
Queueing Systems (2021) 98:275–331
https://doi.org/10.1007/s11134-021-09700-3

Pass-and-swap queues

Céline Comte1 · Jan-Pieter Dorsman2

Received: 24 November 2020 / Revised: 23 February 2021 / Accepted: 1 March 2021 /
Published online: 12 April 2021
© The Author(s) 2021

Abstract
Order-independent (OI) queues, introduced by Berezner et al. (Queueing Syst
19(4):345–359, 1995), expanded the family of multi-class queues that are known to
have a product-form stationary distribution by allowing for intricate class-dependent
service rates. This paper further broadens this family by introducing pass-and-swap
(P&S) queues, an extension of OI queues where, upon a service completion, the cus-
tomer that completes service is not necessarily the one that leaves the system. More
precisely, we supplement the OI queue model with an undirected graph on the cus-
tomer classes, which we call a swapping graph, such that there is an edge between
two classes if customers of these classes can be swapped with one another. When a
customer completes service, it passes over customers in the remainder of the queue
until it finds a customer it can swap positions with, that is, a customer whose class
is a neighbor in the graph. In its turn, the customer that is ejected from its position
takes the position of the next customer it can be swapped with, and so on. This is
repeated until a customer can no longer find another customer to be swapped with;
this customer is the one that leaves the queue. After proving that P&S queues have
a product-form stationary distribution, we derive a necessary and sufficient stability
condition for (open networks of) P&S queues that also applies to OI queues. We then
study irreducibility properties of closed networks of P&S queues and derive the cor-
responding product-form stationary distribution. Lastly, we demonstrate that closed
networks of P&S queues can be applied to describe the dynamics of new and existing
load-distribution and scheduling protocols in clusters of machines in which jobs have
assignment constraints.
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1 Introduction

Since the pioneering work of Jackson [16] in the 1950s, queueing networks with a
product-form stationary distribution have played a central role in the development of
queueing theory [10,24]. In general, the stationary distribution of a network is said to
have a product form if it can be written as the product of the stationary distributions
of the queues that compose this network. Further examination of queueing networks
with this property led to several breakthroughs, such as the discovery of BCMP [6]
and Kelly [18] networks, which demonstrated the broad applicability of these models.
In addition to implying statistical independence between queues, this product-form
property is appealing for its potential for further performance analysis.

In a product-form queueing network, the notion of product form is also relevant at
the level of an individual queue in the sense that, aside from the normalization con-
stant, the stationary distribution of each queue is a product of factors, each of which
corresponds to a customer in the queue [25]. Dedicated study of this type of product
form has gained momentum recently, mainly because of the rising interest in queue-
ing models with arbitrary customer-server compatibilities, in which not every server is
able to fulfill the service requirement of any customer. Such compatibility constraints
are often described by a bipartite graph between customer classes and servers, like that
of Fig. 1. These models arise naturally in many timely applications, such as redun-
dancy scheduling [9,15] and load balancing [12,13] in computer systems, resource
management in manufacturing systems and call centers [2,3], and multiple instances
of stochastic matching models [1,22]. Although the dynamics of these queues are
rather intricate, their stationary distributions all have a product form, which facilitates
exact derivation of performance measures. A more complete overview of these results
can be found in [14].

Order-independent queues and pass-and-swap queues A remarkable class of
queues that exhibit such a product form is the class of order-independent (OI) queues
[7,8,19]. These are multi-class queues in which, at any point in time, the rate at which
any customer completes service may depend on its own class and the classes of the
customers that arrived earlier. OI queues owe their name to the fact that the overall
service rate of all present customers, although it may depend on their classes, cannot
depend on their arrival order. It was shown in [7] that OI queues have a product-form
stationary distribution. Furthermore, as observed in [14], many product-form results
found for the above-mentioned applications resemble analogous results for OI queues.
Several other studies pointed out connections between the above-mentioned applica-
tions and placed them in a more general context of product-form queueing models;
cf. [1,5].

In this paper, we show that this class of queueing models can be extended in yet
another direction, namely the routing of customers within the queue. We do so by
introducing pass-and-swap (P&S) queues, which preserve the product-form stationary
distribution ofOI queueswhile covering awider range of applications. The distinguish-
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Fig. 1 A compatibility graph
between two customer classes
and three servers

1 2

1 3 2

Customer (or job) classes

Servers (or machines)

ing feature of P&S queues is a so-called swapping graph on customer classes, such
that there is an edge between two classes if customers of these classes can be swapped
with one another. Whenever a customer completes service, it scans the remainder of
the queue, passes over subsequent customers that are of a non-swappable class, and
swaps roles with the first customer of a swappable class, in the sense that it takes the
place of this customer, to start another round of service. The ejected customer, in turn,
scans the rest of the queue, possibly swapping with yet another customer, and so on.
This is repeated until a customer can no longer find a customer to be swapped with.
This is the customer that leaves the queue.

Applications to machine clusters We shall also see that, in addition to their theo-
retical appeal, P&S queues can be used to describe the dynamics of load-distribution
and scheduling protocols in a cluster of machines in which jobs have assignment
constraints. This cluster model, which can represent various computer clusters or man-
ufacturing systems in which not everymachine is able to fulfill the service requirement
of any job, has played a central role in several studies of product-form queueing mod-
els over the past decade; see, for example, [2–5,9,12–15]. Roughly speaking, this
cluster model can be interpreted as a P&S queue where customers represent jobs
and servers represent machines. To illustrate the diversity of protocols that can be
modeled this way, we consider a machine cluster described by the graph of Fig. 1,
with two job classes and three machines. Machines 1 and 2 are dedicated to classes 1
and 2, respectively, while machine 3 is compatible with both classes. These compat-
ibility constraints, which may for instance result from data locality in data centers,
lead to different product-form queueing models depending on the load-distribution or
scheduling protocol. We now mention two protocols that were studied in the literature
and can be described using P&S queues.

With the first protocol, each incoming job is immediately added to the buffers of all
its compatible machines, and each machine applies the first-come-first-served (FCFS)
service discipline to the jobs in its buffer. A job may therefore be in service on its two
compatible machines at the same time, in which case its departure rate is the sum of
the service rates of these two machines. If the jobs of each class arrive according to
an independent Poisson process and have independent and exponentially distributed
service requirements, the corresponding queueingmodel is an OI queue (and therefore
also a P&S queue). With the second protocol, each incoming job enters service on its
compatible machine that has been idle the longest, if any, otherwise the job is kept
waiting in a central queue until one of its compatible machines becomes idle. This
protocol is called first-come-first-served and assign-to-the-longest-idle-server (FCFS-
ALIS). With similar assumptions on the arrival process and job size distribution as
before, it was shown in [3] that although the corresponding queueing model is not an
OI queue, we again obtain a product-form stationary distribution that is similar to that
obtained under the first variant.
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Although the two protocols that we have just described have already been analyzed,
we will shed new light on these protocols by showing that they can be described using
P&S queues. Even more strongly, we will see that the framework of P&S queues
allows for extensions in different directions that, as far as the authors are aware, have
not been analyzed in the literature. For instance, going back to the toy example of
Fig. 1, it may happen that each incoming job is a priori compatible with all machines,
but that it can only be assigned to two neighboring machines due to limited paral-
lelism or other operational constraints. This observation leads us to introduce a new
load-distribution protocol in which an incoming job is only assigned to some of its
compatible machines and is subsequently processed in parallel on any subset of these
machines. This extension falls within the framework of P&S queues and, in fact, it is
the P&S mechanism that guided the design of this protocol.

In a similar vein, P&S queues can be used to model redundancy scheduling [4,5,15]
in clusters of machines, where replicas of a job may be routed to (the buffers of) mul-
tiple machines, and redundant replicas are canceled whenever a replica completes
service at a machine (cancel-on-completion) or enters service at a machine (cancel-
on-start). One can verify that the dynamics of the cancel-on-completion protocol are
tantamount to the first aforementioned protocol, and, as such, can be modeled by an
OI queue (and thus also by a P&S queue). The cancel-on-start protocol is also covered
by P&S queues, as its dynamics are tantamount to those of the second aforemen-
tioned protocol [4]. Once again, in addition to covering these two existing protocols,
P&S queues can also be used to model new redundancy scheduling protocols. As an
example, we introduce the cancel-on-commit protocol which generalizes the cancel-
on-start protocol. In this protocol, whenever a replica of a job becomes one of the �s
oldest replicas in the buffer of a machine s, this replica commits to machine s and all
other replicas of the job are canceled. The cancel-on-start protocol corresponds to the
special case where �s = 1 for every machine.

ContributionsOur contributions are as follows:We introduce P&S queues and estab-
lish that although these queues are a non-trivial generalization of OI queues, the
product form of the stationary distribution is preserved; this result is proved by care-
ful inspection of the partial balance equations of the underlying Markov chain. This
result paves the way for the performance analysis of several applications, such as those
we described above, without resorting to scaling regimes. We also provide an easily
verifiable necessary and sufficient stability condition for P&S queues that also holds
for OI queues. In addition, we study networks of P&S queues. By establishing that
P&S queues are quasi-reversible [17,23], we show that open networks of P&S queues
exhibit a product-form stationary distribution under mild conditions on the routing
process. We also study irreducibility properties of closed networks of P&S queues
and demonstrate that, under particular assumptions, the stationary distribution of such
closed networks also has a product form. These closed networks form a class of inde-
pendent interest, since we show later that they can be used to model finite-capacity
queues with token-based structures, akin to those of [4] and [12,13].

Structure of the paper The remainder of the paper is organized as follows: Section 2
recalls results on OI queues that were derived in [7,19]. The P&S queue is introduced
in Sect. 3, where the product form of its stationary distribution is also established.
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After deriving complementary results on open (networks of) P&S queues in Sect. 4,
we turn to the analysis of closed networks of P&S queues in Sect. 5. We demonstrate
the applicability of these models to the modeling of resource-management protocols
in Sect. 6. Section 7 concludes the paper.

2 Order-independent queues

This section gives an overview of OI queues, introduced in [7] and later studied in
[19]. The results of this section were derived in these two seminal papers and act as a
basis for extension in the remainder of the paper.

2.1 Definition

We consider a multi-class queue with a finite set I = {1, . . . , I } of customer classes.
For each i ∈ I, class-i customers enter the queue according to an independent Poisson
process with intensity λi > 0. Customers are queued in their arrival order, with the
oldest customer at the head of the queue, and are identified by their class. For now,
we assume that the queue has an infinite capacity and that each customer leaves the
queue immediately upon service completion.

State descriptors We consider two state descriptors of this multi-class queue. The
queue state represents the classes of customers in the queue in their arrival order.
More specifically, we consider the sequence c = (c1, . . . , cn), where n is the total
number of customers in the queue and cp is the class of the p-th oldest customer,
for each p ∈ {1, . . . , n}. In particular, c1 is the class of the oldest customer, at the
head of the queue. The empty state, with n = 0, is denoted by ∅. The corresponding
state space is the Kleene closure I∗ of the set I, that is, the set of sequences of finite
length made up of elements of I. To each state c ∈ I∗, we associate a macrostate
|c| = (|c|1, . . . , |c|I ) ∈ N

I that only retains the number of present customers of each
class, and does not keep track of their order in the queue. As a result, for each c ∈ I∗
and each i ∈ I, the integer |c|i gives the number of class-i customers in state c. For
each x, y ∈ N

I , we write x ≤ y if xi ≤ yi for each i ∈ I.
Service rates We now explain the way in which service is provided to customers in
an OI queue. This is done in such a way that the evolution of the state of the queue
over time exhibits a memoryless property (and thus represents a Markov process).
The overall service rate in state c is denoted by μ(c), for each c ∈ I∗. This function
μ, defined on I∗, is called the rate function of the queue. Along with the individual
rates of service provided to the customers in the queue, it satisfies the following two
conditions: First, the overall rate of service μ(c) provided when the queue is in state c
depends only on the number of customers of each class that are present and not on
their arrival order. In other words, for each c, d ∈ I∗, we haveμ(c) = μ(d)whenever
|c| = |d|. For this reason, we shall also refer to μ(c) as μ(x) when x is the macrostate
corresponding to state c. Second, the service rate of each customer is independent of
(the number and classes of the) customers that are behind this customer in the queue.
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In particular, for each c = (c1, . . . , cn) ∈ I∗ and p ∈ {1, . . . , n}, the service rate
of the customer in position p in state c, of class cp, is equal to the increment of the
overall service rate induced by the arrival of this customer, denoted by

�μ(c1, . . . , cp) = μ(c1, . . . , cp) − μ(c1, . . . , cp−1),

where we use the convention that (c1, . . . , cp−1) = ∅ when p = 0. This implies in
particular that the function μ is non-decreasing, in the sense that

μ(c1, . . . , cn, i) ≥ μ(c1, . . . , cn), ∀c = (c1, . . . , cn) ∈ I∗, ∀i ∈ I.

The service rate of the first p customers in the queue, given by μ(c1, . . . , cp) =∑p
q=1 �μ(c1, . . . , cq), depends neither on the classes of the customers in positions

p + 1 to n nor even on the total number n of customers in the queue.
We set μ(∅) = 0 since the queue exhibits a zero departure rate when there are no

customers in the queue.We additionally assume thatμ(c) > 0 for each c �= ∅. In other
words, we assume that the oldest customer always receives a positive service rate, to
ensure irreducibility of the Markov process describing the evolution of the state over
time.

Remark 1 The definition of OI queues that we presented above is slightly more restric-
tive than that of [7,19]. Indeed, in these two papers, the overall service rate function μ

is scaled by a factor that depends on the total number of customers in the queue. We
omit this scaling factor for simplicity of notation and assume it to equal one. However,
unless stated otherwise, the results in the sequel of this paper can be straightforwardly
generalized to account for this factor.

Examples As observed in [7,19], the framework of OI queues encompasses several
classical queueing models, such as the FCFS and infinite-server queues of BCMP
networks [6], as well as multiple queues with class-based compatibilities (see [20,21]
for example). In this paper, we will be especially interested in the following multi-
server queues, introduced in [15] and identified as OI queues in [9].

Example 1 (Multi-server queue) Consider an infinite-capacity queue with a set I =
{1, . . . , I } of customer classes and a set S = {1, . . . , S} of servers. All customers have
an exponentially distributed size with unit mean and, for each i ∈ I, class-i customers
enter the queue according to a Poisson process with rate λi > 0 and can be processed
by the servers of the set Si ⊆ S. This defines a bipartite compatibility graph between
customer classes and servers, in which there is an edge between a class and a server
if this server can process customers of this class. In the example of Fig. 1, servers 1
and 2 are dedicated to classes 1 and 2, respectively, while server 3 is compatible with
both classes. In this way, we have S1 = {1, 3} and S2 = {2, 3}.

Each server applies the FCFS discipline to the customers it can serve, so that each
customer is in service on all the servers that can process this customer but not the
customers that arrived earlier in the queue. For each s ∈ S, the service rate of server s
is denoted by μs > 0. When a class-i customer is in service on a subset T ⊆ Si of
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Fig. 2 A queue state. The color
of a server is a visual aid that
indicates the class of the
customer currently in service on
this server

1 2 2 1 2 1 1

μ1

μ3

μ2

c = (1, 1, 2, 1, 2, 2, 1)
λ1
λ2

its compatible servers, its service rate is
∑

s∈T μs . The overall service rate, equal to
the sum of the service rates of the servers that can process at least one customer in the
queue, is given by

μ(c1, . . . , cn) =
∑

s∈⋃n
p=1 Scp

μs, ∀(c1, . . . , cn) ∈ C. (1)

For each p ∈ {1, . . . , n}, the service rate of the customer in position p is given by

�μ(c1, . . . , cp) = μ(c1, . . . , cp) − μ(c1, . . . , cp−1) =
∑

s∈Scp \⋃p−1
q=1 Scq

μs . (2)

One can verify that this multi-server queue is an OI queue. In the example of Fig. 2,
the queue state is c = (1, 1, 2, 1, 2, 2, 1). The oldest customer, of class 1, is in service
on servers 1 and 3, at rate �μ(1) = μ(1) − μ(∅) = (μ1 + μ3) − 0 = μ1 + μ3. The
second oldest customer, of class 1, is not in service on any server, and indeed we have
�μ(1, 1) = μ(1, 1)−μ(1) = 0. The third oldest customer, of class 2, is in service on
server 2, at rate�μ(1, 1, 2) = μ(1, 1, 2)−μ(1, 1) = (μ1 +μ2 +μ3)− (μ1 +μ3) =
μ2. The other customers have a zero service rate.

2.2 Stationary analysis

The evolution of the queue state leads to a Markov process with state space I∗, and
this Markov process is irreducible. Indeed, for any two states c = (c1, . . . , cn) ∈ I∗
and d = (d1, . . . , dm) ∈ I∗, the Markov process can first jump from state c to state ∅
as a result of n transitions corresponding to departures of the customer at the head of
the queue, and then from state ∅ to state d as a result of m transitions corresponding
to customer arrivals.

Theorem 1 recalls that this Markov process has a product-form stationary distribu-
tion and that the OI queue satisfies the quasi-reversibility property (cf. [17, Section
3.2]). This property implies that when the Markov process associated with the queue
state is stationary, the departure instants of the customers of each class form inde-
pendent and stationary Poisson processes and that, at every instant, the current queue
state is independent of the departure instants of customers prior to that instant. Quasi-
reversibility also implies that an open network of OI queues connected by aMarkovian
routing policy has a product-form stationary distribution [17, Theorem 3.7] under mild
conditions on the routing process. (Namely, each customer can become part of any
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given class with a positive probability and eventually leaves the network with prob-
ability one.) A similar result holds for closed networks of OI queues under some
irreducibility assumptions [17, Section 3.4]. The interested reader is referred to [17,
Sections 3.2 and 3.4] and [24, Chapter 8] for a more complete account on quasi-
reversibility. The proof below can be found in [7,19], but we present it here for ease
of later reference when we introduce the P&S queue.

