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Abstract

In this paper, we investigate exact tail asymptotics for the stationary distribution

of a fluid model driven by the M/M/c queue, which is a two-dimensional queueing

system with a discrete phase and a continuous level. We extend the kernel method

to study tail asymptotics of its stationary distribution, and a total of three types of

exact tail asymptotics is identified from our study and reported in the paper.
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1 Introduction

Fluid flows have been widely used for modelling information flows in performance analysis
of packet telecommunication systems. In this area, fluid queues with Markov-modulated
input rates have played an important role in the recent development. In such a fluid model,
the rate of information change is modulated according to a Markov process, evolving in
the background. Several references on the Markov-modulated fluid queues can be found
in the literature, such as [16, 14, 8]. In these studies, the state space N of the modulating
Markov process is assumed to be finite, which put a restriction on applications. On
the contrary, in this paper, we consider an infinite capacity fluid model driven by the
M/M/c queue, which is a specific birth-death process. First, we let Z(t) be the state of
a continuous-time Markov chain on a countable state space, the background process, at
time t, and let X(t) be the fluid level in the queue at time t. Let rZ(t) denote the rate of
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change of the fluid level (or the net input rate) at time t. Then, the dynamics of the fluid
level X(t) are given by

dX(t)

dt
=

{
rZ(t), if X(t) > 0 or rZ(t) ≥ 0,
0, if X(t) = 0 and rZ(t) < 0.

Fluid queues driven by infinite state Markov chains have been considered in the past
by several authors. For instance, van Doorn and Scheinhardt, in [6], for the stationary
distribution of the fluid queue driven by a birth-death process, they used orthogonal
polynomials to solve an infinite system of differential equations under certain boundary
conditions and provided the same integral expression obtained by Virtamo and Norros in
[18] and by Adan and Resing in [1] in the case driven by theM/M/1 queue. Parthasarythy
and Vijayashree, in [15], provided an expression, via an integral representation of Bessel
functions, for the stationary distributions of the buffer occupancy and the buffer content,
respectively, for a fluid queue driven by anM/M/1 queue. By using the Laplace transform,
they obtained a system of differential equations, which led to a continued fraction and the
solution of the stationary distribution. In [3], Barbot and Sericola provided an analytic
expression for the stationary distribution of the fluid queue driven by an M/M/1 queue
through the generating function technique. Analysis for the transient distribution of the
fluid queue driven by an M/M/1 queue was reported by Sericola, Parthasarathy and
Vijayashreehad in [17].

Although methods for studying the stationary performance measures of the fluid queue
driven by the M/M/1 queue are different in the above mentioned references, the expres-
sions obtained through integral expressions are usually cumbersome and hard to be used
directly for asymptotic properties for the stationary distribution. In this paper, we extend
the kernel method to characterize exact tail asymptotics for the stationary distribution
of the fluid model driven by an M/M/c queue. The main contributions include:

1. An extension of the kernel method. The key idea of the kernel method was pro-
posed by Knuth in [9] and further developed by Banderier et al. in [2]. The method
has been recently extended to study the exact tail behaviour for two-dimensional
stochastic networks (or random walks with reflective boundaries) for both discrete
and continuous random walks in the quarter plane, for example see Li and Zhao [11]
and Dai, Dawson and Zhao [4], and references therein. Compared to other meth-
ods, the kernel method, which has been successfully used to study tail behaviour
of models with both level and background either discrete or continuous, does not
require a determination or characterization of the entire unknown function in order
to characterize the exact tail asymptotic properties in stationary distributions. It is
worthwhile to point out that the application of the kernel method to the fluid model
driven by an M/M/c queue is not straightforward and requires significant efforts,
since in this case the level is continuous and the background is discrete.

2. An extension of the finding for the tail asymptotic behaviour in the stationary
distribution of a fluid queue driven by a Markov chain. We show in Section 5 that
for the fluid model driven by an M/M/c queue, a total of three types of exact tail
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asymptotic properties exists, in comparison with the finding by Govorun, Latouche
and Remiche in [8], in which they showed that for a fluid model driven by a finite
state Markov chain there is only one type of tail asymptotic property. This is also
an extension of the tail asymptotic behaviour in the stationary distribution of a
fluid queue driven by an M/M/1 queue, since the tail asymptotic property given in
Case (iii) of Theorems 5.1 and 5.2 does not exist for the case of c = 1.

The rest of the paper is organized as follows: In Section 2, we describe the fluid
model, define the notation and present the system of partial differential equations satisfied
by the joint probability distribution function of the buffer level and of the state of the
driving process. In this section, we also establish the fundamental equation based on the
differential equations. Section 3 is devoted to the discussion on properties of the branch
points in the kernel equation and the analytic continuation of the unknown functions in
terms of the kernel method. In Section 4, an asymptotic analysis of the two unknown
functions is carried out. In Section 5, an characterization on exact tail asymptotic in
the stationary distribution for the model is presented. We show that there exist three
types of tail asymptotic properties for the boundary, joint, and marginal distributions,
respectively. These results are an extension of the single type behaviour found in [8] for the
stationary density of the fluid queue driven by a finite state Markov chain. In Section 6,
two special cases (c = 1 and c = 2) are further considered. Finally, in Section 7, we make
some concluding remarks to complete the paper.

2 Model description and fundamental equation

We consider the fluid model driven by an M/M/c queueing system {Z(t), t ≥ 0}, where
Z(t) denotes the queue length of the M/M/c queue at time t. It is known that Z(t) is a
special birth-death process with the state space E = {0, 1, 2, . . .}. Let λi be the arrival
rate and µi be the service rate in state i for {Z(t), t ≥ 0}. Then,

λi = λ > 0 for any i ≥ 0,

and with µ > 0,

µi =

{
iµ, for 0 ≤ i ≤ c− 1,
cµ, for i ≥ c.

Suppose λ < cµ. Then the unique stationary distribution ξ = (ξi)i∈E of {Z(t)} exists,
which is given by

ξi =





ξ0
ρi

i!
, for 1 ≤ i ≤ c,

ξc

(ρ
c

)i−c
, for i > c,

where ξ0 = (
∑c−1

i=0
ρi

i!
+ ρc

(c−1)!(c−ρ))
−1 and ρ = λ

µ
.

According to [17], we may regard the fluid model driven by anM/M/c queue {Z(t), t ≥
0} as a fluid commodity, which is referred to as credit. The credit accumulates in an infinite
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capacity buffer during the full busy period of M/M/c queue (i.e. whenever a customer
arrives and finds all servers busy) at a positive rate rZ(t), defined as ri = r > 0 for any
i ≥ c. The credit depletes the fluid during the partial busy period of M/M/c queue (i.e.
whenever an arriving customer finds less than c customers in the queue) at a negative
rate rZ(t). It is reasonable to assume that the negative rate ri increases in i. Without loss
of generality, we assume that the net input rate is ri = i− c for any 0 ≤ i ≤ c− 1.

