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Abstract

This paper proposes a new algorithm for computing the stationary distribution vector in

continuous-time upper block-Hessenberg Markov chains. To this end, we consider the

last-block-column-linearly-augmented (LBCL-augmented) truncation of the (infinites-

imal) generator of the upper block-Hessenberg Markov chain. The LBCL-augmented

truncation is a linearly-augmented truncation such that the augmentation distribution

has its probability mass only on the last block column. We first derive an upper bound

for the total variation distance between the respective stationary distribution vectors of

the original generator and its LBCL-augmented truncation. Based on the upper bound,

we then establish a series of linear fractional programming (LFP) problems to obtain

augmentation distribution vectors such that the bound converges to zero. Using the

optimal solutions of the LFP problems, we construct a matrix-infinite-product (MIP)

form of the original (i.e., not approximate) stationary distribution vector and develop a

sequential update algorithm for computing the MIP form. Finally, we demonstrate the

applicability of our algorithm to BMAP/M/∞ queues and M/M/s retrial queues.
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1 Introduction

This paper considers an upper block-Hessenberg Markov chain in continuous time. To de-

scribe such a Markov chain, we first introduce some symbols. Let R+ denote the set of all

nonnegative real numbers, i.e., R+ = [0,∞). Let N = {1, 2, 3, . . . }, Z+ = {0, 1, 2, . . . }, and

Zn = {0, 1, . . . , n} for n ∈ Z+. We then introduce some sets of pairs of integers:

S =

∞⋃

k=0

Lk, Sn =

n⋃

k=0

Lk, Sn = S \ Sn, n ∈ Z+,

Lk = {k} ×Mk, k ∈ Z+,
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where Mk = {1, 2, . . . ,Mk} ⊂ N. We also define (k, i; ℓ, j) as an ordered pair ((k, i), (ℓ, j))

in S2. Furthermore, we define e = (1, 1, . . . )⊤, which has an appropriate (finite or infinite)

number of ones.

Let {(X(t), J(t)); t ∈ R+} denote a regular-jump bivariate Markov chain with state

space S (see [3, Chapter 8, Definition 2.5] for the definition of regular-jump Markov chains).

Let Q := (q(k, i; ℓ, j))(k,i;ℓ,j)∈S2 denote the (infinitesimal) generator of the Markov chain

{(X(t), J(t))}, which is in an upper block-Hessenberg form:

Q =




L0 L1 L2 L3 · · ·

L0 Q0,0 Q0,1 Q0,2 Q0,3 · · ·

L1 Q1,0 Q1,1 Q1,2 Q1,3 · · ·

L2 O Q2,1 Q2,2 Q2,3 · · ·

L3 O O Q3,2 Q3,3 · · ·
...

...
...

...
...

. . .



. (1.1)

We refer to {(X(t), J(t))} as the upper block-Hessenberg Markov chain (which may be called

the level-dependent M/G/1-type Markov chain) and refer toX(t) and J(t) as the level variable

and the phase variable, respectively. Note that if (X(t), J(t)) ∈ Lk then X(t) = k and thus

Lk is called level k.

Throughout the paper, unless otherwise stated, we assume that {(X(t), J(t))} is ergodic

(i.e., irreducible, aperiodic and positive recurrent). We then define π := (π(k, i))(k,i)∈S > 0

as the unique stationary distribution vector of the ergodic generator Q (see, e.g., [1, Chapter

5, Theorems 4.4 and 4.5]). By definition, πQ = 0 and πe = 1. For later use, we also define

πk = (π(k, i))i∈Mk
for k ∈ Z+ and partition π as

π =
(L0 L1 · · ·

π0 π1 · · ·
)
.

It is, in general, difficult to obtain an explicit expression of π = (π0,π1, . . . ). Thus, we

study the computation of the stationary distribution vector π through a linearly augmented

truncation of the ergodic generator Q. The linearly augmented truncation is described below.

Let (n)Q := ((n)q(k, i; ℓ, j))(k,i;ℓ,j)∈(Sn)2 , n ∈ Z+, denote the northwest corner truncation

of the ergodic generator Q, which is given by

(n)Q =




Q0,0 Q0,1 Q0,2 · · · Q0,n−2 Q0,n−1 Q0,n

Q1,0 Q1,1 Q1,2 · · · Q1,n−2 Q1,n−1 Q1,n

O Q2,1 Q2,2 · · · Q2,n−2 Q2,n−1 Q2,n

...
...

...
. . .

...
...

...

O O O · · · Qn−1,n−2 Qn−1,n−1 Qn−1,n

O O O · · · O Qn,n−1 Qn,n




.

We then define (n)Q := ((n)q(k, i; ℓ, j))(k,i;ℓ,j)∈(Sn)2 , n ∈ Z+, as a Q-matrix (diagonally dom-

inant matrix with nonpositive diagonal elements and nonnegative off-diagonal ones; see, e.g.,
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[1, Section 2.1]) such that

(n)Q = (n)Q− (n)Qe(n)α, n ∈ Z+, (1.2)

where (n)α := ((n)α(k, i))(k,i)∈Sn is a probability vector. We refer to (n)Q as the linearly

augmented truncation of Q. We also refer to (n)α as the augmentation distribution vector.

Let (n)π = ((n)π(k, i))(k,i)∈Sn , n ∈ Z+, denote

(n)π =
(n)α(−(n)Q)−1

(n)α(−(n)Q)−1e
, n ∈ Z+, (1.3)

where (−(n)Q)−1 exists due to the ergodicity of Q. From (1.2) and (1.3), we have

(n)π (n)Q = 0, (n)π ≥ 0, (n)πe = 1;

that is, (n)π is a stationary distribution vector of the linearly augmented truncation (n)Q.

Furthermore, as n → ∞, each element of (n)Q converges to the corresponding one of Q.

Thus, we can expect (n)π to be an approximation to π. This is why we refer to (n)π as the

linearly augmented truncation approximation to π.

We note that if the augmentation distribution vector (n)α has its probability mass only

on the last block (i.e., Ln) then the linearly augmented truncation (n)Q inherits upper block-

Hessenberg structure from the original generator Q. To utilize this tractable structure, we

focus on a special linearly augmented truncation (n)Q with (n)α = (n)α̂, where (n)α̂ is a

probability vector such that

(n)α̂ =
(Sn−1 Ln

0 αn

)
. (1.4)

For convenience, we refer to such a linearly augmented truncation as a last-block-column-

linearly-augmented truncation (LBCL-augmented truncation).

We now define (n)Q̂ := ((n)q̂(k, i; ℓ, j)(k,i;ℓ,j)∈(Sn)2 , n ∈ Z+, as the LBCL-augmented

truncation of Q, that is, a Q-matrix such that

(n)Q̂ = (n)Q− (n)Qe(n)α̂, n ∈ Z+. (1.5)

We also define (n)π̂ := ((n)π̂(k, i))(k,i)∈Sn , n ∈ Z+, as

(n)π̂ =
(n)α̂(−(n)Q)−1

(n)α̂(−(n)Q)−1e
, n ∈ Z+. (1.6)

Note that (n)π̂ is equal to (n)π in (1.3) with (n)α = (n)α̂; that is, (n)π̂ is a stationary distri-

bution vector of the LBCL-augmented truncation (n)Q̂. Hence, we call (n)π̂ the last-block-

column-linearly-augmented truncation approximation (LBCL-augmented truncation approx-

imation) to π.

