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Abstract We consider strategic arrivals to a FCFS service system that starts
service at a fixed time and has to serve a fixed number of customers, e.g., an
airplane boarding system. Arriving early induces a higher waiting cost (waiting
before service begins) while arriving late induces a cost because earlier arrivals
take the better seats. We first consider arrivals of heterogenous customers
that choose arrival times to minimize the weighted sum of waiting cost and
and cost due to expected number of predecessors. We characterize the unique
Nash equilibria for this system.

Next, we consider a system offering L levels of priority service with a FCFS
queue for each priority level. Higher priorties are charged higher admission
prices. Customers make two choices—time of arrival and priority of service.
We show that the Nash equilibrium corresponds to the customer types being
divided into L intervals and customers belonging to each interval choosing
the same priority level. We further analyze the net revenue to the server and
consider revenue maximising strategies—number of priority levels and pricing.
Numerical results show that with only a small number of queues (two or three)
the server can obtain nearly the maximum revenue.

1 Introduction

Consider an airline that starts boarding a plane at time 0 and the N cus-
tomers that are booked to fly on the plane all arrive before boarding starts
and wait in a FCFS queue. A customer that has a better rank in the queue
gets a better choice of seats and luggage space. However, a better queue rank
is achieved by arriving early and hence incurring a cost due to the waiting
time before service (boarding) begins. Thus, with each customer we can as-
sociate a total inconvenience cost that has two components—(1) the waiting

cost from the inconvenience due to arriving early (before boarding time), and

Address(es) of author(s) should be given

http://arxiv.org/abs/1704.05986v2


2 Talak, Manjunath and Proutiere

(2) the boarding cost from the inconvenience due to customers that are served
before the focal customer, i.e., inconvenience due to its rank or position in the
boarding queue. An immediate model would be to assume that these costs are
separable, and that the total cost is a weighted sum of the waiting time and
the rank in the boarding sequence. (Note that the second component accounts
for possibly non negligible service time once boarding begins.) Each customer
then has to choose the time at which to arrive into the queue, i.e., the waiting
time before service begins. Of course, for a given customer the queue rank that
it obtains depends on the choice of arriving (and hence waiting) times of the
other customers. In this paper we assume that the customers are strategic and
that they choose their arrival time to minimize their individual cost. We also
assume that none of the customers renege and that all N take service. Thus we
have the rudiments of the airplane boarding game which we will define more
generally in the following.

Now assume that the customers are from a heterogeneous population and
that the different types of customers calculate their total costs differently.
Specifically, for the linear cost function described in the preceding, different
types of customers have different weights for the queue rank and for the waiting
time before boarding. In this case, rather than have a single queue and hence
provide egalitarian service, the airline could reduce the social cost, and possibly
increase its revenue, by providing service differentiation as follows. Maintain
two FCFS queues with queue 2 having strict boarding priority over queue 1,
i.e., board customers from queue 2 before boarding customers from queue 1.
As before, assume that all the customers arrive before boarding begins and
that there is no reneging by any of the N customers. The airline could now
charge a fixed premium to the customers who join the higher priority queue.
To obtain better seats, i.e., to make their boarding costs lower, the customers
can now choose to join the high priority queue and trade off some waiting time
(before boarding begins) for payment of the premium in the higher priority
queue. In such a system the customers make two choices—the arrival time
and the queue that they plan to join and hence the premium that they will
be paying. Once again, the actual total cost for each customer depends on the
choice of these parameters by the other customers. We thus have the outline
of the basic airplane boarding game in which customers strategically choose
two parameters to minimize their individual total cost.

Several budget airlines in fact follow a simple version of the system de-
scribed above and motivates this paper. In these airlines, seat numbers are
not issued at check-in and typically two FCFS queues are maintained at the
boarding gate. The premium queue allows service differentiation to a hetero-
geneous population where different types of customers have different relative
values for their time and money and provides an opportunity for the airline to
make additional revenue. If there is significant heterogeneity in the customer
population then increased differentiation can provide increased revenue. Thus,
rather than provide just two priorities, the airline could provide L priority
queues with customers in priority l having strict priority over those of strictly
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less than l. In this paper we consider this general case of the following airplane

boarding game.

N customers are to be served by a single server starting service at time 0.
Different types of customers will be served through L FCFS priority queues
with higher priorities charging higher premiums. Associated with each type
of customer is a total cost function that depends on the waiting time, the
rank in the boarding sequence, and the premium paid to receive service from
the queue of choice. The distribution of the types in the customer population
is assumed known to the server and to the other customers. Each customer
strategically chooses two parameters, the arrival time and the priority level
of the queue from which it wants to receive service, to minimize its expected
total cost. None of the N customers renege and all of them obtain service and
this is known to all the customers.

1.1 Preview of the Results

In this paper our objectives are twofold: (1) studying customers’ strategic
behavior in their choice of the priority and of the arrival time, and (2) analyzing
how the server may tune the service parameters, the number of priority levels
and the charge for each of these priority levels, to maximize its revenue. The
following is the summary of the key results in the paper.

1. In Section 3, we consider a system where customers choose a single priority
parameter that we call the grade of service. The service provider offers a
continuum of grades of service and defines a pricing function that maps the
service grade to a price. Higher service grades have strictly higher priority
in boarding. Customers are strategic and choose the service grade and
hence the price. For this case we show that the revenue is independent of
the pricing function.
Interestingly, we will see that the model considered in this section is very
general in that it is applicable to ‘finite duration’ games like in the airline
boarding game where a finite number of customers are to be allocated a
finite resource. For this case our results should be interpreted in the spirit
of [6]. The results are also applicable to ‘infinite duration’ games where the
customer arrivals and service processes are in a stationary regime; in this
case the results are to be interpreted in the spirit of, e.g., [4, 5, 15].

2. In Section 4, we consider the system where the server maintains several
FCFS queues at different priority levels. Customers pay a higher price to
join a queue with higher priority. The number of priority levels and the price
of service from these priority levels is assumed known to all the customers.
In this case the customers have to select two parameters—the arrival time
before boarding starts, and the priority of the queue from which they will
receive service. We show that when the prices are fixed, the game admits a
unique Nash equilibrium that we characterize exactly. We also numerically
illustrate the strategic choices of the priority parameters at equilibrium.
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3. Finally, in Section 5, we investigate how the service provider may set the
prices to join the various queues to maximize its revenue. When the number
of priority queues are fixed, we show that these prices can be computed by
solving a simple dynamic program. Numerically, we observe that the rev-
enue increases with the number of available queues. However, the marginal
gain of operating additional queues vanishes rapidly with increasing num-
ber of priorities. In fact we see that for several examples, maintaining a
small number number of queues (two or three) may actually yield a revenue
that is almost optimal, i.e., two or three levels priority levels is enough to
extract a ‘close to maximum’ revenue.

All proofs are carried in the appendix.
In the next section we provide a brief overview of the relevant literature

and delineate them from the results of this paper.

2 Related Work

The meeting game and the concert queueing game have similarities to the
airplane boarding game . We first describe these briefly.