In order that the stationary distribution of X(t) exists, we shall assume throughout
the paper that ∑

i∈E

ξiri < 0,

which is equivalent to

(r + 1)λ < cµ+ (cµ− λ) ·
c−2∑

i=0

(c− i)λi+1−c · (c− 1)!

µi+1−c · i! .

Now, we denote
Fi(t, x) = P{Z(t) = i, X(t) ≤ x}

for any t ≥ 0, x ≥ 0 and i ∈ E. It is well known (see e.g. [6]) that the joint distribution
Fi(t, x) satisfies the following partial differential equations:

∂F0(t, x)

∂t
= c

∂F0(t, x)

∂x
− λF0(t, x) + µF1(t, x),

∂Fi(t, x)

∂t
= (c− i)

∂Fi(t, x)

∂x
+ λFi−1(t, x)− (λ+ iµ)Fi(t, x) + (i+ 1)µFi+1(t, x), 1 ≤ i ≤ c− 1,

∂Fi(t, x)

∂t
= −r∂Fi(t, x)

∂x
+ λFi−1(t, x)− (λ+ cµ)Fi(t, x) + cµFi+1(t, x), i ≥ c.

Let Z and X be the stationary states of Z(t) and X(t) respectively. Then, the sta-
tionary distribution is given by

Πi(x) = lim
t→∞

Fi(t, x) = P{Z = i, X ≤ x}.

Define πi(x) =
∂Πi(x)
∂x

for any x > 0 and πi(0) = limx→0+ πi(x). From the above partial
differential equations, we have the following equations:

−cπ0(x) = µΠ1(x)− λΠ0(x), (1)

−(c− i)πi(x) = λΠi−1(x)− (λ+ iµ)Πi(x) + (i+ 1)µΠi+1(x), for 1 ≤ i ≤ c− 1, (2)

rπi(x) = λΠi−1(x)− (λ+ cµ)Πi(x) + cµΠi+1(x), for i ≥ c. (3)

The initial condition of (1), (2) and (3) is given by

Πi(0) = 0, i ≥ c.

In addition, for any i ∈ E, we have

Πi(∞) = lim
x→∞

Πi(x) = ξi.
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Let φi(α) be the Laplace transform for πi(x), i.e.,

φi(α) =

∫ ∞

0

πi(x)e
αxdx.

For any i ∈ E, we have
∫ ∞

0

Πi(x)e
αxdx =

∫ ∞

0

[
Πi(0) +

∫ x

0+
πi(s)ds

]
eαxdx = − 1

α
Πi(0)−

1

α
φi(α).

Thus taking the Laplace transforms of Πi(x) and πi(x) in (2) and (3), we can get

−φc−1(α) = −λ
α
[Πc−2(0) + φc−2(α)] +

λ+ (c− 1)µ

α
[Πc−1(0) + φc−1(α)]−

cµ

α
[Πc(0) + φc(α)],

and for any i ≥ c

rφi(α) = −λ
α
[Πi−1(0) + φi−1(α)] +

λ+ cµ

α
[Πi(0) + φi(α)]−

cµ

α
[Πi+1(0) + φi+1(α)].

It then follows that

∞∑

i=c−1

[−λz2 + (−αr + λ+ cµ)z − cµ]φi(α)z
i

= λφc−2(α)z
c + [(µ− α− αr)z − cµ]φc−1(α)z

c +

∞∑

i=c−1

[λz2 − (λ+ cµ)z + cµ]Πi(0)z
i

+λΠc−2(0)z
c + (µz − cµ)Πc−1(0)z

c−1.

Denote

ψ(α, z) =

∞∑

i=c−1

φi(α)z
i,

and

ψ(z) =
∞∑

i=c−1

Πi(0)z
i.

Then, we can obtain the following fundamental equation, which connects the bivariate
unknown function ψ(α, z) to the univariate unknown functions φc−2(α), φc−1(α) and ψ(z):

H(α, z)ψ(α, z) = λzc[φc−2(α)+Πc−2(0)]+H1(α, z)φc−1(α)+H2(α, z)ψ(z)+H0(α, z)Πc−1(0),

where

H(α, z) = −λz2 + (−αr + λ+ cµ)z − cµ,

H1(α, z) = (µ− αr − α)zc − cµzc−1,

H2(α, z) = H2(z) = λz2 − λz − cµz + cµ,

H0(α, z) = H0(z) = µzc − cµzc−1.

By establishing a relation between φc−2(α) and φc−1(α), we obtain the following result.
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Theorem 2.1. The fundamental equation can be rewritten as

H(α, z)ψ(α, z) = Ĥ1(α, z)φc−1(α) +H2(z)ψ(z) + Ĥ0(α, z), (4)

where

Ĥ1(α, z) = λzcAc−2(α) +H1(α, z),

Ĥ0(α, z) = H0(z)Πc−1(0) + λzcΠc−2(0) + λzc
c−2∑

n=0

[
knλ

c−2−n
c−2∏

m=n

Am(α)

(m+ 1)µ

]
,

with k0 = µΠ1(0)− λΠ0(0),

ki = λΠi−1(0)− (λ+ iµ)Πi(0) + (i+ 1)µΠi+1(0), 1 ≤ i ≤ c− 2,

and

Ai(α) =
(i+ 1)µ

α + λ+ iµ− λAi−1(α)
, 0 ≤ i ≤ c− 2, A−1(α) = 0.

Proof. Taking the Laplace transform for Πi(x) and πi(x) in (1) and (2), leads to the
following linear equations:






(α + λ)φ0(α)− µφ1(α) = k0,

− λφ0(α) + (α+ λ+ µ)φ1(α)− 2µφ2(α) = k1,

...

− λφc−3(α) + [α + λ+ (c− 2)µ]φc−2(α) = (c− 1)µφc−1(α) + kc−2.

Since A′
0(α) =

−µ
(α+λ)2

< 0, we assume that A′
k−1(α) < 0 for any α ≥ 0, as the inductive

hypothesis, to show

A′
k(α) =

−(k + 1)µ[1− λA′
k−1(α)]

[α + λ+ kµ− λAk−1(α)]2
< 0.

Thus, Ai(α) is a decreasing function about α for any 0 ≤ i ≤ c − 2. For any α > 0 and
0 ≤ i ≤ c− 2, we can obtain that

Ai(α) < Ai(0) =
(i+ 1)µ

λ
,

which implies that Ai+1(α) = (i+2)µ
α+λ+(i+1)µ−λAi(α)

> 0. Hence 0 < Ai(α) <
(i+1)µ
λ

for any
0 ≤ i ≤ c− 2 and α > 0.