Theorem 1 Consider an OI queue with a set I = {1, . . . , I } of customer classes,
per-class arrival rates λ1, . . . , λI , and a rate function μ. A stationary measure of the
Markov process associated with the state of this OI queue is of the form

π(c1, . . . , cn) = π(∅)

n∏

p=1

λcp

μ(c1, . . . , cp)
= π(∅)�(c)

∏

i∈I
λi

|c|i , ∀(c1, . . . , cn) ∈ I∗,

(3)
where � is the balance function of the OI queue, defined on I∗ by

�(c1, . . . , cn) =
n∏

p=1

1

μ(c1, . . . , cp)
, ∀(c1, . . . , cn) ∈ I∗, (4)

and π(∅) is an arbitrary positive constant. The queue is stable if and only if

∑

c∈I∗
�(c)

∏

i∈I
λi

|c|i < +∞, (5)

in which case the queue is quasi-reversible and the stationary distribution of the
Markov process associated with its state is given by (3) with

π(∅) =
(

∑

c∈I∗
�(c)

∏

i∈I
λi

|c|i
)−1

. (6)

Proof We will first verify that any measure π of the form (3) satisfies the following
partial balance equations in each state c = (c1, . . . , cn) ∈ I∗:

• Equalize the flow out of state c due to a departure with the flow into state c due to
an arrival (if c �= ∅):

π(c)μ(c) = π(c1, . . . , cn−1)λcn . (7)

• Equalize, for each i ∈ I, the flow out of state c due to the arrival of a class-i
customer with the flow into state c due to the departure of a customer of this class:

π(c)λi =
n+1∑

p=1

π(c1, . . . , cp−1, i, cp, . . . , cn)�μ(c1, . . . , cp−1, i). (8)
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This verification will readily imply that the stationary measures of theMarkov process
associated with the queue state are of the form (3) and that the queue, when stable,
is quasi-reversible. Indeed, the global balance equations of the Markov process asso-
ciated with the queue state follow from the partial balance equations (7) and (8) by
summation. Moreover, to prove that the queue is quasi-reversible, it suffices to verify
that the stationary measures of the Markov process associated with the queue state
satisfy the partial balance equations (8). This is a consequence of [17, Equations (3.8)
to (3.11)] and of the fact that the customers of each class enter the queue according to
an independent and stationary Poisson process.

We now verify that the measures of the form (3) satisfy the partial balance equa-
tions (7) and (8). Equation (7) follows immediately from (3) and (4). The case of (8)
is more intricate. First observe that the measures π of the form (3) satisfy (8) if and
only if the balance function � given by (4) satisfies the following equation in each
state c = (c1, . . . , cn) ∈ I∗:

�(c) =
n+1∑

p=1

�(c1, . . . , cp−1, i, cp, . . . , cn)�μ(c1, . . . , cp−1, i), ∀i ∈ I. (9)

We show that � satisfies this equation by induction over the queue length n. For the
base step, with n = 0, it suffices to observe that, for each i ∈ I, the right-hand side
of (9) simplifies to�(i)μ(i), which is equal to�(∅) by (4). Now let n ≥ 1 and assume
that (9) is satisfied for each state c of length n − 1. Consider a state c of length n and
let i ∈ I. The first n terms in the sum on the right-hand side of (9) can be rewritten as
follows:

n∑

p=1

�(c1, . . . , cp−1, i, cp, . . . , cn)�μ(c1, . . . , cp−1, i)

= 1

μ(c1, . . . , cn, i)

n∑

p=1

�(c1, . . . , cp−1, i, cp, . . . , cn−1)�μ(c1, . . . , cp−1, i),

= 1

μ(c1, . . . , cn, i)
�(c1, . . . , cn−1),

= �(c1, . . . , cn)
μ(c1, . . . , cn)

μ(c1, . . . , cn, i)
, (10)

where the first and last equalities follow from (4) and the order independence of μ,
while the second equality is obtained by applying the induction assumption to state
(c1, . . . , cn−1) and class i . By (4), we also have that

�(c1, . . . , cn, i)�μ(c1, . . . , cn, i)

= �(c1, . . . , cn)
μ(c1, . . . , cn, i) − μ(c1, . . . , cn)

μ(c1, . . . , cn, i)
, (11)

so that summing (10) and (11) yields (9). This concludes the proof by induction.
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The stability condition (5) is equivalent to the statement that
∑

c∈I∗ π(c)/π(∅)

is finite for any stationary measure π , which is indeed necessary and sufficient for
ergodicity. Equation (6) guarantees that the stationary distribution sums to unity. ��

3 Pass-and-swap queues

This section contains our first main contribution. Pass-and-swap (P&S) queues,
obtained by supplementing OI queues with an additional mechanism when customers
complete service, are defined in Sect. 3.1. In contrast to signals and negative customers
considered for quasi-reversible queues [11], the P&S mechanism occurs upon a ser-
vice completion and can move several customers at the same time within the queue.
Section 3.2 shows that both the product-form nature of the stationary measure of the
Markov process associated with the state and the quasi-reversibility property of the
queue are preserved by this mechanism.

3.1 Definition

As before, the set of customer classes is denoted by I = {1, . . . , I } and we adhere to
the state descriptors: the state c = (c1, . . . , cn) ∈ I∗ gives the classes of customers
as they are ordered in the queue and the macrostate |c| = (|c|1, . . . , |c|I ) ∈ N

I gives
the numbers of customers of each class. Likewise, the customer arrival processes and
completion times are as defined in Sect. 2.1. We, however, part with the assumption
that a customer that completes service leaves the queue directly and that all customers
behind move forward one position. With the mechanism that we will now define, each
service completion will potentially trigger a chain reaction within the queue. More
precisely, a customer that completes service may take another customer’s position
further down the queue and require a new round of service in this position. The
customer ejected from this position may in turn take the position of another customer
further down the queue, and so on. The decision of which customer replaces which
other customer is driven by the pass-and-swap mechanism described below.

Pass-and-swap mechanism We supplement the OI queue with an undirected graph
that will be called the swapping graph of the queue. The vertices of this graph represent
the customer classes. For each i, j ∈ I, when there is an edge between classes i and j
in the graph, a class-i customer can take the position of a class- j customer upon
service completion. In that case, we say that (the customers of) classes i and j are
mutually swappable. Observe that the graph is undirected, meaning that the swapping
relation is symmetric: If class i can be swapped with class j , then class j can also be
swapped with class i . Also observe that the graph may contain a loop, that is, an edge
that connects a node to itself, in which case two customers of the corresponding class
can also be swapped with one another. For each i ∈ I, we let Ii ⊆ I denote the set
of neighbors of class i in the graph, that is, the set of classes that are swappable with
class i .

Based on this graph, the pass-and-swap mechanism is defined as follows: A cus-
tomer whose service is complete scans the rest of the queue, passes over subsequent
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customers that it cannot swap positions with, and replaces the first swappable cus-
tomer, if any. This ejected customer, in turn, scans the rest of the queue and replaces
the first swappable customer afterward. This is repeated until an ejected customer finds
no customers in the remainder of the queue it can swap with. In this case, the customer
leaves the queue.

More formally, let c = (c1, . . . , cn) ∈ I∗ denote a queue state. Assume that the
service of the customer in some position p1 ∈ {1, . . . , n} completes and let i1 = cp1
denote the class of this customer. If there is at least one position q ∈ {p1 + 1, . . . , n}
such that cq ∈ Ii1 , we let p2 denote the smallest of these positions and i2 = cp2
the class of the corresponding customer. The class-i1 customer that was originally in
position p1 replaces the class-i2 customer in position p2, and this class-i2 customer is
ejected. If there is at least one position q ∈ {p2 + 1, . . . , n} such that cq ∈ Ii2 , we let
p3 denote the smallest of these positions and i3 = cp3 the class of the corresponding
customer. The class-i2 customer that was originally in position p2 replaces the class-i3
customer in position p3, and this class-i3 customer is ejected. Going on like this, we
define recursively pv+1 = min{q ≥ pv + 1 : cq ∈ Icpv } for each v ∈ {1, . . . , u − 1},
where pu ∈ {p, . . . , n} is the position of the first ejected customer that can no longer
replace another subsequent customer in the queue, that is, for which there is no q ∈
{pu + 1, . . . , n} such that cq ∈ Icpu . This customer is the one that leaves the queue.
The integer u ∈ {1, . . . , n − p + 1} gives the total number of customers that are
involved in the transition, and the state reached after this transition is

(c1, . . . , cp1−1, cp1+1, . . . , cp2−1, i1, cp2+1, . . . , cp3−1, i2, cp3+1,

. . . , cpu−1, iu−1, cpu+1, . . . , cn).

Observe that the transition is recorded as a departure of a class-iu customer and not
as a departure of a class-i1 customer in general. In the special case where u = 1,
the customer that completes service cannot replace any subsequent customer, so that
this customer leaves the queue. An OI queue supplemented with the pass-and-swap
mechanism is called a pass-and-swap (P&S) queue. The stochastic process keeping
track of the state over time in the P&S queue has the Markov property, just like the
OI queue. For both the OI and the P&S queue, however, the stochastic process that
describes themacrostate over time does not yield any suchMarkov property in general.

Example 2 (Multi-server queue)Wegive a toy example that illustrates the P&Smech-
anism.More concrete applications will be described in Sect. 6. Consider amulti-server
queue with the compatibility graph shown in Fig. 3a and the swapping graph shown
in Fig. 3b. Customers of classes 1 and 2 can be processed only by servers 1 and 2,
respectively, while class-3 customers can be processed by both servers. Class-2 cus-
tomers can be swapped with customers of classes 1 and 3, but customers of classes
1 and 3 cannot be swapped with one another. Assume that the queue is in the state
c = (1, 3, 3, 2, 2, 3, 1, 2) depicted in Fig. 3c, and that the customer in first position, of
class 1, completes service. The corresponding chain reaction is depicted on the same
figure by arrows. Class 1 can only be swapped with class 2, and the first subsequent
class-2 customer is in the fourth position. Therefore, the class-1 customer that com-
pletes service is passed along the queue up until the fourth position and is swapped
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(c) A queue state and the transition that occurs upon service
completion of the first class-1 customer.

Fig. 3 Toy example of a P&S queue

with the class-2 customer at this position. The ejected customer is of class 2, and
class 2 can be swapped with classes 1 and 3. Therefore, the ejected customer is passed
along the queue up until the sixth position and is swapped with the class-3 customer
at this position. We repeat this with the ejected class-3 customer, which replaces the
last class-2 customer, which leaves the queue. The transition is labeled as a departure
of a class-2 customer, and the new queue state is d = (3, 3, 1, 2, 2, 1, 3).

Example 3 (Single-server last-come-first-served queue) The following example
shows that the P&S mechanism can also be used to emulate a single-server queue
with the last-come-first-served preemptive-resume policy. Consider a P&S queue with
a set I = {1, . . . , I } of customer classes. Assume that the service rate is a positive
constant μ, independent of the numbers of customers of each class in the queue (pro-
vided that the queue is not empty), so that only the customer at the head of the queue
has a positive service rate. If the swapping graph is empty, then the customer at the
head of the queue leaves immediately upon service completion, and the queue behaves
like a multi-class single-server queue with the first-come-first-served policy. On the
contrary, if the swapping graph is complete (with in particular loops at all nodes),
then the service completion of the customer at the head of the queue triggers a cas-
cading effect whereby every customer swaps position with its successor in the queue,
so that the customer that leaves is the one at the tail of the queue. Therefore, the
queue behaves like a multi-class single-server queue with the last-come-first-served
preemptive-resume policy. Note that, unfortunately, this example only works because
the service time of each customer is exponentially distributed with a mean that is inde-
pendent of its class; in particular, this example does not explain the insensitivity of
the last-come-first-served preemptive-resume policy to the distribution of the service
times.

Additional comments The P&Smechanism is applied instantaneously upon a service
completion. Replacements are performed from the front to the back of the queue, so
that, when a customer is ejected from some position p ∈ {1, . . . , n}, this customer
never replaces a customer at a position q ∈ {1, . . . , p−1}, even if cq ∈ Icp . Also note
that customer classes now have a dual role: They determine not only the service rate
received by each customer through the rate function μ, but also the chain reaction that
happens upon each service completion through the swapping graph. One could also
associate two classes with each customer: one that determines its service rate and an
other that determines its swapping relations. Finally, the original OI queue, in which
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the customer that completes service is the one that leaves the queue, is obtained by
applying the P&S mechanism based on a swapping graph without edges. Therefore,
an OI queue is also a P&S queue, so that the results that we will derive for P&S queues
in the sequel also apply to OI queues.

The following notation will be useful: We write δp(c) = (d, i) if the service
completion of the customer in position p in state c leads to state d and triggers
the departure of a class-i customer, for each n ≥ 1, c = (c1, . . . , cn) ∈ I∗,
d = (d1, . . . , dn−1) ∈ I∗, p ∈ {1, . . . , n}, and i ∈ I. In Example 2 for instance,
we have δ1(c) = ((3, 3, 1, 2, 2, 1, 3), 2). With a slight abuse of notation, we also
write δp(c) = i if we only want to specify that the departing customer is of class i .

3.2 Stationary analysis

The Markov process associated with the queue state on the state space I∗ is irre-
ducible. Indeed, given any states c = (c1, . . . , cn) ∈ I∗ and d = (d1, . . . , dm) ∈ I∗,
the Markov process can again jump from state c to state ∅ thanks to n transitions
corresponding to departures (for instance, triggered by the service completion of the
customer at the head of the queue), and then from state ∅ to state d thanks to m
transitions corresponding to arrivals.

Theorem 2 shows that introducing the P&Smechanism does not actually change the
stationary distribution of this Markov process compared to the original OI queue. In
particular, this stationary distribution is independent of the swapping graph. Intuitively,
this can be thought of as a consequence of the symmetric property of the swapping
relation. Another implication of Theorem 2 is that the consequences of the quasi-
reversibility property stated in Sect. 2.2 for OI queues also apply to P&S queues. As
a result, an open network of P&S queues connected by a random routing process has
a product-form stationary distribution. The only peculiarity is that when a customer
completes service in a P&S queue, this customer is not necessarily the one that leaves
this queue. The case of closed networks is more complicated and will be considered
in Sect. 5. The sketch of the proof given below is completed in Appendix A.

Theorem 2 The results of Theorem 1 remain valid if we replace “OI queue” with
“P&S queue”.

Sketch of proof The proof resembles that of Theorem 1, except that the second set of
partial balance equations (8) has a different form. More specifically, we will verify
that any measure π of the form (3) satisfies the following partial balance equations in
each state c = (c1, . . . , cn) ∈ I∗:

• Equalize the flow out of state c due to a departure with the flow into state c due to
an arrival (if c �= ∅):

π(c)μ(c) = π(c1, . . . , cn−1)λcn . (12)

• Equalize, for each i ∈ I, the flow out of state c due to the arrival of a class-i
customer with the flow into state c due to the departure of a customer of this class:
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π(c)λi =
∑

d∈I∗

n+1∑

p=1
δp(d)=(c,i)

π(d)�μ(d1, . . . , dp). (13)

Since (12) represents the same set of equations as (7), it is already known that (3)
satisfies (12). Showing that (3) satisfies (13) is equivalent to showing that the balance
function � in (4) satisfies the following equation in each state c = (c1, . . . , cn) ∈ I∗:

�(c) =
∑

d∈I∗

n+1∑

p=1
δp(d)=(c,i)

�(d)�μ(d1, . . . , dp), ∀i ∈ I. (14)

This is shown by induction over the queue length n in Appendix A. The rest of the
proof follows along the same lines as Theorem 1. ��

Remark 2 In this section, we have seen that the introduction of the P&S mechanism
to the OI queue induces a different set of partial balance equations, while product-
form properties are retained. Even more strongly, Theorem 2 shows that replacing (8)
with (13) does not alter the stationary distribution of the queue at all. This begs the
question of whether there exist other intra-queue routing mechanisms that also lead to
this product-form stationary distribution. A partial answer can be found in the actual
proof of Theorem 2, given inAppendixA. A careful analysis of this proof suggests that
other routing mechanisms, resulting in a different completion order q1, q2, . . . , qu as
defined in Appendix A, could also lead to the stationary measure given in Theorem 1,
as long as this completion order adheres to an equation of the same form as (30).
However, identifying such routing mechanisms does not seem straightforward.

4 Complementary results on pass-and-swap queues

We now use Theorem 2 to derive further results on the stationary behavior of P&S
queues. Section 4.1 gives an alternative stability condition that is simpler to verify
than (5). The result of this section extends that obtained for OI queues in the Ph.D.
thesis [13] and before that for multi-server queues in [9]. In Sect. 4.2, we use the
quasi-reversibility property to prove that the average service and departures rates of
each class are equal to each other and independent of the swapping graph. Recall that,
since an OI queue is also a P&S queue, the results of this section readily apply to OI
queues.

4.1 Stability condition

Theorem 3 below gives a necessary and sufficient condition for the stability of P&S
queues. This condition is simpler than (5) as it only compares the per-class arrival
rates λ1, . . . , λI to the rate functionμ. A first version of this theorem was stated in the
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Ph.D. thesis [13, Theorem 3.4] for OI queues. The proof that we give in Appendix B
is different in that it does not involve Whittle networks [24].

To state the stability condition, it is worth recalling that, for each c ∈ I∗, the
macrostate associated with state c is the vector |c| = (|c|1, . . . , |c|I ) ∈ N

I that counts
the number of customers of each class present in the queue. Also recall that the service
rateμ(c) depends on the number of customers of each class that are contained in state c
but not on their order. This means that once the macrostate corresponding to a state is
given, the service rate function is not sensitive to the state itself anymore. Therefore,
in the sequel, we also refer to μ(c) as μ(|c|) for simplicity of notation.

For each i ∈ I, we let ei denote the I -dimensional vector with one in component i
and zero elsewhere. We define the function μ̄ on the power set of I by

μ̄(A) = lim
m→+∞ μ(meA), ∀A ⊆ I, (15)

where eA = ∑
i∈A ei for each A ⊆ I. The monotonicity of μ ensures that μ̄ is well

defined, with values in R+ ∪ {+∞}, and is itself a non-decreasing set function. If
the overall service rate only depends on the set of active classes, as is the case in the
multi-server queue of Examples 1 and 2, we have μ̄(A) = μ(x) for each x ∈ N

I such
that A = {i ∈ I : xi > 0}, but in general, we may have μ̄(A) > μ(x) for each such
x .