A meeting is scheduled to start at time t but the participants arrive at ran-
dom times and it usually starts at a random time T when quorum is achieved.
Knowing that the meeting does not necessarily start at time t, participants
i chooses to arrive at τi to minimize her costs due to waiting (a function of
(T − τi)

+), due to inconvenience (a function of (τi − T )+), and due to loss
of reputation (a function of (τi − t)+). The knowledge of the structure and
distribution of these costs among the participants can be strategically used by
participant i to choose τi. This meeting game has been introduced and studied
in [6]. A variant of the meeting game is the ‘concert queueing game’. Here the
concert hall opens at time t and the attendees queue up for FCFS service; each
attendee requires a random service time. Arriving late has the drawback that
the better seats will be taken by those who came earlier, whereas arriving early
induces a cost of waiting. Attendees strategically choose their arrival time dis-
tribution to mitigate these opposing costs. Several versions of this game have
been studied in [8–10].

In the airplane boarding game all customers arrive before the start of ser-
vice which is unlike in the meeting game and in the concert queueing game.
Further, all analyses on the concert queueing game consider a single queue
while we consider multiple priority queues providing differentiated service to
a heterogeneous customer population that values time, money and queue rank
(boarding costs) differently. A finite number of customers being served in a
finite time is also considered in [14]. They consider a discrete time system in
which the customers incur a congestion cost due to other customers arriving in
the same slot. This congestion cost could also be time-dependent. The airline
boarding game that we describe here does not consider such a congestion cost.

Queueing systems with customers who value delays differently have been
investigated in the queueing and economics literature. Specifically, providing
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lower delays for customers with higher delay costs and extracting a commen-
surate payment from them has been of interest for a while now. In an early
work on pricing based on differential service, [13] considered a queue in which
customers bribe the server and the server provides a ‘highest bribe first’ ser-
vice. Strategic customers in such a queue has been considered in [2, 5, 15]. In
fact, our Theorem 1 in Section 3 is a generalization of the equilibrium anal-
ysis in [5, 15]. Providing differentiated service to a heterogeneous population
through priority queues and pricing the priorities has also been considered in,
among others, [16,19]. More recent work on priority pricing is in [1,12] where
only the expected delay contributes to the cost and the weights have a specific
form. Priorities may also be auctioned like in [5, 15].

The models in all of the preceding studies have considered what can be
termed a ‘simple’ system where there is only one parameter that the customer
chooses. It is the arrival time in [6], the bid value in [2,5,13,15] and the priority
value in [1, 12, 16, 19]. In contrast, in our model, the customer has to choose
two parameters—the waiting time and the priority level. The closest system
to the one that we consider is that in [7] where the attendees choose both the
arrival time and the queue to join. The key difference with our model is that
in [7] the queues start their service at different times and could be serving
in parallel. Thus in this case there is ‘isolation’ between the customers that
choose different queues.

A more recent work is that of [4] which considers a priority queueing system
with a pricing menu. Here the customers have to declare their delay valuation
and the focus is on deriving incentive compatible revenue maximizing pricing
functions. In our model, type is private information and does not have to be
revealed and the choice of the grade of service is made by the customer and
not by the service provider.

3 Single Queue: Choosing the Arrival Time

A plane is to board N customers starting at time 0. The N customers arrive
at different times before the boarding starts and form a FCFS queue. The
population from which the N customers are drawn is heterogeneous in that
different customers value their waiting time differently. Let V = [A,B] ⊂ R

+

be the set of all customer types, and let it be endowed with a probability
measure that has a cumulative distribution function (CDF) given by G. We
assume G to be a continuous distribution.

A customer has to decide how much before the boarding time she has to
arrive; we will denote this choice of waiting time (before boarding begins)
by T (v), for every v ∈ V . Therefore, waiting time of T (v) implies that the
customer arrives at time −T (v). We assume that all customers of the same
type make the same decision. Further, we assume that none of the N customers
renege and all of them join the queue before time t = 0. If a customer of class
v ∈ V arrives at time −t then her cost is given by

cv(t) = NF (t) + nvg(t) (1)
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where F (t) denotes the fraction of customers that choose to arrive before −t
on average, g(t) is the cost of waiting for t time units, and nv is the weight
that a type v customer assigns to it’s waiting time cost. Notice that F (t) is
a monotonically decreasing function. Further, g(t), being the cost of waiting
for time t, is a monotonically strictly increasing function in t. We also assume
that g is continuous and differentiable function with g(0) = 0. Note that g(·)
is independent of the customer type v. Without loss of generality we let nv to
be a monotonically strictly increasing function in v. Thus NF (t) represents
boarding cost, or the cost corresponding to the customer’s position in the
queue. This cost includes the inconvenience due to the position in the boarding
sequence and the service time of customers ahead of the focal customer after
boarding begins. nvg(t) is the total waiting cost for a customer of type v. Now,
F (t) is given by

F (t) =

∫

1T (v)≥t dG(v). (2)

An arriving customer of type v chooses T (v) to minimize its expected cost
where the expectation is taken over the customer type distribution G. We seek
an arrival profile v 7→ T (v) that minimizes the individual expected cost for all
customers. This is also the Nash equilibrium (NE) policy as defined below.

Definition 1 TNE : V → [0,+∞) is a Nash equilibrium policy if

TNE(v) = argmin
t≥0

cv(t), (3)

for every v ∈ V . 1

Since customers with larger v value their time more than those with smaller
v, we would expect that customers with larger v should arrive later in a NE
policy. We prove this in Lemma 1. Further, in Theorem 1 we show that there
is a unique NE and also characterize this policy.

Lemma 1 Assume that a NE policy TNE exists. Then TNE(v) is a non-

increasing function in v.

Proof See Appendix A. ⊓⊔

Theorem 1 If g(·) is such that there exists a NE policy then it is unique and

is given by

TNE(v) = g−1

(

∫ B

v

N
dG(x)

nx

)

. (4)

Proof See Appendix B. ⊓⊔

1 This definition of NE is consistent with that found in the literature on non-atomic
games [11].
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Remark 1 In this paper we will focus on the characterisation of the NE when
it exists. The question of the existence of the NE is answered in [11, 17, 18]
where it is shown that in non-atomic games that have a continuum of players,
there exists a pure strategy NE and it is unique. For our model, i.e. considered
assumptions on g and nv, the NE policy exists. More general conditions on
g(·) and nv that yield a NE can be derived from [18].

Consider an example system where g(t) = tr for any r > 0. For this system,
the NE policy exists and, as proved, is unique. Thus we see that there is a non
empty set of g(·) for which Theorem 1 holds.

3.1 Extensions and Generalizations

Lemma 1 and Theorem 1 can be extended as follows.