From the linear equations and the definition of Ai(α), we have for any 0 ≤ i ≤ c− 2,

φi(α) =

i∑

n=0

[knλ
i−n

i∏

m=n

Am(α)

(m+ 1)µ
] + Ai(α)φi+1(α). (5)

Specially, for the case c = 1, we have Ĥ1(α, z) = H1(α, z) and Ĥ0(α, z) = H0(z)Π0(0).
Hence, the theorem is proved. �
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3 Kernel equation and branch points

The tail asymptotic behaviour of the stationary distribution for the fluid queue relies on
properties of the kernel function H(α, z), and the functions Ĥ1(α, z) and H2(z). Now, we
consider the kernel equation

H(α, z) = 0,

which can be written as a quadratic form in z as follows

H(α, z) = az2 + b(α)z + d = 0, (6)

where a = −λ, b(α) = −αr + λ + cµ and d = −cµ.
Let

∆(α) = b2(α)− 4ad

be the discriminant of the quadratic form in (6). In the complex plane C, for each α, the
two solutions to (6) are given by

Z±(α) =
−b(α)±

√
∆(α)

2a
. (7)

When ∆(α) = 0, α is called a branch point of Z(α).

Symmetrically, for each z, the solution to (6) is given by

α(z) =
−λz2 + (λ+ cµ)z − cµ

zr
. (8)

Note that all functions and variables are treated as complex ones throughout the paper.
We have the following property on the branch points.

Lemma 3.1. ∆(α) has two positive zero points α1 =
(
√
cµ−

√
λ)

2

r
and α2 =

(
√
cµ+

√
λ)

2

r
.

Moreover, ∆(α) > 0 in (−∞, α1) ∪ (α2,∞) and ∆(α) < 0 in (α1, α2).

For convenience, define the cut plane C̃α by

C̃α = Cα \ {[α1, α2]}.

In the cut plane C̃α, denote the two branches of Z(α) by Z0(α) and Z1(α), where Z0(α)
is the one with the smaller modulus and Z1(α) is the one with the larger modulus. Hence
we have

Z0(α) = Z−(α) and Z1(α) = Z+(α) if ℜ(α) >
λ+ cµ

r
,

Z0(α) = Z+(α) and Z1(α) = Z−(α) if ℜ(α) ≤
λ+ cµ

r
.

Lemma 3.2. The functions Z0(α) and Z1(α) are analytic in C̃α. Similarly, α(z) is
meromorphic in Cz and α(z) has two zero points and one pole.
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Proof. We first give a proof to Z0(α) and the proof to Z1(α) can be given in the same
fashion. Let α = a+ bi with a, b ∈ R and arg(α) ∈ (−π, π], and write ∆(α) = ℜ(∆(α)) +
ℑ(∆(α))i. We then have

ℜ(∆(α)) = R(a, b) = (a2 − b2)r2 − 2(λ+ cµ)ra+ (λ− cµ)2,

and
ℑ(∆(α)) = I(a, b) = 2abr2 − 2(λ+ cµ)br.

Let ℑ(∆(α)) = 0, we obtain that a = λ+cµ
r

or b = 0. For b = 0, from Lemma 3.1, we know
that R(a, b) ≤ 0 and I(a, b) = 0 along the curve C1 = {α = a + bi : α1 ≤ a ≤ α2, b = 0}.
According to the property of the square root function, if we take C1 as a cut of

√
∆(α),

then the function Z0(α) cannot be analytic on the curve C1. Thus, we will consider the

analytic property for Z0(α) on the cut plane C̃α = Cα \ C1 in the following.

For a = λ+cµ
r

and any b ∈ R, we obtain that

R

(
λ+ cµ

r
, b

)
= R

(
λ+ cµ

r
, 0

)
− b2r2 < R

(
λ+ cµ

r
, 0

)
< 0.

Therefore, along the curve C2 = {α = a + bi : a = λ+cµ
r

}, we have R(a, b) ≤ 0 and

I(a, b) = 0, which implies that
√

∆(α) or (−
√

∆(α)) cannot be analytic on C2. However,
from the definition of Z0(α), we have that the branch Z0(α) = Z+(α) is analytic in the

domain {α ∈ C̃α : ℜ(α) < λ+cµ
r

} and Z0(α) = Z−(α) is analytic in the complementary

domain of the closure of this set in C̃α. From the choice of the square root, we know
that the function Z0(α) is continuous on the curves C2, which separates the two above
domains. Thus, by Morera’s Theorem, we have that the function Z0(α) is analytic in the

cut plane C̃α.

From (8), α(z) is analytic in Cz except at the pole z = 0, which implies that α(z) is
meromorphic in Cz. It also follows from (8) that α(z) has two zero points. �

Based on Lemma 3.2, we have the analytic continuation of Ĥ1(α, Z0(α)) and H2(z).

Lemma 3.3. The function Ĥ1(α, Z0(α)) is analytic on C̃α and H2(z) is analytic on Cz.

Proof. From Theorem 2.1, we have

Ĥ1(α, Z0(α)) = [λAc−2(α) + µ− αr − α]Z0(α)
c − cµZ0(α)

c−1.

The analytic property is immediate from Lemma 3.2.

From the definition of H2(z), we can easily get the assertion. �

4 Asymptotic analysis of φc−1(α) and ψ(z)

In order to characterize the exact tail asymptotics for the stationary distribution Πi(x),
we need to study the asymptotic property of the two unknown functions φc−1(α) and
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ψ(z) at their dominant singularities, respectively. There are three steps in the asymptotic
analysis of φc−1(α) and ψ(z): (i) analytic continuation of the functions φc−1(α) and ψ(z);
(ii) singularity analysis of the functions φc−1(α) and ψ(z); and (iii) applications of a
Tauberian-like theorem. In this section, we give details of the first and second steps, and
the detail of the third step will be given in Appendix A.

We first introduce the following lemma, which is a transformation of Pringsheim’s
theorem for a generating function (see, for example, Dai and Miyazawa [5]).

Lemma 4.1. Let g(x) =
∫∞
0
extf(t)dt be the moment generating function with real vari-

able x. The convergence parameter of g(x) is given by

Cp(g) = sup{x ≥ 0 : g(x) <∞}.

Then, the complex variable function g(α) is analytic on {α ∈ C : ℜ(α) < Cp(g)}.

Now, we provide detailed information about the extended generator for the fluid queue,
which will be used later to investigate the analytic continuation of φc−1(α). Instead of
focusing on the case that the modulated process is an M/M/c queue, we will consider
a general setting, whose background process is a general continuous-time Markov chain
with an irreducible, conservative and countable (finite or infinitely countable) generator
Q = (qij). We first recall some related definitions. Let Φt be a continuous-time Markov
process with a locally compact, separable metric space X and transition function P t(i, j).
We denote by D(A) the set of all functions f , for which there exists a measurable function
g such that the process Cf

t , defined by

Cf
t = f(Φt)− f(Φ0)−

∫ t

0

g(Φs)ds,

is a local martingale. We write Af = g and call A the extended generator of the process
Φ.

Consider a general fluid model (X(t), Z(t)). Define its weakly infinitesimal generator
B of the fluid queue by

Bg(x, i) = lim
t→0

E(x,i)[g(X(t), Z(t))]− g(x, i)

t
.

Then, we present the following lemma.

Lemma 4.2. Let (X(t), Z(t)) be the general fluid queue with the generator Q = (qij), and
let g(x, i) be a function such that g is partially differentiable about x and for any x ≥ 0,

∑

j∈E

g(x, j)qij <∞.