In this paper, we propose a new algorithm for computing the original stationary distri-

bution vector π by using the LBCL-augmented truncation approximation (n)π̂. In fact, (n)π̂

does not necessarily converge to π as n → ∞ (see Section 2.3). We solve such a problem by
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choosing (n)α̂ adaptively for each n ∈ Z+. To achieve this, we first derive an upper bound

for the total variation distance between π and (n)π̂. With this upper bound, we establish

a series of linear fractional programming (LFP) problems for finding {(n)α̂;n ∈ Z+} such

that {(n)π̂;n ∈ Z+} converges to π. Fortunately, the optimal solutions of the LFP problems

are explicitly obtained. Thus, we can readily construct a convergent sequence of LBCL-

augmented truncation approximations, which yields a matrix-infinite-product (MIP) form of

π. We note that the LFP problems are not given in advance but are formulated successively

while constructing the MIP form. As a result, we can develop a sequential update algorithm

for computing π.

We now review related work. Some researchers [2, 4, 21] have studied the computation of

level-dependent quasi-birth-and-death processes (LD-QBDs), which belong to a special case

of upper block-Hessenberg Markov chains. These previous studies propose algorithms for

computing the conditional stationary distribution vector π(N):

π(N) =
(π0,π1, . . . ,πN)∑N

ℓ=0 πℓ

,

where N ∈ N is the truncation parameter that should be determined so that π(N) is suffi-

ciently close to π. Takine [24] develops an algorithm for computing π(N) of a special upper

block-Hessenberg Markov chain, which assumes that, for all sufficiently large n ∈ Z+, the

Qn,n−1 are nonsingular and the Qn,n are of the same order (see Assumption 1 therein). These

additional assumptions in [24] are removed by Kimura and Takine [10]. Besides, Shin and

Pearce [23], Li et al. [16], and Klimenok and Dudin [11] modify transition rates (or transi-

tion probabilities) such that they are eventually level independent, and then these researchers

establish algorithms for computing approximately the stationary distribution vectors of upper

block-Hessenberg Markov chains.

The algorithms proposed in [4, 23] have update procedures to improve their outputs, like

our algorithm. However, their update procedures need to recompute, from scratch, most com-

ponents of their new outputs every time. On the other hand, our algorithm utilizes the compo-

nents of the current result, together with some additional computation, to generate an updated

result. This is a remarkable feature of our algorithm.

The rest of this paper is divided into four sections. Section 2 describes preliminary re-

sults on the LBCL-augmented truncation approximation for upper block-Hessenberg Markov

chains. Section 3 proposes a sequential update algorithm that generates a sequence of LBCL-

augmented truncation approximations converging to the original stationary distribution vector.

Section 4 demonstrates the applicability of the proposed algorithm. Finally, Section 5 provides

concluding remarks.

2 The LBCL-augmented truncation approximation

This section consists of three subsections. In Section 2.1, we show a matrix-product form

of the LBCL-augmented truncation approximation (n)π̂. In Section 2.2, we derive an error
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bound for (n)π̂, more specifically, an upper bound for the total variation distance between

(n)π̂ and π. In Section 2.3, we provide an example such that (n)π̂ does not converge to π as

n→ ∞.

Before entering the body of this section, we describe our notation. For any matrix M

(resp. vector m), let |M | (resp. |m|) denote the matrix (resp. vector) obtained by taking the

absolute value of each element of M (resp. m). A finite matrix is treated, if necessary, as an

infinite matrix that keeps the existing elements in their original positions and has an infinite

number of zeros in the other positions. Such treatment is also applied to finite vectors. Thus,

for example, it follows from (1.5) that

(n)π̂ |(n)Q̂−Q|

=
( Sn Sn

(n)π̂ 0
)

×

∣∣∣∣∣∣∣∣∣

( Sn Sn

Sn (n)Q− (n)Qe(n)α̂ O

Sn O O

)
−

( Sn Sn

Sn (n)Q (n)Q>n

Sn ∗ ∗

)
∣∣∣∣∣∣∣∣∣

=
(

(n)π̂ 0
)
(

−(n)Qe(n)α̂ (n)Q>n

∗ ∗

)
, (2.1)

where (n)Q>n = (q(k, i; ℓ, j))(k,i;ℓ,j)×Sn×Sn
. It also follows from (1.4) that, for any column

vector v := (v(k, i))(k,i)∈S,

(n)α̂v =
( Sn Sn

(n)α̂ 0
)
v =

(Sn−1 Ln Sn

0 αn 0
)
v = αnvn, (2.2)

where vn = (v(k, i))(k,i)∈Ln
= (v(n, i))i∈Mn

for n ∈ Z+. Furthermore, we use the following

notation: If a sequence {Zn;n ∈ Z+} of finite matrices (or vectors) converges element-wise

to an infinite matrix (or vector) Z, then we denote this convergence by limn→∞Zn = Z. We

also define the empty sum as zero (e.g.,
∑0

k=1 · = 0).

2.1 A matrix-product form

We partition (n)π̂ and (−(n)Q)−1 level-wise as follows:

(n)π̂ =
( L0 L1 · · · Ln

(n)π̂0 (n)π̂1 · · · (n)π̂n

)
, n ∈ Z+,

(−(n)Q)−1 =




L0 L1 · · · Ln

L0 (n)X0,0 (n)X0,1 · · · (n)X0,n

L1 (n)X1,0 (n)X1,1 · · · (n)X1,n

...
...

...
. . .

...

Ln (n)Xn,0 (n)Xn,1 · · · (n)Xn,n



, n ∈ Z+. (2.3)
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From (2.3) and (1.4), we have

(n)α̂(−(n)Q)−1 = αn((n)Xn,0, (n)Xn,1, . . . , (n)Xn,n), n ∈ Z+. (2.4)

Substituting (2.4) into (1.6) yields

(n)π̂ =
αn((n)Xn,0, (n)Xn,1, . . . , (n)Xn,n)

αn

∑n
ℓ=0 (n)Xn,ℓe

, n ∈ Z+,

which leads to

(n)π̂k =
αn (n)Xn,k

αn

∑n
ℓ=0 (n)Xn,ℓe

, n ∈ Z+, k ∈ Zn. (2.5)

Note that, because (−(n)Q)−1
(n)Q = −I , the inverse matrix (−(n)Q)−1 ≥ O has no zero

rows. Therefore,

n∑

ℓ=0

(n)Xn,ℓe > 0, n ∈ Z+, ℓ ∈ Zn. (2.6)

We derive a matrix-product form of (n)π̂k, k ∈ Zn, from (2.5). To do this, we need some

preparation. We first partition (n)Q as

(n)Q =




Q0,n

(n−1)Q
...

Qn−1,n

O · · · O Qn,n−1 Qn,n


 , n ∈ N.