1. The preceding results will follow even for the following total cost function
for a customer of type v. Let h(x) be an increasing and continuously dif-
ferentiable function in x and let the cost for a customer of type v, when
she arrives t units of time before boarding, be

cv(t) = h (F (t)) + nvg(t). (5)

Note that h(·) is independent of the customer type v. Even for this case
Lemma 1 and Theorem 1 hold except that the unique NE arrival profile
would be given by

TNE(v) = g−1

(

∫ B

v

h′(G(x))

nx

dG(x)

)

, (6)

where h′(x) denotes derivative of h.
2. In (5), note that h(F (t)) is a specific decreasing function of t; as h(·) and

F (·) are increasing and decreasing functions, respectively. Instead, we could
also replace t by any decreasing function of t. This is true because if g1
and g2 are two decreasing functions over the same domain D, then we can
find an increasing function h such that g1(x) = h(g2(x)) for all x ∈ D.

3. In the model we assumed that nv was an increasing function. The results
follow if nv is a decreasing function, except that TNE(v) now would be a
non-decreasing function in v. This suits our intuition as now the cost of
waiting is more for customers with smaller v.

3.2 A Server with a Continuum of Service Grades

In the preceding, the customer had to choose the time of arrival and that time
determined its total cost. If we could treat time as just a parameter we could
have different interpretations to the parameter and hence apply it to different
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systems. The following is an example of such a generalization which results in
a relatively different server model but yields an interesting NE arrival profile.

A population of heterogeneous customers, characterized by a type V =
[A,B] ⊂ R

+, arrive for service. They have to buy a priority w from the server
which is priced by the server. Without loss of generality we assume the class
of all priorities to be W = [0, 1] and P : W → R

+ to be the pricing function
such that P (w) denotes the price for priority w. We assume P to be any
continuous, differentiable, monotonically increasing function with P (0) = 0
and P (1) = Pmax. Then the cost incurred by a customer of type v when she
buys priority w is given by

cv(w) = NF (w) + nvP (w), (7)

where nv is an increasing function in v and F (w) is the fraction of customers
who choose a priority higher than w. Note that nvP (w) is the cost incurred
by the type v customer in buying priority w.

Since, this is only a different interpretation of our original system model,
the results of Lemma 1 and Theorem 1 hold in this scenario too. Thus, the
unique NE is given by

wNE(v) = P−1

(

∫ B

v

N
dG(x)

nx

)

. (8)

Let us now compute the expected revenue earned by the service provider,
and see what price function P will maximize it. For a given price function
P (·), the revenue of the service provider is

R(P ) =

∫ B

A

P
(

wNE(v)
)

dG(v).

Substituting (8), we obtain

R(P ) =

∫ B

A

(

∫ B

v

N
dG(x)

nx

)

dG(v).

Observe that R(P ) defined above is independent of P (·). Thus, when the
customers are strategic and G(v) distribution is known to the customers, the
revenue to the service provider is invariant to the pricing function that is
increasing in the priorities and has range with range [0, Pmax]! This leads us
to argue there is only so much willingness in the market to pay, and that
any pricing function will fully extract it. We argue that this is because with
a continuous pricing function, it is possible to achieve perfect discrimination
which in turn leads to revenue maximisation for the service provider [3]. In
contrast, we will see in the next two sections that a finite number of service
levels does not extract the maximum revenue. We argue that this is because of
the ‘quantisation’ effect which in turn does not admit perfect discrimination
because the customers will have to choose the ‘nearest’ grade of service.
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4 Multiple Queues: Customers Choose Arrival Time and Priority

Now we consider the system of the previous section but with L FCFS queues.
Queue l+ 1 has strict priority over all queues of priority level l or less, i.e., it
is served before queue l for all l = 0 to L−1. Customers who join queue l have
to pay an admission price of Pl. Since queue l + 1 has priority over queue l
the server enforces that Pl+1 > Pl. Queue 0, however, has no admission price,
i.e., P0 = 0.

Let cv(l, t) denote the cost of joining queue l at time t before boarding
begins. Then they are defined as follows:

cv(l, t) = mvPl +N

L−1
∑

j=l+1

Fj(0) +NFl(t) + nvg(t), (9)

where Fl(t), for 0 ≤ l ≤ L − 1, denote the fraction of customers that wait for
t or longer in queue l. Further, mvP is how much a customer v values price P
in relation to his rank in the queue.

Each customer has to determine which queue she wants to join and when
to arrive. First, consider a customer of type v who wants to join Queue l.
Clearly, her optimal arrival time Tl(v) is

Tl(v) = argmin
t≥0

cv(l, t). (10)

For this choice of Tl(v), the cost of joining Queue l will be cl(v) , cv(l, Tl(v)).
Thus the optimal randomized choice of queue is obtained from

q(v) = argmin
qj

∑

l∈L

qlcv(l, Tl(v)), (11)

where q(v) = (q0(v), q1(v), . . . , qL−1(v)) and ql(v) denotes the probability that
a customer of type v would join Queue l. An equilibrium strategy is defined
as follows.

Definition 2 (Tl(v), ql(v))
L−1
l=0 is a NE policy if (10) and (11) are satisfied,

where for all l ∈ L,

Fl(t) =

∫

v∈V

1Tl(v)≥t ql(v) dG(v) (12)

is the fraction of customers that join Queue l and arrive at least t units of
time before 0.

Let
(

TNE
l (v), qNE

l (v)
)L−1

l=0
denote an equilibrium strategy. We first analyze the

system with a single queue, i.e., L = 1, and then proceed to the analysis when
there are L queues.

Lemma 1 is first extended to L queues to show that at NE, the optimal
joining times at each queue, TNE

l (v), is non increasing in v.

Lemma 2 TNE

l (v) is a non increasing function in v for each l ∈ L.
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Proof See Appendix C. ⊓⊔
Recall that A and B are, respectively, the minimum and the maximum

values of the support of v. Thus an implication of this lemma is that at NE,
type A customers will be the first to arrive while type B customers will be the
last to arrive and this is independently of the queue that they join. This leads
us to conclude that2

TNE
l (B) = 0, (13)

and

Fl

(

TNE
l (A)

)

= 0, (14)

for every l ∈ L.
We now see how TNE

l (v) would vary from the case when there is only a
single queue to that when there are two or more queues. Intuitively, when there
are two or more queues, customers would want to come later than they would
if there was only a single queue. This is confirmed by the following lemma.

Lemma 3 For all l, we have TNE

l (v) ≤ g−1
(

N
∫ B

v

dG(x)
nx

)

.

Proof See Appendix D. ⊓⊔

From Theorem 1, g−1
(

N
∫ B

v

dG(x)
nx

)

is the arrival time at NE in a single

queue system. Using the previous results, we next show that there is a unique
NE and at this NE, the strategies are pure. Toward that proof the following
assumptions will be made on the system parameters.

(A1) We assume that mv and nv are such that n′
v

∫ B

v

dG(x)
nx

does not grow
faster than −m′

v. Specifically,

y(v) ,
n′
v

(−m′
v)

∫ B

v

dG(x)

nx

,

is a bounded function over v ∈ V . Also,
∫ B

A

dG(x)
nx

< ∞.
(A2) We also make an assumption on the minimum difference between the
prices to join ‘adjacent’ queues. Specifically, for every l and l + 1 in L,

Pl+1 − Pl > N max

{

sup
v∈V

y(v),
2

mA

}

. (15)

(A3) Finally, we assume that mB is small enough so that all queues are

occupied, and also that Pl+1 − Pl <
NFl(0)
mB

.