Moreover, we assume that supi∈E |ri| <∞.

(i) For x > 0, i ∈ E or x = 0, i ∈ E+, we have

Bg(x, i) = ri
dg(x, i)

dx
+
∑

j∈E

g(x, j)qij,
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and for x = 0, i ∈ E− ∪ E◦, we have

Bg(0, i) =
∑

j∈E

g(0, j)qij,

where E+ = {i ∈ E|ri > 0}, E− = {i ∈ E|ri < 0} and E◦ = {i ∈ E|ri = 0}.
(ii) If the partial derivative dg(x,i)

dx
is continuous in x, then f ∈ D(A) and Af = Bf .

Proof. This proof is similar to the proof of Lemma 3.1 in [12] and we will omit the detail
here. It is worth noting that the phase process in [12] is a finite continuous-time Markov
chain, which is different from the phase process {Z(t)} in this paper. In order to extend
the result in [12], we need to impose the assumption that supi∈E |ri| <∞. �

According to Lemma 4.2, we can state the following lemma, which is crucial for the
analytic continuation of φc−1(α) and ψ(z).

Lemma 4.3. φc−1(α) is analytic on {α : ℜ(α) < α∗}, where α∗ = Cp(φc−1) > 0, and
ψ(z) is analytic on the disk Γz∗ = {z : |z| < z∗}, where z∗ = cµ

λ
. Moreover, the following

equation is satisfied in the domain Dα,z = {(α, z) : H(α, z) = 0 and ψ(α, z) <∞}:

Ĥ1(α, z)φc−1(α) +H2(z)ψ(z) + Ĥ0(α, z) = 0. (9)

Proof. First, we prove that α∗ > 0. It follows from Lemma 4.2 that the extended generator
is given by

AV (x, i) = −eαxzi
[
λ+ cµ− αr − λz − cµ

z

]
,

for x ≥ 0, i ≥ c, and

AV (x, i) = −eαxzi
[
(c− i)α + λ+ iµ− λz − iµ

z

]
,

for x > 0, 0 ≤ i ≤ c− 1, and

AV (0, i) = −zi
[
λ+ iµ− λz − iµ

z

]
,

for 0 ≤ i ≤ c− 1.

In order to find some constant s > 0 such that

AV (x, i) ≤ −sV (x, i),

for x > 0, i ≥ 0, we need to choose appropriate α and z such that for any 0 ≤ i ≤ c− 1,
{

λ+ cµ− αr − λz − cµ

z
> 0,

(c− i)α + λ+ iµ− λz − iµ

z
> 0.

For α = cµ−λ
r

> 0, we have

λ+ cµ− rα−
√
∆1

2λ
< 1,

λ+ iµ+ (c− i)α−
√
∆2

2λ
< 1,
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and
λ+ cµ− rα+

√
∆1

2λ
> 1,

λ+ iµ+ (c− i)α +
√
∆2

2λ
> 1,

where ∆1 = (λ+ cµ− rα)2 − 4cλµ and ∆2 = [λ+ iµ+ (c− i)α]2 − 4iλµ.

Thus, there exists some z ∈ B = B1 ∩ B2 ∩ (1,∞) 6= ∅ such that

AV (x, i) ≤ −sV (x, i) + bIL0
, (10)

where

B1 =

(
λ+ cµ− rα−

√
∆1

2λ
,
λ+ cµ− rα +

√
∆1

2λ

)
,

B2 =

(
λ+ iµ+ (c− i)α−

√
∆2

2λ
,
λ+ iµ+ (c− i)α +

√
∆2

2λ

)
,

s = min

{
λ+ cµ− αr − λz − cµ

z
, λ+ iµ+ α− λz − iµ

z

}
> 0,

L0 = {(x, i)|x = 0, 0 ≤ i ≤ c− 1}.

Since the drift condition (10) holds, from Theorem 7 in [13], we know that

φc−1

(
cµ− λ

r

)
zc−1 < ψ

(
cµ− λ

r
, z

)
<

∞∑

i=0

∫ ∞

0

πi(x)V (x, i)dx <∞.

Thus, from Lemma 4.1 we can obtain that α∗ ≥ cµ−λ
r

> 0.

For ψ(z) =
∑∞

i=c−1Πi(0)z
i, we have

ψ(z) ≤ Πc−1(0)z
c−1 +

∞∑

i=c

ξiz
i = Πc−1(0)z

c−1 + ξcz
c

∞∑

i=0

(
λ

cµ
)izi.

Since
∑∞

i=0(
λ
cµ
)izi is convergent in |z| < cµ

λ
, we have that ψ(z) is analytical in the disk

Γ cµ

λ
.

Now we prove the second assertion. From the equation (4), we can obtain that if both
φc−1(α) and ψ(z) are finite, then ψ(α, z) is finite as long as H(α, z) 6= 0. Assume that
H(α0, z0) = 0 for some α0 > 0 and 1 < z0 <

cµ

λ
, and φc−1(α0) < ∞, ψ(z0) < ∞. Then,

for small enough ε > 0, we have ψ(α0, z0) < ψ(α0, z0 + ε) < ∞, thus (9) holds for such
pair (α0, z0). �

Remark 4.1. Actually, accoridng to [7], we know that the equation (10) implies the fluid
model driven by an M/M/c queue is V -uniformly ergodic.

Now, we present another relationship between φc−1(α) and ψ(z), and extend their
analytic domains.
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Lemma 4.4. (i) φc−1(α) can be analytically continued to the domain Dα = {α ∈ C̃α :

Ĥ1(α, Z0(α)) 6= 0} ∩ {α ∈ C̃α : |Z0(α)| < cµ

λ
}, and

φc−1(α) = −H2(Z0(α))ψ(Z0(α)) + Ĥ0(α, Z0(α))

Ĥ1(α, Z0(α))
. (11)

(ii) ψ(z) can be analytically continued to the domain Dz = {z ∈ C : H2(z) 6= 0}∩{z ∈
C : Re(α(z)) < α∗} and

ψ(z) = −Ĥ1(α(z), z)φc−1(α(z)) + Ĥ0(α(z), z)

H2(z)
. (12)

Proof. (i) For any (α, z) such that H(α, z) = 0 and ψ(α, z) < ∞, we can get equation
(9). Using z = Z0(α) leads to (11). Then, from Lemma 4.3, we know that the right-hand
side of the above equation is analytic except for the points such that Ĥ1(α, Z0(α)) = 0 or
|Z0(α)| ≥ cµ

λ
. Hence, we get the assertion.

Similarly, we can prove assertion (ii).

�

Based on the above arguments, we have the following lemma.

Lemma 4.5. The convergence parameter α∗ satisfies 0 < α∗ ≤ α1. If α∗ < α1, then α∗

is necessarily a zero point of Ĥ1(α, Z0(α)).