Theorem 3 Consider a P&S queue with a set I = {1, . . . , I } of customer classes,
per-class arrival rates λ1, . . . , λI , and a rate function μ. This P&S queue is stable if
and only if ∑

i∈A
λi < μ̄(A), ∀A ⊆ I : A �= ∅. (16)

Proof See Appendix B. ��
This result is the only one in this paper that cannot be straightforwardly extended to
P&S queues with an arbitrary scaling factor as considered in [7,19]. However, it can
be extended to P&S queues with a non-decreasing scaling factor by including this
scaling rate into the definition of μ̄.

4.2 Departure and service rates

Wenowconsider the relation between the service rates anddeparture rates of customers
in the P&S queue. Consider a stable P&S queue, as defined in Sect. 3.1, and let π

denote the stationary distribution of the Markov process tracking the state over time.
For each c = (c1, . . . , cn) ∈ I∗ and i ∈ I, we also define the overall departure rate
of class i in state c to be

φd
i (c) =

n∑

p=1
δp(c)=i

�μ(c1, . . . , cp), (17)
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while the overall service rate of class i in this state is defined as

φs
i (c) =

n∑

p=1
cp=i

�μ(c1, . . . , cp). (18)

While it is not necessarily true that φd
i (c) = φs

i (c), the next proposition states that,
for each x ∈ N

I and i ∈ I, the overall probability flow out of macrostate x due
to a departure of a class-i customer is equal to the overall probability flow out of
macrostate x due to a service completion of a class-i customer.

Proposition 1 For each x ∈ N
I and i ∈ I, we have

∑

c∈I∗:|c|=x

π(c)φd
i (c) =

∑

c∈I∗:|c|=x

π(c)φs
i (c). (19)

Proof If xi = 0, the result is immediate since φd
i (c) = φs

i (c) = 0 for any state c for
which |c| = x . For the case xi > 0, note that the stationary distribution of the P&S
queue satisfies the partial balance equations (8) by Theorems 1 and 2 and (13) by
Theorem 2. Therefore, the right-hand sides of (8) and (13) are equal. Equating these
two sides and summing over all states c = (c1, . . . , cn) for which |c| = x − ei , we
obtain

∑

c∈I∗:|c|=x−ei

∑

d∈I∗:|d|=x

n+1∑

p=1
δp(d)=(c,i)

π(d)�μ(d1, . . . , dp)

=
∑

c∈I∗:|c|=x−ei

n+1∑

p=1

π(c1, . . . , cp−1, i, cp, . . . , cn)�μ(c1, . . . , cp−1, i).

Rewriting both sides leads to

∑

c∈I∗:|c|=x

n∑

p=1
δp(c)=i

π(c)�μ(c1, . . . , cp) =
∑

c∈I∗:|c|=x

n∑

p=1
cp=i

π(c1, . . . , cn)�μ(c1, . . . , cp).

Combining this equation with (17) and (18) finalizes the proof. ��
Since the overall probability flow out of macrostate x due to a service completion

of a class-i customer does not depend on the swapping graph, this equality implies
that, for each x ∈ N

I and i ∈ I, the overall probability flow out of macrostate x
due to a departure of a class-i customer does not depend on the swapping graph.
Upon dividing (19) by

∑
c∈I∗:|c|=x π(c), we also obtain that the conditional expected

departure and service rates of a class given the macrostate are equal to each other.
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Finally, summing both sides of (19) over all i ∈ I shows that the aggregate departure
rate of customers in any macrostate x equals the aggregate service rate of customers
in x . This can alternatively be seen to hold true by noting that a service completion in
a macrostate x also induces a departure from macrostate x , and departures from the
system only occur because of service completions.

Remark 3 The result of Proposition 1 is intuitively not very surprising. If, in a state
c = (c1, . . . , cn), the completion of customer cp will trigger a departure of customer
cq , then, in state d = (cn, . . . , c1), the completion of customer cq will trigger a
departure of customer cp, as the swapping graph is undirected. Moreover, both states
lead to the same macrostate x . The fact that π(c) �= π(d) is offset by the nature of the
order-independent service rates, as formalized in the proof of Proposition 1.

5 Closedmodels

We saw that P&S queues are quasi-reversible, so that stable open networks of P&S
queues have a product-form stationary distribution under mild conditions on the rout-
ing process. In this section, we consider closed networks of P&S queues in more
detail and conclude that, also for closed networks, the stationary distribution has
a product form. In contrast to open networks, this does not follow directly from
quasi-reversibility since, in general, the obtained Markov process does not meet the
irreducibility assumptions posed in [17, Section 3.4]. In Sect. 5.1, we first consider a
closed P&S queue in which the number of customers of each class is fixed and depart-
ing customers are appended back to the end of the queue instead of leaving. These
results are extended to a closed tandem network of two P&S queues in Sect. 5.2. This
tandem network turns out to have rich applications, as we will see in Sect. 6.

5.1 A closed pass-and-swap queue

We first consider a closed network that consists of a single P&S queue. In Sect. 5.1.1,
we give an example of such a closed P&Squeue to illustrate its dynamics. Section 5.1.2
then gives a more formal description of this model, including necessary notation. This
section also studies the structure of the Markov process underlying this closed P&S
queue and establishes sufficient conditions for this Markov process to be irreducible.
Provided that the Markov process is indeed irreducible, Sect. 5.1.3 provides the sta-
tionary distribution of the closed P&S queue and establishes its product-form nature.

5.1.1 Introductory example

Consider a closed P&S queue with six customer classes (I = {1, 2, . . . , 6}) and the
swapping graph shown in Fig. 4a. When a class-i customer departs the queue, this
customer does not leave the system. Instead, it is appended back to the queue as a class-
i customer. For simplicity, we assume that there is a single customer of each class in the
queue. More precisely, we assume that the queue starts in state c = (1, 2, 3, 4, 5, 6),
as depicted in Fig. 4b. A possible sequence of transitions is shown in Fig. 4c, d. Each
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3 4 5

6

(a) Swapping graph.

6 5 4 3 2 1

(b) Initial state.

6 3 5 4 1 2

(c) State reached after the service completion of customer 1.

6 4 3 5 2 1

(d) State reached after the service completion of customer 2.

Fig. 4 A closed P&S queue. The rate function need not be specified, as throughout this example we only
consider the service completion of the customer at the head of the queue

transition is triggered by the service completion of the customer that is currently at
the head of the queue. In particular, in the transition from Fig. 4b, c, customer 1
completes service, and this customer replaces customer 3, which replaces customer 6
in accordance with the swapping graph in Fig. 4a. In the transition from Fig. 4c, d,
customer 2 completes service, and this customer replaces customer 4, which replaces
customer 6. In both cases, customer 6 is appended back to the end of the queue, in the
last position, so that this customer’s position remains unchanged by the transition.

It is worth noting that, in the three states shown in Fig. 4, customer 1 precedes
customers 3 and 4, which precede customer 6. This order will be conserved by the
P&S mechanism, as the service completion of customer 1 systematically triggers the
movement of either customer 3 or customer 4, that in turn will replace customer 6.
Similarly, customer 2 will always precede customers 4 and 5 that, in their turn, will
always precede customer 6. In the sequel, we will formalize this phenomenon and
characterize the communicating classes of the Markov process associated with the
state of a closed P&S queue.

5.1.2 Queueing model

The closed P&S queue inherits virtually all properties and notation from Sect. 3.1. As
mentioned before, the only difference is that, upon a service completion, the customer
that would have left if the queue were open is, instead, appended back to the end of
the queue as a customer of the same class. There is also no external arrival process, so
that the macrostate of the queue is determined by its initial state and does not change
over time. We therefore let I = {1, . . . , I } denote the set of classes of the customers
in the initial state of the queue. The (fixed) macrostate of the queue is denoted by
� = (�1, . . . , �I ) ∈ N

I and the total number of customers by n = �1 + . . . + �I . Note
that �i > 0 for each i ∈ I, as we only consider classes of customers present in the
queue.

In Sect. 5.1.1, we found that it was possible for an ordering of customers to be
preserved by the P&S mechanism. To help formalize this phenomenon, we introduce
the notion of a placement order. We first define a placement graph of the queue as an
acyclic orientation of its swapping graph, that is, a directed acyclic graph obtained by
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3 4 5
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Fig. 5 The placement graph corresponding to Fig. 4

assigning an orientation to each edge of the swapping graph. This is only possible if the
swapping graph contains no loop, which we assume in the remainder of Sects. 5 and
6. A placement order of the queue is then defined as (the strict partial order associated
with) the reachability relationship of one of its placement graphs. In other words, a
strict partial order ≺ on I is said to be a placement order if there exists a placement
graph such that, for each i, j ∈ I with i �= j , i ≺ j if and only if there is a directed
path from class i to class j in the placement graph. It will be useful later to observe
that, for each classes i, j ∈ I that are neighbors in the swapping graph, we have either
i ≺ j or j ≺ i .

We say that a state c = (c1, . . . , cn) ∈ In adheres to the placement order if cq ⊀ cp
for each p, q ∈ {1, . . . , n} such that p < q. Since the placement order is only partial,
there may be pairs of classes for which neither cp ≺ cq nor cq ≺ cp hold. Adherence
is therefore a weaker property than having cp ≺ cq for each p, q ∈ {1, . . . , n} such
that p < q. As a special case, adherence allows that cp = cq when p < q.

Example 4 We consider the closed P&S queue of Sect. 5.1.1. The placement graph in
Fig. 5 is obtained by orienting the edges of the swapping graph of Fig. 4a from bottom
to top. All states in Fig. 4 adhere to the corresponding placement order. For example,
the placement graph implies that 1 ≺ j for j ∈ {3, 4, 6} and 2 ≺ j for j ∈ {4, 5, 6},
which in turn implies that the customer at the front of the queue is either customer 1
or customer 2. All states in Fig. 4 indeed satisfy this property. Customers 1 and 2 can
alternate positions, as neither 1 ≺ 2 nor 1 � 2.

In general, not all possible states of a closed P&S queue adhere to a placement
order. In Example 4, if the initial queue state is (3, 1, 2, 3, 4, 5, 6), a class-1 customer
is both preceded and succeeded by a class-3 customer, making it impossible to orient
the edge between classes 1 and 3 in the swapping graph. Furthermore, each state can
only adhere to at most one placement order, so that the sets of states that adhere to
different placement orders are disjoint. To prove this, it suffices to observe that, for
each state that adheres to a placement order, the relative placement of customers within
the state specifies the orientation of all edges of the swapping graph, which in turn
uniquely defines a placement order.

In the rest of this section and inSect. 5.1.3,we focus on the casewhere the initial state
of the queue does adhere to a placement order. Proposition 2 describes the phenomenon
encountered in Sect. 5.1.1 in full generality, while Proposition 3 provides a stronger
result, assuming that all customers receive a positive service rate. The proofs of these
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two propositions are given in Appendix C. The case of states that do not adhere to a
placement order is treated in Appendix D.

Proposition 2 If the initial state of the closed P&S queue adheres to the placement
order ≺, then any state reached by applying the P&S mechanism also adheres to this
placement order.

Proposition 3 Assume that �μ(c) > 0 for each c ∈ I∗. All states that adhere to the
same placement order and correspond to the same macrostate form a single closed
communicating class of the Markov process associated with the queue state.

Remark 4 The assumption in Proposition 3, namely that �μ(c) > 0 for each c ∈ I∗,
is a sufficient condition for this result to hold but it is not a necessary condition. It is for
example worth noting that this assumption is not satisfied by the multi-server queue
of Example 1, yet the closed variant of this queue satisfies the conclusions of these
two propositions whenever μ1,μ2, andμ3 are positive. In general, the construction of
weaker sufficient conditions appears to be challenging since the transition described
in step 3 of the algorithm in the proof of Proposition 3 is not guaranteed to occur with
a positive probability when there are states c such that �μ(c) = 0.

5.1.3 Stationary analysis

We now turn to the stationary distribution of theMarkov process underlying the closed
P&S queue and establish its product-form nature. Recall that the initial macrostate of
the queue equals �, which cannot change over time due to the closed nature of the
queue. We assume that the initial state adheres to a placement order ≺. Since all
subsequent states must also adhere to this placement order due to Proposition 2, we
restrict the state space of the Markov process to the state space C that consists of all
states c = (c1, . . . , cn) that satisfy |c| = � and adhere to the placement order ≺. The
rate function μ and balance function � of the queue are assumed to be defined on the
whole set I∗ for simplicity, although we could just as well define them on a subset
of I∗. Theorem 4 provides the stationary distribution of the closed P&S queue and
reveals its product form nature.

Theorem 4 Assume that the Markov process associated with the state of the closed
P&S queue, with state space C, is irreducible. The stationary distribution of this
Markov process is then given by

π(c) = �(c)
∑

d∈C �(d)
, ∀c ∈ C, (20)

where the function � is given by (4).

Proof It suffices to show that the function � satisfies the balance equations of
the Markov process, after which the result follows by normalization. Let c =
(c1, . . . , cn) ∈ C and i = cn . Since a departing customer immediately re-enters the
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queue as a customer of the same class, the balance equation for any state c ∈ C reads

π(c) μ(c) =
∑

d∈C

n∑

p=1
δp(d)=((c1,...,cn−1),i)

π(d)�μ(d1, . . . , dp), (21)

where we write δp(d) = ((c1, . . . , cn−1), i) if, in the open queue, the service comple-
tion of the customer in position p in state d would lead to state (c1, . . . , cn−1) with a
departure of a class-i customer. It follows from Proposition 2 that the set C contains
all states d ∈ I∗ such that δp(d) = ((c1, . . . , cn−1), i) for some p ∈ {1, . . . , n}.
Therefore, it suffices to prove that the balance function � satisfies

�(c) μ(c) =
∑

d∈I∗

n∑

p=1
δp(d)=((c1,...,cn−1),i)

�(d)�μ(d1, . . . , dp). (22)

By applying (14) to state (c1, . . . , cn−1) and class i , we obtain that �(c1, . . . , cn−1),
as defined in (4), is equal to the right-hand side of (22). To conclude, it suffices to
observe that (4) implies �(c)μ(c) = �(c1, . . . , cn−1). ��
Remark 5 According to Proposition 3, a sufficient condition for the Markov process
considered in Theorem 4 to be irreducible is that �μ(c) > 0 for each c ∈ I∗. If
this process is not irreducible, all steps of the proof of Theorem 4 remain valid, so
that the distribution defined by (20) is still a stationary distribution of the Markov
process, but it may not be the only one. Since �(c) > 0 for each c ∈ I∗ by (4), this
observation shows that the Markov process considered in Theorem 4 always has a
positive stationary distribution, which implies that this process has no transient state,
that is, all its communicating classes are closed.

Remark 6 A variant of Theorem 4 can also be derived for closed P&S queues with
initial states that do not adhere to a placement order. We have deferred derivation of
this more general result to Appendix D to simplify the discussion. Theorem 4 will be
sufficient for the applications of Sect. 6.

5.2 A closed tandem network of two pass-and-swap queues

Now that the product-form of the stationary distribution of a single closed P&S queue
has been established, we turn to the study of a closed tandem of two P&S queues.
Again, we first explain the model through an introductory example in Sect. 5.2.1, after
which we formalize the model and describe structural properties in Sect. 5.2.2. We
also derive the stationary distribution in Sect. 5.2.3.

5.2.1 Introductory example

We consider the closed tandem network of two P&S queues depicted in Fig. 6. Both
queues have the same set of customer classes and the same swapping graph as the
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6 5 4 3 2 1

(a) Initial state.

3 5 4 1 2

6

(b) State reached after the service
completion of customer 1.

1 5 2

6 4 3

(c) State reached after service com-
pletions of several customers at the
head of the first queue.

Fig. 6 A closed tandem network of two P&S queues. As in Fig. 4, the rate function is not specified because
we will only consider the service completion of the customer at the head of a queue

closed queue of Sect. 5.1. Furthermore, only the customer at the head of each queue,
if any, receives a positive service rate. We also assume that there is a single customer
of each class in the network. The routing process is as follows: For each i ∈ I, if
a class-i customer departs from a queue, this customer is routed to the back of the
other queue as a class-i customer. As shown in Fig. 6a, the initial state of the first
queue is c = (1, 2, 3, 4, 5, 6) and that of the second queue is d = ∅. Figure 6b shows
the state reached after customer 1 (that is, the only customer belonging to class 1)
completes service. As in the introductory example of Sect. 5.1, this customer replaces
customer 3, and customer 3 replaces customer 6. The difference is that customer 6
is now routed to the second queue rather than to the first. Figure 6c shows the state
reached after several service completions, each time that of the customer at the head
of the first queue.

As in Sect. 5.1.1, the order of customers seems to be preserved by the P&S mecha-
nism. However, the orders of customers in the two queues are reversed. For instance,
while customer 6 comes after customers 3 and 4 in the first queue (as in Sect. 5.1.1),
in the second queue customer 6 always precedes these customers. We will show that
this symmetry in customer orders holds for any closed tandem network of two P&S
queues.

Before wemove on to the analysis, let us motivate this model by giving a glimpse of
the applications of Sect. 6. This section is concernedwith token-based load-distribution
protocols for server systems with assignment constraints, in which each job seizes a
token upon arrival and releases its token upon departure. The above-defined closed
tandem network models the dynamics of tokens as follows: The first queue contains
available tokens, while the second queue contains tokens held by jobs in the system
(either waiting to be served or in service). Service completions in the first and second
queues correspond to job arrivals and departures, respectively, and the P&Smechanism
translates to a protocol to distribute load across servers.