The following example illustrates that (A1) and (A2) are not very restrictive.
Let v be uniformly distributed over [A,B], nv = v, and

mv =
N

ǫ(B −A)

(

B log

(

B

v

)

− (B − v)

)

, (16)

2 The proofs of (13) and (14) are trivial.
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where ǫ > 0. In this case,

y(v) =
ǫ

N

log
(

B
v

)

(

B
v
− 1
) ≤

ǫ

N
.

Also, note that, if mv satisfies (A2) then so does mv + δ. Since y(v) ≤ ǫ
N
, it

suffices to have

Pl+1 − Pl > max

{

ǫ,
N

mA

}

,

to satisfy (A2). Further, if A = 0 then mA = ∞, in which case we only require
Pl+1 − Pl > ǫ. In general, this would be the case if mA is sufficiently large.
If (A3) is violated the empty queues will be those of higher priority. From an
operational point of view there is no reason to have a queue if no customer is
going to join it, especially a high priced queue.

Theorem 2 The NE strategy is unique and is characterized by

qNE

l (v) = 1vl<v≤vl+1
. (17)

Here A = v0 < v1 < v2 < · · · < vL−1 < vL = B are given by

cl−1(vl) = cl(vl),

for all l = 1 to L− 1, each of which has a unique solution.

Proof The outline of the proof is as follows.

1. Lemma 4 first shows that for type A customers, the optimal queue joining
cost, cl(A), increases in l, whereas for type B customers this cost, cl(B),
decreases in l.

2. Lemma 5 shows that dc0(v)
dv

> 0, while for l ≥ 1, 0 > dcl(v)
dv

>
dcl+1(v)

dv
.

3. Using this, in the third part of Lemma 5, we show that for every l the
cost functions cl−1(v) and cl(v) intersect at a unique point vl and these

thresholds {vl}
L−1
l=1 satisfy

A < v1 < v2 < · · · < vL−1 < B.

4. Given the thresholds {vl}
L−1
l=1 , we show that the optimal joining cost for

Queue l is greater than those of other queues for all v ∈ (vl, vl+1], i.e.,
cl(v) ≤ cj(v) for all v ∈ (vl, vl+1] and j ∈ L.3

This proves that at NE we have (17). The details are in Appendix E. ⊓⊔
We now give an explicit characterization of the NE arrival times, TNE

l (v),

and the thresholds, {vl}
L
l=0 , in the following theorem.

3 It does not matter whether the customer of type vl joins either Queue l or Queue l+1.
Set of all such customers form a negligible (measure 0 w.r.t. G) set in V .
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Fig. 1 Comparison of NE arrival times at different queues for a system with three queues
(v ∼ U [0, 20], N = 10, P1 = 8.75, P2 = 11.45 and δ = 0.05).

Theorem 3 At NE, the arrival time to Queue l is given by

TNE

l (v) =











0, for v > vl+1

g−1
(

N
∫ vl+1

v

dG(x)
nx

)

,for vl ≤ v ≤ vl+1

TNE

l (vl), for v < vl

.

Further, the thresholds {vl}
L

l=0 can be computed by solving

G(vl−1) = G(vl+1)−

(

Pl − Pl−1

N

)

mvl − nvl

∫ vl+1

vl

dG(x)

nx

, (18)

for 1 ≤ l ≤ L− 1.

Proof See Appendix F. ⊓⊔
We illustrate the preceding results with an example. Consider a boarding

game with V = [0, 20] and the customer population distributed uniformly over
V . The service provider operates three queues with respective prices P0 = 0,
P1 = 8.75, and P2 = 11.45. Let N = 10, nv = v, and mv modified from (16)
as follows.

mv =
N

ǫ(B −A)

(

B log

(

B

v

)

− (B − v)

)

+
Nδ

ǫ
. (19)

For this example, we choose δ = 0.05.
Note that, we do not need the value of ǫ to determine the NE policy, as it

can be subsumed in the prices Pl. Whenever we plot the price Pl and revenue,
they are normalized by ǫ.
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Fig. 2 Comparison of optimal costs to join Queue l and illustration of the thresholds
(v ∼ U [0, 20], N = 10, P1 = 8.75, P2 = 11.45 and δ = 0.05).

Figure 1 plots the arrival times at the three queues. Observe that TNE
l (v)

is a decreasing function of v, which concurs with Lemma 2. In equilibrium, we
observe that customers of a lower priority start arriving before the customers
of higher priority. It is, however, not true that, in equilibrium, a customer
which chooses a higher priority will arrive later than a customer that chooses
a lower priority. We can observe this in Figure 1. For example, customer v = 16
chooses a higher priority than customer v = 14 but arrives earlier than the
customer v = 14.

Also plotted in Figure 1 is the optimal arrival time as a function of the
customer type when there is only a single queue. We see that this arrival time
is greater than the arrival times at each queue for the three queue example.
This concurs with Lemma 3. We only plot the arrival times for v ≥ 10. For
v < 10 the time to join the 0-th queue increases rapidly, however, it does
remain upper bounded by the optimal joining time if there was a single queue.

To illustrate the thresholds at NE, the optimal joining costs, cl(v), for each
queue is plotted as a function of v in Figure 2. A customer will join Queue l
if it offers it the least optimal joining cost. Thus, the crossing points between
the optimal joining costs determine the thresholds; this is observed clearly in
Figure 2.

4.1 Discussion

We now explore how the NE strategy depends on the system parameters,
specifically on the prices. We consider a two-queue boarding game with cus-
tomer types uniformly distributed over [5, 15]. nv = v and mv is given by
(19).
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Fig. 3 Threshold v1 as a function of price P for the two-queue boarding game (v ∼ U [5, 15]).

Figure 3 plots the threshold v1 as a function of the price, P, of the priority
queue. Observe that v1 increases with P. This is intuitive because the incentive
to join the high priority queue is diminished as the price increases. In fact, for
δ = 0.01, we find that v1 = B when P = 100ǫ. However, this is not true
when δ = 0, in which case v1 keeps increasing to B, but is never equal to it.
Investigating this further, since NF1(0) is the number of customers joining
Queue 1, revenue earned by the server would be R(P ) , NF1(0)P. This is not
a linear function of P as F1(0) =

B−v1
B−A

and depends on P.

In Figure 4, we plot the revenue (normalized by Nǫ) as a function of the
price P (normalized by ǫ). For δ = 0, we observe that the revenue keeps
increasing as P is increased, while for δ = 0.01 there is an optimal choice of
P at which the revenue attains its maximum. Note that δ = 0 (resp. δ > 0,)
corresponds to the case when mB = 0 (resp. mB > 0). Hence, the intuition
is that when mB = 0, there are always customers (close to customers of type
B) who do not value money much. Therefore, the service provider can always
increase her revenue by setting a higher price for the priority queue. On the
contrary, when mB > 0, there exists a price P, large enough, that customers
of type B cannot afford. The latter decide to join Queue 0.