Proof. From Lemma 4.4-(i), we know that φc−1(α) is analytic on Dα and thus the con-
vergence parameter α∗ ≤ α1. For the case α∗ < α1, we can deduce from Lemma 4.4-(i)
that α∗ is either a zero point of Ĥ1(α, Z0(α)) or a point such that |Z0(α

∗)| ≥ cµ

λ
. In the

following we prove |Z0(α)| < cµ

λ
for α ∈ (0, α1).

For α ≤ α1, we have

Z0(α) = Z+(α) =
−αr + λ+ cµ−

√
(−αr + λ+ cµ)2 − 4cλµ

2λ
,

which is a strictly increasing function of α. Thus, for any α ∈ (0, α1), we have

1 = Z0(0) < Z0(α) < Z0(α1) =

√
cµ

λ
<
cµ

λ
. (13)

�

In order to perform the subsequent asymptotic arguments using the technique of com-
plex analysis, we need to make some assumptions, which are collected as follows.

Assumption 4.1. (i) The function Ĥ1(α, Z0(α)) has at most one real zero point in (0, α1],
denoted by α̃ if such a zero exists.

(ii) The zero point α̃ satisfies H2(Z0(α̃))ψ(Z0(α̃)) + Ĥ0(α̃, Z0(α̃)) 6= 0.

(iii) The unique α̃ is a multiple zero of k times for function Ĥ1(α, Z0(α)), where k ≥ 1
is an integer.
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Remark 4.2. (i) For any set of model parameters c, λ and µ, (i), (ii) and (iii) of
Assumption 4.1 can be easily checked numerically.

(ii) In many cases, these assumptions are not necessary. For example, if cµ > λ(r+1),
we can derive from the expression of Ĥ1(α, Z0(α)) that the unique zero point α̃ must be
a simple zero point. In this case, (iii) of Assumption 4.1 is redundant. Moreover, we
will show in Section 6 that all (i), (ii) and (iii) of Assumption 4.1 are redundant for the
special cases c = 1 and c = 2. Actually, our extensive numerical calculations (for many
sets of λ, µ and r values) suggest that all (i), (ii) and (iii) are redundant for a general
case, but a rigorous proof is still not available at this moment.

The next lemma, which follows from Lemma 4.4-(i), provides more details about the
convergence parameter α∗.

Lemma 4.6. Suppose that (i) and (ii) of Assumption 4.1 hold. Then

(i) if the zero point α̃ exists and α̃ < α1, we have α∗ = α̃,

(ii) if the zero point α̃ exists and α̃ = α1, we have α∗ = α̃ = α1,

(iii) if Ĥ1(α, Z0(α)) has no real zero points in (0, α1], we have α∗ = α1.

Based on the above analysis, we can provide the following tail asymptotic properties
for φc−1(α) and ψ(z), which are the key for characterizing exact tail asymptotics in the
stationary distribution of the fluid queue.

Theorem 4.1. Suppose that (i) and (ii) of Assumption 4.1 hold. For the function φc−1(α),
a total of three types of asymptotics exists as α approaches to α∗, based on the detailed
property of α∗ stated in Lemma 4.6.

Case (i) If (i) of Lemma 4.6 and (iii) of Assumption 4.1 hold, then

lim
α→α∗

(α∗ − α)kφc−1(α) = c1,

where

c1 =
H2(Z0(α

∗))ψ(Z0(α
∗)) + Ĥ0(α

∗, Z0(α
∗))

Ĥ
(k)
1 (α∗, Z0(α∗))

,

and Ĥ
(k)
1 (α∗, Z0(α

∗)) is the kth derivative of α∗.

Case (ii) If (ii) of Lemma 4.6 holds, then

lim
α→α∗

√
α∗ − α · φc−1(α) = c2,

where

c2 =
2λ[H2(Z0(α

∗))ψ(Z0(α
∗)) + Ĥ0(α

∗, Z0(α
∗))]

∂Ĥ1(α∗,Z0(α∗))
∂Z0(α∗)

·
√
α∗ − α

.

Case (iii) If (iii) of Lemma 4.6 holds, then

lim
α→α∗

√
α∗ − α · φ′

c−1(α) = c3,
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where

c3 =
∂L(α, z)

∂z
|(α∗,Z0(α∗))

√
α2 − α1

2λ
,

and L(α, z) = −H2(α,z)ψ(z)+Ĥ0(α,z)

Ĥ1(α,z)
.

Proof. (i) In this case, α∗ = α̃ is a multiple zero, with degree k, of Ĥ1(α, Z0(α)). From
(11), we have

(α̃− α)kφc−1(α) = −H2(Z0(α))ψ(Z0(α)) + Ĥ0(α, Z0(α))

Ĥ1(α, Z0(α))/(α̃− α)k
.

It follows that

lim
α→α̃

(α̃− α)kφc−1(α) =
H2(Z0(α̃))ψ(Z0(α̃)) + Ĥ0(α̃, Z0(α̃))

Ĥ
(k)
1 (α̃, Z0(α̃))

= c1. (14)

Moreover, as stated in Remark 4.2, we can obtain that c1 6= 0. Similarly, we also haven
c2, c3 6= 0 in the following proof.

(ii) In this case, α∗ = α̃ = α1, which implies that α1 is not only a zero point of ∆(α)
but also the zero point of Ĥ1(α, Z0(α)). Suppose that α1 is a zero of degree m ≥ 2. Then,
we have

λA′
c−2(α1) =

3

2(c− 1)µ
r +

1

(c− 1)µ
> 0,

which conflicts the fact that λA′
c−2(α1) < 0. Hence, α1 is a simple zero point of Ĥ1(α, Z0(α)).

Thus, we have

lim
α→α∗

√
α∗ − α · φc−1(α) = lim

α→α∗

−H2(Z0(α))ψ(Z0(α)) + Ĥ0(α, Z0(α))

Ĥ1(α, Z0(α)/
√
α∗ − α

= lim
α→α∗

H2(Z0(α))ψ(Z0(α)) + Ĥ0(α, Z0(α))
√
α∗ − α · [∂Ĥ1(α∗,Z0(α∗)

∂α∗
+ Z ′

0(α
∗) · ∂Ĥ1(α∗,Z0(α∗))

∂Z0(α∗)
]
,

where

lim
α→α∗

√
α∗ − α · ∂Ĥ1(α

∗, Z0(α
∗)

∂α∗ = 0

and

lim
α→α∗

√
α∗ − αZ ′

0(α
∗) = lim

α→α∗

Z0(α
∗)− Z0(α)√
α∗ − α

= lim
α→α∗

[
b(α∗)− b(α)

2λ
√
α∗ − α

+

√
(α− α∗)(α− α2)

2λ
√
α∗ − α

]

=

√
α2 − α∗

2λ
.
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It follows that

lim
α→α∗

√
α∗ − α · φc−1(α) =

2λ[H2(Z0(α
∗))ψ(Z0(α

∗)) + Ĥ0(α
∗, Z0(α

∗))]
∂Ĥ1(α∗,Z0(α∗))

∂Z0(α∗)
· √α2 − α∗

= c2.

