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Abstract

A proliferation of smart devices, computational and storage resources is predicted
to continue aggressively in the near future. Such “networked” devices and resources
which are distributed in a physical space and provide services are collectively referred
to as a distributed service network. Assigning users or applications to available resources
is important to sustain high performance of the distributed service network. In this
work, we consider a one-dimensional service network where both users and resources are
located on a line, and analyze a unidirectional assignment policy Move To Right (MTR),
which sequentially assigns users to resources available to their right. We express the
communication cost for a user-resource assignment as an increasing function of the distance
traveled by the user request (request distance) and analyze the expected communication
cost for the service network when locations of users and resources are modeled by different
spatial point processes. We use results from literature that map the request distance of
an assigned user in a one-dimensional service network to the sojourn time of a customer
in an exceptional service accessible batch queueing system. We compute the Laplace-
Stieltjes transform of the sojourn time distribution for this queueing system for Poisson
distributed users with general inter-resource distance distributions and in the process also
generate new results for batch service queues. Unlike previous work [32] our framework
not only captures the first-order moment of the request distance, but also the request
distance distribution itself, thus allowing us to compute the expected communication cost
under different cost models.

1 Introduction

The distributed computing paradigm endeavors to connect a large number of end-users and
resources or services distributed across a physical space. We collectively call such a set of
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resources/services a distributed service network. In many such distributed networks, for ex-
ample: internet of things (IoT), both the number of end-users and resources including the
machines, smart sensors, computational and storage units continue to grow steadily. For in-
stance, International Data Corporation (IDC) estimates 41.6 billion connected IoT resources,
or “things”, by the year 2025 [33]. To ensure optimal use of resources and guarantee quality of
service to end users at such a large scale, efficient allocation of resources to users is essential.

Optimal resource allocation in a distributed service network has been widely studied. For
example, consider the problem of assigning users to resources, all located in a d-dimensional
euclidean space. When d = 2 or 3 and resources have unit service capacity, i.e., a resource can
support at most one concurrent user request, the optimal allocation policy that minimizes
the expected distance traveled by a user request (request distance) can be modeled as an
Euclidean bipartite matching problem [2],[26], [36]. The problem with general service capacity
constraints can be solved by running the network simplex algorithm [30] on the flow graph
associated with the corresponding bipartite graph [3] of the user–service network. In the case
when the network has a very low-dimensional geometric structure, e.g., d = 1, more efficient
algorithms have been proposed for the user-to-resource assignment problem [32].

Although assigning users to resources in higher dimensional networks is generally impor-
tant, many networks exhibit lower dimensional structure. Examples of a one-dimensional
structure include ride-hailing on a one-way street, trucks on a highway, boats on a river,
deployment of wireless sensors for intrusion detection [28]. Assignment policies in such a
one-dimensional network can primarily be divided into two categories based on directional
restrictions [32],[1]. The class of policies that allocate users only to resources to their right
(or left) come under the “unidirectional” category whereas policies without any directional
restriction in allocation belong to “bidirectional”. Abadi et al. [1] first proposed a unidirec-
tional policy known as Unidirectional Gale-Shapley (or UGS) that minimizes expected request
distance. Panigrahy et al. [32] analyzed another unidirectional policy “Move to Right” (or
MTR) that sequentially allocates users to available resources located to their right and showed
its equivalence to UGS with respect to (wrt) expected request distance. Both [1] and [32] ex-
ploited the likeness of unidirectional space to time, and mapped a one-dimensional service
network to a classical queueing system when locations of users and resources are modeled
by statistical point processes. They mapped the request distance of an assigned user in the
service network to the sojourn time of a customer in the corresponding queueing system,
thereby computing closed form expressions for the expected request distance using queueing
theoretic tools.

While previous works mainly focus on obtaining expressions for expected absolute request
distance, little attention has been given to evaluating the expected communication cost as-
sociated with the allocation policies. In many service networks, such as IoT, the users are
battery powered with limited operation time and connected wirelessly to the resources. In
such service networks, the signal attenuation on a wireless link connecting a user to its allo-
cated resource typically varies as an increasing function of corresponding request distance [13].
Therefore the transmission power needed to transmit data over a certain distance varies as a
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positive power of the latter, with the exponent typically being greater than 2. Thus the cost
to communicate data over a wireless link can be expressed as a function of the transmission
power at the user needed for successful reception at its assigned resource node, which is an
increasing function of the corresponding request distance. In other service networks such as
transportation ride hailing services, the cost can be interpreted as the loss of utility for the
user. As the request distance increases, it takes longer for a vehicle to arrive at the user,
and this latency is typically super-linear in the distance due to road congestion. Moreover,
the degree of a user’s impatience may itself be a nonlinear increasing function of the latency.
Taking such non-trivial cost models into account while making allocation decisions can lead to
a larger number of satisfied users than the baseline scenario of using just the average request
distance as the performance metric.