From this equation and (2.3), we have the following (see the last two equations in [7, Sec-

tion 0.7.3]): For n ∈ N,

(n)Xn,n =


−Qn,n − (O, . . . ,O,Qn,n−1)(−(n−1)Q)−1




Q0,n

Q1,n

...

Qn−1,n







−1

=

(
−Qn,n −Qn,n−1

n−1∑

ℓ=0

(n−1)Xn−1,ℓQℓ,n

)−1

, (2.7)

and

(n)Xn,k = (n)Xn,n · (O, . . . ,O,Qn,n−1)(−(n−1)Q)−1

= (n)Xn,n ·Qn,n−1(n−1)Xn−1,k, k ∈ Zn−1. (2.8)

We also define

U ∗
n = (n)Xn,n, (2.9)

Un,k =

{
Qn,n−1(n−1)Xn−1,k, k ∈ Zn−1,

I, k = n,
(2.10)
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for n ∈ Z+. It then follows from (2.7), (2.9), and (2.10) that

U ∗
n =





(−Q0,0)
−1, n = 0,(

−Qn,n −

n−1∑

ℓ=0

Un,ℓQℓ,n

)−1

, n ∈ N.
(2.11)

Using U ∗
n and Un,k, we can express (n)Xn,k, k ∈ Zn, as follows.

Lemma 2.1 For n ∈ Z+,

(n)Xn,k = U ∗
nUn,k, k ∈ Zn, (2.12)

and

Un,k =

{
(Qn,n−1U

∗
n−1)(Qn−1,n−2U

∗
n−2) · · · (Qk+1,kU

∗
k ), k ∈ Zn−1,

I, k = n.
(2.13)

Proof. Combining (2.8) with (2.9) and (2.10), we have (2.12). Furthermore, applying (2.12)

to (2.10) yields

Un,k = Qn,n−1U
∗
n−1Un−1,k, k ∈ Zn−1,

which leads to (2.13). ✷

Remark 2.1 A result similar to Lemma 2.1 is presented in Shin [22] under the condition that

(n)Q is block tridiagonal (see Theorem 2.1 therein).

Remark 2.2 The matrices (n)Xk,ℓ, ℓ ∈ Zk, and Un,ℓ, ℓ ∈ Zn−1, have probabilistic interpreta-

tions. The (i, j)-th element of (n)Xk,ℓ represents the expected total sojourn time in state (ℓ, j)

before the first visit to Sn (i.e., to any state above level n) starting from state (k, i) (see, e.g.,

[13, Theorem 2.4.3]). Furthermore, the (i, j)-th element of Un,ℓ represents the expected total

sojourn time in state (ℓ, j) before the first visit to Sn starting from state (n, i), measured per

unit of time spent in state (n, i). Thus, we have (see [13, Equation (5.33)])

πℓ = πnUn,ℓ, n ∈ N, ℓ ∈ Zn. (2.14)

We now obtain a matrix-product form of (n)π̂k, k ∈ Zn, by substituting (2.12) into (2.5).

Lemma 2.2

(n)π̂k =
αnU

∗
nUn,k

αn

∑n
ℓ=0U

∗
nUn,ℓe

, n ∈ Z+, k ∈ Zn. (2.15)

Remark 2.3 Equations (2.6) and (2.12) lead to

n∑

ℓ=0

U ∗
nUn,ℓe > 0, n ∈ Z+, ℓ ∈ Zn. (2.16)
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2.2 An error bound

In this subsection, we present an error bound for the LBCL-augmented truncation approxima-

tion (n)π̂ to π. The error bound is used to develop an algorithm for computing π in the next

section.

To derive the error bound, we assume a Foster-Lyapunov drift condition.

Condition 1 The generator Q is irreducible, and there exist a constant b ∈ (0,∞), a finite

set C ⊂ S, and a positive column vector v := (v(k, i))(k,i)∈S such that inf(k,i)∈S v(k, i) > 0

and

Qv ≤ −e+ b1C, (2.17)

where 1B := (1B(k, i))(k,i)∈S, B ⊆ S, denotes a column vector defined by

1B(k, i) =

{
1, (k, i) ∈ S,

0, (k, i) ∈ S \ B.

Remark 2.4 Recall that Q is the generator of the regular-jump Markov chain {(X(t), J(t))}

(see Section 1) and thus Q is stable, i.e., |q(ℓ, j; ℓ, j)| < ∞ for all (ℓ, j) ∈ S (see, e.g., [3,

Chapter 8, Definition 2.4 and Theorem 3.4]). The irreducibility of Q and the finiteness of C

imply that

inf
(k,i)∈C

pt(k, i; ℓ, j) > 0 for all t > 0 and (ℓ, j) ∈ S,

which shows that C is a small set (see, e.g., [12]). Therefore, if Condition 1 holds, then the

irreducible generator Q is ergodic (see, e.g., [12, Theorem 1.1]).

Let Φ(β) := (φ(β)(k, i; ℓ, j)(k,i;ℓ,j)∈S denote a stochastic matrix such that

Φ
(β) =

∫ ∞

0

βe−βtP (t)dt, β > 0,

where P (t) := (p(t)(k, i; ℓ, j))(k,i;ℓ,j)∈S, t ∈ R+, is the transition matrix function of the Markov

chain {(X(t), J(t))} with generator Q, i.e.,

P((X(t), J(t)) = (ℓ, j) | (X(0), J(0)) = (k, i)), (k, i; ℓ, j) ∈ S
2.

Because Q is ergodic, we have Φ(β) > O. We also define φ
(β)

C
, β > 0, as

φ
(β)

C
= sup

(ℓ,j)∈S

min
(k,i)∈C

φ(β)(k, i; ℓ, j) > 0, β > 0.

We then have the following result from [17, Theorem 2.1] with f = g = e.

Proposition 2.1 Under Condition 1, the following holds:

‖(n)π̂ − π‖ ≤ 2 · (n)π̂ |(n)Q̂−Q|

(
v +

b

βφ
(β)

C

e

)
, n ∈ Z+, β > 0, (2.18)

where, for any vector m := (m(i)), ‖m‖ denotes the total variation norm of m, i.e., ‖m‖ =∑
i |m(i)|.
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From Proposition 2.1, we derive a more informative bound for ‖(n)π̂ − π‖. For this

purpose, we define U ∗
n,k, n ∈ Z+, k ∈ Zn, as

U ∗
n,k = U ∗

nUn,k, n ∈ Z+, k ∈ Zn. (2.19)

We also define u∗
n := (u∗n(i))i∈Mn

, n ∈ Z+, as

u∗
n =

n∑

ℓ=0

U ∗
n,ℓe =

n∑

ℓ=0

U ∗
nUn,ℓe > 0, n ∈ Z+, (2.20)

where u∗
n > 0 due to (2.16). Using (2.19) and (2.20), we rewrite (2.15) as

(n)π̂k =
αnU

∗
n,k

αnu∗
n

, n ∈ Z+, k ∈ Zn. (2.21)

Theorem 2.1 If Condition 1 holds, then

‖(n)π̂ − π‖ ≤ E(n), n ∈ Z+, (2.22)

where E( · ) := E(β)( · ), called the error bound function, is given by

E(n) =
2

αnu∗
n

{
αn

(
vn +

n∑

k=0

U ∗
n,k

∞∑

ℓ=n+1

Qk,ℓvℓ

)
+

2b

βφ
(β)

C

}
, n ∈ Z+, (2.23)

with β > 0.