(iii) In this case, α∗ = α1. Let

L(α, z) = −H2(z)ψ(z) + Ĥ0(α, z)

Ĥ1(α, z)
.

From (11), we have

φ′
c−1(α) =

∂L(α, z)

∂α
+
∂L(α, z)

∂z
· Z ′

0(α).

It follows that

lim
α→α∗

√
α∗ − α · φ′

c−1(α) = lim
α→α∗

√
α∗ − α ·

[
∂L(α, z)

∂α
+
∂L(α, z)

∂z
· Z ′

0(α)

]

= lim
α→α∗

∂L(α, z)

∂z
·
√
α∗ − α · Z ′

0(α)

=
∂L(α, z)

∂z
|(α∗,Z0(α∗))

√
α2 − α1

2λ
= c3.

�

The asymptotic property for ψ(z) can be stated as follows.

Theorem 4.2. For the function ψ(z), we have the following asymptotic property as z
approaches to z̃ = cµ

λ
:

lim
z→z̃

(z̃ − z)ψ(z) = dz̃,

where

dz̃ =
Ĥ1(α(z̃), z̃)φc−1(α(z̃)) + Ĥ0(α(z̃), z̃)

λ(z̃ − 1)
.

Proof. From (12), we have

lim
z→z̃

(z̃ − z)ψ(z) = lim
z→z̃

Ĥ1(α(z), z)φc−1(α(z)) + Ĥ0(α(z), z)

λ(z − 1)

=
Ĥ1(α(z̃), z̃)φc−1(α(z̃)) + Ĥ0(α(z̃), z̃)

λ(z̃ − 1)
.

Moreover, we can calculate that Ĥ1(α(z̃), z̃) > 0, which implies that dz̃ > 0. �
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5 Exact tail asymptotics for Πi(x) and Π(x)

Lemma 5.1 and Lemma 5.2 specify exact tail asymptotic properties for the density function
πc−1(x) and boundary probabilities Πi(0), respectively, which are direct consequences of
the detailed asymptotic behavior of φc−1(α) and ψ(z), and the Tauberian-like theorem,
given in Appendix A. Moreover, the tail asympotics for the joint probability Πi(x), the
density function πi(x), the marginal distribution Π(x) =

∑∞
i=0Πi(x), and the density

function π(x) = dΠ(x)
dx

for x > 0 are also provided in this section.

Lemma 5.1. Suppose that (i) and (ii) of Assumption 4.1 hold. For the density function
πc−1(x) of the fluid queue, we have the following tail asymptotic properties for large enough
x.

Case (i) If (i) of Lemma 4.6 and (iii) of Assumption 4.1 hold, then

πc−1(x) ∼ C1e
−α∗xxk−1.

Case (ii) If (ii) of Lemma 4.6 holds, then

πc−1(x) ∼ C2e
−α∗xx−

1

2 .

Case (iii) If (iii) of Lemma 4.6 holds, then

πc−1(x) ∼ C3e
−α∗xx−

3

2 ,

where C1 =
c1

Γ(k)
, C2 =

c2√
π
, C3 =

−c3
2
√
π
and ci, i = 1, 2, 3 are defined in Theorem 4.1.

Lemma 5.2. For the boundary probabilities Πi(0) of the fluid queue, we have the following
tail asymptotic properties for large enough i.

Πi(0) ∼ dz̃ ·
(1
z̃

)i+1

,

where z̃ = cµ

λ
and dz̃ is defined in Theorem 4.2.

Now we provide details for the exact tail asymptotic characterization in the (general)
joint probabilities Πi(x) for any i ≥ c− 1.

Theorem 5.1. Suppose that (i) and (ii) of Assumption 4.1 hold. For the joint probabilities
Πi(x) of the fluid queue, then we have the following tail asymptotic properties for any
i ≥ c− 1 and large enough x.

Case (i) If (i) of Lemma 4.6 and (iii) of Assumption 4.1 hold, then

Πi(x)− ξc

( λ
cµ

)i−c
∼ −C1

α∗ e
−α∗xxk−1

( 1

z∗

)i−c
, (15)

and

πi(x) ∼ C1e
−α∗xxk−1

( 1

z∗

)i−c
.
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Case (ii) If (ii) of Lemma 4.6 holds, then

Πi(x)− ξc

( λ
cµ

)i−c
∼ −C2

α∗ e
−α∗xx−

1

2

( 1

z∗

)i−c
,

and

πi(x) ∼ C2e
−α∗xx−

1

2

( 1

z∗

)i−c
.

Case (iii) If (iii) of Lemma 4.6 holds, then

Πi(x)− ξc

( λ
cµ

)i−c
∼ −C3

α∗ e
−α∗xx−

3

2

( 1

z∗

)i−c
,

and

πi(x) ∼ C3e
−α∗xx−

3

2

( 1

z∗

)i−c
,

where z∗ = Z0(α
∗) and C1, C2, C3 are defined in Lemma 5.1.

Proof. We only prove (i), since (ii) and (iii) can be similarly proved. For i = c − 1, we
have

lim
x→∞

C1e
−α∗xxk−1

ξc−1 − Πc−1(x)
= lim

x→∞

α∗C1e
−α∗xxk−1 − (k − 1)C1e

−α∗xxk−2

πc−1(x)
= α∗,

where the first equality follows from the L’Hospital’s rule and the second equality follows
from Lemma 5.1. Hence, we have Πc−1(x)− ξc−1 ∼ −C1

α∗
e−α

∗xxk−1 as x→ ∞.

Now, suppose that (15) is true for any i = m > c− 1. Thus, for i = m+ 1 it follows
from (3) that

cµΠm+1(x) = −λΠm−1(x) + (λ+ cµ)Πm(x) + rπm(x),

which leads to

lim
x→∞

Πm+1(x)− ξc(
λ
cµ
)m+1−c

C1

α∗
e−α∗xxk−1

= lim
x→∞

[
− λ

cµ
·
Πm−1(x)− ξc(

λ
cµ
)m−c−1

C1

α∗
e−α∗xxk−1

+
λ+ cµ

cµ
·
Πm(x)− ξc(

λ
cµ
)m−c

C1

α∗
e−α∗xxk−1

+
rα∗

cµ
· πm(x)

C1e−α
∗xxk−1

]

= −(
1

z∗
)m−c

[
− λ

cµ
z∗ +

λ+ cµ

cµ
− rα∗

cµ

]

= −(
1

z∗
)m+1−c,

where the last equation follows from the fact that H(α∗, z∗) = 0 and z∗ = Z0(α
∗). This

completes the proof.

�
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Remark 5.1. According to (5), we can derive tail asymptotic properties of φc−2(α) from
φc−1(α), and thus tail asymptotic properties for Πc−2(x). Similarly, a relationship can be
established between φi(α) and φi−1(α) for any 1 ≤ i ≤ c − 2, and thus tail asymptotic
properties for the joint probability Πi(x) can be obtained for any 0 ≤ i ≤ c− 1.

In the following theorem, we provide exact tail asymptotics for the marginal proba-
bilities Π(x).