In the previous discussions, we have considered mv that decreases more
rapidly for smaller v than it does for larger v. Now consider a system where
mv decreases linearly, i.e.,

mv =
N

ǫ

(

B − v

B −A

)

log(B/A) +
Nδ

ǫ
. (20)

We now investigate the two-queue boarding game with mv as above, nv = v,
and g(t) = t, and customer types uniformly distributed over [A,B]. For this



Strategic Arrivals to Queues Offering Priority Service 15

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

Price P/ε

R
ev

en
ue

 R
(P

)/
N

ε

 

 

δ = 0

δ = 0.01

Fig. 4 Revenue earned by the service provider, R(P ), as a function of the price P for the
two-queue boarding game (v ∼ U [5, 15]).

system y(v) is

y(v) =
1

−m′
v

∫ B

v

1

B −A

dx

x
=

ǫ

N

log
(

B
v

)

log
(

B
A

) .

For y(v) to be bounded we require A > 0, in which case y(v) ≤ ǫ
N
. This upper

bound is achieved when v = A. As observed previously, if mA is sufficiently

large then for (A2) it is sufficient if Pl+1 − Pl > ǫ. Further, for
∫ B

v

dG(x)
nx

to
be bounded, we require B < ∞. The thresholds and revenue behave as in the
previous example

5 Revenue Maximization

In the previous section, the admission price to each of the L queues was as-
sumed given and we provided a complete characterization of the NE strategy.
In this section, we investigate how the service provider can maximize its rev-
enue by appropriately setting the prices Pl. Our motivational setting is the
airplane boarding system where customers have already purchased their tick-
ets. Hence it is reasonable to assume that there is one queue, the lowest priority
queue, where there is no premium, i.e., P0 = 0. Thus although the customers
cannot balk, the existence of the a ‘free queue’ ensures that the revenue is
not an increasing function of the premiums in the higher priority queues and
there will be an optimum value for these prices. Further, increased service
differentiation allows for increased revenues. In this section we first determine
the optimum prices for a given L and then numerically analyze the effect of
increasing L.



16 Talak, Manjunath and Proutiere

Table 1 Revenue maximizing prices, and the corresponding thresholds, for two, three, and
four queues (v ∼ U [0, 150]).

L v1 v2 v3 P1 P2 P3

2 135.28 - - 76.73 - -
3 134.35 143.46 - 71.68 79.75 -
4 134 139.22 142.52 69.92 73.65 76.58

For the L queue system, Fl(0) is the fraction of customers that joined Queue
l and, hence, NFl(0) is the total number of customers that join Queue l. The
revenue earned by the service provider is given by

R(P1, P2, . . . , PL−1) =

L−1
∑

l=1

NFl(0)Pl. (21)

We know that, at NE, Fl(0) = G(vl+1) − G(vl). Also, (18) gives a bijective
relation between Pl and vl. Using these, we can express revenue as follows:

1

N
R(P1, P2, . . . , PL−1) =

L−1
∑

j=1

u (vL−j , vL−j+1) , (22)

where

u (vl, vl+1) =

[

G(vl+1)− vl
∫ vl+1

vl

dG(x)
x

1
N
mvl

]

(1− G(vl))

−

[

G(vl)
1
N
mvl+1

]

(1− G(vl+1)) .

This is derived in Appendix G.
Thus, maximizing 1

N
R(P1, P2, . . . , PL−1) can be solved as a finite horizon

dynamic program (FHDP). Notice that the first term in the expansion depends
only on vL−1 (action at time 1 in the FHDP), the second term depends only
on vL−2 and vL−1 (action and state of the system at time t = 2), the third
term depends only on vL−3 and vL−2 (action and state of the system at time
t = 3), and so on. We assume that the FHDP has a solution and verify this
numerically.

We now numerically evaluate the revenue maximizing prices by solving the
FHDP. As before, V = [A,B] and type is uniformly distributed. There are L
queues, N = 10, nv = v, and mv is as in (19) with δ = 0.05.

Table 1 lists the revenue maximizing prices and thresholds when A = 0
and B = 150 for L = 2, 3, and 4. We observe that as the number of queues
is increased, for maximum revenue, Pl has to be decreased at each Queue l.
This has been consistently observed for other system parameters.

In Table 2, we compare the maximum revenue for three different type dis-
tributions when L = 2, 3, and 4. We observe that the revenue increases as
more queues are added, regardless of the underlying type distribution. Most
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Table 2 Maximum revenue as a function of number of queues and type distribution

Population Revenue
distribution L = 2 L = 3 L = 4

U [0, 20] 2.26 2.46 2.50
U [0, 150] 7.53 7.83 7.87
U [20, 150] 7.41 7.65 7.68

importantly, the increase in this revenue from three queues to four queues is
as small as 1.6%, 0.5%, and 0.4% for the type distributions U [0, 20], U [0, 150],
and U [20, 150], respectively. However, for the same type distributions the in-
crease in maximum revenue is 8.9%, 4%, and 3.2%, respectively. This tells us
that having three, may be even just two, queues shall get us very nearly the
maximum revenue.

We also remark here that this observation of a small number of classes
yielding nearly the maximum revenue is also seen in other similar settings that
serve a heterogenous population. For example, in [20], the authors consider
dividing link capacity into multiple classes of service, each with its own price,
an instance of Paris Metro pricing. Utility maximising users choose the class
of service and it is shown that for a large range of utility functions, the loss of
revenue is small even with a small number of service classes.

Another observation from the results of Table 2 is that the revenue is larger
when the type distribution is U [0, 150]. Numerically, it is consistently observed
that if Ṽ ⊂ V , then the boarding game with types in V yields greater maximum
revenue than with Ṽ ; a larger diversity of types provides a larger revenue. This
property is known in the pricing literature, e.g., [3]. Larger diversity provides
for more customers with higher valuations for quality of service (QoS). Such a
user population allows the service provider to extract more consumer surplus
by tuning service quality and price to each type to maximise profit.

6 Concluding Discussion

The system that we have introduced in this paper can be seen to belong to
a class of queueing systems where the arrival times are endogenously deter-
mined by the customers; unlike the exogenously determined arrival times in
traditional queueing systems. Clearly, there are several potential applications
for systems with endogenous arrivals in modeling waiting systems at airports,
bus and train terminals, concert halls, etc. A better understanding of these
systems can help in a more informed sizing of waiting facilities.

Several extensions are possible. An extension of immediate interest is to
develop a learning algorithm to obtain the revenue maximizing prices. Specif-
ically, since such a game would be played out repeatedly, the outcome of each
instance may be used to adapt the prices to maximize the revenue. A second
extension would be to allow customers to balk if the cost is higher than the
value of obtaining service.
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A Proof of Lemma 1

The proof uses the optimality of TNE(v) and TNE(v+h) for cv(·) and cv+h(·), respectively,
and the structure of the cost function.

cv(T
NE(v)) ≤ cv

(

TNE(v + h)
)

= NF
(

TNE(v + h)
)

+ nvg
(

TNE(v + h)
)

= cv+h

(

TNE(v + h)
)

− nv+hg
(

TNE(v + h)
)

+ nvg
(

TNE(v + h)
)

.