Remark 2.5 The error bound function E has a free parameter β > 0 involved in the in-

tractable factor φ
(β)

C
. Thus, it is, in general, difficult to discuss theoretically how β impacts

on the decay speed of E. Through numerical experiments, Masuyama [20] investigates such

a problem for the last-column block-augmented truncation, though the function E is referred

to therein as the error decay function, instead of the error bound function. Note that the last-

column block-augmented truncation belongs to the class of block-augmented truncations (see

[15] for details). Therefore, the last-column block-augmented truncation is indeed different

from our LBCL-augmented truncation, though they are fairly similar.

Proof of Theorem 2.1 Suppose that Condition 1 holds. It then follows from (2.1) that

(n)π̂|(n)Q̂−Q|

(
v +

b

βφ
(β)

C

e

)

≤
(

(n)π̂ 0
)
(

−(n)Qe(n)α̂ (n)Q>n

∗ ∗

)(
v +

b

βφ
(β)

C

e

)

=
(

(n)π̂(−(n)Qe) · (n)α̂ (n)π̂ (n)Q>n

)
(
v +

b

βφ
(β)

C

e

)
, n ∈ Z+. (2.24)
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Substituting (2.24) into (2.18), we have, for n ∈ Z+,

‖(n)π̂ − π‖ ≤ 2
(

(n)π̂(−(n)Qe) · (n)α̂ 0
)
(
v +

b

βφ
(β)

C

e

)

+ 2
(
0 (n)π̂ (n)Q>n

)
(
v +

b

βφ
(β)

C

e

)

= 2(n)π̂(−(n)Qe) ·

(
αnvn +

b

βφ
(β)

C

)

+ 2

[
n∑

k=0

(n)π̂k

∞∑

ℓ=n+1

Qk,ℓ

(
vℓ +

b

βφ
(β)

C

e

)]
, (2.25)

where the last equality holds due to (2.2) and (n)α̂e = 1 for n ∈ Z+. Because Qe = 0,

n∑

k=0

(n)π̂k

∞∑

ℓ=n+1

Qk,ℓe =

n∑

k=0

(n)π̂k

(
−

n∑

ℓ=0

Qk,ℓe

)
= (n)π̂(−(n)Qe).

Incorporating this into (2.25), we have

‖(n)π̂ − π‖ ≤ 2(n)π̂(−(n)Qe) ·

(
αnvn +

2b

βφ
(β)

C

)

+ 2

[
n∑

k=0

(n)π̂k

∞∑

ℓ=n+1

Qk,ℓvℓ

]
. (2.26)

Note here that (1.6) and (n)α̂e = 1 yield

(n)π̂(−(n)Qe) =
(n)α̂e

(n)α̂(−(n)Q)−1e
=

1

(n)α̂(−(n)Q)−1e
.

Thus, we can rewrite (2.26) as

‖(n)π̂ − π‖ ≤
2

(n)α̂(−(n)Q)−1e

(
αnvn +

2b

βφ
(β)

C

)

+ 2
n∑

k=0

(n)π̂k

∞∑

ℓ=n+1

Qk,ℓvℓ. (2.27)

Furthermore, from (2.4), (2.12), and (2.20), we have

(n)α̂(−(n)Q)−1e = αn

n∑

ℓ=0

U ∗
nUn,ℓe = αnu

∗
n, n ∈ Z+.
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Applying this equation and (2.21) to (2.27), we obtain

‖(n)π̂ − π‖ ≤
2

αnu∗
n

(
αnvn +

2b

βφ
(β)

C

)

+ 2

n∑

k=0

αnU
∗
n,k

αnu∗
n

∞∑

ℓ=n+1

Qk,ℓvℓ

=
2

αnu∗
n

{
αn

(
vn +

n∑

k=0

U ∗
n,k

∞∑

ℓ=n+1

Qk,ℓvℓ

)
+

2b

βφ
(β)

C

}
,

which results in (2.22) together with (2.23). ✷

2.3 A counterexample to convergence

In the previous subsection, we have established the error bound for the LBCL-augmented

truncation approximation (n)π̂. We note that, even if the truncation parameter n goes to in-

finity, (n)π̂ does not necessarily converge to π, in general. However, it always holds that

limn→∞ (n)π̂ = π for special upper block-Hessenberg Markov chains such that the block

matrices Qk,ℓ are scalars. For such a special case, Gibson and Seneta [6] prove that any

augmented truncation approximation converges to the original stationary distribution as the

truncation parameter goes to infinity (see Theorem 2.2 therein). Of course, this is not the case

for general upper block-Hessenberg Markov chains. Indeed, we introduce a counterexample

[9].

Fix Mn = {1, 2} for all n ∈ Z+, and assume that the block matrices Qk,ℓ satisfy the

following:

Qn,n =

(
⋆ ⋆

0 ⋆

)
, Qn,n+1 =

(
⋆ 0

⋆ ⋆

)
, n ∈ Z+, (2.28)

Q2k−1,2k−2 =

(
⋆ 0

0 ⋆

)
, Q2k,2k−1 =

(
⋆ 0

0 0

)
, k ∈ N. (2.29)

where the symbol “ ⋆ ” denotes some nonzero element. In this case, Q is irreducible (see

Figure 1), but S2k−1 is not reachable from state (2k, 2) avoiding S2k. Thus, the probabilistic

(0,1)

(0,2)

(1,1)

(1,2) (2,2)

(2,1) (3,1)

(3,2)

(4,1)

(4,2)

���

���

0L 1L 2L 3L 4L

Figure 1: Transition diagram

interpretations (see Remark 2.2) of the matrices U ∗
2k = (2k)X2k,2k and U2k,ℓ, ℓ ∈ Z2k−1,
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implies that

U ∗
2k =

(
⋆ ⋆

0 ⋆

)
, k ∈ N, (2.30)

U2k,ℓ =

(
⋆ ⋆

0 0

)
, k ∈ N, ℓ ∈ Z2k−1. (2.31)

We now assume that Q is ergodic. We then set

αn = (0, 1), n ∈ Z+, (2.32)

which implies that (n)π̂ is the last-column-augmented truncation approximation to the station-

ary distribution vector π > 0 of Q. Applying (2.30), (2.31), and (2.32) to (2.15) yields

(2k)π̂ = (0, . . . , 0, 1), k ∈ N,

which shows that {(n)π̂;n ∈ Z+} does not converge to π in the present setting.

The example presented here implies that, in some cases, the convergence of {(n)π̂} to π

can require an adaptive choice of the augmentation distribution vector (n)α, depending on n.

We discuss this problem in the next section.

3 Main results

This section is divided into three subsections. In Section 3.1, we formulate linear fractional

programming (LFP) problems for finding augmentation distribution vectors such that the error

bound functionE converges to zero, i.e., limn→∞E(n) = 0. In Section 3.2, using the optimal

solutions of these LFP problems, we construct an MIP form of π. In Section 3.3, we present

a sequential update algorithm for computing the MIP form.