One major implication of considering communication cost can be observed for MTR and
UGS policies. While both policies are optimal1 wrt expected request distance, UGS has a
higher variance for request distance as compared to MTR for certain inter-user and inter-
resource distance distributions [32]. Thus a more complete characterization of assignment
policies wrt communication cost is vital for better performance of the service network.

In this paper, we compute the expected communication cost associated with MTR in a
one-dimensional service network. We assume users to be distributed according to a Poisson
process2. This one-dimensional network setting applies to various service networks. For
example, consider vehicular wireless ad-hoc networks on a one-lane roadway [20, 27], where
users are in vehicles and resources are attached to fixed infrastructure such as lamp posts.
We use results from the literature that map the request distance of an assigned user in a
one-dimensional service network to the sojourn time of a customer in an exceptional service
accessible batch queueing system. We compute the Laplace-Stieltjes transform of the sojourn
time distribution for this queueing system and in the process also generate new results for
batch service queues. The work closest to the problem we tackle here is [32]; we rely and
expand upon this work in this paper. For example, expressions for the expected request
distance were obtained in [32] and the results obtained in this paper are complementary to
it. Thus, as far as possible, in this paper, we adopt the notation used in [32].

Our major contributions can be summarized as follows:

1. We consider a simple unidirectional allocation policy MTR for Poisson distributed
users with general inter-resource distance distribution and compute the Laplace-Stieltjes
transform (LST) of the request distance distribution for the network;

2. Using the LST of the request distance distribution, we obtain expressions for the ex-
pected communication cost for the network. Further simplified expressions for the ex-
pected communication cost is obtained for a path loss based cost model;

1Both MTR and UGS are optimal wrt expected request distance among all unidirectional allocation policies.
2[20] confirms that vehicle location distribution on the streets in Central London can be closely approximated

by a Poisson distribution.
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3. While computing the request distance distribution, we also generate new results for the
batch service queueing systems.

The paper is organized as follows. The next section contains some technical preliminaries.
We briefly overview the mapping of a service network to an exceptional service accessible
batch queue in Section 3. In Section 4, we derive for the LS transform of the sojourn time
in an M/G/1 queue with accessible batches and exceptional first batch in a busy period; this
quantity corresponds to the request distance distribution in the 1-D service network. Section
4 is self-contained and can be read independently of the other sections. We compute the
expected communication cost and discuss a path loss based cost model in Section 5. We
provide some numerical results in Section 6. Section 7 discusses related work. We conclude
the paper in Section 8.

2 Technical Preliminaries

Let R and S denote set of users and servers respectively. Define capacity of a server to be the
maximum number of requests that it can process. Denote Z+ = {0, 1, 2, · · · } and R+ = [0,∞)
. We assume that each server j ∈ S has equal capacity cj = c ∈ Z+. Users and servers are
located on a line R+. More precisely, r : R → R+ and s : S → R+ are the location functions
for users and servers, respectively, such that a distance d(r, s) is well defined for all pairs
(r, s) ∈ R× S.

2.1 User and Server Spatial Distributions

Let {ri}i≥1 and {si}i≥1 represent user and server locations with 0 ≤ r1 ≤ r2 ≤ · · · and
0 ≤ s1 ≤ s2 ≤ · · · respectively. Denote Xj = sj − sj−1, j ≥ 1, s0 = 0, the inter-server
distances and Yi = ri− ri−1, i ≥ 1, r0 = 0, the inter-user distances. We assume {Xj}j≥1 to be
a renewal process with cumulative distribution function (cdf)

P(Xj ≤ x) = FX(x). (1)

We also assume {Yi}i≥1 to be exponentially distributed with cdf FY (x), i.e.,

P(Yi ≤ x) = FY (x) = 1− e−λx. (2)

We denote αX = 1/µ and σ2X to be the mean and variance associated with FX . Similarly let
αY = 1/λ and σ2Y be the mean and variance associated with FY . We let ρ = λ/µ and assume
that ρ < c. Denote by F ∗X(s) =

∫∞
0 e−sxdFX(x) and F ∗Y (s) the Laplace-Stieltjes transform

(LST) of FX and FY with <(s) ≥ 0. We consider different inter-server distance distributions,
including exponential and deterministic.
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Figure 1: Allocation of users to servers under MTR policy with c = 1 [32].

2.2 User Allocation Policy

We evaluate the expected communication cost associated with a unidirectional policy Move
To Right (MTR) [32]. In MTR, starting from the left, each user is allocated sequentially to
the nearest available server to its right as shown in Figure 1.