Similarly, we can get

cv+h(T
NE(v + h)) ≤ cv

(

TNE(v)
)

− nvg
(

TNE(v)
)

+ nv+hg
(

TNE(v)
)

.

Adding the two we obtain

(nv+h − nv)
(

g
(

TNE(v + h)
)

− g
(

TNE(v)
))

≤ 0.

Note that nv+h > nv, as nv is a strictly increasing function. Therefore,

g
(

TNE(v + h)
)

≤ g
(

TNE(v)
)

.

This implies that TNE(v + h) ≤ TNE(v), as g(·) is a strictly increasing function.

B Proof of Theorem 1

First note that F (TNE(v)) = G(v). This is derived using (2) as follows.

F (TNE(v)) =

∫

1TNE(x)>TNE(v)dG(x) =

∫

1x<vdG(x) = G(v), (23)

because G is a non-atomic distribution, and the second equality follows from Lemma 1.
Now, since TNE(v) is a NE, by first order condition on (7), we have

0 =
dcv(t)

dt

∣

∣

∣

∣

t=TNE(v)

= N
dF (t)

dt

∣

∣

∣

∣

t=TNE(v)

+ nvg
′
(

TNE(v)
)

, (24)

where g′(x) denotes derivative g with respect to x. Differentiating (23) with respect to v we
get

dG(v)

dv
=

dF (TNE(v))

dv
=

dTNE(v)

dv
×

dF (t)

dt

∣

∣

∣

∣

t=TNE(v)

. (25)

Substituting (25) in (24), we obtain

−
N

nv

dG(v)

dv
= g′

(

TNE(v)
) dTNE(v)

dv
=

dg
(

TNE(v)
)

dv
.

Integrating both sides with respect to v, we get

∫ B

v

dg
(

TNE(x)
)

= −

∫ B

v

N

nx
dG(x). (26)
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This implies

g
(

TNE(B)
)

− g
(

TNE(v)
)

= −

∫ B

v

N

nx

dG(x). (27)

Note that TNE(v) is a non-increasing function. Thus, users of type B arrive last in the queue.
If TNE(B) > 0 then the cost for user of type B can be reduced by decreasing TNE(B) to
0, which contradicts the definition of TNE(v). Therefore, TNE(B) = 0. This implies that
g
(

TNE(B)
)

= 0 due to assumptions on g. (27) then implies the result.

C Proof of Lemma 2

For notational simplicity, we shall denote D(l, t) to mean

NFl(t) +

L−1
∑

j=l+1

NFj(0), (28)

in this section. Thus, the cost of a customer v is given by

cv(l, t) = D(l, t) +mvPl + nvg(t). (29)

Comparing the costs of customer v and v + h, we have

cv+h(l, t) = cv(l, t)−mvPl − nvg(t) +mv+hPl+1 + nv+hg(t). (30)

Substituting t = TNE
l

(v) in (30), we obtain

cv+h

(

l, TNE
l (v)

)

= cv

(

l, TNE
l (v)

)

−mvPl − nvg
(

TNE
l (v)

)

+mv+hPl+1

+ nv+hg
(

TNE
l (v)

)

≥ cv+h

(

l, TNE
l (v + h)

)

. (31)

The last inequality follows because TNE
l

(v + h) minimizes cv+h(l, ·). Similarly, substituting

t = TNE
l

(v + h) in (30) we get

cv+h

(

l, TNE
l (v + h)

)

= cv

(

l, TNE
l (v + h)

)

−mvPl − nvg
(

TNE
l (v + h)

)

+mv+hPl+1

+ nv+hg
(

TNE
l (v + h)

)

. (32)

Since, cv
(

l, TNE
l

(v + h)
)

≥ cv
(

l, TNE
l

(v)
)

, we obtain

cv+h

(

l, TNE
l (v + h)

)

≥ cv

(

l, TNE
l (v)

)

−mvPl − nvg
(

TNE
l (v + h)

)

+mv+hPl+1

+ nv+hg
(

TNE
l (v + h)

)

, (33)

Adding the two inequalities, namely, (31) and (33), we get

(nv+h − nv) g
(

TNE
l (v)

)

≥ (nv+h − nv) g
(

TNE
l (v + h)

)

. (34)

Since, nv is an increasing function of v, (34) reduces to g
(

TNE
l

(v)
)

≥ g
(

TNE
l

(v + h)
)

, which
is nothing but

TNE
l (v) ≥ TNE

l (v + h),

as g(·) is an increasing function. Thus, TNE
l

(v) is a decreasing function in v.
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D Proof of Lemma 3

By Definition 2,

Fl

(

TNE
l (v)

)

=

∫

1

TNE
l

(x)≥TNE
l

(v)ql(v)dG(v) =

∫

1x≤vql(v)dG(v), (35)

where the last equality follows due to Lemma 2. Now define

Gl(v) ,

∫ v

A

ql(v)dG(v). (36)

Then, we have Fl

(

TNE
l

(v)
)

= Gl(v); also note that Gl(v) ≤ G(v) for every v. Differentiating
this w.r.t. v, we obtain

dFl(t)

dt

∣

∣

∣

∣

t=TNE
l

(v)

dTNE
l

(v)

dv
=

dGl(v)

dv
. (37)

Also, the first order derivative condition for the optimality of TNE
l

(v), namely,
dcv(l,t)

dt
= 0,

gives

0 =

[

N
dFl(t)

dt
+ nv

dg(t)

dt

]

t=TNE
l

(v)

. (38)

Substituting (37) in (38), we get

dg
(

TNE
l

(v)
)

dv
= −

N

nv

dGl(v)

dv
. (39)

This can be simplified to

TNE
l (v) = g−1

(

N

∫ B

v

dGl(x)

nx

)

≤ g−1

(

N

∫ B

v

dG(x)

nx

)

, (40)

where, while the second inequality follows from Gl(v) ≤ G(v), the first equality uses (13)
and the same arguments that are used in Appendix B to arrive at the explicit expression of
wNE(v).

E Proof of Theorem 2

For the ease of presentation, we denote

D(l, t) , NFl(t) +N

L−1
∑

j=l+1

Fj(0). (41)

In the following lemma, we prove that cl(A) increases, while cl(B) decreases in l.

Lemma 4 cl(A) strictly increases and cl(B) strictly decreases in l.

Proof The optimal cost to join Queue l is given by

cl(v) = D
(

l, TNE
l (v)

)

+mvPl + nvg
(

TNE
l (v)

)

.