In this section, we assume that Condition 1 holds, as in Section 2.2. We also assume that

n takes an arbitrary value in Z+, unless otherwise stated.

3.1 LFP problems for an MIP form of the stationary distribution vector

Consider the following LFP problem for each n ∈ Z+:

Minimize rn(αn) :=
αnyn

αnu∗
n

; (3.1a)

Subject to αn ≥ 0, (3.1b)

αne = 1, (3.1c)

where yn := (yn(i))i∈Mn
denotes

yn = vn +
n∑

k=0

U ∗
n,k

∞∑

ℓ=n+1

Qk,ℓvℓ > 0. (3.1d)
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It follows from (2.23), (3.1a), and (3.1d) that

E(n) = 2

(
rn(αn) +

1

αnu∗
n

2b

βφ
(β)

C

)
, n ∈ Z+. (3.2)

Furthermore, let α∗
n := (α∗

n(j))j∈Mn
denote a probability vector such that

α∗
n(j) =

{
1, j = j∗n,

0, j 6= j∗n,
(3.3)

where

j∗n ∈ argmin
j∈Mn

yn(j)

u∗n(j)
. (3.4)

We then have the following theorem.

Theorem 3.1 For each n ∈ Z+, the probability vector α∗
n is an optimal solution of the LFP

problem (3.1).

Proof. From (3.3) and (3.4), we have

ξn :=
α∗

nyn

α∗
nu

∗
n

=
yn(j

∗
n)

u∗n(j
∗
n)

= min
j∈Mn

yn(j)

u∗n(j)
> 0,

which leads to yn ≥ ξnu
∗
n > 0. Thus, for any 1×Mn probability vector pn, we obtain

pnyn

pnu∗
n

≥ ξn =
α∗

nyn

α∗
nu

∗
n

.

Therefore, α∗
n is an optimal solution of the LFP problem (3.1). ✷

3.2 An MIP form of the stationary distribution vector

Let (n)π̂
∗ := ((n)π̂

∗
0, (n)π̂

∗
1, . . . , (n)π̂

∗
n) denote a probability vector such that

(n)π̂
∗
k =

α∗
nU

∗
n,k

α∗
nu

∗
n

=
row{U ∗

n,k}j∗n
u∗n(j

∗
n)

, k ∈ Zn, (3.5)

where row{ · }j denotes the j-th row of the matrix in the brackets. Note here that (n)π̂
∗
k is

equal to (n)π̂k in (2.21) with αn = α∗
n. Therefore, it follows from Theorem 2.1 that

‖(n)π̂
∗ − π‖ ≤ E∗(n), n ∈ Z+, (3.6)

where function E∗ is equal to E given in (3.2) with αn = α∗
n; that is,

E∗(n) = 2

(
rn(α

∗
n) +

1

α∗
nu

∗
n

2b

βφ
(β)

C

)
, n ∈ Z+. (3.7)

To proceed further, we assume the following.
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Condition 2

∞∑

n=0

πn∆nvn <∞, (3.8)

where ∆n := (∆n(i, j))i,j∈Mn
denotes an Mn ×Mn diagonal matrix such that

∆n(i, i) = |q(n, i;n, i)|, i ∈ Mn. (3.9)

Lemma 3.1 Suppose that Conditions 1 and 2 hold. We then have

lim
n→∞

rn(α
∗
n) = lim

n→∞

α∗
nyn

α∗
nu

∗
n

= 0. (3.10)

Remark 3.1 If Q is bounded, i.e., sup(n,i)∈S ∆n(i, i) <∞, then Condition 2 is reduced to

πv =

∞∑

n=0

πnvn <∞.

Proof of Lemma 3.1 To prove this lemma, we require the following proposition (which is

proved in Appendix A).

Proposition 3.1 Under Condition 1,

πn∆n ≥ πn(U
∗
n)

−1 ≥ 0, 6= 0 for all n ∈ Z+. (3.11)

Let α̃n denote

α̃n =
πn(U

∗
n)

−1

πn(U ∗
n)

−1e
≥ 0, 6= 0, (3.12)

which is well-defined due to Proposition 3.1. Note that α̃n is a feasible solution of the LFP

problem (3.1). Thus, by the optimality of α∗
n, we have

rn(α
∗
n) ≤ rn(α̃n) for all n ∈ Z+.

It follows from (3.1a) and (3.12) that

rn(α̃n) =
πn(U

∗
n)

−1yn

πn(U ∗
n)

−1u∗
n

=
1

πn(U ∗
n)

−1u∗
n

×

(
πn(U

∗
n)

−1vn + πn(U
∗
n)

−1

n∑

k=0

U ∗
n,k

∞∑

ℓ=n+1

Qk,ℓvℓ

)
, (3.13)

where the second equality holds due to (3.1d). It also follows from (2.14), (2.19), and (2.20)

that

πn(U
∗
n)

−1U ∗
n,k = πnUn,k = πk, k ∈ Zn,

πn(U
∗
n)

−1u∗
n =

n∑

ℓ=0

{
πn(U

∗
n)

−1U ∗
n,ℓ

}
e =

n∑

ℓ=0

πℓe.
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Substituting these equations into (3.13), and using (3.11), we obtain

rn(α̃n) =
1∑n

ℓ=0 πℓe

(
πn(U

∗
n)

−1vn +
n∑

k=0

πk

∞∑

ℓ=n+1

Qk,ℓvℓ

)

≤
1∑n

ℓ=0 πℓe

(
πn∆nvn +

n∑

k=0

πk

∞∑

ℓ=n+1

Qk,ℓvℓ

)
. (3.14)

Consequently, the proof of (3.10) is completed by showing that the right-hand side of (3.14)

converges to zero as n→ ∞.

It follows from (2.17) that, for all n ∈ Z+ and k ∈ Zn,

0 ≤

∞∑

ℓ=n+1

Qk,ℓvℓ ≤ −

n∑

ℓ=0

Qk,ℓvℓ − e+ be

≤ −Qk,kvk + be ≤ ∆kvk + be,

and thus
n∑

k=0

πk

∞∑

ℓ=n+1

Qk,ℓvℓ ≤

∞∑

k=0

πk∆kvk + b <∞ for all n ∈ Z+,

where the last inequality holds due to (3.8). Therefore, by the dominated convergence theo-

rem,

lim
n→∞

n∑

k=0

πk

∞∑

ℓ=n+1

Qk,ℓvℓ =
∞∑

k=0

πk lim
n→∞

∞∑

ℓ=n+1

Qk,ℓvℓ = 0. (3.15)

It also follows from (3.8) that

lim
n→∞

πn∆nvn = 0. (3.16)

Combining (3.15), (3.16), and
∑∞

ℓ=0πℓe = 1, we obtain

lim
n→∞

1∑n
ℓ=0 πℓe

(
πn∆nvn +

n∑

k=0

πk

∞∑

ℓ=n+1

Qk,ℓvℓ

)
= 0,

which completes the proof. ✷

The following theorem is a consequence of Lemma 3.1 together with (3.6) and (3.7).

