1].

On the latter event the limit of (V
(n)
i , V

(n)
i+1) can be shown to be (−X̂Υ,−X̂ ′1−Υ), where

X̂, X̂ ′,Υ are independent and the former two have the same law (of a decreasing process).
This means that the marginals have the law of V but fail to be independent. Finally, the
complement of the above event is denoted by S and one can show that P(S(n)4 S)→ 0
as n→∞, which concludes the proof. � �

4. Numerical illustration

In this section we provide a numerical illustration of Theorem 1 and the related Al-
gorithm 1 using a Brownian motion X with variance and drift parameters σ2 = 2 and
µ = −1/2, respectively. As pointed out in Section 2 we may choose aε = σ

√
ε so that

X̂ is standard Brownian motion, and then V is obtained from two independent copies
of a 3-dimensional Bessel process. In this work we use a straightforward procedure to
simulate V based on sampling both copies at 300 locations, whereas an algorithm for
exact simulation is given in [6] which also provides a formula for EV .
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We fix the initial position x = 0.3 and choose n = 100, so that the increments of
the approximating random walk are distributed according to N (µ/n, σ2/n), see Fig-
ure 1. In fact, we first use n′ = 50000 increments and then accumulate them into
n = 100 increments hoping that the former discretization provides a very good approx-
imation of Y1. This approximation is slightly improved by adding and subtracting the

constant a1/n′EV ≈ 0.0037 when ρ
(n′)
L > ρ

(n′)
U and ρ

(n′)
U > ρ

(n′)
L , respectively, see again (2.6)

and (2.7). Next, we simulate 20000 (approximate) realizations of the discretization error

∆(n) and pick those with ρ
(n)
L > ρ

(n)
U (about 60%). The respective conditional distribu-

tion is compared to the distribution of an−1V suggested by the limit result in (2.6), see
Figure 2. As can be seen from Figure 1, the chosen discretization is rather coarse. Never-
theless, the corresponding discretization error is well captured by the limit result, apart
from some mass on (−∞, 0). This latter error comes from the failure to detect the last
barrier being active, which is also demonstrated by Figure 2 where ’error adjusted’ is
obtained by further removing the realizations with ρU > ρL. In practice, the latter infor-
mation is not available, and so one will need to increase n. Finally, Figure 3 demonstrates

0.0

2.5

5.0

7.5

10.0

−0.2 0.0 0.2
Error

de
ns

ity

name
error

error adjusted

scaled V

Figure 2. Distribution of ∆(n)
∣∣∣{ρ(n)

L > ρ
(n)
U } and its approximation an−1V

for n = 100.

the effectiveness of Algorithm 1 based on the limit result in Theorem 1.

5. On the distribution of V

Recall from [11] that the distribution of V is defined in terms of the laws of X̂ condi-
tioned to be positive and conditioned to be negative and an independent uniform time

shift, where the self-similar process X̂ is one of the following: (i) standard Brownian
motion, (ii) linear drift, (iii) strictly α-stable process. In the following we exclude mono-

tone self-similar processes X̂, i.e. linear drift processes and one-sided strictly α-stable

processes for α ∈ (0, 1), since in this case we trivially have V
d
= |X̂Υ| for an independent

[0, 1]-uniform Υ. Moreover, the case (i) is addressed in [6] and so we mainly concentrate
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approximation for n=100

approximation for n=50000

Figure 3. Approximation of Y1. The red line corresponds to Algorithm 1
with n = 100.

on the case (iii) formed by a two-parameter family of strictly stable processes; the scale
parameter is fixed, see also Proposition 1.

Recall that X̂ arises as a limit in (2.4). Importantly, X̂ must be in its own domain of

attraction: X̂ε/âε
d→ X̂1, where according to [11, Thm. 2] we may take âε = ε1/α. Thus

according to (2.5) the corresponding V may also be obtained from

(5.11) Vn = n1/α

(
sup
t∈[0,1]

X̂t − max
i=0,...,n

X̂i/n

)
d
= sup

t∈[0,n]

X̂t − max
i=0,...,n

X̂i
d→ V

as n → ∞, where the equality in distribution follows from self-similarity of X̂. Impor-

tantly, non-monotone self-similar X̂ is regular for both half lines (0,∞) and (−∞, 0) and
so the supremum can not be achieved at the endpoints of the interval [0, 1]. Furthermore,

writing explicitly the dependence of V on the law of the underlying process X̂ we have:

Proposition 1. VL(−X̂)

d
= VL(X̂) and for any c > 0: VL(cX̂)

d
= cVL(X̂).