Theorem 5.2. Suppose that (i) and (ii) of Assumption 4.1 hold. For the marginal prob-
abilities Π(x) of the fluid queue, we have the following tail asymptotic properties:

Case (i) If (i) of Lemma 4.6 and (iii) of Assumption 4.1 hold, then

Π(x)− 1 ∼ −C̃1

α∗ e
−α∗xxk−1,

and
π(x) ∼ C̃1e

−α∗xxk−1.

Case (ii) If (ii) of Lemma 4.6 holds, then

Π(x)− 1 ∼ −C̃2

α∗ e
−α∗xx−

1

2 ,

and
π(x) ∼ e−α

∗xx−
1

2 .

Case (iii) If (iii) of Lemma 4.6 holds, then

Π(x)− 1 ∼ −C̃3

α∗ e
−α∗xx−

3

2 ,

and
π(x) ∼ C̃3e

−α∗xx−
3

2 ,

where C̃i =
[
Ĥ1(α∗,1)
H(α∗,1)

+
∑c−2

k=0Ak(α
∗)Ak+1(α

∗) · · ·Ac−2(α
∗)
]
Ci, i = 1, 2, 3, C1, C2 and C3

are defined in Lemma 5.1, and Ai(α) is defined in Theorem 2.1.

Proof. Let z = 1. It follows from (4) that

H(α, 1)ψ(α, 1) = Ĥ1(α, 1)φc−1(α) +H2(1)ψ(1) + Ĥ0(α, 1).

Thus, we get

H(α, 1)

∫ ∞

0

∞∑

i=c−1

πi(x)e
αxdx = Ĥ1(α, 1)

∫ ∞

0

πc−1(x)e
αxdx+ Ĥ0(α, 1), (16)

since H2(1) = 0. From (16), we have

∫ ∞

0

∞∑

i=c−1

πi(x)e
αxdx =

Ĥ1(α, 1)

H(α, 1)

∫ ∞

0

πc−1(x)e
αxdx+

Ĥ0(α, 1)

H(α, 1)
.
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Now, we prove ∫ ∞

0

∞∑

i=0

πi(x)e
αxdx =

∫ ∞

0

π(x)eαxdx, (17)

where πi(x) =
∂Πi(x)
∂x

and π(x) = dΠ(x)
dx

for any x > 0.

For any fixed x, we can obtain

∞∑

i=0

Πi(x) = P{X < x} ≤ 1,

which implies that
∑∞

i=0Πi(x) is convergent for any x. From (3), we have for i ≥ c,

πi(x) =
λ

r
Πi−1(x)−

λ+ cµ

r
Πi(x) +

cµ

r
Πi+1(x) ≤

λ

r
ξi−1 +

cµ

r
ξi+1.

Since
∞∑

i=c

λ

r
ξi−1 +

∞∑

i=c

cµ

r
ξi+1 <

λ+ cµ

r
<∞,

according to Weierstrass criterion, we can obtain that
∑∞

i=0 πi(x) is convergent uniformly
in x. Thus, we can get equation (17). From (16), we have

∫ ∞

0

π(x)eαxdx =
Ĥ1(α, 1)

H(α, 1)
φc−1(α) +

Ĥ0(α, 1)

H(α, 1)
+

c−2∑

i=0

φi(α).

From (5), we can establish the relationship between φi(α) and φc−1(α) for any 0 < i ≤ c−2,
and thus

c−2∑

i=0

φi(α) =

(
c−2∑

k=0

Ak(α)Ak+1(α) · · ·Ac−2(α)

)
φc−1(α) +Hc−1(α).

Here Hc−1(α) is an analytic function about α, which can be determined explicitly by (5).
Hence, according to the Tauberian-like theorem and the asymptotic behavior of φc−1(α),
we can obtain the tail asymptotic properties of π(x) and thus attain the tail asymptotic
properties of Π(x). �

6 Special cases

In this section, we consider two important special cases: c = 1 and c = 2, for which exact
asymptotic properties for the stationary distribution can be obtained without Assump-
tion 4.1. The analysis of these two cases is feasible. However, the arguments for the cases
c ≥ 3 are rather complex since the expression of Ĥ1(α, Z0(α)) is intractable for any c ≥ 3.
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6.1 Fluid queue driven by M/M/1 queue

In this case, the unique zero point of Ĥ1(α, Z0(α)) can be obtained explicitly as follows.

Lemma 6.1. Let
α̃ =

µ

r + 1
− λ,

then α̃ is the only possible zero point of H1(α, Z0(α)). Moreover, α̃ must be a simple zero
point of H1(α, Z0(α)).

Proof. We rationalize Ĥ1(α, Z0(α)) by

g(α) = 2aĤ1(α, Z0(α))Ĥ1(α, Z1(α)). (18)

Then, it follows from the definition of Ĥ1(α, z) in Theorem 2.1 and (7) that

g(α) = −2λZ0(α)Z1(α)[(µ− αr − α)Z0(α)− µ][(µ− αr − α)Z1(α)− µ]

=
−2αµ2

λ
[(r + 1)α− µ+ λ(r + 1)].

It is obvious that α̃ = µ

r+1
− λ is the only possible zero point of H1(α, Z0(α)) with a

modulus greater than 0. �

Lemma 6.2. The unique zero point α̃ satisfies the following inequality

H2(Z0(α̃))ψ(Z0(α̃)) + Ĥ0(α̃, Z0(α̃)) 6= 0.

Proof. From the initial condition Πi(0) = 0 for any i ≥ 1, we have

ψ(Z0(α̃)) =
∞∑

i=0

Πi(0)Z
i
0(α̃) = Π0(0).

For α̃ = µ

r+1
− λ, we have Z0(α̃) = min{1 + r, µ

λ(1+r)
}. Thus, from the definitions of

Ĥ0(α, z) and H2(z) in Theorem 2.1, and the fact that µ

µ−λZ0(α̃)
6= 1, we can obtain that

−Ĥ0(α̃, Z0(α̃))

H2(Z0(α̃))
=

µΠ0(0)

µ− λZ0(α̃)
6= Π0(0),

which implies that H2(Z0(α̃))ψ(Z0(α̃)) + Ĥ0(α̃, Z0(α̃)) 6= 0. �

Since the following inequality always holds

α̃ =
µ

r + 1
− λ ≤ α1 =

(
√
µ−

√
λ)2

r
,

we only have two tail asymptotic properties for the stationary distribution Πi(x) and the
marginal distribution Π(x) of the fluid queue in this case. Here we omit the details and
only present the asymptotic property for the marginal distribution.
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Theorem 6.1. For the marginal distribution Π(x) of the fluid queue, we have the following
tail asymptotic properties for large enough x:

Case (i) If (i) of Lemma 4.6 holds (i.e. α̃ = µ

r+1
− λ < α1), then

Π(x)− 1 ∼ −(r + 1)α̃c1
r

e−α̃x;

Case (ii) If (ii) of Lemma 4.6 holds (i.e. α̃ = µ

r+1
− λ = α1), then

Π(x)− 1 ∼ −(r + 1)α̃c2
r
√
π

e−α̃xx−
1

2 .