Theorem 3.2 Suppose that Conditions 1 and 2 hold. We then have

lim
n→∞

E∗(n) = 0, (3.17)

and thus (3.6) yields

lim
n→∞

‖(n)π̂
∗ − π‖ = 0. (3.18)
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Proof. We prove only (3.17). It follows from (3.1d), (3.3), and inf(k,i)∈S v(k, i) > 0 (see

Condition 1) that

α∗
nyn ≥ α∗

nvn = v(n, j∗n) > 0, n ∈ Z+.

Therefore, (3.10) implies that

lim
n→∞

α∗
nu

∗
n = ∞,

which yields

lim
n→∞

1

α∗
nu

∗
n

2b

βφ
(β)

C

= 0. (3.19)

Applying (3.19) and Lemma 3.1 to (3.7) results in (3.17). ✷

Theorem 3.2 yields a matrix-infinite-product (MIP) form of π = (π0,π1, . . . ) under Con-

ditions 1 and 2. This is summarized in the following corollary.

Corollary 3.1 If Conditions 1 and 2 hold, then

πk = lim
n→∞

α∗
nU

∗
n,k

α∗
nu

∗
n

, k ∈ Z+, (3.20)

or equivalently,

πk = lim
n→∞

α∗
nU

∗
nUn−1Un−2 · · ·Uk

α∗
n

∑n
ℓ=0U

∗
nUn−1Un−2 · · ·Uℓe

, k ∈ Z+, (3.21)

where

Uk = Qk+1,kU
∗
k , k ∈ Z+. (3.22)

Proof. Suppose that Conditions 1 and 2 hold. It then follows from (3.5) and (3.18) that

πk = lim
n→∞

(n)π̂
∗
k = lim

n→∞

α∗
nU

∗
n,k

α∗
nu

∗
n

, k ∈ Z+,

which shows that (3.20) holds. Furthermore, combining (2.19) with (2.13) and (3.22) yields,

for n ∈ Z+,

U ∗
n,k =

{
U ∗

nUn−1Un−2 · · ·Uk, k ∈ Zn−1,

I, k = n.

Using this and (2.20), we can rewrite (3.20) as (3.21). ✷

Remark 3.2 Theorem 3.2 ensures that the convergence in (3.20) and (3.21) is uniform for

k ∈ Z+.

Remark 3.3 Another MIP form of πk is presented in the preprint [19], under some technical

conditions different from Conditions 1 and 2.
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3.3 A sequential update algorithm for the MIP form

In this subsection, we propose an algorithm for computing π, based on Theorem 3.2 and

Corollary 3.1. Our algorithm sequentially updates the LBCL-augmented truncation approxi-

mation so that it converges to the MIP form (3.20) of π.

To efficiently achieve this update procedure, we derive recursive formulas. Combining

(2.19) with (2.11) and (2.13), we have

U ∗
0,0 = U ∗

0 = (−Q0,0)
−1, (3.23a)

U ∗
n,k =

{
U ∗

nQn,n−1 ·U
∗
n−1,k, n ∈ N, k ∈ Zn−1,

U ∗
n, n ∈ N, k = n.

(3.23b)

Using (2.20), (3.23a), and (3.23b), we also obtain

u∗
0 = U ∗

0e = (−Q0,0)
−1e, (3.24a)

u∗
n = U ∗

n

(
e+Qn,n−1u

∗
n−1

)
, n ∈ N. (3.24b)

Furthermore, (2.13) and (2.19) yield

Un,ℓ = Qn,n−1U
∗
n−1Un−1,ℓ = Qn,n−1U

∗
n−1,ℓ, ℓ ∈ Zn−1.

Substituting this into (2.11) leads to

U ∗
n =

(
−Qn,n −Qn,n−1

n−1∑

ℓ=0

U ∗
n−1,ℓQℓ,n

)−1

, n ∈ N. (3.25)

Our algorithm is composed of the equations (3.23)–(3.25), Theorem 3.2, and Corollary 3.1.

Algorithm : Computing the MIP form of π

Input: Q, ε ∈ (0, 1), and increasing sequence {nℓ; ℓ ∈ Z+} of positive integers.

Output: (n)π̂
∗ = ((n)π̂

∗
0, (n)π̂

∗
1, . . . , (n)π̂

∗
n), where n ∈ Z+ is fixed when the iteration stops.

1. Find v > 0, b > 0, and C ∈ S such that Conditions 1 and 2 hold.

2. Set n = 0 and ℓ = 1.

3. Compute U ∗
0 by (3.23a) and u∗

0 by (3.24a).

4. Iterate (a)–(d) below:

(a) Increment n by one.

(b) Compute U ∗
n = U ∗

n,n by (3.25).

(c) Compute U ∗
n,k, k = 0, 1, . . . , n− 1, by (3.23b) and u∗

n by (3.24b).

(d) If n = nℓ, then perform the following:

i. Compute yn by (3.1d), and find j∗n satisfying (3.4).

ii. Compute (n)π̂
∗
k, k = 0, 1, . . . , n, by (3.5).

iii. If ‖(nℓ)π̂
∗ − (nℓ−1)π̂

∗‖ < ε, then stop the iteration; otherwise increment ℓ by

one and return to step (a).
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Remark 3.4 Equation (3.18) leads to

lim
n→∞

‖(n)π̂
∗ − (n+m)π̂

∗‖ = 0 for any fixed m ∈ N.

Therefore, our algorithm iterates Step 4 only a finite number of times.

Remark 3.5 Step (4.b) computes U ∗
n by (3.25). The (i, j)-th element of U ∗

n is the expected

total sojourn time in state (n, j) before the first visit to Sn starting from state (n, i). Thus,

T ∗
n = (−U ∗

n)
−1, defined in (A.1), is a non-conservative Q-matrix that governs the transient

transitions of an absorbing Markov chain obtained by observing {(X(t), J(t))} when it is in

Ln during the first passage time to Sn starting from Ln. This consideration indicates U ∗
n =

(−T ∗
n )

−1 can be efficiently computed (see [14, Proposition 1]), provided that T ∗
n is given.

Remark 3.6 Generally, our algorithm computes the infinite sum
∑∞

ℓ=n+1Qk,ℓvℓ to obtain yn

in (3.1d). However, this infinite sum can be calculated in many practical cases associated with

queueing models (as implied by the examples in the next section). Moreover, if Q is an LD-

QBD generator, or equivalently, Qk,ℓ = O for k ∈ Z+ and |ℓ− k| > 1, then yn is expressed

without any infinite sum:

yn = vn +U ∗
n,nQn,n+1vn+1, n ∈ Z+.

Furthermore, a noteworthy fact is that computing the infinite sum
∑∞

ℓ=n+1Qk,ℓvℓ is not always

necessary even if Q is not an LD-QBD generator. To demonstrate this, suppose that we have

an explicit expression for wk,n, k, n ∈ Z+, such that

lim
n→∞

n∑

k=0

πkwk,n = 0,

∞∑

ℓ=n+1

Qk,ℓvℓ ≤ wk,n, k, n ∈ Z+.