5.2.2 Queueing model

Just like in Sect. 5.1, the queues in the closed tandem network are ordinary P&S
queues as described in Sect. 3. There are, however, no external arrivals or departures:
The departure process of one queue now forms the arrival process of the other. In
particular, both queues share the same set I = {1, . . . , I } of customer classes. The
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state of the first queue is denoted by c = (c1, . . . , cn) ∈ I∗ and that of the second queue
by d = (d1, . . . , dm) ∈ I∗, where n and m are the number of customers present in
the first and second queue, respectively. We refer to (c; d) = (c1, . . . , cn; d1, . . . , dm)

as the state of the network. We furthermore assume that both queues have the same
swapping graph. The rate functions of the two queues may, however, differ: Whereas
customers in the first queue complete service according to the rate function μ, the rate
function in the second queue is denoted by ν. Because of the closedness of the system,
the sum of the macrostates of the two queues, denoted by � = |c| + |d|, is constant
over time. We refer to this vector � = (�1, . . . , �I ) as the network macrostate and we
assume without loss of generality that �i > 0 for every i ∈ I. Macrostates |c| and |d|,
however, do fluctuate over time. We let � (resp. 
) denote the balance function of the
first (resp. second) queue. The functions μ, ν, �, and 
 are assumed to be defined on
I∗ for simplicity.

As mentioned above, both queues have the same swapping graph. Similarly to
Sect. 5.1.2, we define a placement order ≺ of the network by directing the edges of
this swapping graph so that a directed acyclic graph, called the placement graph of
the network, arises; we again write i ≺ j if and only if there exists a directed path
from class i to class j in the placement graph. We now say that a network state (c; d)

adheres to the placement order ≺ if the following three conditions are satisfied:

(i) (c1, . . . , cn) adheres to the placement order ≺ in the sense of Sect. 5.1.2,
(ii) (dm, . . . , d1) adheres to the placement order ≺ in the sense of Sect. 5.1.2, and
(iii) cp � dq for each p ∈ {1, . . . , n} and q ∈ {1, . . . ,m}.
Reversing the order of state d in property (ii) is consistent with the observation of
Sect. 5.2.1 that the order of customers in the second queue is reversed compared to the
first queue. Equivalently, we say that the network state (c; d) adheres to the placement
order≺ if and only if the state (c1, . . . , cn, dm, . . . , d1)would adhere to≺ in the single-
queue setting of Section 5.1.2. For example, the three network states shown in Fig. 6
adhere to the placement order ≺ defined by the placement graph of Fig. 5. Focusing
on the state shown in Fig. 6c, we have c = (2, 5, 1) and d = (6, 4, 3). The equivalent
state in Section 5.1.2 would be (2, 5, 1, 3, 4, 6); note the absence of a semicolon and
the reverse order of the customers of the second queue. It is indeed easily verified that
this state adheres to the same placement order ≺ in Fig. 6. The definition of adherence
in the two-queue setting is symmetric with respect to the queues in the sense that
state (c; d) adheres to the placement order ≺ if and only if state (d; c) adheres to the
reverse placement order � defined as follows: For each i, j ∈ I, i � j if and only if
j ≺ i .
As for the case of a single queue, we focus here on the case where the initial state

adheres to a placement order. Propositions 4 and5 are the counterparts of Propositions 2
and 3 for closed tandem networks of two queues. The proofs of these two propositions
are given in Appendix C and rely on the proof of their single-queue counterparts.

Proposition 4 If the initial network state adheres to the placement order ≺, then any
state reached by applying the P&Smechanism to either of the two queues also adheres
to this placement order.
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Proposition 5 Assume that either �μ(c) > 0 for each c ∈ I∗ or �ν(d) > 0 for each
d ∈ I∗ (or both). All states that adhere to the same placement order and correspond to
the same macrostate form a single closed communicating class of the Markov process
associated with the network state.

5.2.3 Stationary analysis

We now derive the stationary distribution of the Markov process associated with the
network state. As in Sect. 5.1.3, we focus on the special case where the initial state
adheres to the placement order ≺, so that, by Proposition 4, all subsequent states also
adhere to this placement order. Therefore, we restrict the state space of the Markov
process to the set� that consists of all network states (c; d) that adhere to the placement
order ≺ and satisfy |c| + |d| = �, where � denotes the initial network macrostate.
Theorem 5 gives the stationary distribution of the Markov process associated with the
network state.

Theorem 5 Assume that the Markov process associated with the state of the closed
tandem network, with state space �, is irreducible. The stationary distribution of this
Markov process is then given by

π(c; d) = 1

G
�(c)
(d), ∀(c; d) ∈ �, (23)

where � and 
 are the balance functions of the first and second queues, respectively,
and the normalization constant G is given by

G =
∑

(c;d)∈�

�(c)
(d). (24)

Proof Before writing down the balance equations, we introduce some useful notation.
Let X denote the subset of N

I that consists of the vectors x = (x1, . . . , xI ) such that
x ≤ � and, for each i, j ∈ I with i ≺ j , x j = 0 whenever xi = 0. This is the set
of possible macrostates of the first queue. For each x ∈ X , let Cx denote the set of
states c = (c1, . . . , cn) ∈ I∗ that adhere to the placement order and satisfy |c| = x .
The set of possible states of the first queue is C = ⋃

x∈X�
Cx . Similarly, let Y denote

the subset of N
I that consists of the vectors y = (y1, . . . , yI ) such that |y| ≤ � and,

for each i, j ∈ I with i ≺ j , yi = 0 whenever y j = 0. This is the set of possible
macrostates of the second queue. Also, for each y ∈ Y , let Dy denote the set of states
d = (d1, . . . , dm) such that (dm, . . . , d1) adheres to the placement order and |d| = y.
The set of possible states of the second queue isD = ⋃

y∈Y�
Dy . As a result, the state

space � can be partitioned as follows:

� =
⋃

x∈X
Cx × D�−x =

⋃

y∈Y
C�−y × Dy, (25)
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where the symbol × stands for the Cartesian product. In particular, if the state of the
first queue is equal to c ∈ C, then the set of possible states of the second queue is
Y�−|c|, and vice versa.

To prove the theorem, it suffices to verify that any measure given by (23) satisfies
the following partial balance equations in each state (c; d) ∈ �, with c = (c1, . . . , cn),
d = (d1, . . . , dm), x = |c|, and y = |d|:
• Equalize the flow out of state (c; d) due to a service completion at the first queue
with the flow into that state due to an arrival at this queue, that is, to a service
completion at the second queue (if c �= ∅):

π(c; d) μ(c) =
∑

d ′∈Dy+ecn

m+1∑

p=1
δp(d ′)=(d,cn)

π(c1, . . . , cn−1; d ′)�ν(d ′
1, . . . , d

′
p). (26)

• Equalize the flow out of state (c; d) due to a service completion at the second
queue with the flow into that state due to an arrival at this queue, that is, to a
service completion at the first queue (if d �= ∅):

π(c; d) ν(d) =
∑

c′∈Cx+edm

n+1∑

p=1
δp(c′)=(c,dm)

π(c′; d1, . . . , dm−1)�μ(c′
1, . . . , c

′
p), (27)

We focus on (27) because (26) follows by symmetry. Assuming that d �= ∅, the main
argument consists of observing that, since
(d) ν(d) = 
(d1, . . . , dm−1), a stationary
measure given by (23) satisfies (27) if and only if the balance function� defined by (4)
satisfies

�(c) =
∑

c′∈Cx+edm

n+1∑

p=1
δp(c′)=(c,dm)

�(c′)�μ(c′
1, . . . , c

′
p).

Up to a normalization constant, the right-hand side of this equation is also that of the
partial balance equation (21) applied to state (c1, . . . , cn, dm), since the domains of
the outer sums are the same. The proof of Theorem 4 already showed that � satisfies
this equation. To conclude, it suffices to observe that the left-hand side of (21) is
�(c1, . . . , cn, dm) μ(c1, . . . , cn, dm) = �(c). ��
Remark 7 Mutatis mutandis, Remarks 5 and 6 also apply to a closed tandem network
of two P&S queues. In particular, an equivalent of Appendix D can be derived in the
case where the initial network state does not adhere to a placement order.

6 Application to resourcemanagement in machine clusters

In the introduction, we already mentioned that P&S queues can be used to model
several load-distribution and scheduling protocols, such as the FCFS-ALIS and FCFS
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redundancy scheduling protocols, in clusters of machines in which jobs have assign-
ment constraints. This cluster model can represent various queueing systems, like the
computer clusters or manufacturing systems mentioned in the introduction, in which
not every machine is able to fulfill the service requirement of any job. It has played a
central role in several studies of product-form queueing models over the past decade;
see, for example, [2–5,9,12–15]. We now explain how P&S queues can be applied to
analyze the performance of existing and new load-distribution and scheduling proto-
cols in such clusters ofmachines. As an introductory example, in Sect. 6.1, we consider
a load-distribution protocol whereby the decision of assigning a job to a machine is
based on the order inwhich (slots in the buffers of)machines have become idle.Wewill
see that this load-distribution protocol can be interpreted as a new scheduling protocol,
called cancel-on-commit, for a redundancy scheduling system. We then explain how
the queueing model that describes the dynamics of this protocol can be cast as a closed
tandem network of two P&S queues like that of Sect. 5.2. In Sect. 6.2, we introduce
a more general framework that encompasses other load-distribution and scheduling
protocols, and then we give two prototypical examples of such protocols. In all cases,
the dynamics can be described using a closed tandem network of P&S queues like
that introduced in Sect. 5.2, and deriving the stationary distribution of the system state
is a direct application of the results of Sect. 5.2, provided that the associated Markov
process satisfies the appropriate irreducibility conditions.

6.1 Assign-to-the-longest-idle-slot and cancel-on-commit

We first consider a cluster made up of a dispatcher and a set of machines. Each
incoming job is a priori compatible with several machines but is eventually assigned
to and processed by only one of thesemachines. Following the same approach as in the
recent work [5], we introduce two variants of this cluster: one in which the dispatcher
has a central buffer to store the jobs that have not been committed to amachine yet, and
the other in which these uncommitted jobs are temporarily replicated in the buffers of
several machines. In the former case, we introduce an assignment protocol, called first-
come-first-served and assign-to-the-longest-idle-slot (FCFS-ALIS), that generalizes
the first-come-first-served and assign-to-the-longest-idle-server protocol introduced
in [3]. In the latter case, we introduce a new redundancy scheduling protocol, called
cancel-on-commit, that generalizes the cancel-on-start protocol.

6.1.1 Assign-to-the-longest-idle-slot

We start with the variant where uncommitted jobs are stored in a central buffer. Con-
sider a two-level buffered cluster consisting of a dispatcher and a set S = {1, . . . , S}
of machines. For each s ∈ S, machine s has a buffer of length �s ∈ {1, 2, . . .} that
contains all jobs assigned (we also say committed) to this machine, either waiting or
in service. Each machine processes the jobs in its buffer in FCFS order and, for each
s ∈ S, the service time of a job on machine s is exponentially distributed with rate μs .
Incoming jobs enter the system via the dispatcher, and the dispatcher is in charge of
assigning these jobs to (the buffer of) a machine. The dispatcher also has its own buffer
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Type A Type B

Machine 1 Machine 3 Machine 2

Fig. 7 A bipartite assignment graph between job types and machines. To avoid any confusion in the rest of
this section, job types are identified by letters rather than numbers in the examples

where incoming jobs can be stored in case they cannot be immediately assigned to a
machine due to full buffers. In this way, each job present in the system is either in the
buffer of a machine, in which case we say that it has been assigned or committed to
this machine, or in the buffer of the dispatcher, waiting for an assignment.

Each incoming job has a type that determines the set of machines to which this job
can be assigned. The set of job types is denoted by K = {1, . . . , K } and, for each
k ∈ K, type-k jobs arrive according to a Poisson process with rate νk and can be
assigned to any machine within the set Sk ⊆ S. Conversely, for each s ∈ S, we let
Ks ⊆ K denote the set of job types that can be assigned to machine s (that is, such that
s ∈ Sk). This defines a bipartite assignment graph between job types and machines,
in which there is an edge between a type and a machine if the jobs of this type can
be assigned to this machine; in this case, we say that these jobs are compatible with
the machine. In the examples of this section, job types will be identified by letters
rather than numbers to avoid confusion. In the assignment graph of Fig. 7 for instance,
type-A jobs are compatible with machines 1 and 3 and type-B jobs with machines 2
and 3, so that SA = {1, 3}, SB = {2, 3}, K1 = {A}, K2 = {B}, and K3 = {A, B}.

An incoming type-k job is immediately assigned to the buffer of a machine in
Sk if at least one of these buffers has idle (that is, empty) slots, otherwise the job
is left unassigned in the dispatcher’s buffer. We assume that, for each k ∈ K, the
dispatcher’s buffer can contain at most �k ∈ {0, 1, 2, . . .} unassigned type-k jobs, so
that an incoming type-k job is rejected (and considered permanently lost) if it arrives
while there are already �k unassigned type-k jobs. In other words, the dispatcher’s
buffer consists of �k slots for type-k jobs, for each k ∈ K, and these slots cannot be
occupied by jobs of other types. These values �k can be used to differentiate service
between job types.

When the job in service on machine s completes service, the oldest unassigned job
of a type inKs , if any, is immediately removed from the dispatcher’s buffer and added
to the buffer of machine s, following which machine s immediately starts processing
the oldest job in its buffer. Conversely, when a type-k job arrives, the dispatcher applies
the following procedure:

(i) if one or more machines in the set Sk have space in their buffer, the dispatcher
selects the buffer slot, among those corresponding to these machines, that has
been idle the longest, and assigns the job to the corresponding machine;

(ii) otherwise, if there are currently fewer than �k unassigned type-k jobs, the dis-
patcher puts the incoming job in its own buffer until this job can be assigned to
the buffer of a machine in Sk ;

(iii) otherwise, the job is rejected.
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The assignment rule described in step (i) will be called assign-to-the-longest-idle-slot
(ALIS), in reference to the assign-to-the-longest-idle-server (also ALIS) assignment
rule [2,3], which corresponds to the special case where �s = 1 for each s ∈ S1. Note
that there cannot be an unassigned job of a type inKs while there is space in the buffer of
machine s, as in this case this jobwould have been assigned to the buffer of thismachine
earlier.We assume that all assignment operations occur immediately upon a job arrival
or a service completion. Overall, we obtain a protocol called first-come-first-served
and assign-to-the-longest-idle-slot (FCFS-ALIS), in which machines process jobs in
their buffer in FCFS order, and incoming jobs are assigned to machines according to
the ALIS assignment rule.

Our ALIS assignment rule can be rephrased as follows in terms of tokens: This
alternative description will, among others, be useful for the analysis of Section 6.1.3.
Assume that each machine sends a token to the dispatcher whenever a job completes
service, and that the buffer keeps anordered list of these tokens,with the oldest tokens at
the head. Then,when a new job arrives, the dispatcher assigns this job to the compatible
machine whose token appears earliest in this list, and deletes the corresponding token.
Everything goes as if each job seized a token of a machine when it starts occupying
a slot in its buffer and released this token upon service completion. Each token in the
dispatcher’s list corresponds to an idle slot in the buffer of the corresponding machine.
The intuition behind this assignment rule is that if a slot in a buffer has been idle for
a long time, it is likely that the corresponding machine is relatively less loaded than
others, so that we should assign the incoming job to this machine if possible.

Remark 8 The assign-to-the-longest-idle-server (ALIS) protocol introduced in [2] cor-
responds to the degenerate case where �s = 1 for each s ∈ S and �k = 0 for each
k ∈ K, so that an incoming job is rejected if all its compatible machines are already
busy. It was shown in [2] that, in this case, performance is insensitive to the job size
distribution beyond its mean. A protocol that generalizes this ALIS protocol to a sce-
nario where �s ∈ {1, 2, . . .} for each s ∈ S and preserves its insensitivity property
was introduced in [12]; this protocol is also a special case of the protocol that we have
just defined. The first-come-first-served and assign-to-the-longest-idle-server (FCFS-
ALIS) protocol introduced in [3] corresponds to the degenerate case where �s = 1 for
each s ∈ S and �k = +∞ for each k ∈ K. In practice, taking larger values for �s for
s ∈ S can be beneficial if there is a communication delay between the dispatcher and
the machines, such that a job cannot enter service immediately after it is assigned to
a machine. Furthermore, taking unequal values for �k for k ∈ K can be useful to dif-
ferentiate service between job types. In the remainder of this section, we shall assume
that �k ∈ {1, 2, . . .} for each k ∈ K and �s ∈ {1, 2, . . .} for each s ∈ S. Although
the protocol defined above can be easily extended to the case �k = +∞, generalizing
the queueing analysis of Sect. 6.1.3 is less straightforward and will be left for future
work.

1 In the remainder of this work, when we use the acronym ALIS (resp. FCFS-ALIS), we refer to our
generalization of the ALIS (resp. FCFS-ALIS) protocol, in which the “S” refers to “slot”. If we need to be
more specific, we will replace “ALIS” with either “server-based ALIS” or “slot-based ALIS”.
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6.1.2 Cancel-on-commit

It was observed in [5] that the server-based FCFS-ALIS protocol, which is a special
case of the slot-based FCFS-ALIS protocol introduced in Sect. 6.1.1 as per Remark 8,
leads to the samedynamics as a redundancy schedulingprotocol, called cancel-on-start
[9,15], whereby replicas of a job may be routed to multiple machines, and redundant
replicas are canceled whenever a replica enters service at a machine. Using a similar
approach, we now show that the slot-based FCFS-ALIS protocol can be reinterpreted
as a redundancy scheduling protocol, called cancel-on-commit, that generalizes the
cancel-on-start protocol. The basic idea is to let go of the dispatcher’s central buffer for
uncommitted jobs and, instead, replicate these jobs in the buffers of all their compatible
machines.

Consider the following reinterpretation of the cluster model of Sect. 6.1.1: The
cluster still consists of a dispatcher and a setS = {1, . . . , S}ofmachines, and incoming
jobs have a type in the setK = {1, . . . , K } that determines the set ofmachines towhich
they can be assigned. We again let Sk denote the set of machines that are compatible
with type-k jobs, for each k ∈ K, and Ks the set of job types that are compatible with
machine s, for each s ∈ S. The main difference with Sect. 6.1 is that the dispatcher no
longer has a central buffer to store unassigned jobs. Instead, for each s ∈ S, machine s
has a two-level buffer. The first level of this buffer consists of �s slots occupied by jobs
that have been assigned or committed to this machine. The second level of this buffer
will contain unassigned job replicas, as explained in the next paragraph. From now
on, the first (resp. second) level of the buffer of machine s will be called its first-level
(resp. second-level) buffer for brevity. Eachmachine processes the jobs in its first-level
buffer in FCFS order.