3 Mapping to Queueing Theory

sj ri ri+1 ri+2 sj+1 sj+2

Zk+1

Xj+1 Xj+2

Busy Cycle

Figure 2: Mapping of service network to an exceptional service accessible batch queueing
system with c = 2 [32].

We briefly overview the notion of exceptional service and accessible batches queue (ESABQ)
as applied to the one-dimensional service network below, referring the interested reader to
[32] for further details.

3.1 ESABQ and One-dimensional Service Network

Under MTR, the service network can be modeled as batch service queue as shown in Figure
2. The unidirectional one-dimensional space can be mapped to time. The user locations
can be thought of customer arrival times in the classical queue. The server locations can be
thought of service completion epochs in the queue. The distance between two consecutive
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users in the service network is thus mapped to inter-arrival time between customers in the
batch service queue. The distance between two consecutive servers maps to a batch service
time. Also, customers can join an existing service if there is room at the server which is an
example of accessible batch ({ri, ri+1}) as shown in Figure 2. Note that, the service time for
first customer (user ri) that initiates a busy cycle, is described by the random variable Zk+1

which is different or exceptional compared to service times of successive batches. Both users
ri and ri+1 will leave the system at time sj+1; user ri+2 will leave the system at time sj+2

and the system will be empty after her departure.
Because the process {ri}i is Poisson, the sequence {Zk}k is a renewal sequence with cdf

FZ(x). It is shown in [32, Eq. (11)] that

FZ(x) = P(X − Y < x|X ≥ Y ) =
λeλx [BX(∞)−BX(x)]− F ∗X(λ)

1− F ∗X(λ)
, (3)

with BX(x) :=
∫ x
0 FX(u)e−λudu. Note that BX(∞) = λ−1F ∗X(λ). An explicit form for

FZ(x) is obtained in [32, Section 13.3] when FX(x) is the cdf of an exponential, uniform, or
deterministic random variable. In particular, FZ(x) = 1 − e−µx when FX(x) = 1 − e−µx, a
result that also follows from the PASTA property. Also, by law of total expectation and from
(3) we have

E[X − Y ] = E[X − Y |X ≥ Y ] · P(X ≥ Y ) + E[X − Y |X ≤ Y ] · (1− P(X ≥ Y ))

=⇒ 1

µ
− 1

λ
= E(X − Y |X ≥ Y ) · (1− F ∗X(λ))− 1

λ
F ∗X(λ)

=⇒ αZ := E[Z] = E[X − Y |X ≥ Y ] =
1

µ(1− F ∗X(λ))
− 1

λ
, (4)

with E[X − Y |X ≤ Y ] = − 1
λ and P(X ≥ Y ) = 1− F ∗X(λ). In particular, αZ = αX = 1

µ when

FX(x) = 1− e−µx.

Having established an analogy, ESABQ can now be formally defined in its most general
form as follows.

ESABQ: Consider a queueing system where customers are served in batches of maximum
size c. A customer entering the queue and finding fewer than c customers in the system joins
the current batch and enters service at once, otherwise it joins a queue. After a batch departs
leaving k customers in the buffer, min(c, k) customers form a batch and enter service immedi-
ately. There are two different service times cdfs, G1(x) (exceptional batch) and G2(x) (regular
batch). A batch is exceptional if its oldest customer entered an empty system, otherwise it is
a regular batch. When the service time expires, all customers in the server depart at once,
regardless of the nature of the batch (exceptional or regular).
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The sojourn time associated with a random customer in the M/G/1 queue described
above maps to the request distance for a random user in the corresponding one-dimensional
service network upon setting G1 = FZ and G2 = FX . Thus the request distance distribution
for a service network can be obtained by calculating the sojourn time distribution for the
corresponding M/G/1 queue.

The LST of the customer sojourn time in the above queueing system is derived in Section
4. Section 4 is self-contained and can be read independently from Sections 1-3.

4 M/G/1 Queue with Accessible Batches and Exceptional First
Batch in a BP

Consider an M/G/1 queue with arrival rate λ > 0 where customers are served in accessible
(see below) batches of maximum size c, with c a strictly positive integer. The cdf of the
service time of the first batch in a busy period (BP) is G1 (with mean 1/µ1, µ1 > 0, pdf
g1, and LST is G∗1) and the cdf of the subsequent batch service times in a BP is G2 (with
mean 1/µ2, µ2 > 0, pdf g2, and LST G∗2). The first batch in a BP is called an exceptional
batch and starts with the arrival of a customer in an empty system. The other batches in a
BP are called regular or batches. Both exceptional and regular batches are accessible in the
sense that if a customer enters the system when there are less than c customers in the system
then this customer joins the server. When the service time of either type of batch expires all
customers in the server leave the system at once.

See Section 7 for related works in this area. The work the closest to this work is [32] where
the z-transform for the number of customers is derived for the model described above. In this
section we focus on the sojourn time of an arbitrary incoming customer.