It then follows from (3.14) and (3.16) that

rn(α̃n) ≤
1∑n

ℓ=0πℓe

(
πn∆nvn +

n∑

k=0

πkwk,n

)
→ 0 as n→ ∞.

Thus, we modify Step (4.d.i) as follows: Compute

y̆n := (y̆n(j))j∈Mn
= vn +

n∑

k=0

U ∗
n,kwk,n,

and find

j∗n ∈ argmin
j∈Mn

y̆n(j)

u∗n(j)
.

Despite this modification, our update algorithm works well.

4 Applicability of the proposed algorithm

This section demonstrates the applicability of our algorithm. To this end, we consider a

BMAP/M/∞ queue and M/M/s retrial queue, respectively, in Sections 4.1 and 4.2. For each

model, we present a sufficient condition for Conditions 1 and 2, under which our update algo-

rithm works well.
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4.1 BMAP/M/∞ queue

This subsection considers a BMAP/M/∞ queue. The system has an infinite number of servers.

Customers arrive at the system according to a batch Markovian arrival process (BMAP) (see,

e.g., [18]). Arriving customers are immediately served, and their service times are indepen-

dent and identically distributed (i.i.d.) with an exponential distribution having mean µ−1.

Let {N(t); t ∈ R+} denote the counting process of arrivals from the BMAP; that is,

N(t) is equal to the total number of arrivals during the time interval [0, t], where N(0) = 0.

Let {J(t); t ∈ R+} denote the background Markov chain of the BMAP, which is defined

on state space M = {1, 2, . . . ,M} ⊂ N. We assume that the bivariate stochastic process

{(N(t), J(t)); t ∈ R+} is a continuous-time Markov chain which follows the transition law

given by

P(N(t+∆t) = k, J(t+∆t) = j | J(t) = i)

=





1 +D0,i,i∆t + o(∆t), k = 0, i = j ∈ M,

D0,i,j∆t+ o(∆t), k = 0, i, j ∈ M, i 6= j,

Dk,i,j∆t + o(∆t), k ∈ N, i, j ∈ M,

0, otherwise,

where a(t) = o(b(t)) represents limt→0 a(t)/b(t) = 0. Thus, the BMAP is characterized by

{Dn;n ∈ Z+}, where Dn = (Dn,i,j)i,j∈M for n ∈ Z+. Moreover, D :=
∑

n∈Z+
Dn is the

generator of the background Markov chain {J(t); t ∈ R+}. As usual, we assume that D is

irreducible and

De ≥ 0, 6= 0.

Let X(t), t ∈ R+, denote the number of customers in the system at time t. It then follows

that {(X(t), J(t)); t ∈ R+} is a continuous-time Markov chain on state space S := Z+ ×M

with generator Q given by

Q =




L0 L1 L2 L3 · · ·

L0 D0 D1 D2 D3 · · ·

L1 µI D0 − µI D1 D2 · · ·

L2 O 2µI D0 − 2µI D1 · · ·

L3 O O 3µI D0 − 3µI · · ·
...

...
...

...
...

. . .



, (4.1)

where Lk = {k} ×M (i.e., Mk =M) for all k ∈ Z+ and

Qk,ℓ =





Dℓ−k, k ∈ Z+, ℓ = k + 1, k + 2, . . . ,

D0 − kµI, k ∈ N, ℓ = k,

kµI, k ∈ N, ℓ = k − 1.

(4.2)

We now suppose that, for some C > 0,

∞∑

k=1

(k + e) log(k + e)Dke < Ce, (4.3)
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and let

vk = log(k + e)e, k ∈ Z+,

where “e” denotes Napier’s constant. Clearly,
∑∞

k=1 log(k+e)Dke < Ce due to (4.3). Thus,

Condition 1 holds for generator Q in (4.1) (see [25, Lemma 1]).

It remains to verify that Condition 2 holds. From (3.9) and (4.1), we have ∆k(i, i) =

|q(k, i; k, i)| = kµ+ |D0,i,i| and thus Condition 2 is reduced to

∑

(k,i)∈Z+×M

π(k, i)k log(k + e) <∞. (4.4)

Therefore, we show that (4.4) holds.

We begin with the following lemma.

Lemma 4.1 Let V denote a function on R+ such that

V (x) = (x+ e) log(x+ e), x ∈ R+. (4.5)

If (4.3) holds, then there exist some K ∈ Z+ and θ > 0 such that

∞∑

ℓ=0

Qk,ℓV (ℓ)e ≤ −θV (k)e ≤ −e for all k ≥ K + 1. (4.6)

Proof. Because limx→∞ V (x) = ∞, it suffices to prove that

lim sup
k→∞

1

V (k)

∞∑

ℓ=0

Qk,ℓV (ℓ)e ≤ −µe. (4.7)

It follows from (4.2) that, for k ∈ N,

1

V (k)

∞∑

ℓ=0

Qk,ℓV (ℓ)e =

{
−µk

(
1−

V (k − 1)

V (k)

)
e+

∞∑

ℓ=0

V (k + ℓ)

V (k)
Dℓe

}
. (4.8)

Furthermore, V is differentiable and convex. Thus, we have

V (k) ≥ V (k − 1) + V ′(k − 1), k ≥ 1.

Using this inequality and (4.5), we obtain

lim inf
k→∞

k

(
1−

V (k − 1)

V (k)

)
≥ lim inf

k→∞
k
V ′(k − 1)

V (k)

= lim
k→∞

k

k + e

log(k − 1 + e) + 1

log(k + e)
= 1. (4.9)

Applying (4.9) to (4.8) yields

lim sup
k→∞

1

V (k)

∞∑

ℓ=0

Qk,ℓV (ℓ)e ≤ −µe + lim sup
k→∞

∞∑

ℓ=0

V (k + ℓ)

V (k)
Dℓe,
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and therefore (4.7) holds if

lim
k→∞

∞∑

ℓ=0

V (k + ℓ)

V (k)
Dℓe = 0. (4.10)

Consequently, our goal is to prove (4.10).

We note that V ≥ 1 is log-concave, which implies the following: For any x, y ∈ R+ such

that x+ y > 0,

log V (x) ≥
y

x+ y
log V (0) +

x

x+ y
log V (x+ y),

log V (y) ≥
x

x+ y
log V (0) +

y

x+ y
log V (x+ y).