When a type-k job arrives, the dispatcher immediately sends a replica of this job
to each machine within the set Sk . What happens next depends on the state of these
machines, and we distinguish three cases:

(i) at least one machine in Sk has available space in its first-level buffer,
(ii) none of the machines in Sk has available space in its first-level buffer, but the

second-level buffers of these machines each contain less than �k uncommitted
type-k jobs, or

(iii) the first-level buffers of the machines in Sk are all full, and their second-level
buffers already contain �k uncommitted type-k jobs.

In the first case, we let s denote the machine in Sk with the slot in its first-level buffer
that has been idle the longest out of all idle slots in the first-level buffers of themachines
in Sk . The replica sent to machine s takes this first-level slot, and we say that the job
commits to machine s. All other replicas of the job are immediately canceled. The
committed replica then awaits its service by machine s, rendered in FCFS fashion,
and leaves upon service completion. In case (ii), each replica of the job takes a slot
in the second-level buffer of a machine in Sk and waits until it is either canceled or
committed to this machine. Whenever a job completes service at a machine, a first-
level buffer slot becomes available. This buffer slot is immediately taken by the longest
waiting replica in the machine’s second-level buffer, if any. The corresponding job is
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committed to the machine, and all other replicas of this job are canceled. Finally, in
case (iii), the incoming job is rejected and considered permanently lost.

One can verify that this cancel-on-commit protocol leads to the same dynamics as
the FCFS-ALIS protocol described in Sect. 6.1.1. The key difference, which does not
impact the dynamics, is that uncommitted jobs wait in the buffers of their compatible
machines instead of waiting in the dispatcher’s centralized buffer. We will see in
Sect. 6.1.3 that these two systems can be cast as a closed tandem of two P&S queues,
so that Theorem 5 also provides the stationary distribution of the job population in a
redundancy scheduling system with the cancel-on-commit protocol.

6.1.3 Interpretation as a closed tandem network of pass-and-swap queues

The objective of this section is to cast the above-mentioned cluster model as a closed
tandem network of two P&S queues. To this end, we first need to give (yet) another
perspective on the dynamics of the system.

Token-based central-queue perspective The dynamics of the machine cluster can
also be described by considering tokens, as if each job present in the system held a
token that identifies the slot occupied by this job. More specifically, the set of token
classes is K � S, where � denotes the disjoint union operator2. There are �s class-s
tokens, for each s ∈ S, and �k class-k tokens, for each k ∈ K. The former tokens are
those we already referred to in Sect. 6.1.1. More particularly, focusing on the cluster
model of Sect. 6.1.1, each class-s token corresponds to a specific slot in the buffer of
machine s, in the sense that a job holds this token when it occupies the corresponding
slot. Similarly, each class-k token corresponds to a specific slot that can be occupied
by type-k jobs in the dispatcher’s buffer. Focusing on the cluster model of Sect. 6.1.2,
each class-s token corresponds to a specific slot in the first-level buffer of machine s,
while each class-k token corresponds to a specific slot that can be occupied by type-k
jobs in the second-level buffers of the machines in Sk . In general, we can think of
a class-s token as a token that “belongs” to machine s, and of a class-k token as a
token that “belongs” to type-k jobs. Each token is held by a job if and only if this job
is occupying the corresponding slot, otherwise the token is available. When a type-k
job enters the system, this job seizes an available token of a class s ∈ Sk , if any,
otherwise it seizes an available class-k token, if any. When a job completes service at
machine s ∈ S, its class-s token is passed on to an unassigned job of a type k ∈ Ks , if
any, in which case this unassigned job releases the class-k token that it was holding;
otherwise, the class-s token is released.

The dynamics of the cluster can be entirely described by the movements of these
tokens, and long-term performance metrics, like the mean sojourn time of jobs, can
be derived from the long-term expected number of tokens held by jobs present in the
system. These tokens will play the part of customers in the closed tandem network

2 In practice, to make sure that the setsK andS remain disjoint, job types andmachines can be renumbered
if necessary. No confusion will arise from this slight abuse of notation, as wewill always be using the letter k
for a token class in K, associated with a job type, and the letters s and t for a token class in S, associated
with a machine. In the examples, the index of a token class will be a letter if this token class is associated
with a job type and a number if this token class is associated with a machine.
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of two P&S queues that we will now introduce. The first queue will contain tokens
held by jobs present in the system, either assigned to a machine or waiting for an
assignment, and these tokens will be ordered according to the arrival order of jobs in
the system. In particular, contrary to Sects. 6.1.1 and 6.1.2, we will adopt a central-
queue perspective in which all (tokens held by) jobs present in the system are gathered
in a single queue. This representation has become standard in product-form queueing
models representing machine clusters [4,5,9,14,15]. The second queue of the closed
tandem network will contain available tokens, and their order will partly reflect their
release order. We will see that the dynamics induced by the FCFS-ALIS and cancel-
on-commit protocols are captured by this model, provided that the P&S mechanism
is applied with a suitable swapping graph. We first give an overview of the closed
tandem network, and then, we will detail the dynamics of each queue separately.

Closed tandem network of two P&S queues We consider a closed tandem network
of two P&S queues like the one described in Sect. 5.2. Customers represent tokens
and, in the remainder, we will always refer to them as tokens. The set of token classes
is I = K � S, and this set has cardinality I = K + S. The first queue contains the
tokens held by jobs present in the system, and the second queue contains the available
tokens. A token that leaves the first queue immediately enters the second queue as a
token of the same class, and conversely. The overall number of class-i tokens in the
network is �i , for each i ∈ I.

Both P&S queues have the same swapping graph, so that we obtain a closed tandem
network of two P&S queues like that described in Sect. 5.2. The placement order is
as follows: s ≺ k for each s ∈ S and k ∈ Ks (or equivalently, for each k ∈ K and
s ∈ Sk). The corresponding placement graph is obtained from the assignment graph
introduced in Sect. 6.1.1 by orienting edges from the (token classes that correspond
to) machines toward the (token classes that correspond to) job types. For example, the
placement graph associated with the assignment graph of Fig. 7 is shown in Fig. 8a.
The swapping graph of the network is simply the underlying undirected graph of the
placement graph. This placement order guarantees that, if a class-k token is in the first
queue, then, for each s ∈ Sk , all class-s tokens are also in the first queue and precede
this class-k token. This corresponds to the fact that, in the cluster, a type-k job can
only be unassigned if the buffers of all machines in Sk are full. We will come back
to this interpretation later when we specify the dynamics of each queue in detail. An

A B

1 3 2

(a) Placement graph.

1 3 2A B

1 3 2

(b) Compatibility graph of the first
multi-server queue. Each server corre-
sponds to a machine in the cluster.

1 3 2A B

A B

(c) Compatibility graph of the second
multi-server queue. Each server cor-
responds to a job type in the cluster.

Fig. 8 Closed tandem network of two P&S queues associated with the assignment graph of Fig. 7. The
classes and servers associated with job types are identified by letters, and those associated with machines
are identified by numbers (in accordance with Fig. 7). The class colors are visual aids that help distinguish
between the classes associated with job types (in green) and those associated with machines (in orange).
The same class and server indexing and color code will be adopted in Figs. 9 and 10
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example of a network state that adheres to this placement order is given by a state
where all tokens are lined up in the second queue, with first those of the classes in K
in an arbitrary order, and then those of the classes in S, also in an arbitrary order. We
assume that the network starts in such a state, which corresponds to an empty system
in which all tokens are available.

First queue A token is in the first queue when it is held by a job present in the system,
whether this job is assigned to the buffer of a machine or unassigned. This queue is a
multi-server queue, like that of Example 2, and each server represents a machine in
the cluster. More specifically, the set of servers is S and, for each s ∈ S, the service
rate of server s is equal to the service rate μs of machine s. Using the same index
set S for the set of servers in the first queue and for the token classes associated with
machines may seem to be ambiguous at first, but we will always specify whether we
are referring to a server s ∈ S or to a token class s ∈ S. For each s ∈ S, a class-s token
is compatible with server s and with this server only. Following the same notation as
in Example 1, we let Ss = {s}. Additionally, for each k ∈ K, the set of servers that can
process class-k tokens isSk , which corresponds, in the cluster, to the set of machines to
which type-k jobs can be assigned. In the end, for each s ∈ S, server s can process the
tokens that belong to machine s plus the tokens that belong to the job types inKs . For
example, the compatibility graph of the first queue in the tandem network associated
with the assignment graph of Fig. 7 is shown in Fig. 8b. Each server processes its
compatible tokens in FCFS order. Note that, for each k ∈ K, the set Sk now plays two
roles in the tandem network: It represents the set of servers that can process class-k
tokens in the first queue as well as the set of token classes that can be swapped with
class-k tokens.

Recall that, according to the placement order, if a class-k token is in the first queue,
then, for each s ∈ Sk , all class-s tokens are also in the first queue, at positions that
precede the position of the class-k token. Given the compatibility graph, this implies
that a class-k token will actually never be in service in this queue. Therefore, the
only way that a class-k token leaves the first queue is if a token of a class s ∈ Sk

completes service and ejects this class-k token. In the cluster, this means that a job
completes service on machine s and that the token released by this job is seized by a
type-k job that was unassigned so far (so that this type-k job releases its own class-k
token).

We let c = (c1, . . . , cn) ∈ I∗ denote the state of the first queue. As observed before,
the placement order guarantees that if there is a token of a class k ∈ K at a position
p ∈ {1, . . . , n} in the first queue, then, for each s ∈ Sk , each class-s token is also in
the first queue, at a position q ∈ {1, . . . , p−1} that precedes that of the class-k token.
Therefore, the state space of the state of the first queue is a strict subset C of the set
of sequences c ∈ I∗ such that |c| ≤ �, where � = (�1, . . . , �I ) is the vector that gives
the maximum number of tokens of each class. The overall and per-token service rates
are still given by (1) and (2), with the sets Sk for k ∈ K and Ss for s ∈ S as defined
above. Because of the placement order, (2) simplifies to �μ(c1, . . . , cp) = 0 for each
p ∈ {1, . . . , n} such that cp ∈ K. Furthermore, the compatibility graph guarantees
that, for each p ∈ {1, . . . , n} such that s = cp ∈ S, we have �μ(c1, . . . , cp) = μs if
|(c1, . . . , cp−1)|s = 0 and �μ(c1, . . . , cp) = 0 otherwise.
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Now assume that a token in some position p ∈ {1, . . . , n} completes service and
let s = cp ∈ S denote this token’s class. Because of the P&S mechanism, only one of
these two types of transitions can occur:

(i) If the first queue contains a token of a class inKs (necessarily in position at least
p + 1 because of the placement order), the class-s token replaces the first of
these tokens, say of class k ∈ Ks , and the ejected class-k token joins the second
queue. In the cluster, this means that a token from machine s is released by a
departing job and is immediately seized by an unassigned type-k job; this type-k
job releases its class-k token, which is appended to the queue of available tokens.

(ii) If there is no token with a class in Ks in the first queue, the class-s token leaves
this queue and joins the second queue. In the cluster, this means that a token
from machine s is released by a departing job and is immediately appended to
the queue of available tokens because there is no unassigned job of a type inKs .

In both cases, a token leaves the first queue and is added to the second, meaning that
a token is released in the cluster. Examples of transitions are shown in Fig. 9 for the
cluster of Fig. 7. In the state of Fig. 9a, all tokens of classes in S are held by jobs
present in the system, and there is also an unassigned type-A job. From Fig. 9a, b, the
oldest class-2 token completes service in the first queue and joins the second queue. In
the cluster, this means that a job completes service on machine 2 and its token is added
to the queue of available tokens because there is no unassigned job of a compatible
type. This is a transition of type (ii). From Fig. 9b, c, the oldest class-3 token completes
service in the first queue; this token replaces the class-A token, which joins the second
queue. In the cluster, this means that a job completes service on machine 3 and that
its token is seized by an unassigned type-A job. This is a transition of type (i). The
transition from Fig. 9c, d, triggered by a service completion in the second queue, will
be commented on later.

Second queueWe now provide a symmetric description for the second queue, which
contains available tokens. This queue is again a multi-server queue like that of Exam-
ple 2, but the servers correspond to job types and not to machines. More specifically,
the set of servers is K and, for each k ∈ K, the service rate of server k is equal to νk ,
the arrival rate of type-k jobs in the cluster. Again, even though we use the same setK
to index the set of servers in the second queue and the set of token classes associated
with job types, we will always specify whether we are referring to a server k ∈ K or a
token class k ∈ K. For each k ∈ K, the set of servers that can process class-k tokens
is Kk = {k}. Also, for each s ∈ S, the set of servers that can process class-s tokens
is Ks , corresponding to the set of job types that can seize a token from machine s in
the cluster. In the end, for each k ∈ K, server k can process the tokens that belong
to type-k jobs plus the tokens that belong to the machines in Sk . For example, the
compatibility graph of the second queue in the tandem network associated with the
assignment graph of Fig. 7 is shown in Fig. 8c. Each server processes its compatible
tokens in FCFS order.

Due to the placement order, if a class-s token is in the second queue, then, for each
k ∈ Ks , all class-k tokens are also in the second queue, at positions that precede the
position of the class-s token. Given the compatibility graph, this implies that a class-s
token will never be in service in this queue. The only way a class-s token leaves this
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(a) Initial state.
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(b) State reached after the service completion of
the oldest class-2 token in the first queue.

3 3 2 1 1
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νA
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(c) State reached after the service completion of
the oldest class-3 token in the first queue.

2 3 3 2 1 1

μ1

μ3

μ2

νA

νB

A B B A

(d) State reached after the service completion of
the oldest class-B token in the second queue.

Fig. 9 Closed tandem network of two P&S queues associated with the cluster of Fig. 7, assuming that
�k = 2 for each k ∈ K and �s = 2 for each s ∈ S

queue is if a token of a class k ∈ Ks completes service and ejects this class-s token.
In the cluster, this means that a type-k job enters and seizes a token from machine s.

We let d = (d1, . . . , dm) ∈ I∗ denote the state of the second queue. As observed
before, the placement order guarantees that if there is a token of a class s ∈ S at some
position p ∈ {1, . . . ,m} in the second queue, then, for each k ∈ Ks , each class-k
token is also in the second queue, at a position q ∈ {1, . . . , p − 1} that precedes that
of this class-s token. Therefore, the state space of the state of the second queue is a
strict subset D of the set of sequences d ∈ I∗ such that |d| ≤ �. The overall service
rate in this queue is equal to the sum of the arrival rates of the job types that can seize
at least one available token, given by

ν(d) =
∑

k∈⋃m
p=1 Kdp

νk . (28)

For each p ∈ {1, . . . ,m}, the token in position p can be seized or moved by the
incoming jobs that are compatible with this token but not with the older available
tokens, and these jobs arrive at rate

�ν(d1, . . . , dp) =
∑

k∈Kdp \⋃p−1
q=1 Kdq

νk . (29)
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The functions ν and �ν play the same role for the second queue as the functions μ

and �μ, given by (1) and (2), for the first queue. Again because of the placement
order, (29) simplifies to �ν(d1, . . . , dp) = 0 for each p ∈ {1, . . . ,m} such that
dp ∈ S. The compatibility graph also guarantees that, for each p ∈ {1, . . . ,m} such
that k = dp ∈ K, we have �ν(d1, . . . , dp) = νk if |(d1, . . . , dp−1)|k = 0 and
�ν(d1, . . . , dp) = 0 otherwise.

Now assume that a token in some position p ∈ {1, . . . ,m} completes service. If
k = cp ∈ K denotes this token’s class, then, because of the P&S mechanism, only
one of these two transitions can occur:

(i) If the second queue contains a token of a class in Sk (necessarily in position at
least p + 1 because of the placement order), the class-k token replaces the first
of these tokens, say of class s ∈ Sk , and the ejected class-s token joins the first
queue. In the cluster, this means that an incoming type-k job seizes a token from
machine s because this was the oldest available token of a compatible machine.

(ii) If there is no token of a class in Sk in the second queue, the class-k token leaves
this queue and is added to the first queue. In the cluster, this means that a type-k
job enters and does not find any available token from a machine in Sk , so that
this job seizes a class-k token and will hold this token until it is assigned to the
buffer of a machine in Sk .

In both cases, a token leaves the second queue and joins the first, meaning that a new
job arrives and seizes a token in the cluster. An example of a type-(i) transition is
shown in Fig. 9 for the cluster of Fig. 7. Indeed, from Fig. 9c, d, the oldest class-B
token completes service in the second queue; this token replaces the class-2 token,
which joins the first queue. In the cluster, this means that a type-B job enters and seizes
a token of machine 2.

Remark 9 The second queue is degenerate in the sense that, accounting for the place-
ment and compatibility graph, class-k tokens are the only tokens that can be processed
by server k. Therefore, if we let A = {k ∈ K : |d|k > 0}, then, for each k ∈ A, the
service rate of the oldest class-k token is νk , irrespective of the order of the tokens
in state d (provided that this state adheres to the placement order). This implies that
the relative order of the tokens of the classes in K in state d modifies neither their
service rates nor the departure rate of the tokens of the classes in S. On the contrary,
in general, the relative order of the tokens of the classes in S modifies their departure
rate. A similar remark could be made for the first queue by exchanging the roles of
the sets K and S.

6.2 Generalization to other resource-management protocols

The important thing to remember from Sect. 6.1 is that we can describe the dynamics
of tokens in a machine cluster using a closed tandem network of two P&S queues, so
that the first queue contains tokens held by jobs present in the cluster and the other
queue contains available tokens. In Sect. 6.2.1, we propose a more general framework
based on the same idea. This framework extends the example of Sect. 6.1 in two ways:
It allows not only for more general compatibility constraints between job types and

123



310 Queueing Systems (2021) 98:275–331

machines, but also for multiple levels of preferences between tokens. Sections 6.2.2
and 6.2.3 give a prototypical example for each extension.