Define ρ1 = λ/µ1 and ρ2 = λ/µ2. We claim that ρ2 < c is the stability condition of this
queueing system. Indeed, it is known that ρ2 < c is the stability condition of an M/G/1
queue in which customers are served in batches of maximum size c [10, Section 4.1]. This
result was shown for non-accessible batches but clearly the stability condition does not depend
on whether or not a batch is accessible. The difference between the latter queueing system
and ours is that in ours the service time cdf of the first batch served in a busy period (given
by G1) is different from the service time cdf (given by G2) of the subsequent service times
in that busy period. However, as far as the stability is concerned, the cdf of the first service
duration in a busy period does not matter as long as the expected service time (given by
1/µ1) is finite, thereby validating why ρ2 < c is the stability condition of our system.

From now on we assume that the stability condition ρ2 < c holds.

We will need p(0), the stationary probability that the system is empty. This quantity was
computed in [32, Section 6.3.1] when zc−G∗2(λ(1−z)) has a radius of convergence larger than
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one (i.e. is analytic in {|z| ≤ ν with ν > 1), and is given by

p(0) =
1

λ

c∑
k=1

ak, (5)

where the c constants a1, . . . , ac are the solutions of the linear system of equations

c∑
k=1

ak
dj

dzj

(
G∗1(λ(1− z))− zk−c−1G∗2(λ(1− z))

)
|z=ξl = 0, 0 ≤ j ≤ nl − 1, 1 ≤ l ≤ q − 1,

c∑
k=1

ak(c(1 + ρ1)− ρk) = λ(c− ρ),

with ξ1, . . . , ξc the c zeros of zc−G∗2(λ(1−z)) in {|z| ≤ 1} counting their multiplicity (i.e. if ξ1 is
a zero of multiplicity n1 ≥ 1 then ξ1 = · · · = ξn1 , etc.). The condition that zc−G∗2(λ(1−z)) has
a radius of convergence larger than one is satisfied for all phase-type distributions (exponential,
Erlang, Coxian, etc.), Gamma distribution, etc. [32, Section 13.2.3]. In particular, all zeros
of zc − G∗2(λ(1 − z)) in {|z| ≤ 1} have multiplicity one when G2(x) = 1 − e−µ2x – see [32,
13.2.2] for a more general discussion.

Let T be the sojourn time of the tagged customer C, with LST T ∗(s). Define

dl(m) =

∫ ∞
0

(λu)m

m!
e−λudGl(u) (6)

hl(m, z) =

∫ ∞
0

e−λu
(λzu)m

m!
dGl(u), (7)

for l = 1, 2 and m ≥ 0. Observe that d1(m) (resp. d2(m)) is the probability that exactly m
customers arrive during an exceptional (resp. regular) service time. Note also that dl(m) =
hl(m, 1) and dl(0) = hl(0, z) = G∗l (λ) for l = 1, 2.

We are now ready to state and prove the main result of this section.

Proposition 1 (LST of customer sojourn time distribution)
Let ρ2 < c. We assume that zc − G∗2(λ(1 − z)) has c zeros in {|z| ≤ 1} (see discussion

above the proposition). Let ξ1, . . . , ξq be the distinct zeros of zc − G∗2(λ(1 − z)) in {|z| ≤ 1},
with n1, . . . , nq their respective multiplicity with n1 + · · ·+ nq = c. Note that z = 1 is a zero
of multiplicity one under the condition ρ2 < c. Let ξq = 1 by convention (with nq = 1).

Then,

T ∗(s) = p(0)G∗1(s) + p(0)
λ

λ− s
∑
k≥0

(
λ

λ− s

)k
G∗2(s)

b k+1
c
cI1(s, k)

+(1− p(0)(1 + ρ1))
µ2
λ− s

∑
k,m≥0

(
λ

λ− s

)k
G∗2(s)

b k+m
c
cP(Nr = m)I2(s, k), <(s) ≥ 0,(8)
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where p(0) is given in (5), and

Il(s, k) := G∗l (s)−
k∑
j=0

∫ ∞
0

e−λxgl(x)
((λ− s)x)j

j!
dx, l = 1, 2. (9)

In (8), Nr is the stationary number of customers in the system (i.e. including customer(s) in
the server) at the start of a service of a regular batch. Its z-transform Nr(z) =

∑
m≥0 πr(m)zm,

with πr(m) := P(Nr = m), is given by

Nr(z) =
J(z)

G∗2(λ(1− z))− zc
, |z| ≤ 1, (10)

with

J(z) :=

c∑
i=1

πr(i)

(
zi

c−i∑
m=0

h2(m, z)− z

(
G∗1(λ(1− z))−

c−1∑
m=0

h1(m, z)

) ∑c−i
m=0 d2(m)

1−
∑c−1

m=0 d1(m)

)
.