At v = A,

cl(A) = D
(

l, TNE
l (A)

)

+mAPl + nAg
(

TNE
l (A)

)

= N

L−1
∑

j=l+1

Fj(0) +mAPl + nAg
(

TNE
l (A)

)

,
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where the last equality follows from (14). We therefore have

cl+1(A) − cl(A) = −NFl+1(0) +mA (Pl+1 − Pl)− nA

(

g
(

TNE
l (A)

)

− g
(

TNE
l+1(A)

))

≥ −N +mA (Pl+1 − Pl)− nAg
(

TNE
l (A)

)

≥ −N +mA (Pl+1 − Pl)−NnA

∫ B

A

dG(x)

nx

, (42)

where the last inequality follows from Lemma 3 and the fact that g(·) is an increasing

function. Using the fact that nx is a decreasing function and
∫ B

A

dG(x)
nx

< ∞ from (A1), we

have
∫ B

A

nA

nx

dG(x) ≤

∫ B

A

dG(x) = 1.

Using this in (42) gives

cl+1(A) − cl(A) ≥ −2N +mA (Pl+1 − Pl) > 0,

where the last inequality follows from (A2).
At v = B, we have

cl(B) = D
(

l, TNE
l (B)

)

+mBPl + nBg
(

TNE
l (B)

)

= N

L−1
∑

j=l

Fj(0) +mAPl,

where the last equality follows from (13) and the fact that g(0) = 0. Now,

cl+1(B) − cl(B) = −NFl(0) +mB (Pl+1 − Pl) < 0, (43)

from (A3). ⊓⊔
We now prove some properties of the optimal costs cl(v) which help us in arriving at

the thresholds.

Lemma 5 For the optimal costs, cl(v)s, the following is true

1.
dc0(v)

dv
> 0.

2. For all l ∈ {1, 2, . . . L− 2}, we have 0 >
dcl(v)

dv
>

dcl+1(v)

dv
.

3. There exists a unique point vl, for every l, at which the two costs, namely, cl−1(v) and

cl(v) intersect. Also, A < v1 < · · · < vL−1 < B.

Proof Taking the derivative of cl(v) w.r.t. v we get

dcl(v)

dv
= m′

vPl + n′
vg

(

TNE
l (v)

)

+
dTNE

l
(v)

dv
×

[

∂D(l, t)

∂t
+ nv

dg(t)

dt

]

t=TNE
l

(v)

. (44)

Using the first order optimality condition for TNE
l

(v), which is

[

∂D(l, t)

∂t
+ nv

dg(t)

dt

]

t=TNE
l

(v)

= 0, (45)

in (44) we get
dcl(v)

dv
= m′

vPl + n′
vg

(

TNE
l (v)

)

. (46)

For l = 0, since P0 = 0, we have

dc0(v)

dv
= n′

vg
(

TNE
l (v)

)

> 0, (47)

which follows from the fact that nv is an increasing function in v and g(·) always positive.
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Now, for l ≥ 1, using Lemma 3 in (46) and the fact that g(·) is an increasing function,
we get

dcl(v)

dv
< m′

vPl + n′
vN

∫ B

v

dG(x)

nx

=
(

−m′
v

)

(Ny(v) − Pl) < 0, (48)

where the last inequality follows from the fact that −m′
v > 0 and (A2): since Pj − Pj−1 >

Ny(v) implies

Pl > Nly(v) ≥ Ny(v).

Analyzing the difference between dcl(v)
dv

and
dcl+1(v)

dv
, we obtain

dcl(v)

dv
−

dcl+1(v)

dv
= −m′

v (Pl+1 − Pl) + n′
vg

(

TNE
l (v)

)

− n′
vg

(

TNE
l+1(v)

)

> −m′
v (Pl+1 − Pl)− n′

vg
(

TNE
l+1(v)

)

> −m′
v (Pl+1 − Pl)− n′

vN

∫ B

v

dG(x)

nx

= −mv [(Pl+1 − Pl)−Ny(v)] > 0, (49)

where the last inequality follows from (A2), while the third in the third step we use Lemma 3
and the property that g(·) is increasing. This proves part 1 and 2 of the Lemma.

For part 3, take l− 1, l, and l+ 1 in L. First note that cl−1(A) < cl(A) and cl−1(B) >

cl(B) from Lemma 4. Since, cl(v) is continuous and dcl(v)
dv

>
dcl+1(v)

dv
, there exists exactly

one vl at which the two functions, namely, cl−1(v) and cl(v), meet. Further, note that A < v1
because c0(A) < c1(A) and, similarly, vL−1 < B because cL−2(B) > cL−1(B) by Lemma 4.

It only remains to show that vl < vl+1. Using part 1 and 2 of the Lemma it is clear
that for v < vl we have cl−1(v) < cl(v) and for v > vl we have cl(v) < cl−1(v). Now, if
vl+1 ≤ vl then for all v ∈ (vl+1B) , and hence for all v ∈ [vl, B) , cl+1(v) < cl(v). Thus, over
the interval [A, vl) we shall have cl−1(v) < cl(v) and over the interval [vl, B) we shall have
cl+1(v) < cl(v). This implies that no customer will join Queue l contradicting (A3). ⊓⊔

We now prove that joining Queue l is the best strategy for all v ∈ (vl, vl+1] . For this,
it needs to be verified that cl(v) ≤ cj(v) for v ∈ (vl, vl+1] for all j ∈ {0, 1, . . . , L− 1}. The
following lemma provides some sufficient conditions for it. We later show that the optimal
cost functions cl(v) satisfy these sufficient conditions.

Lemma 6 If

cl(v) ≤ cl−1(v), for all v ≥ vl, (50)

and

cl(v) ≤ cl+1(v), for all v ≤ vl+1, (51)

then cl(v) ≤ cj(v) for v ∈ (vl, vl+1), for all j ∈ {0, 1, . . . , L− 1}.

Proof Take l ∈ {0, 1, . . . , L− 1} and a v ∈ (vl, vl+1]. Then

cl(v) ≤ cl+1(v) ≤ cl+2(v) ≤ · · · cL−1(v), (52)

due to (51) and the fact that vj < vj+1. Also, by (50),

cl(v) ≤ cl−1(v) ≤ cl−2(v) ≤ · · · c0(v). (53)

Thus, cl(v) ≤ cj(v) for all j ∈ {0, 1, . . . , L− 1}. ⊓⊔

We now show, by using Lemma 5, that the conditions of Lemma 6 are indeed satisfied
and, thus, it is true that cl(v) ≤ cj(v) for v ∈ (vl, vl+1), for all j ∈ {0, 1, . . . , L− 1}.
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1. Note that c0(v1) = c1(v1) and dc0(v)
dv