6.2.1 Queueing model

Consider a closed tandem network of two P&S queues like that described in Sect. 5.2.
Let I = {1, . . . , I } denote the set of token classes and ≺ the placement order of this
network. Recall that, for each i, j ∈ I such that i ≺ j , class-i tokens precede (resp.
succeed) class- j tokens in the first (resp. second) queue. The swapping graph of the
queues is simply the underlying undirected graph of the placement graph. For each
i ∈ I, let �i denote the number of class-i tokens in the network. We assume that
both P&S queues are multi-server queues, like that described in Example 2. Their
compatibility graphs will be described in the next paragraphs. The applications that
we have in mind again involve tokens in a cluster, and in these applications the first
queue of the tandem network will contain tokens held by jobs present in the system
and the second queue will contain available tokens.

Let us first describe the compatibility constraints in the first queue, as we did in
Example 1. Let S = {1, . . . , S} denote the set of servers in this first queue and, for
each s ∈ S, μs the service rate of server s. For each class i ∈ I that is minimal with
respect to the placement order ≺ (that is, there is no class j ∈ I with i � j), we let
Si ⊆ S denote the set of servers that can process class-i tokens in the first queue. This
defines a bipartite graph between the set of minimal classes and the set of servers.
The set of servers that can process non-minimal classes is defined by an ascending
recursion over the placement order. More specifically, for each class i ∈ I that is not
minimal with respect to the placement order, the set of servers that can process class-i
tokens is Si = ⋃

j∈I: j≺i S j . Going back to the example of Fig. 8, we have that the
set of classes is {1, 2, 3, A, B} and the set of minimal classes is {1, 2, 3}; the sets of
servers associated with these classes in the first queue are S1 = {1}, S2 = {2}, and
S3 = {3}, while the sets of servers associated with the classes that are not minimal
are SA = S1 ∪ S3 = {1, 3} and SB = S2 ∪ S3 = {2, 3}. The state of the first queue is
denoted by c = (c1, . . . , cn), and the overall and individual service rates in this queue
are given by (1) and (2), respectively.

Similarly, we letK = {1, . . . , K } denote the set of servers in the second queue and,
for each k ∈ K, νk the service rate of server k. For each class i ∈ I that is maximal
with respect to the placement order ≺ (that is, there is no class j ∈ I with i ≺ j),
we let Ki ⊆ K denote the set of servers that can process class-i tokens. This defines
a bipartite graph between the set of maximal classes and the set of servers. The set
of servers that can process non-maximal classes is defined by a descending recursion
over the placement order. More specifically, for each class i ∈ I that is not maximal,
the set of servers that can process class-i tokens is Ki = ⋃

j∈I:i≺ j K j . By again
considering the example of Fig. 8, we have that the set of maximal classes is {A, B};
the sets of servers associated with these classes in the second queue areKA = {A} and
KB = {B}, while the sets of servers associated with the classes that are not maximal
are K1 = KA = {A}, K2 = KB = {B}, and K3 = KA ∪ KB = {A, B}. The state
of the second queue is denoted by d = (d1, . . . , dm), and the overall and individual
service rates in this queue are given by (28) and (29), respectively.
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Fig. 10 Mixed graph associated
with the example of Sect. 6.1

A B

1 3 2

Type 1 Type 2

Machine 1 Machine 3 Machine 2

In this new framework, the placement order describes not only priorities between
classes but also compatibilities between classes and servers. Using this observation,
we will now see that the structure of the closed tandem network can be described more
compactly by a mixed graph (that is, a graph with both directed and undirected edges).
Themixed graph associated with the model of Fig. 8 is shown in Fig. 10. The subgraph
induced in this mixed graph by the set of classes describes the placement order. The
subgraph induced by the set of minimal classes and the set of machines, as shown at
the bottom of Fig. 10, describes the compatibilities between the minimal classes and
the servers of the first queue. The set of servers that can serve a non-minimal class is
the union of the sets of servers that can serve the ancestors of this class. Similarly, the
subgraph induced by the sets of maximal classes and the set of job types, as shown at
the top of Fig. 10, describes the compatibilities between the maximal classes and the
servers of the second queue. The set of servers that can serve a non-maximal class is the
union of the sets of servers that can serve the descendants of this class. Figures 12 and
14 show more elaborate examples of mixed graphs that will be studied in Sects. 6.2.2
and 6.2.3.

As in Sect. 6.1, some tokens may never be in service in a queue. In fact, in the first
queue, the only tokens that can be in service are those of the classes that are minimal
with respect to the placement order. A token of a class i ∈ I that is not minimal can
only leave this queue upon the service completion of a token of a minimal class j ∈ I
such that j ≺ i . Similarly, only tokens of classes that are maximal with respect to the
placement order can be in service in the second queue. A token of a class i ∈ I that
is not maximal can only leave this queue upon the service completion of a token of a
maximal class j ∈ I such that i ≺ j .

Applying the results of Sect. 5.2.3 allows us to directly derive a closed-form expres-
sion for the stationary distribution of the network state. We adopt the notation of that
section. In particular, the state space of theMarkov process associatedwith the network
state (c; d) is denoted by � and characterized by (25). Assuming that this Markov
process is irreducible, it follows from Theorem 5 that its stationary distribution is
given by

π(c; d) = 1

G

⎛

⎝
n∏

p=1

1

μ(c1, . . . , cp)

⎞

⎠

⎛

⎝
m∏

p=1

1

ν(d1, . . . , dp)

⎞

⎠ , ∀(c; d) ∈ �,

where the constant G follows from normalization.
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Fig. 11 A tripartite assignment
graph between job types, groups,
and machines. We have
S1 = {1, 3}, S2 = {2, 3},
K1 = {A}, and K2 = {A, B}

Type A Type B

Group 1 Group 2

Machine 1 Machine 3 Machine 2

We now consider two examples that illustrate the descriptive power of this new
framework. Section 6.2.2 gives an extension of the introductory example of Sect. 6.1
to a cluster where jobs can be distributed over several machines. Section 6.2.3 looks
at a token-based hierarchical load-distribution protocol. These two examples can be
considered independently.

6.2.2 Distributed processing

As in Sect. 6.1, we consider a cluster that consists of a dispatcher and a set S =
{1, . . . , S} of machines. The set of job types is denoted by K = {1, . . . , K } and, for
each k ∈ K, type-k jobs arrive according to an independent Poisson processwith rate νk
and have independent and exponentially distributed sizeswith unit mean. An incoming
job may be assigned to the buffer(s) of one (or more) machine(s), left unassigned for
now, or rejected, depending on the type of this job and on the system state.

The difference with Sect. 6.1 is that an incoming job is no longer assigned to a
single machine; instead, it is assigned to all machines in a group. More specifically, if
a job is assigned to a group of machines, this means that this job is added to the buffer
of every machine in this group, and that these machines will subsequently be able to
process this job in parallel. A job is said to be unassigned (or uncommitted) if it has not
been assigned to a group yet. We let T = {1, . . . , T } denote the set of group indices
and, for each t ∈ T , St ⊆ S the set of machines that belong to group t and Kt ⊆ K
the set of job types that can be assigned to group t . With a slight abuse of notation,
we also let Ts ⊆ T denote the set of groups that include machine s, for each s ∈ S,
and Tk ⊆ T the set of groups to which type-k jobs can be assigned, for each k ∈ K.
This defines a tripartite assignment graph between job types, groups, and machines,
as shown in Fig. 11. The introductory example of Sect. 6.1 corresponds to the special
case where there is a one-to-one correspondence between groups and machines, that
is, T = S and St = {t} for each t ∈ T .

Each machine processes the jobs in its buffer in FCFS order, while ignoring other
jobs. In particular, a job may be in service on multiple machines if it is at the head
of their buffers. For each t ∈ T , if a job assigned to group t is in service on a subset
S ′ ⊆ St of the machines of this group, the departure rate of this job is

∑
s∈S ′ μs .

We generalize the ALIS assignment rule introduced in Sect. 6.1.1 as follows: For
each t ∈ T , the assignments of jobs to group t are regulated via �t tokens, so that
each job seizes one of these tokens when it is assigned to group t and releases this
token upon service completion. The dispatcher keeps a list of available tokens, sorted
in their release order, so that the longest available token is at the head of this list. An
incoming type-k job can be assigned to group t if and only if a token of this group
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is available. As before, at most �k type-k jobs can be left unassigned if no token of a
compatible group is available upon their arrival. Now, when a type-k job arrives in the
system, one of the following events occurs:

(i) if one or more tokens of the groups in Tk are available, the job seizes the one
of these tokens that has been available the longest and is assigned to the cor-
responding group (so that the job is added to the buffers of all machines in the
group);

(ii) otherwise, if there are currently fewer than �k unassigned type-k jobs, the incom-
ing job is left unassigned until it can be assigned to one of its compatible groups;

(iii) otherwise, the job is rejected.

When a job assigned to group t completes service, this job leaves the system immedi-
ately. Its token is seized by the oldest unassigned job of a type inKt , if any, otherwise
it is added to the dispatcher’s list of available tokens. Furthermore, the machines that
were processing this job immediately start processing the next job in their buffer, if any.
This protocol can be seen as a generalization of that introduced in [12] to a scenario
where incoming jobs are left unassigned (instead of being rejected) in the absence of
available compatible tokens. This is also a generalization of the FCFS-ALIS protocol,
in which each machine processes the jobs in its buffer in FCFS order, and each job is
assigned to groups ofmachines using the above generalization of the ALIS assignment
rule.

Following the same approach as in Sect. 6.1.2, we can reinterpret this generalization
of the FCFS-ALIS protocol as a generalized redundancy scheduling protocol that
combines the cancel-on-commit protocol introduced in Sect. 6.1.2 and the cancel-on-
complete protocol. Indeed, in the above cluster, everything works as if an incoming
type-k job were at first replicated over all machines of the set

⋃
t∈Tk St and eventually

committed to a subset of these machines, those belong to a given group t ∈ Tk . In
practice, this means that a replica of an incoming type-k job is sent to every machine
within the set

⋃
t∈Tk St , and, once the job is committed to a group t ∈ Tk , the replicas

sent to themachines that are not in the setSt are canceled. Subsequently, the remaining
replicas on the machines in St are canceled whenever one of them completes service.
In particular, several replicas may be in service at the same time.

The dynamics of this system can be described by the queueing model of Sect. 6.2.1
as follows: We again describe the dynamics of the cluster by looking at tokens, so
that all jobs present in the system (and not only those assigned to a group) held one
of these tokens. The set of token classes is I = K � T and there are �i class-i tokens,
for each i ∈ I. The placement order is defined by t ≺ k for each t ∈ T and k ∈ Kt

(or equivalently, t ≺ k for each k ∈ K and t ∈ Tk). The minimal classes are those
associated with machine groups, and the maximal classes are those associated with
job types. For each t ∈ T , the set of servers that can process class-t tokens in the first
queue is St , corresponding to the set of machines that belong to group t . For each
k ∈ K, the set of servers that can process class-k tokens in the second queue is {k}.
The mixed graph associated with the example of Fig. 11 is shown in Fig. 12.
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Fig. 12 Mixed graph associated
with the cluster of Fig. 11

A B

1 2

Type A Type B

Machine 1 Machine 3 Machine 2

6.2.3 Hierarchical load distribution

Let H denote a positive integer. We consider a cluster that consists of a dispatcher
and 2H−1 machines, and we denote by S = {1, . . . , 2H−1} the set of machines. Jobs
arrive according to a Poisson process with a positive rate ν. Each incoming job is
compatible with all machines but will eventually be assigned to and processed by a
single machine. Every machine has a buffer of length 1, so that the only job assigned
to this machine is also in service on this machine. For each s ∈ S, the service time of a
job on machine s is exponentially distributed with a positive rate μs . The job arrivals
within the system are regulated via 2H − 1 tokens numbered from 1 to 2H − 1. A
job that has not been assigned to a machine yet holds a token numbered from 1 to
2H−1 − 1, while, for each s ∈ {1, . . . , 2H−1}, the job in service on machine s holds
token 2H−1+s−1. Initially, when the system is empty of jobs, all tokens are arranged
in ascending order in a list kept by the dispatcher, with token 1 at the head of the list
and token 2H − 1 at the end. If a new job arrives and there is at least one available
token, this job seizes the token obtained by applying the P&Smechanism in the queue
of available tokens, starting from the token at the head of the queue, with the following
swapping rule: for each i ∈ {1, . . . , 2H−1 −1}, token i can be swapped with tokens 2i
and 2i + 1. An incoming job is rejected if no token is available. Conversely, a service
completion triggers the following chain reaction: If token i is released by a job, this
token is seized by the job that holds token �i/2� (so that this token is in turn released
and can be seized by another job), if any, otherwise it is added to the list of available
tokens.

Priorities between tokens can be represented by a perfect binary tree of height H−1
such that, for each i ∈ {1, . . . , 2H−1 − 1}, the children of node i are nodes 2i and
2i + 1. Figure 13 shows an example with H = 3. Leaf nodes correspond to tokens
held by jobs in service on a machine. For each h ∈ {1, . . . , H − 1}, the nodes at
depth h in the tree correspond to tokens 2h−1 to 2h − 1. A job holding one of these
tokens is H − h steps away from entering service on a machine. Indeed, if a job holds
a token i ∈ {1, . . . , 2H−1 − 1} and a token that belongs to the subtree rooted at node i
is released, this job will seize either token 2i or token 2i + 1, thus getting one step
closer to entering service on a machine.

The corresponding queueing model, based on the framework of Sect. 6.2.1, is
defined as follows: The set of token classes is I = {1, . . . , 2H − 1}. For each i ∈
I, there is a single class-i token which corresponds, in the cluster, to token i . The
placement order is defined as follows: for each i ∈ {1, . . . , 2H−1 − 1}, i � 2i and
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Fig. 13 A perfect binary tree of
height H − 1 = 2
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Fig. 14 Mixed graph associated
with the perfect binary tree of
Fig. 13 1
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Machine 1 Machine 2 Machine 3 Machine 4

i � 2i + 1 (so that the placement graph is obtained by reversing edges in the perfect
binary tree defined in the previous paragraph). In particular, if the queue of available
tokens is not empty, the token at the head of this queue is necessarily token 1. The set
of servers in the first queue is S = {1, . . . , 2H−1}. The set of minimal token classes is
{2H−1, 2H−1 + 1, . . . , 2H − 1} and, for each s ∈ {1, . . . , 2H−1}, class 2H−1 + s − 1
is compatible with server s. In the second queue, there is a single server of rate ν. The
only maximal class is class 1, and this class is compatible with this server. The mixed
graph associated with the perfect binary tree of Fig. 13 is shown in Fig. 14.

This hierarchical load-distribution strategy could be generalized by considering a
perfect a-ary tree, with a ≥ 2, or a directed rooted tree, so that each node represents a
class of tokens and the tokens associated with leaf nodes give access to machines. By
combining this idea with that of Sect. 6.2.2, we could also consider a directed acyclic
graph and associate a job type with one or more nodes without ancestor and a machine
or a group of machines with each node without descendant. As for previous cluster
models, it is also possible to propose an alternative interpretation of this model using
redundancy scheduling.

7 Conclusion

In this paper, we introduced pass-and-swap (P&S) queues, an extension of order-
independent (OI) queues in which, upon a service completion, customers move along
the queue and swap positions with other customers, depending on compatibilities
defined by a so-called swapping graph. We showed that a stable P&S queue is quasi-
reversible and that, surprisingly, its product-form stationary distribution is independent
of its swapping graph. We then studied networks of P&S queues. Although deriving
the stationary distribution of open networks is a straightforward application of quasi-
reversibility, the case of closed networks is more intricate because theMarkov process
describing the network state over time is not necessarily irreducible. For closed net-
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works with one or two queues and a deterministic routing process, we observed that
the P&S mechanism allows for the enforcement of priorities between classes, in the
sense that a customer cannot leave a queue before all customers of the classes with
higher priority leave it. Finally, we showed that such closed networks describe the
dynamics of the loss variants of several token-based load-distribution protocols, such
as FCFS-ALIS and multiple redundancy-scheduling protocols.

This work suggests that we still do not have a complete picture of all queueing
dynamics that lead to a product-form stationary distribution, which leaves open an
important avenue for further study. Another open question is formed by the irre-
ducibility of the Markov process underlying closed networks. While we established
irreducibility of thisMarkov process under the condition that, at any point in time, each
customer has a positive service rate, the characterization of irreducibility properties
of the Markov process underlying general closed networks, and their impact on the
stationary distribution (along with its product-form nature), remains an open question.
A different direction of further research entails the applications of P&S queues. In par-
ticular, in Sect. 6, we regarded applications based on multi-server queues as defined in
Example 1.Although applicationswith arbitrary customer-server compatibilities, such
as load-balancing and resource-management protocols in computer systems, form the
motivation for this work, we believe that P&S queues can be successfully applied to
other systems involving priorities. This would require the use of more general P&S
queues than just multi-server queues.
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Appendix

A Proof of Theorem 2

Consider a P&S queue as defined in Sect. 3.1, with a set I = {1, . . . , I } of customer
classes, per-class arrival rates λ1, . . . , λI , and a rate function μ. Also, for each i ∈ I,
let Ii ⊆ I denote the set of customer classes that can be swapped with class i . As

123

http://creativecommons.org/licenses/by/4.0/


Queueing Systems (2021) 98:275–331 317

announced in the sketch of proof that followed Theorem 2, our objective is to prove
that the balance function � defined by (4) satisfies (14).