(11)
The c unknown constants πr(1), . . . , πr(c) in (11) solve the system of c linear equations defined
by

dk

dzk
J(z)|z=ξj = 0, k = 0, . . . , nj − 1, j = 1, . . . , q − 1 (12)

d

dz
J(z)|z=1 = ρ2 − c. (13)

The proof of Proposition 1 is given in Sections 4.1-4.2. It is inspired by Harrison’s calculation
of the LST of the customer sojourn time in a standard M/G/1 queue [18].

When c = 1, T ∗(s) in (8) should reduce to the LST of the customer sojourn time in an
M/G/1 queue with exceptional service time, a result first derived by Welch [37]. In addition,
if G∗1 = G∗2 then T ∗(s) in (8) should be equal to the LST of the customer sojourn time in a
standard M/G/1 queue (e.g. see [18]). Corollaries 1 and 2 below show that this is indeed the
case.

Corollary 1 (M/G/1 queue with exceptional first service)
When ρ2 < 1 and c = 1,

T ∗(s) =
(1− ρ2)(sG∗1(s) + λ(G∗2(s)−G∗1(s)))

(1− ρ2 + ρ1)(s− λ(1−G∗2(s)))
, <(s) ≥ 0. (14)

We retrieve the result in [37, Theorem 4]. The proof can be found in Appendix 10.1.

Corollary 2 (Standard M/G/1 queue)
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When G∗1 = G∗2 := G∗, with ρ1 = ρ2 := ρ < 1 and c = 1, (14) becomes

T ∗(s) =
(1− ρ)sG∗(s))

s− λ(1−G∗(s))
, <(s) ≥ 0.

We retrieve the LST of the customer sojourn time in a standard M/G/1 queue with arrival
rate λ, LST of the service times given by G∗, and traffic intensity given by ρ.

We now proceed with the proof of Proposition 1.

4.1 Proof of Proposition 1: Proof of (8)

We focus on a tagged customer C arriving at time τC when the system is in steady-state.
When C joins a non-empty system, we denote by

• U the completed service time

• V the residual service time

• Nr the number of customers in the system (i.e. including customers in the server) at
the beginnings of a service time of a regular customer

• Ye the number of arrivals during U if this is an exceptional service time

• Yr the number of arrivals during U if this is a regular service time.

Let X(t), R(t) and I(t) be the number of customers in the system including the one(s) in
the server if any, the residual batch service time, and the type of batch at time t ≥ 0. The
assumptions placed on the system imply that {(X(t), R(t), I(t)), t ≥ 0} is a Markov process on
{0, 1, . . . , }× [0,∞)×{1, 2}. Denote by X, R, and I the stationary versions of X(t), R(t), and
I(t), respectively, which do exist when ρ2 < c. Also define p(n, x; i) = P(X = n,R < x, I = i),
n ≥ 1, x > 0, i = 1, 2. Recall that (cf. (5)) p(0) = P(X = 0).

Because arrivals are Poisson, PASTA applies and upon arrival the tagged customer C sees
the system in steady-state. Therefore, the probability that upon arrival C sees an empty
system is given by p(0) = P(X = 0) and the probability that C sees a non-empty system and
a batch of type i = 1, 2 in the system is P(X > 0, I = i). Conditioning on these three types
of events gives

T ∗(s) =p(0)G∗1(s) + E[e−sT |X > 0, I = 1]P(X > 0, I = 1)

+ E[e−sT |X > 0, I = 2]P(X > 0, I = 2), <(s) ≥ 0. (15)
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4.1.1 Calculation of qi := P(X > 0, I = i), i = 1, 2

We first give a quick proof. Let Dc be the duration of a cycle, defined as the time between
two consecutive instants when a customer enters an empty system. From renewal theory
q1 = 1/µ1

E[Dc]
and p(0) = 1/λ

E[Dc]
(Hint: 1/λ is the expected idle time). We then obtain

q1 = p(0)ρ1. (16)

A more mathematical proof goes as follows. We can evaluate qi as

qi = P(X > 0, I = i) =
∑
n≥1

P(X = n,R <∞, I = i) =
∑
n≥1

p(n,∞; i),

i = 1, 2.

Introduce Fi(z, s) :=
∑

n≥1 z
n
∫∞
0 e−sxp(n, x; i)dx for |z| ≤ 1 and <(s) ≥ 0. Then,

qi = lim
s→0

sFi(1, s), i = 1, 2, (17)

from a standard Tauberian result. We now derive an equation for F1(z, s). Writing the
Chapman-Kolmorogov equations for the Markov process {(X(t), R(t), I(t)), t ≥ 0} and letting
t→∞ one can show that (see e.g. [24, Exercice 5.7, pp. 233-234] and [32, Section 6.3.1] for
similar derivations)

0 =
∂

∂x
p(n, x; 1)− λp(n, x; 1)− ∂

∂x
p(n, 0; 1) + λp(n− 1, x; 1)1(n ≥ 2) + λp(0)G1(x)1(n = 1).