These inequalities yield

log V (x) + log V (y) ≥ log V (0) + log V (x+ y) ≥ log V (x+ y),

which leads to

V (x+ y) ≤ V (x)V (y), x, y ∈ R+. (4.11)

Using (4.11) and (4.5), we obtain, for all k ∈ Z+,

∞∑

ℓ=1

V (k + ℓ)

V (k)
Dℓe ≤

∞∑

ℓ=1

V (ℓ)Dℓe =

∞∑

ℓ=1

(ℓ+ e) log(ℓ+ e)Dℓe < Ce,

where the last inequality is due to (4.3). Thus, by the dominated convergence theorem and

(4.5), we obtain

lim
k→∞

∞∑

ℓ=0

V (k + ℓ)

V (k)
Dℓe = D0e+

∞∑

ℓ=1

lim
k→∞

V (k + ℓ)

V (k)
Dℓe =

∞∑

ℓ=0

Dℓe = 0,

which shows that (4.10) holds. ✷

Let ṽ := (ṽ(k, i))(k,i)∈Z+×M and f̃ := (f̃(k, i))(k,i)∈Z+×M denote column vectors such that

ṽ(k, i) = V (k) = (k + e) log(k + e), k ∈ Z+, i ∈ M,

f̃(k, i) =

{
1, 0 ≤ k ≤ K, i ∈ M,

θV (k) = θ(k + e) log(k + e), k ≥ K + 1, i ∈ M,
(4.12)

where K ∈ Z+ and θ > 0 satisfying (4.6). It then follows from Lemma 4.1 that, for some

b̃ > 0,

Qṽ ≤ −f̃ + b̃1ZK×M,

which yields πf̃ < b̃. Combining this inequality and (4.12) results in (4.4). We have

confirmed that Condition 2 is satisfied. As a result, our algorithm is always applicable to

BMAP/M/∞ queues satisfying (4.3).
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4.2 M/M/s retrial queue

In this subsection, we consider an M/M/s retrial queue (which is sometimes called an M/M/s/s

retrial queue). The system has s (s ∈ N) servers but no real waiting room. Primary customers

(which originate from the exterior) arrive to the system according to a Poisson process with

rate λ ∈ (0,∞). If an arriving primary customer finds an idle server, then the customer

occupies the server, otherwise it joins the orbit (i.e., the virtual waiting room). Customers in

the orbit are referred to as retrial customers. Each retrial customer stays in the orbit for an

exponentially distributed time with mean η−1 ∈ (0,∞), independently of all the other events.

After the sojourn in the orbit, a retrial customer tries to occupy one of idle servers. If such a

retrial customer finds no idle servers, then it goes back to the orbit; that is, becomes a retrial

customer again. We assume that the service times of primary and retrial customers are i.i.d.

with an exponential distribution having mean µ−1 ∈ (0,∞).

Let X(t), t ∈ R+, denote the number of customers in the orbit at time t. Let J(t), t ∈ R+,

denote the number of busy servers at time t. The stochastic process {(X(t), J(t)); t ∈ R+} is

a level-dependent quasi-birth-and-death process (LD-QBD) on state space S := Z+×Zs with

generator Q given by

Q =




L0 L1 L2 L3 · · ·

L0 Q0,0 Q0,1 O O · · ·

L1 Q1,0 Q1,1 Q1,2 O · · ·

L2 O Q2,1 Q2,2 Q2,3 · · ·

L3 O O Q3,2 Q3,3
. . .

...
...

...
...

. . .
. . .



, (4.13)

where Lk = {k} × Zs for k ∈ Z+, and where

Qk,k−1 =




0 kη 0 · · · 0

0 0 kη
. . .

...
...

. . .
. . . 0

... 0 kη

0 · · · · · · 0 0




, k ∈ N, (4.14)

Qk,k+1 =




0 0 · · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

0 0 · · · 0 λ



, k ∈ Z+, (4.15)
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and

Qk,k =




−ψk,0 λ 0 · · · · · · 0

µ −ψk,1 λ
. . .

...

0 2µ −ψk,2
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . . −ψk,s−1 λ

0 · · · · · · 0 sµ −ψk,s




, k ∈ Z+, (4.16)

with

ψk,i = λ+ iµ+ kη, k ∈ Z+, i ∈ Zs−1,

ψk,s = λ+ sµ, k ∈ Z+.

We now assume that the stability condition ρ := λ/(sµ) < 1 holds. It then follows that

the LD-QBD {(X(t), J(t))} is ergodic (see, e.g., [5, Section 2.2]) and thus has the unique

stationary distribution vector π = (π(k, i))(k,i)∈S. Under this stability condition, we show

that Conditions 1 and 2 are satisfied, which requires the following proposition.

Proposition 4.1 ([20, Lemma 4.1]) Suppose that ρ = λ/(sµ) < 1. For k ∈ Z+, let vk =

(v(k, j))j∈Zs
be given by

v(k, i) =

{
αk/c, k ∈ Z+, i ∈ Zs−1,

αk/(cγ), k ∈ Z+, i = s,
(4.17)

where α, γ, and c are positive constants such that

1 < α < ρ−1, (4.18)

α−1 < γ < 1− ρ(α− 1),

c = sµ [1− ρ(α− 1)− γ] .

Furthermore, let

b = max
k∈ZK

αk
[
1− c−1{kη(1− γ−1α−1) + λ(1− γ−1)}

]
∨ 0,

K =

⌈
c+ λ(γ−1 − 1)

η(1− γ−1α−1)

⌉
∨ 1− 1,

where x ∨ y = max(x, y). Under these conditions, the generator Q of the LD-QBD, charac-

terized by (4.13)–(4.16), satisfies

Qv ≤ −cv + b1SK
.

We note that cv ≥ e. Proposition 4.1 thus shows that Condition 1 is satisfied. Moreover,

Theorem 1 in [8] states that, for a certain constant c0 > 0,

π(k, i)
k
∼
c0
i!

(
η

µ

)i

k−s+i+λ/(sη)ρk, i ∈ Zs, (4.19)
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where a1(x)
x
∼ a2(x) represents limx→∞ a1(x)/a2(x) = 1. Combining (4.17)–(4.19) yields

∑

(k,i)∈S

π(k, i)kv(k, i) <∞,

which implies that Condition 2 is satisfied. Consequently, our algorithm is always applicable

to stable M/M/s retrial queues.

5 Concluding Remarks

This paper has presented a sequential update algorithm for computing the stationary distribu-

tion vector in continuous-time upper block-Hessenberg Markov chains. The algorithm stops

after finitely many iterations if Conditions 1 and 2 are satisfied. These conditions hold in any

stable M/M/s retrial queue and the BMAP/M/∞ queues satisfying the mild condition (4.3).

Furthermore, the algorithm would be applicable (under some mild conditions) to MAP/PH/s

retrial queues, BMAP/PH/∞ queues, and their variants.

A Proof of Proposition 3.1

Let T ∗
n , n ∈ Z+, denote

T ∗
n =





Q0,0, n = 0,

Qn,n +
n−1∑

ℓ=0

Un,ℓQℓ,n, n ∈ N.
(A.1)

It then follows from (2.11), (3.9), and (A.1) that

πn∆n ≥ πn(−Qn,n) ≥ πn(−T ∗
n ) = πn(U

∗
n)

−1, n ∈ Z+. (A.2)

It also follows from (2.14), (A.1), and
∑∞

ℓ=0πℓQℓ,n = 0 (n ∈ Z+) that

πn(−T ∗
n ) = −πnQn,n − πn

n−1∑

ℓ=0

Un,ℓQℓ,n

= −

n∑

ℓ=0

πℓQℓ,n =

∞∑

ℓ=n+1

πℓQℓ,n ≥ 0, 6= 0, n ∈ Z+. (A.3)

Combining (A.2) and (A.3) yields (3.11). The proof has been completed.
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