Rewriting (14) We first need to specify, for each c = (c1, . . . , cn) ∈ I∗ and i ∈ I, all
transitions that lead to state c by the departure of a class-i customer. To this end, wewill
identify all states d ∈ I∗ and positions p ∈ {1, . . . , n + 1} such that δp(d) = (c, i).
The following notation will be convenient: For each c = (c1, . . . , cn) ∈ I∗ and d =
(d1, . . . , dm) ∈ I∗, we let c, d = (c1, . . . , cn, d1, . . . , dm) denote the state obtained
by concatenation. If d contains a single class-i customer, that is d = (i), then we
simply write c, i for c, (i) and i, c for (i), c. For each sequence c = (c1, . . . , cn) ∈ I∗
and positions p, q ∈ {1, . . . , n} with p ≤ q, we let cp...q = (cp, . . . , cq). Finally, we
adopt the convention that cp...q = ∅ if p > q.

Now that all required notation is introduced, we proceed with the identification. Let
c = (c1, . . . , cn) ∈ I∗ and i ∈ I. Furthermore, we set q0 = n+1 and i0 = i . Moving
from tail to head in state c (that is, from position n to position 1), we determine the
positions and classes of the customers that may be involved in a transition that leads
to state c by the departure of a class-i customer. We now distinguish between multiple
cases, based on the total number v of customers that move during the transition:

Case v = 1 A single customer was involved in the transition, namely the customer of
class i0 = i that left. By definition of the P&S mechanism, this customer
is the one that completed service and it could not replace any subsequent
customer in the queue. Therefore, if state c contains any class that can
be swapped with class i , then the departing customer of class i was
necessarily in a position p ∈ {q1 + 1, . . . , n + 1} before the transition,
where q1 is the largest integer q ∈ {1, . . . , n} such that cq ∈ Ii0 . If
state c does not contain any such customer, we let q1 = 0. In both
cases, before the departure, the queue could be any state of the form
d = c1...p−1, i0, cp...n , where p ∈ {q1 + 1, . . . , n + 1}.

Case v = 2 If two customers were involved in the transition, this means that the
departing customer of class i was ejected by a second customer whose
service was completed. The P&Smechanism and the symmetric property
of the swapping relation impose that this second customer is the one we
have just identified, in position q1, and that q1 ≥ 1. We let i1 = cq1 ∈ Ii0
denote the class of this second customer. By the same argument as before,
this second customer could be in any position p ∈ {q2 + 1, . . . , q1}
before the transition, where q2 is the largest integer q ∈ {1, . . . , q1 −
1} such that cq ∈ Ii1 , if any, and q2 = 0 otherwise. In both cases,
before the departure, the queue could be in any state of the form d =
c1...p−1, i1, cp...q1−1, i0, cq1+1...n , where p ∈ {q2 + 1, . . . , q1}.

Case v = 3 The departing customer was ejected by a second customer, which was
ejected by a third customer whose service was completed. Pursuing the
previous reasoning, we can show that the second involved customer is that
of class i1 = cq1 , in position q1, and the third involved customer is that of
class i2 = cq2 , in position q2, assuming that 1 ≤ q2 < q1. Before the tran-
sition, this third customer could be in any position p ∈ {q3 + 1, . . . , q2},
where q3 is the largest integer q ∈ {1, . . . , q2 − 1} such that cq ∈ Ii2 , if
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any, and q3 = 0 otherwise. Before the departure, the queue could be in
any state d = c1...,p−1, i2, cp...q2−1, i1, cq2+1...q1−1, i0, cq1+1...n , where
p ∈ {q3 + 1, . . . , q2}.

Continuing on,webuild a decreasing sequencen+1 = q0 > q1 > q2 > . . . > qu−1 >

qu = 0 of positions in state c using the recursion qv = max{q ≤ qv−1−1 : cq ∈ Iiv−1}
for each v ∈ {1, . . . , u − 1}. The recursion stops when the set {q ≤ qv−1 − 1 :
cq ∈ Iiv−1} is empty, in which case we let u = v and qu = 0. This integer u gives
the maximum number of customers that can be involved in the transition (including
the departing class-i customer). We also define a sequence i0 = i, i1 = cq1 , i2 =
cq2 , . . . , iu−1 = cqu−1 of classes. In the end, the states d that lead to state c by a
departure of a class-i customer are those of the form

d = c1...p−1, iv, cp...qv−1, iv−1, cqv+1...qv−1−1, . . . ,

cq3+1...q2−1, i1, cq2+1...q1−1, i0, cq1+1...n

with v ∈ {0, . . . , u − 1} and p ∈ {qv+1 + 1, qv+1 + 2, . . . , qv}, where p gives the
position of the customer, of class iv , whose service was actually completed. This
implies that (14) can be rewritten as follows:

�(c) =
u−1∑

v=0

qv∑

p=qv+1+1

�(c1...p−1, iv, cp...qv−1, iv−1, cqv+1...qv−1−1, iv−2,

. . . , cq3+1...q2−1, i1, cq2+1...q1−1, i0, cq1+1...n)

× �μ(c1...p−1, iv). (30)

That the balance function � defined by (4) satisfies (30) is shown in the following
lemma, which concludes the proof of Theorem 2.

Lemma 1 The function � defined by (4) satisfies (30) for each integer n ≥ 0 and
u ∈ {1, . . . , n + 1}, state c = (c1, . . . , cn) ∈ I∗, class i ∈ I, and decreasing integer
sequence q0, q1, . . . , qu with q0 = n + 1 and qu = 0, where i0 = i, i1 = cq1, i2 =
cq2 , . . . , iu−1 = cqu−1 .

Proof of the lemma Our proof is by induction on the maximum number u ≥ 1 of
customers involved in the transition. More specifically, we show that the following
statement holds for each positive integer u:

Equation (30) is satisfied for each integer n ≥ u−1, state c = (c1, . . . , cn) ∈ I∗,
class i ∈ I, and decreasing integer sequence q0, q1, . . . , qu with q0 = n+1 and
qu = 0.

Before we proceed to the proof by induction, recall that � satisfies the following
equation, which is a rewritten version of Equation (9) shown in the proof of Theorem 1:

�(c) =
n+1∑

p=1

�(c1...p−1, i, cp...n) �μ(c1...p−1, i), ∀n ≥ 0, ∀c = (c1, . . . , cn) ∈ I∗, ∀i ∈ I.

(31)
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Base stepWith u = 1, (30) is equivalent to (31)with i = i0.Aswehave justmentioned,
it was already shown that � satisfies this equation.

Induction step Now let u ≥ 2 and assume that the statement is valid for each u′ ∈
{1, 2, . . . , u − 1}. Consider an integer n ≥ u − 1, a state c = (c1, . . . , cn) ∈ I∗, a
class i ∈ I, and a decreasing integer sequence q0, q1, . . . , qu with q0 = n + 1 and
qu = 0. Also let i0 = i, i1 = cq1 , i2 = cq2 , . . . , iu−1 = cqu−1 . We first apply (31) to
state c and class i = i0 and split the sum into two parts to obtain

�(c) =
q1∑

p=1

�(c1...p−1, i0, cp...n)�μ(c1...p−1, i0)

+
n+1∑

p=q1+1

�(c1...p−1, i0, cp...n)�μ(c1...p−1, i0).

Using the definition (4) of � and the fact that μ is order independent, we rewrite the
first sum differently:

�(c) =
(

n∏

p=q1

1

μ(c1...p, i0)

) q1∑

p=1

�(c1...p−1, i0, cp...q1−1)�μ(c1...p−1, i0)

+
n+1∑

p=q1+1

�(c1...p−1, i0, cp...n)�μ(c1...p−1, i0). (32)

But applying (31) to state c1...q1−1 and class i0 yields

�(c1...q1−1) =
q1∑

p=1

�(c1...p−1, i0, cp...q1−1)�μ(c1...p−1, i0),

so that (32) can be rewritten as

�(c) =
(

n∏

p=q1

1

μ(c1...p, i0)

)

�(c1...q1−1) +
n+1∑

p=q1+1

�(c1...p−1, i0, cp...n) �μ(c1...p−1, i0). (33)

Now we apply the induction assumption to the positive integer u′ = u − 1, with the
integer n′ = q1 − 1, the state c′ = c1...q1−1, the class i1, the decreasing sequence
q ′
0 = q1 = n′ + 1, q ′

1 = q2, …, q ′
u−2 = qu−1, q ′

u′ = q ′
u−1 = qu = 0, and the indices

i ′0 = i1, i ′1 = i2, …, i ′u′−1 = i ′u−2 = iu−1. We can verify that n′ ≥ u′ − 1 because the
sequence q1, q2, …, qu is decreasing with qu = 0, so that q1 ≥ q2 + 1 ≥ q3 + 2 ≥
. . . ≥ qu + (u − 1) = u − 1. For this setting, (30) implies that
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�(c1...q1−1) =
u−1∑

v=1

qv∑

p=qv+1+1

�(c1...p−1, iv, cp...qv−1, iv−1, cqv+1...qv−1−1, iv−2,

. . . , cq4+1...q3−1, i2, cq3+1...q2−1, i1, cq2+1...q1−1)

× �μ(c1...p−1, iv).

Note that the first sum ranges from 1 to u − 1, and not from 0 to u′ − 1 = u − 2, as a
result of rewriting. Doing the substitution in (33) yields

�(c) =
⎛

⎝
n∏

p=q1

1

μ(c1...p, i0)

⎞

⎠
u−1∑

v=1

qv∑

p=qv+1+1

�(c1...p−1, iv, cp...qv−1, iv−1, cqv+1...qv−1−1, iv−2,

. . . , cq4+1...q3−1, i2, cq3+1...q2−1, i1, cq2+1...q1−1)

× �μ(c1...p−1, iv)

+
n+1∑

p=q1+1

�(c1...p−1, i0, cp...n) �μ(c1...p−1, i0).

We again apply (4) and the fact that μ is order independent to move the product back
into the first sum, so that we obtain

�(c) =
u−1∑

v=1

qv∑

p=qv+1+1

�(c1...p−1, iv, cp...qv−1, iv−1, cqv+1...qv−1−1, iv−2,

. . . , cq3+1...q2−1, i1, cq2+1...q1−1, i0, cq1+1...n)

× �μ(c1...p−1, iv)

+
n+1∑

p=q1+1

�(c1...p−1, i0, cp...n)�μ(c1...p−1, i0).

We conclude by observing that the second sum corresponds to the missing term v = 0
in the first sum. ��

B Proof of Theorem 3

Wefirst prove that (16) is a necessary condition for stability by arguing that theMarkov
process describing the state of the queue over time cannot be ergodic in the absence
of this condition. Then, we prove that this condition is sufficient, by comparing the
P&S queue to a degenerate queue with pessimistic service rates.

Necessary condition Assume that there is a non-empty set A ⊆ I such that μ̄(A) ≤∑
i∈A λi . Sinceμ is non-decreasing, thismeans thatμ(x) ≤ ∑

i∈A λi for each x ∈ N
I

such that {i ∈ I : xi > 0} ⊆ A. Combining this inequality with (4) yields that, for
any such x , and for each c ∈ I∗ such that |c| = x , we have

�(c) ≥
(

1
∑

i∈A λi

)|c|1+...+|c|I
=

(
1

∑
i∈A λi

)x1+...+xI
,

123



Queueing Systems (2021) 98:275–331 321

which implies

∑

c∈I∗:|c|=x

�(c)
∏

i∈I
λi

|c|i ≥
∑

c∈I∗:|c|=x

∏

i∈A

(
λi

∑
j∈A λ j

)xi

=
(
x1 + . . . + xI
x1, . . . , xI

) ∏

i∈A

(
λi

∑
j∈A λ j

)xi

. (34)

It follows that

∑

c∈I∗
�(c)

∏

i∈I
λi

|c|i =
∑

x∈NI

∑

c∈I∗:|c|=x

�(c)
∏

i∈I
λi

|c|i

≥
∑

x∈NI :{i∈I:xi>0}⊆A

∑

c∈I∗:|c|=x

�(c)
∏

i∈I
λi

|c|i

≥
∑

x∈NI :{i∈I:xi>0}⊆A

(
x1 + . . . + xI
x1, . . . , xI

) ∏

i∈A

(
λi

∑
j∈A λ j

)xi

=
∞∑

n=0

(
∑

i∈A

λi
∑

j∈A λ j

)n

.

In the first inequality, we restricted the outer sum so that we can apply (34). In the
final equality, we used the multinomial theorem, stating that, for positive integers n
and N , and reals ρ1, ρ2, . . . , ρN , we have

(ρ1 + . . . + ρN )n =
∑

x1+...+xN=n

(
n

x1, . . . , xN

) N∏

i=1

ρ
xi
i .

Since
∑

i∈A
λi∑
j∈A λ j

= 1, the final expression amounts to infinity, so that
∑

c∈I∗ �(c)
∏

i∈I λi
|c|i = ∞. This ensures that (5) is not satisfied, so that theMarkov

process on I∗ cannot be ergodic.

Sufficient condition Assuming that (16) is satisfied, we prove stability in two steps.
We first introduce a second P&S queue with the same set I of classes and arrival rates
λ1, . . . , λI as the original P&Squeue, butwith a rate function μ̂ such that μ̂(x) ≤ μ(x)
for each x ∈ N

I .Wewill refer to this second P&S queue as the degenerate P&S queue,
as the service rate received by the customers of each class only depends on the number
of customers of this class. Then, we will show that the degenerate P&S queue is stable.
Since the degenerate P&S queue has more pessimistic service rates than the original
P&S queue, this also implies that the original P&S queue is stable, as we will see
below.
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We first introduce several quantities that will be useful to define the degenerate
P&S queue. Since μ̄ satisfies (16), there exists an m ∈ N such that

∑

i∈A
λi < μ(meA), ∀A ⊆ I : A �= ∅.

We can also find λ̂ = (λ̂1, . . . , λ̂I ) ∈ R
I+ such that λi < λ̂i for each i ∈ I, and

∑

i∈A
λ̂i < μ(meA), ∀A ⊆ I : A �= ∅.

For instance, we can choose

λ̂i = λi + 1

2
min

A⊆I:i∈A

(
μ(meA) − ∑

j∈A λ j

|A|

)

, ∀i ∈ I.

Finally, we let

δ = 1

I
min

(

min
x∈NI \{0}

(μ(x)), min
A⊆I:A �=∅

(

μ(meA) −
∑

i∈A
λ̂i

))

. (35)

The definitions ofμ and λ̂ guarantee that δ > 0. In the degenerate P&S queue, δ will be
the service rate of the customer classes that have fewer than m present customers. As
wewill see later, choosing this value of δ ensures that the service rate of the degenerate
queue is always smaller or equal to that of the original queue.

The degenerate P&S queue is defined as follows: Just like the original P&S
queue, the set of customer classes is I = {1, . . . , I } and the per-class arrival rates
are λ1, . . . , λI . But the rate function μ̂ of this new queue is defined on N

I by
μ̂(x) = ∑

i∈I μ̂i (xi ), with

μ̂i (xi ) =

⎧
⎪⎨

⎪⎩

0 if xi = 0,

min(δ, λ̂i ) if xi = 1, 2, . . . ,m − 1,

λ̂i if xi = m,m + 1, . . .

In this way, for each i ∈ I, the oldest class-i customer is served at rate min(δ, λ̂i )
and the m-th oldest class-i customer is served at rate max(λ̂i − δ, 0). The service rate
of other class-i customers is zero. It follows that, for each x ∈ N

I \ {0}, we have
μ̂(x) ≤ μ(x). Indeed,

• if xi < m for each i ∈ I, then

μ̂(x) ≤
∑

i∈I:xi>0

δ ≤
∑

i∈I:xi>0

1

I
μ(x) ≤ μ(x),
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where the first inequality follows from the definition of μ̂ and the second holds
by (35);

• otherwise, with A = {i ∈ I : xi ≥ m}, we have A �= ∅ and x ≥ meA, so that

μ̂(x) ≤
∑

i∈A
λ̂i +

∑

i∈I\A:xi>0

δ ≤
∑

i∈A
λ̂i

+
∑

i∈I\A:xi>0

μ(meA) − ∑
j∈A λ̂ j

I
≤ μ(meA) ≤ μ(x),

where the first inequality follows from the definition of μ̂, the second holds by (35),
and the fourth follows from the monotonicity of μ.

We let �̂ denote the balance function of the degenerate P&S queue, as defined in (4).
Theorems 1 and 2 now guarantee that the original P&S queue is stable whenever the
degenerate P&S queue is. More particularly, by (4), we have, for each (c1, . . . , cn) ∈
I∗.

�(c1, . . . , cn) =
n∏

p=1

1

μ(c1, . . . , cp)
≤

n∏

p=1

1

μ̂(c1, . . . , cp)
= �̂(c1, . . . , cn),

which implies that

∑

c∈I∗
�(c)

∏

i∈I
λi

|c|i ≤
∑

c∈I∗
�̂(c)

∏

i∈I
λi

|c|i .

Therefore, according to (5), the original P&S queue is stable whenever the degenerate
P&S queue is. It therefore only remains to show that the degenerate P&S queue is
stable. To prove this, we first write:

∑

c∈I∗
�̂(c)

∏

i∈I
λi

|c|i =
∑

x∈{0,1,...,m−1}I

∑

c∈I∗:|c|=x

�̂(c)
∏

i∈I
λi

xi

+
∑

A⊆I:
A �=∅

∑

x∈NI :
xi≥m,∀i∈A,
xi<m,∀i /∈A

∑

c∈I∗:|c|=x

�̂(c)
∏

i∈I
λi

xi .

The first sum on the right-hand side is finite because it has a finite number of terms.
The second sum is also finite because, for each non-empty set A ⊆ I, we have
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∑

x∈NI :
xi≥m,∀i∈A,
xi<m,∀i /∈A

∑

c∈I∗:|c|=x

�̂(c)
∏

i∈I
λi

xi

=
∑

y∈NI :
yi=0,∀i /∈A

∑

z∈NI :
zi=0,∀i∈A,
zi<m,∀i /∈A

∑

c∈I∗:|c|=meA+y+z

�̂(c)
∏

i∈I
λi

(meA+y+z)i

=
∑

y∈NI :
yi=0,∀i /∈A

∑

z∈NI :
zi=0,∀i∈A,
zi<m,∀i /∈A

∑

c∈I∗:|c|=meA+z

�̂(c)
∏

i∈A

(
1

λ̂i

)yi ∏

i∈I
λi

(meA+y+z)i

=
⎛

⎝
∏

i∈A

+∞∑

yi=0

(
λi

λ̂i

)yi
⎞

⎠
∑

z∈NI :
zi=0,∀i∈A,
zi<m,∀i /∈A

∑

c∈I∗:|c|=meA+z

�̂(c)
∏

i∈I
λi

(meA+z)i < +∞.