(18)
Multiplying both sides of (18) by zne−sx, integrating over [0,∞), and summing over n ≥ 1
gives

0 =
∑
n≥1

zn
∫ ∞
0

e−sx
∂

∂x
p(n, x; 1)dx− λF1(z, s)−

∑
n≥1

zn
∫ ∞
0

e−sx
∂

∂x
p(n, 0; 1)

+λzp(0)

∫ ∞
0

e−sxG1(x)dx+ λz
∑
n≥2

zn−1
∫ ∞
0

e−sxp(n− 1, x; 1)

= sF1(z, s)− λF1(z, s)−
∑
n≥1

zn
∫ ∞
0

e−sx
∂

∂x
p(n, 0; 1) + λzF1(z, s) + λzp(0)

G∗1(s)

s

= (s− λ(1− z))F1(z, s)−
1

s

∑
n≥1

zn
∂

∂x
p(n, 0; 1) + λzp(0)

G∗1(s)

s
.

Hence,

s(λ(1− z)− s)F1(z, s) = −
∑
n≥1

zn
∂

∂x
p(n, 0; 1) + λzp(0)G∗1(s).

11



The l.h.s vanishes for s = λ(1− z), which implies that∑
n≥1

zn
∂

∂x
p(n, 0; 1) = λzp(0)G∗1(λ(1− z)).

Therefore,
s(λ(1− z)− s)F1(z, s) = λzp(0)(G∗1(s)−G∗1(λ(1− z))). (19)

where we have used L’Hôpital’s rule to derive the second equality.
The probability q2 is obtained from the identity p(0) + q1 + q2 = 1, giving

q2 = 1− p(0)(1 + ρ1). (20)

4.1.2 Calculation of E[e−sT |X > 0, I = 1]

Let {σ(j)1 , j ≥ 1} be iid rvs with cdf G1, pdf g1, and LST G∗1. We have

E[e−sT |X > 0, I = 1, U, V ] =
∑
k≥0

E[e−sT |X > 0, I = 1, U, V, Ye = k]P(Ye = k |U)

= e−λU
∑
k≥0

E[e−sT |X > 0, I = 1, U, V, Ye = k]
(λU)k

k!
.

Conditioned on I = 1, U , V and Ye = k, the sojourn time of the tagged customer is V +∑i
j=1 σ

(j)
1 when ic ≤ Ye + 1 < (i+ 1)c for i ≥ 0, yielding

E[e−sT |X > 0, I = 1, U, V, Ye = k] =

{
e−sV if k + 1 < c
e−sVG∗2(s)

i if ic ≤ k + 1 < (i+ 1)c, i ≥ 1.

= e−sVG∗2(s)
b k+1

c
c. (21)

Therefore,

E[e−sT |X > 0, I = 1, U, V ] = e−λUe−sV
∑
k≥0

G∗2(s)
b k+1

c
c (λU)k

k!
.

Given that I = l, the joint density of (U, V ) at point (u, v) is µlgl(u+v) for l = 1, 2 (well-known
result - e.g. see [19, p. 153]). With this, putting everything together gives

E[e−sT |X > 0, I = 1] = µ1

∫ ∞
0

∫ ∞
0

E[e−sT |X > 0, I = 1, U = u, V = v]g1(u+ v)dudv

= µ1
∑
k≥0

G∗2(s)
b k+1

c
c
∫ ∞
0

∫ ∞
0

e−λue−svg1(u+ v)
(λu)k

k!
dudv

= µ1
∑
k≥0

G∗2(s)
b k+1

c
c
∫ ∞
x=0

e−sxg1(x)

∫ x

u=0
e−(λ−s)u

(λu)k

k!
dudx.

12



Elementary algebra yields

(λ− s)
∫ x

0
e−(λ−s)u

(λu)k

k!
du =

(
λ

λ− s

)k
− e−(λ−s)x

k∑
i=0

(
λ

λ− s

)i (λx)k−i

(k − i)!
.

Therefore,

E[e−sT |X > 0, I = 1] =
µ1
λ− s

∑
k≥0

G∗2(s)
b k+1

c
c

×
∫ ∞
0

e−sxg1(x)

[(
λ

λ− s

)k
− e−(λ−s)x

k∑
i=0

(
λ

λ− s

)i (λx)k−i

(k − i)!