Proof. The last statement is obvious and the first readily follows from the representation
of V (see, however, also the last comment following (2.5)). � �

Following the approach of [6], and additionally relying on self-similarity of X̂, we may
identify the limit of EVn. It is assumed here that α ∈ (1, 2] since otherwise EVn =∞.

Proposition 2. Consider the 1/α-self-similar Lévy process X̂ for α ∈ (1, 2]. It holds
that

EVn → −ζ
(
α− 1

α

)
EX̂+

1 ,

where ζ is the Riemann zeta function and EX̂+
1 for α ∈ (1, 2) is given in (5.12) below.
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Proof. Using Spitzer’s identity and self-similarity one readily finds that

E sup
t∈[0,1]

X̂t =

∫ 1

0

1

t
EX̂+

t dt =

∫ 1

0

1

t
t1/αdtEX̂+

1 = αEX̂+
1 .

A similar calculation reveals that

E max
k=0,...,n

X̂k/n =
∑

k=1,...,n

1

k
EX̂+

k/n = n−1/α
∑

k=1,...,n

k1/α−1EX̂+
1 .

Finally, we find using a well-known formula [2, (23.2.9)] that

EVn =

(
αn1/α −

∑
k=1,...,n

k1/α−1

)
EX̂+

1 → −ζ
(
α− 1

α

)
EX̂+

1 .

� �

In the following we assume that X̂ is a strictly α-stable process with α ∈ (1, 2), in
which case the characteristic exponent can be written as

logEeiθX̂1 = −|θ|α
(

1− iβ tan
πα

2
sgnθ

)
,

where β ∈ [−1, 1] is the skewness parameter; the scale parameter is fixed to 1. The
constants c± appearing in the corresponding Lévy measure, see e.g. [11, Eq. (5)], are
obtained from β = (c+ − c−)/(c+ + c−) and −Γ(−α) cos(πα/2) = 1/(c+ + c−), see [17,

p. 85]. The formula for EX̂+
1 can be found in [19, Thm. 3] (stated for an alternative

parameterization):

EX̂+
1 =

sin(πρ)Γ (1− 1/α)

π| cos(πα(ρ− 1/2))|1/α
, ρ =

1

2
+

arctan (β tan(π(α− 2)/2))

πα
.(5.12)

For β = 0 we get EX̂+
1 = Γ (1− 1/α) /π and for β = ±1 (one-sided jumps) we have

EX̂+
1 =

sin(π/α)Γ (1− 1/α)

π| cos(πα/2)|1/α
.

It is noted that [8, Thm. 4.2.1] provides a complete asymptotic expansion of EVn, but
only for the symmetric case. Indeed, we recover the first term in this expansion using
Proposition 2 and the above formula for β = 0.

In the setting of Proposition 2 it is to be expected that EVn → EV , which would then
yield an explicit formula for EV . The missing technical detail is uniform integrability of

Vn’s, which is non-trivial to establish even for a self-similar process X̂. In this respect, we
note that [10, Thm. 4.2] provides some asymptotic bounds on the moments of the error
E(n−1/αVn)p for p ≥ 1, but those are not strong enough to show that EV p

n are bounded
for some p > 1.

Importantly, (5.11) provides a way to simulate an approximate realization of V by
simulating

(5.13) max
i=0,...,mn

X̂i/m − max
i=0,...,n

X̂i

for large integers m,n. To illustrate the dependence of V on α ∈ (0, 1) ∪ (1, 2) and
β ∈ [−1, 1], we took m = n = 100 and simulated 50.0001 replications of (5.13) (using the
standard Chambers-Mallows-Stuck algorithm for generating stable r.v.’s). Based on this,

1The exception was the case α = 0.85, β = 0.5 where for some reason 1.000.000 replications were
needed to get even the present degree of smoothness.
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an estimate of the density of V was evaluated via Matlab’s standard kernel smoothing
procedure ksdensity with default parameters.

The results are given in Figures 4–5 for various combinations of α and |β|, since ±β
lead to the same distribution of V according to Proposition 1. The overall picture from
these figures and further experiments is that for smaller α the distribution of V becomes
extremely variable with much heavier tails (as expected) and also more mass accumulating
close to the origin. As α ↑ 2, the role of β becomes less prominent. Also, one approaches
(again as expected) the Brownian V and already for α > 1.5, the difference is not that
substantial. In conclusion, smaller α leads to a better rate (since 1/a1/n is regularly
varying at ∞ with index 1/α) but more disperse limit V .
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Figure 4. Estimated densities of V : role of α
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Figure 5. Estimated densities of V : role of β
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Science & Business Media (2006)
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