The first equality is obtained by substitution. The second equality follows from the fact
that, using (4) and the definition of μ̂, we can prove by induction over n = x1+. . .+xI
that, for each x ∈ N

I , we have

∑

c∈I∗:|c|=x

�̂(c) =
∏

i∈I

(
1

min(δ, λ̂i )

)min(xi ,m) (
1

λ̂i

)max(xi−m,0)

.

The third equality is obtained by rearranging terms. The inequality follows from the
fact that λi < λ̂i for each i ∈ I, so that the product between large parentheses is finite;
the rest of the expression is a sum of a finite number of terms, each of which is finite.

C Proofs of the propositions in Sect. 5

In this section, we give the proofs of Propositions 2, 3, 4, and 5 stated in Sect. 5.

Proposition 2 If the initial state of the closed P&S queue adheres to the placement
order ≺, then any state reached by applying the P&S mechanism also adheres to this
placement order.

Proof Let c = (c1, . . . , cn) denote the initial state of the queue and assume that c
adheres to the placement order ≺. Let p ∈ {1, . . . , n} such that �μ(c1, . . . , cp) > 0
and consider the transition induced by the service completion of the customer in
position p. In the course of this transition, one or more customers are moved from
the head towards the tail of the queue, the last one being moved to the last position.
We now argue that the state reached after this transition still adheres to ≺, after which
the proposition follows immediately, since application of the P&S mechanism only
consists of a number of such transitions.

We first show that the customer that completes service, of class cp, does not pass
over any customer of a class i such that cp ≺ i . If there is no integer p′ ∈ {p+1, . . . , n}
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such that cp ≺ cp′ , the conclusion is immediate. Now assume that there is such an
integer and let q denote the smallest integer in {p + 1, . . . , n} such that cp ≺ cq . We
will show that:

(i) classes cp and cq are neighbors in the swapping graph, and
(ii) there is no r ∈ {p + 1, . . . , q − 1} such that classes cp and cr are neighbors in

the swapping graph.

By the definition of the P&S mechanism, this will imply that the customer that
completes service at position p replaces the customer at position q in state c,
so that, after the transition, the prefix of length q − 1 of the new state is
(c1, . . . , cp−1, cp+1, . . . , cq−1, cp). By the definition of q, this prefix still adheres
to the placement order, and since the rest of the state does not change, the complete
state will as well. The same reasoning can be repeated for each customer that is moved
by applying the P&S mechanism.

We first prove property (i) by contradiction. Assume that this property is not satis-
fied. By the definition of the placement order, this implies that there is a class i ∈ I
such that cp ≺ i ≺ cq . Since state c adheres to the placement order, this implies
that all class-i customers are between positions p and q in state c. In particular, there
is an r ∈ {p + 1, . . . , q − 1} such that cr = i and, therefore, cp ≺ cr , which
contradicts the minimality of q. Therefore, property (i) is satisfied. We now prove
property (ii), again by contradiction. If this property were not satisfied, there would be
an r ∈ {p + 1, . . . , q − 1} such that classes cp and cr are neighbors in the swapping
graph. By the definition of the placement order, this implies that either cp ≺ cr or
cr ≺ cp. Since p < r and state c adheres to the placement order, the only possibility
is that cp ≺ cr , which again contradicts the minimality of q. Therefore, property (ii)
is satisfied. ��
Proposition 3 Assume that �μ(c) > 0 for each c ∈ I∗. All states that adhere to the
same placement order and correspond to the same macrostate form a single closed
communicating class of the Markov process associated with the queue state.

Proof Given Proposition 2, it suffices to show that, for all states c = (c1, . . . , cn) and
d = (d1, . . . , dn) that adhere to the same placement order≺ and satisfy |c| = |d| = �,
state d can be reached from state c with a positive probability.

If c = d, the conclusion is immediate. Now assume that c �= d. We will construct a
path of states c0, c1, . . . , cK−1, cK , with c0 = c and cK = d, that the queue traverses
with a positive probability, provided that it starts in state c. We argue that such a path
c0, c1, . . . , cK is attained by the following algorithm:

Step 1 Set k = 0 and c0 = c.
Step 2 Determine the smallest integer p ∈ {1, . . . , n} such that ckp �= dp.
Step 3 Let ck+1 denote the state reached when, in state ck , the customer in position p

completes service and the P&S mechanism is applied.
Step 4 Set k = k+1. If ck = d, then K = k and the algorithm terminates. Otherwise,

go to step 2.

The idea behind this algorithm is as follows: Step 2 identifies the first position in
state ck at which the class of the customer does not coincide with that of the customer
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at the same position in state d. This position is denoted by p. Since (ck1, . . . , c
k
p−1) =

(d1, . . . , dp−1), the customers in positions 1 to p − 1 need not have their position
altered. Now let r denote the smallest integer in {p+ 1, . . . , n} such that ckr = dp. We
will show in the next paragraph that, due to the service completion step, the customer
in position r in state ck is one step closer to (or even attains) position p in state ck+1

compared to state ck . This suffices to prove that the algorithm terminates. Step 4
makes sure that the two states are equal to each other, otherwise it initiates a new P&S
transition.

We now prove that if r denotes the smallest integer in {p + 1, . . . , n} such that
ckr = dp, then c

k+1
r−1 = ckr . This is equivalent to proving that the customer in position r

in state ck is not ejected in the course of the transition described in step 3. To prove
this, it is sufficient to show that, for each q ∈ {p, . . . , r − 1}, classes ckq and ckr cannot
be swapped with one another, that is, are not neighbors in the swapping graph. Let
q ∈ {p, . . . , r − 1}. The adherence of state d to the placement order implies that
dq ′ ⊀ dp for each q ′ ∈ {p + 1, . . . , n}. As (d1, . . . , dp−1) = (ck1, . . . , c

k
p−1) and

dp = ckr , this implies that ckq ⊀ ckr . It also follows from Proposition 2 that state ck

adheres to the placement order, so that ckr ⊀ ckq . Therefore, we have ckq ⊀ ckr and
ckr ⊀ ckq , which, by definition of a placement order, implies that classes ckq and ckr are
not neighbors in the swapping graph. ��
Proposition 4 If the initial network state adheres to the placement order ≺, then any
state reached by applying the P&Smechanism to either of the two queues also adheres
to this placement order.

Proof By symmetry, it suffices to prove that if a network state adheres to the placement
order≺, then any network state reached by a service completion in the first queue also
adheres to this placement order. Consider a state (c; d) that adheres to the placement
order, and let c = (c1, . . . , cn) and d = (d1, . . . , dm). Let c′ = (c′

1, . . . , c
′
n−1) denote

the state of the first queue right after a service completion in this queue and i the
class of the customer that departs this queue. The state of the network right after the
transition is (c′; d ′) with d ′ = (d1, . . . , dm, i). Applying Proposition 2 to the first
queue yields that state (c′

1, . . . , c
′
n−1, i) adheres to the placement order, from which

we can derive that properties (i) and (iii) are satisfied by the new network state. Finally,
the fact that state (c; d) satisfies properties (ii) and (iii) implies that state d ′ satisfies
property (ii). ��
Proposition 5 Assume that either �μ(c) > 0 for each c ∈ I∗ or �ν(d) > 0 for each
d ∈ I∗ (or both). All states that adhere to the same placement order and correspond to
the same macrostate form a single closed communicating class of the Markov process
associated with the network state.

Proof Without loss of generality, we assume that �μ(c) > 0 for each c ∈ I∗. The
case where �ν(d) > 0 for each d ∈ I∗ is solved by exchanging the roles of the
two queues. Given the result of Proposition 4, it suffices to show that, for all states
(c; d) and (c′; d ′) that adhere to the same placement order and correspond to the same
macrostate, state (c′; d ′) can be reached from state (c; d) with a positive probability.
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Consider two states (c; d) and (c′; d ′) that adhere to the same placement order and
satisfy |c| + |d| = |c′| + |d ′|. The numbers of customers in states c, d, c′, and d ′ are
denoted by n, m, n′, and m′, respectively. We now build a series of transitions that
leads from state (c; d) to state (c′; d ′) with a positive probability.

First let (c′′; ∅) denote the state reached from state (c; d) by having, m times in
a row, the customer at the head of the second queue complete service. Proposition 4
guarantees that state (c′′; ∅) adheres to the placement order so that, by property (i),
state c′′ adheres to the placement order. Since we assumed that state (c′; d ′) adheres to
the placement order, we also have that state (c′

1, . . . , c
′
n′ , d ′

m′ , . . . , d ′
1) adheres to the

placement order. Therefore, it follows from Proposition 3 that if the first queue evolved
in isolation, as in Sect. 5.1, it would be possible to reach state (c′

1, . . . , c
′
n′ , d ′

m′ , . . . , d ′
1)

from state c′′ with positive probability. We can adapt the algorithm in this proposition
to prove that, in the tandem network, state (c′

1, . . . , c
′
n′ , d ′

m′ , . . . , d ′
1; ∅) can also be

reached from state (c′′; ∅) with a positive probability: It suffices to add a transition,
after step 3, that consists of the service completion of the (only) customer in the
second queue (so that this customer joins the back of the first queue). Once state
(c′

1, . . . , c
′
n′ , d ′

m′ , . . . , d ′
1; ∅) is reached, it suffices to have the customer at the back

of the first queue complete service m′ times in a row. Since a service completion at
the final position of a queue does not trigger any P&S movement, the network state
(c′; d ′) is reached, which concludes the proof. ��

D Closed pass-and-swap queues with non-adhering initial states

As mentioned in Remark 6, a product-form stationary distribution can also be found
for closed P&S queues in which the initial state does not adhere to a placement order.
To do so, we first associate, with each closed P&S queue, another closed P&S queue.
We call this other queue the associated isomorphic queue. This isomorphic queue has
the same dynamics as the original queue, but its set of customer classes is different. The
initial state of this isomorphic queue does adhere to a placement order by construction,
so that Propositions 2 and 3 and Theorem 4 can be applied. This in its turn leads to a
stationary distribution for the original closed P&S queue in the general case.

D.1 The isomorphic queue

We first define, for any closed P&S queue, its associated isomorphic queue. If the
initial state of the original queue contains a single customer of each class, as in the
example of Sect. 5.1.1, its associated isomorphic queue is the queue itself. We now
describe how the isomorphic queue is constructed if the initial state of the original
queue contains two or more customers of the same class.

Let c = (c1, . . . , cn) denote the initial state of the queue and consider a class i ∈ I
and two positions p, q ∈ {1, . . . , n} such that cp = cq = i and p < q. We introduce
an extra class i ′ (so that I is replaced with I ∪{i ′}) that has the same characteristics as
class i . More specifically, we impose that �μ(d1, . . . , dm, i) = �μ(d1, . . . , dm, i ′)
for each d = (d1, . . . , dm) ∈ I∗. In the swapping graph, for each k ∈ I \ {i, i ′}, we
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add an edge between classes i ′ and k if and only if there is an edge between classes i
and k.

Moving toward a setting where all customers have different classes, we alter the
initial state c by changing the class of the customer in position q from i to i ′. While cp
and cq are not equal anymore, the definition of class i ′ guarantees that the dynamics
of the queue remain the same. This procedure can be repeated with newly selected
class i and positions p and q as long as there are at least two customers with the same
class in state c. The queue obtained once all customers have different classes is called
the isomorphic queue. If c̄ is the initial state of the isomorphic queue obtained by
repeating this procedure, we say that state c̄ in the isomorphic queue corresponds to
state c in the original queue.

Example 5 We now illustrate the construction of an isomorphic queue by means of
the closed P&S queue depicted in Fig. 15. This queue has six customers belonging to
three classes. There are two class-1 customers, three class-2 customers, and one class-3
customer. The initial state of the queue, shown in Fig. 15b, is (c1, c2, c3, c4, c5, c6) =
(1, 2, 1, 2, 2, 3). This state does not adhere to any placement order because customers
of classes 1 and 2 are interleaved. To construct the isomorphic queue, we progressively
eliminate pairs of equal customer classes. For example, since c1 = c3 = 1, we
introduce an extra class 1′ such that �μ(d1, . . . , dm, 1) = �μ(d1, . . . , dm, 1′) for
each state d = (d1, . . . , dm) ∈ I∗, with I = {1, 2, 3}. Moreover, in the swapping
graph, we add edges between class 1′ and classes 2 and 3. Finally, we change the class
of the customer in position 3 to 1′. This procedure has no effect on the future dynamics
of the queue, but the customers in positions 1 and 3 are now the only members of their
respective classes. The result is not yet an isomorphic queue since, for example, the
customers in positions 2 and 4 are both of class 2. We therefore iterate this procedure,
changing the class of the customer in position 4 into class 2′ and adding an edge
between class 2′ and classes 1, 1′, and 3 in the swapping graph. After this action,
only the customers in positions 2 and 5 belong to the same class. Changing the class

1 2

3

(a) Swapping graph of the original queue.

3 2 2 1 2 1

(b) A state of the original queue.

1

1

2

2

2

3

(c) Swapping graph of the isomorphic queue.

3 2 12 2 1

(d) State of the isomorphic queue
corresponding to Fig. 15b.

Fig. 15 A closed P&S queue and its isomorphic queue. The colors and shades are visual aids that help
distinguish classes
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of the customer in position 5 to an extra class 2′′, with the same characteristics as
class 2, yields the isomorphic queue shown in Fig. 15. State (1, 2, 1′, 2′, 2′′, 3) in the
isomorphic queue now corresponds to state (1, 2, 1, 2, 2, 3) in the original queue.

While the isomorphic queue has by construction the same dynamics as the original
P&S queue, it has the following useful property.

Lemma 2 Every state of an isomorphic queue adheres to a unique placement order.

Proof To prove this lemma, we show how to construct a placement graph for any state,
which defines the placement order to which the state adheres, and moreover show that
it is unique. Recall that a placement graph is an acyclic orientation of the swapping
graph, and consists of as many vertices as there are customers in the isomorphic queue.
Therefore, to construct the placement graph, the edges of the swapping graph need
to be given an orientation. Recall that all customer classes appear exactly once in a
state of an isomorphic queue. Therefore, we have that, for any two customer classes
i and j that are connected by an edge in the swapping graph, the placement order ≺
of the placement graph to be constructed should satisfy i ≺ j or j ≺ i , depending
on whether or not the class-i customer is nearer to the front of the queue than the
class- j customer. Orienting each edge accordingly yields a directed graph. Due to the
transitivity of the order of customers in the state, this directed graph must be acyclic,
and therefore, it is a placement graph towhich the state adheres. Note that, if any edge’s
orientation corresponding to this placement order were flipped, the corresponding pair
of positions in the state would violate the new orientation. This proves the uniqueness,
finalizing the proof. ��

D.2 Stationary distribution

Now that the isomorphic queue has been introduced, we can derive the stationary
distribution for a closedP&Squeueofwhich the initial state is not necessarily adhering.
We can do this because the initial state of the isomorphic queue does necessarily
adhere to a placement order, say ≺. Let �̄ be the macrostate of the isomorphic queue
corresponding to the initial macrostate � of the closed P&S queue. We denote by C̄
the set of states c̄ in the isomorphic queue that adhere to ≺ and satisfy |c̄| = �̄. Also
let C denote the set of states of the original closed P&S queue to which the states in
C̄ correspond. Finally, for each c ∈ C, let C̄c ⊂ C̄ denote the set of states c̄ ∈ C̄ in the
isomorphic queue that correspond to state c in the original queue. Note that C̄c may
consist of multiple elements and that, considering all c ∈ C, the sets C̄c form a partition
of C̄. For example, a state (1, 2, 2, 3) of a closed P&S queue may have corresponding
states (1, 2, 2′, 3) and (1, 2′, 2, 3) in the isomorphic queue, both adhering to the same
placement order. Importantly, since all states in C correspond to the same macrostate
�, the sets C̄c for all c ∈ C have the same cardinality. These definitions allow us to
derive the stationary distribution of the Markov process associated with the state of
the original P&S queue.

Theorem 6 The results of Theorem 4 remain valid if C refers to the set of states of the
original P&S queue to which the isomorphic states in C̄ correspond.
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Proof ByLemma2, the initial state of the isomorphic queuemust adhere to a placement
order that we denote by ≺. Therefore, applying Theorem 4 to the isomorphic queue
shows that the stationary distribution of the Markov process associated with its state
is given by

π̄(c̄) = �̄(c̄)
∑

d̄∈C̄ �̄(d̄)
= �̄(c̄)

∑
d∈C

∑
d̄∈C̄d �̄(d̄)

, ∀c̄ ∈ C̄,

where �̄(c̄) = �(c) for each c ∈ C and c̄ ∈ C̄c.
By construction of the isomorphic queue, the dynamics of the original P&S queue

and its isomorphic queue are the same. As such, the stationary probability of the
original queue residing in state c is equal to the stationary probability of the isomorphic
queue residing in any state of C̄c, leading to

π(c) =
∑

c̄∈C̄c
π̄(c̄) =

∑
c̄∈C̄c �̄(c̄)

∑
d∈C

∑
d̄∈C̄d �̄(d̄)

, ∀c ∈ C.

Equation (20) follows by recalling that �̄(c̄) = �(c) for each c̄ ∈ C̄c and that all sets
C̄c have the same cardinality. ��
Remark 10 By Remark 5, the isomorphic queue cannot have transient states. Since
an isomorphic queue with identical dynamics can be constructed for any closed P&S
queue, this implies that the Markov process associated with the state of any closed
P&S queue, regardless of any adherence of its initial state, cannot have transient states
either. As a result, Theorem 6 now implies a partition of the complete state space I∗
in closed communicating classes, each of which corresponds to a set C̄ defined by a
combination of a macrostate �̄ and a particular placement order ≺ in the isomorphic
queue.
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