]
dx

=
µ1
λ− s

∑
k≥0

G∗2(s)
b k+1

c
c
[(

λ

λ− s

)k
G∗1(s)−

k∑
i=0

(
λ

λ− s

)i ∫ ∞
0

e−λxg1(x)
(λx)k−i

(k − i)!
dx

]

=
µ1
λ− s

∑
k≥0

(
λ

λ− s

)k
G∗2(s)

b k+1
c
c

G∗1(s)− k∑
j=0

∫ ∞
0

e−λxg1(x)
((λ− s)x)j

j!
dx

 . (22)

4.1.3 Calculation of E[e−sT |X > 0, I = 2]

Let {σ(j)2 , j ≥ 1} be iid rvs with cdf G2, pdf g2, and LST G∗2. We have

E[e−sT |X > 0, I = 2, U, V ]

=
∑
k,m≥0

E[e−sT |X > 0, I = 2, U, V, Yr = k,Nr = m]P(Yr = k,Nr = m |U)

= e−λU
∑
k,m≥0

E[e−sT |X > 0, I = 2, U, V, Yr = k,Nr = m]
(λU)k

k!
P(Nr = m), (23)

since the rvs Yr and Nr are independent.
Conditioned on I = 2, U , V , Yr = k and Nr = m, the sojourn time of the tagged customer

is V +
∑i

j=1 σ
(j)
2 when ic ≤ Yr +Nr < (i+ 1)c for i ≥ 0, yielding (derivation similar to (21))

E[e−sT |X > 0, I = 2, U, V, Yr = k,Nr = m] = e−sVG∗2(s)
b k+m

c
c. (24)

Therefore,

E[e−sT |X > 0, I = 2, U, V ] = e−λU
∑
k,m≥0

e−sVG∗2(s)
b k+m

c
c (λU)k

k!
P(Nr = m),
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and

E[e−sT |X > 0, I = 2]

= µ2

∫ ∞
0

∫ ∞
0

e−λu
∑
k,m≥0

e−svG∗2(s)
b k+m

c
c (λu)k

k!
P(Nr = m)g2(u+ v)dudv

= µ2
∑
k,m≥0

G∗2(s)
b k+m

c
cP(Nr = m)

∫ ∞
x=0

e−sxg2(x)

∫ x

u=0
e−(λ−s)u

(λu)k

k!
dudx

=
µ2
λ− s

∑
k,m≥0

(
λ

λ− s

)k
G∗2(s)

b k+m
c
cP(Nr = m)

G∗2(s)− k∑
j=0

∫ ∞
0

e−λxg2(x)
((λ− s)x)j

j!
dx

 ,
(25)

by using (22). In summary, cf. (15), (16), (20), (22), and (25),

T ∗(s) = p(0)G∗1(s)

+p(0)
λ

λ− s
∑
k≥0

(
λ

λ− s

)k
G∗2(s)

b k+1
c
c

G∗1(s)− k∑
j=0

∫ ∞
0

e−λxg1(x)
((λ− s)x)j

j!
dx


+(1− p(0)(1 + ρ1))

µ2
λ− s

∑
k,m≥0

(
λ

λ− s

)k
G∗2(s)

b k+m
c
cP(Nr = m)

×

G∗2(s)− k∑
j=0

∫ ∞
0

e−λxg2(x)
((λ− s)x)j

j!
dx

 ,
which proves (8) upon using definition (9).

4.2 Proof of Proposition 1: Proof of (10)-(11)

Let Nr(k) be the number of customers in the system at the beginning of the k-th regular
batch. Clearly, {Nr(k)}k≥1 is an homogeneous, irreducible and aperiodic Markov chain on
{1, 2, . . .}, with steady-state Nr.

Define P(i, j) = P(Nr(k + 1) = j |Nr(k) = i) for i, j ≥ 1. Recall that πr(i) = P(Nr = i)
for i ≥ 1. First, let us identify P(i, j).

Denote by Ỹe(k) and Ỹr(k) the number arrivals during the kth regular exceptional and
regular batch, respectively. We denote by Ỹe and Ỹr the steady-state versions of the sequences
{Ỹr(k)}k and {Ỹr(k)}k, respectively.

At the end of the kth regular batch the next service is a regular batch if Nr + Ỹr > c and
an exceptional batch otherwise; in the latter case, the next regular bath occurs when at least
c customers arrive during an exceptional batch. First, notice that

P(i, j) = 0 i > c, 1 ≤ j < i− c.

14



From now on we assume that 1 ≤ i ≤ c or that i > c and j ≥ i− c.
Clearly,

P(Ỹe = m) = d1(m) (26)

P(Ỹr = m) = d2(m), (27)

for all m ≥ 0, where dl(m) is defined in (6).