Here c1 and c2 are defined in Theorem 4.1.

6.2 Fluid queue driven by M/M/2 queue

In this case, we can obtain the following lemma.

Lemma 6.3. The function Ĥ1(α, Z0(α)) has at most one real zero point in (0, α1]. More-
over, this unique zero point, denoted by α̃ if exists, must be a simple zero point.

Proof. Let g(α) = 0, where g(α) is defined in (18). We can obtain the following equation:

(r+1)α3+[3λ(r+1)+µr]α2+[3λ2(r+1)+µλr−λµ−µ2]α+λ3(r+1)−λ2µ−2λµ2 = 0.

Denote the left hand side of the above equation by g̃(α). For any α > 0, we have

g̃′′(α) = 6(r + 1)α+ 6λ(r + 1) + 2µr > 0,

which implies that g̃(α) is a convex function for any α > 0.

If g̃(0) = λ3(r + 1)− λ2µ − 2λµ2 < 0, we can derive that g̃(α) = 0 has only one real
solution on (0,∞), which implies that there exists at most one real solution on (0, α1],
denoted by α̃ if exists. Moreover, according to the property of convex functions, we have
g̃′(α̃) > 0, which implies that α̃ is a simple zero point.

If g̃(0) ≥ 0, we have g̃′(0) = 3λ2(r+1)+ µλr− λµ−µ2 > 0 and thus g̃(α) = 0 has no
real solution on (0,∞). �

Lemma 6.4. The unique zero point α̃, if it exists, satisfies the following inequality

H2(Z0(α̃))ψ(Z0(α̃)) + Ĥ0(α̃, Z0(α̃)) 6= 0.

Proof. From the definitions of H2(z) and Ĥ0(α, z) in Theorem 2.1, for c = 2, we have

H2(Z0(α))ψ(Z0(α)) + Ĥ0(α, Z0(α))

= (λZ0(α)− 2µ)(Z0(α)− 1)ψ(Z0(α)) +

[
µZ0(α)

2 − 2µZ0(α) +
λµZ2

0(α)

α + λ

]
Π1(0) +

λαZ2
0(α)

α + λ
Π0(0)

= Z0(α)
2

[
λ(Z0(α)− 1)Π1(0) +

α(λΠ0(0)− µΠ1(0))

α + λ

]
, (19)
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where the second equality follows from the fact that ψ(z) = Π1(0)z.

Actually, from (1), we can obtain that λΠ0(0)− µΠ1(0) ≥ 0. Moreover, from (13), we
have Z0(α) > 1 for any α ∈ (0, α1]. Hence, from (19) we can get

H2(Z0(α̃))ψ(Z0(α̃)) + Ĥ0(α̃, Z0(α̃)) > 0.

�

From the above lemmas, we can obtain the following theorem.

Theorem 6.2. For the marginal probabilities Π(x) of the fluid queue, we have the follow-
ing tail asymptotic properties:

Case (i) If (i) of Lemma 4.6 holds, then

Π(x)− 1 ∼ −C̃1

α∗ e
−α∗x; (20)

Case (ii) If (ii) of Lemma 4.6 holds, then

Π(x)− 1 ∼ −C̃2

α∗ e
−α∗xx−

1

2 ;

Case (iii) If (iii) of Lemma 4.6 holds, then

Π(x)− 1 ∼ −C̃3

α∗ e
−α∗xx−

3

2 .

Here C̃i, i = 1, 2, 3, are defined in Theorem 5.2.

Remark 6.1. Compared with the case of c = 1, a new asymptotic behavior, Case (iii),
appears in the case of c = 2. We now give an example to illustrate that this new asymp-
totics exists for the case of c ≥ 3. For example, let c = 3, if we take r = 10, λ = 20,
µ = 30, we can obtain four zero points 4, −67 and −15 ± 5i of Ĥ1(α, Z0(α)). Thus, we
have α̃ = 4 > α1 = 0.5, which implies that Case (iii) holds.

7 Concluding remarks

In this paper, we applied the kernel method to investigate exact tail asymptotic properties
of the joint stationary probabilities and the marginal distribution of the fluid queue driven
by an M/M/c queue. Different from the model studied in [11] and [10], for which tail
asymptotic properties are symmetric between the level and the phase, since both level and
phase processes are discrete, the tail asymptotics for φc−1(α) and ψ(z) are asymmetric in
this paper, since the phase process is discrete and level process is continuous.

There exists a total of three different types of exact tail asymptotics for the stationary
probabilities of the fluid queue in this paper. However, we may see in [8] that the sta-
tionary probabilities of the fluid queue driven by a finite Markov chain is always exactly
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geometric, which corresponds to Case (i) of Theorem 5.1. This implies that the infinite
phase causes new phenomena.

In Section 6, we showed that Case (iii) of Theorem 5.1 does not appear in the case of
c = 1, but exists for the case of c ≥ 2. This implies that the asymptotic behaviour for
c ≥ 2 can be significantly different from that for the case of c = 1.

From the arguments given in the paper, we have seen that Assumption 4.1 is redundant
in the special cases c = 1 and c = 2. Based on our numerical calculations for a broad
range selections of parameter values, we conjecture that Assumption 4.1 is redundant for
all cases of c ≥ 3.
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A Tauberian-like theorem

Denote

∆1(φ, ε) = {x : |x| ≤ |x0|+ ε, | arg(x− x0)| > φ, ε > 0, 0 < φ <
π

2
}.

Let fn be a sequence of numbers, with the generating function

f(x) =
∑

n≥1

fnx
n.

Lemma A.1. (Flajolet and Odlyzko 1990) Assume that f(x) is analytic in ∆1(φ, ε) expect
at x = x0 and

f(x) ∼ K(x0 − x)s as x→ x0 in ∆1(φ, ε).

Then as n→ ∞, (i) If s 6∈ {0, 1, 2, . . .},

fn =
K

Γ(−s)n
−s−1x−n0 ,

where Γ(·) is the Gamma function.

(ii) If s is a non-negative integer, then

fn = o(n−s−1x−n0 ).

For the continuous case, let

g(x) =

∫ ∞

0

extf(t)dt.

Denote
∆2(φ, ε) = {x : ℜ(x) ≤ |x0|+ ε, x 6= x0, ε > 0, | arg(x− x0)| > φ}.

The following lemma has been shown in Theorem 2 in [4].

Lemma A.2. Assume that g(x) satisfies the following conditions:

(i) The left-most singularity of g(x) is x0 with x0 > 0. Furthermore, we assume that
as x→ x0,

g(x) ∼ (x0 − x)−s

for some s ∈ C\Z−.

(ii) g(x) is analytic on ∆2(φ0, ε) for some φ0 ∈ (0, π
2
].

(iii) g(x) is bounded on ∆2(φ1, ε) for some φ1 > 0.

Then, as t→ ∞,

f(t) ∼ e−x0t
ts−1

Γ(s)
,

where Γ(·) is the Gamma function.
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