> 0 and dc1(v)
dv

< 0, for v ∈ (v0, v1). Take
v ∈ (v0, v1). By Taylor series expansion, for some y ∈ (v, v1), we have

c0(v) = c0(v1) + (v − v1)
dc0(v)

dv

∣

∣

∣

∣

v=y

< c0(v1), (54)

where the last inequality follows because (v − v1) < 0 and dc0(v)
dv

∣

∣

∣

v=y
> 0. Similarly,

for some y ∈ (v, v1), we have

c1(v) = c1(v1) + (v − v1)
dc1(v)

dv

∣

∣

∣

∣

v=y

> c0(v1), (55)

where the last inequality holds as (v − v1) < 0 and dc1(v)
dv

∣

∣

∣

v=y
< 0. Thus, from (54)

and (55),
c0(v) < c1(v),

for all v ∈ (v0, v1).
2. Take l ∈ {1, 2, . . . , L−2}. Take a v > vl. By mean value theorem, there exists a z ∈ (vl, v)

such that

cl(vl) − cl(v)

cl−1(vl) − cl−1(v)
=

dcl(z)
dz

dcl−1(z)

dz

. (56)

Since, dcl(z)
dz

<
dcl−1(z)

dz
< 0 from Lemma 5, we have

dcl(z)

dz
dcl−1(z)

dz

> 1. Using this re-

duces (56) to

cl(vl)− cl(v) > cl−1(vl)− cl−1(v),

which is nothing but
cl−1(v) > cl(vl), (57)

since cl(vl) = cl−1(vl).
Similarly, if we take a v < vl+1 there exists a z ∈ (vl, v), by the mean value theorem,
such that

cl(v) − cl(vl+1)

cl+1(v) − cl+1(vl+1)
=

dcl(z)
dz

dcl+1(z)

dz

,

which reduces to

cl(v) − cl(vl+1) < cl+1(v) − cl+1(vl+1), (58)

by using Lemma 5; but (58) is nothing but

cl(v) < cl+1(v), (59)

for all v < vl+1.

This proves all the conditions of Lemma 6.

F Proof of Theorem 3

Take v ∈ (vl, vl+1] , then

Fl

(

TNE
l (v)

)

=

∫

1

TNE
l

(x)≥TNE
l

(v)q
NE
l (v)dG(v)

=

∫

1x≤v1vl<v≤vl+1
dG(v) = G(v) − G(vl), (60)
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where the second equality follows from Lemma 2 and Theorem 2. Differentiating (60) w.r.t.
v, we get

dG(v)

dv
=

dFl

(

TNE
l

(v)
)

dv
=

dTNE
l

(v)

dv
×

dFl(t)

dt

∣

∣

∣

∣

t=TNE
l

(v)

. (61)

For optimality, TNE
l

(v) must also satisfy the first order condition, namely, dcv(l,t)
dt

= 0. This
gives

0 =

[

N
dFl(t)

dt
+ nv

dg(t)

dt

]

t=TNE
l

(v)

. (62)

Substituting (61) in (62), we get

dg
(

TNE
l

(v)
)

dv
= −

N

nv

dG(v)

dv
.

This gives

TNE
l (v) = g−1

(

N

∫ vl+1

v

dG(x)

nx

+ α

)

,

where α is the integration constant that can be shown to equal 0 using the same line of
arguments as in Appendix B while deriving wNE(v) in explicit form.

Further, since TNE
l

(v) is a decreasing function by Lemma 2, TNE
l

(v) = 0 for all v ≥ vl+1.

Hence, for v ≥ vl+1

Fl

(

TNE
l (v)

)

= Fl(0) =

∫

1

TNE
l

(x)≥01vl<v≤vl+1
dG(v)

=

∫

1vl<v≤vl+1
dG(v)

= G(vl+1)− G(vl). (63)

Also, note that at Queue l arrival of customer v = vl is the earliest. Thus, Fl

(

TNE
l

(vl)
)

= 0.

Now, since Fl

(

TNE
l

(·)
)

is an increasing function Fl

(

TNE
l

(vl)
)

= 0 for all v < vl. Thus, any

customer v < vl in order to minimize her waiting cost has to choose TNE
l

(v) = TNE
l

(vl).

This proves the first part of Theorem 3 which characterizes TNE
l

(v) completely. Notice that,

we have also shown that TNE
l

(v) satisfies

Fl

(

TNE
l (v)

)

=







Fl(0) = G(vl+1)− G(vl), for v > vl+1

G(v) − G(vl), for vl ≤ v ≤ vl+1

0, for v < vl

. (64)

For obtaining the thresholds {vl}
L−1
l=1 we look at the optimal queue joining cost. The

optimal joining cost for Queue l is

cl(v) = N



Fl

(

TNE
l (v)

)

+

L−1
∑

j=l+1

Fj(0)



+mvPl + nvg
(

TNE
l (v)

)

,

which, by using (64), reduces to

cl(v) = N(G(v) − G(vl−1)) +N(1 − G(vl)) +mvPl + nvN

∫ vl

v

.
dG(x)

nx

. (65)

Now, since vl is the point of intersection of cl(v) and cl−1(v), at v = vl we should have

0 = cl(vl)− cl−1(vl)

= N(1− G(vl+1)) +mvlPl + nvlN

∫ vl

vl

dG(x)

nx

−N(1− G(vl−1)) −mvlPl−1.

This can be re-written as (18).
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G Derivation of the Revenue Function

We can re-write (18) as

Pl − Pl−1 =
N

mvl

[

G(vl+1)− G(vl−1)− vl

∫ vl+1

vl

dG(x)

x

]

, (66)

for all l ∈ {1, 2, . . . L− 1}. Adding (66) for all l = 1 to L− 1, we get

PL−1 =

L−1
∑

l=1

N

mvl

[

G(vl+1)− G(vl−1)− vl

∫ vl+1

vl

dG(x)

x

]

. (67)

We use P to denote the price vector (P1, . . . , PL−1). Revenue function can be expanded as

1

N
R(P) =

L−1
∑

l=1

[G(vl+1) − G(vl)]Pl = PL−1 −

L−1
∑

l=1

(Pl − Pl−1)G(vl). (68)

Substituting (66) and (67), we obtain

1

N
R(P) =

L−1
∑

l=1

N

mvl

[

G(vl+1)− G(vl−1)− vl

∫ vl+1

vl

dG(x)

x

]

−

L−1
∑

l=1

G(vl)
N

mvl

[

G(vl+1)− G(vl−1)− vl

∫ vl+1

vl

dG(x)

x

]

, (69)

which can be written as

1

N
R(P) =

L−1
∑

l=1

(1− G(vl))
N

mvl

×

[

G(vl+1)− G(vl−1) − vl

∫ vl+1

vl

dG(x)

x

]

. (70)

This can be simplified as

1

N
R(P) =

L−1
∑

l=1

N

mvl

[

G(vl+1)− vl

∫ vl+1

vl

dG(x)

x

]

(1− G(vl))

−

L−1
∑

l=1

(1− G(vl))
N

mvl

G(vl−1). (71)

Note that the first term in the second sum is 0. Hence, by increasing index of the second
summation this can be re-written as

1

N
R(P) =

L−1
∑

l=1

N

mvl

[

G(vl+1)− vl

∫ vl+1

vl

dG(x)

x

]

(1− G(vl))

−

L−2
∑

l=1

(1− G(vl+1))
N

mvl+1

G(vl). (72)

This is noting but 1
N
R(P) =

∑L−1
l=1 u(vl, vl+1).
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