Take 1 ≤ i ≤ c and j ≥ 1. Denote by Y
(1)
e , . . . , Y

(l)
e the number of arrivals during l

successive exceptional batches, l ≥ 1. Clearly, {Y (l)
e }l is an iid sequence. We have

P(i, j) = P(Ỹr + i− c = j)

+
∑
l≥0

P(i+ Ỹr ≤ c, Y (1)
e ≤ c− 1, . . . , Y (l)

e ≤ c− 1, Y (l+1)
e = c+ j − 1)

= P(Ỹr = c− i+ j) + P(Ỹr ≤ c− i)P(Ỹe = c+ j − 1)
∑
l≥0

P(Ỹe ≤ c− 1)l

= P(Ỹr = c− i+ j) + P(Ỹr ≤ c− i)
P(Ỹe = c+ j − 1)

P(Ỹe ≥ c)
, (28)

by using the independence of Ỹr and of the iid sequence {Y (l)
e }l. With (26)-(27), (28) rewrites

P(i, j) = d2(c− i+ j) +
d1(c+ j − 1)∑

m≥c d1(m)

c−i∑
m=0

d2(m),

for 1 ≤ i ≤ c and j ≥ 1.

Take now i > c and j ≥ i− c. In this case, the kth and the (k + 1)st regular batches are
next to each other (i.e. corresponding to two consecutive services). Hence,

P(i, j) = P(Ỹr + i− c = j) =

∫ ∞
0

e−λu
(λu)j+c−i

(j + c− i)!
g2(u)du = d2(j + c− i),

for i > c and j ≥ i− c. In summary,

P(i, j) =


0 if i > c, 1 ≤ j < i− c

d2(c− i+ j) + d1(c+j−1)∑
m≥c

d1(m)

c−i∑
m=0

d2(m) if 1 ≤ i ≤ c, j ≥ 1

d2(j + c− i) if i > c, j ≥ i− c.

(29)
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From the balance equations π = πP and (29), we get

Nr(z) =
∑
j≥1

πr(j)z
j (30)

=
∑
j≥1

c∑
i=1

(
d2(c− i+ j) +

d1(c+ j − 1)∑
m≥c d1(m)

c−i∑
m=0

d2(m)

)
πr(i)z

j

+
∑
i≥c+1

∑
j≥i−c

d2(j + c− i)πr(i)zj .

Recall the definition of hl(m, z) in (7). We have

∑
j≥1

c∑
i=1

d2(c− i+ j)πr(i)z
j =

∫ ∞
0

e−λug2(u)
∑
j≥1

c∑
i=1

(λu)c−i+j

(c− i+ j)!
πr(i)z

jdu

=

∫ ∞
0

e−λug2(u)z−c+i
c∑
i=1

∞∑
m=c−i+1

(λuz)m

m!
πr(i)du

=

∫ ∞
0

e−λug2(u)z−c+i
c∑
i=1

(
eλuz −

c−i∑
m=0

(λuz)m

m!

)
πr(i)du

= z−cG∗2(λ(1− z))
c∑
i=1

πr(i)z
i − z−c

c∑
i=1

πr(i)z
i

(
c−i∑
m=0

∫ ∞
0

e−λug2(u)
(λuz)m

m!
du

)

= z−c
c∑
i=1

πr(i)z
i

[
G∗2(λ(1− z))−

c−i∑
m=0

h2(m, z)

]
,

and

∑
j≥1

c∑
i=1

d1(c+ j − 1)∑
m≥c d1(m)

c−i∑
m=0

d2(m)πr(i)z
j

= z1−c
c∑
i=1

πr(i)

∫ ∞
0

e−λu
∑
j≥1

(λzu)c+j−1

(c+ j − 1)!
dg1(u)

∑c−i
m=0 d2(m)∑
m≥c d1(m)

= z1−c

(
G∗1(λ(1− z))−

c−1∑
m=0

h1(m, z)

)
c∑
i=1

πr(i)

∑c−i
m=0 d2(m)∑
m≥c d1(m)

,
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and
∞∑

i=c+1

∞∑
j=i−c

d2(j + c− i)zjπr(i) =

∫ ∞
0

e−λug2(u)
∞∑

i=c+1

∞∑
j=i−c

(λu)j+c−i

(j + c− i)!
πr(i)z

jdu

=

∫ ∞
0

e−λug2(u)

∞∑
i=c+1

zi−cπr(i)

∑
l≥0

(λuz)l

l!

 du

= z−c
∞∑

i=c+1

πr(i)z
i

∫ ∞
0

e−λu(1−z)g2(u)du

=

(
Nr(z)−

c∑
i=1

πr(i)z
i

)
z−cG∗2(λ(1− z)).

Putting everything together and using the identity
∑

m≥c d1(m) = 1−
∑c−1

m=0 d1(m) yields

Nr(z) =
1

G∗2(λ(1− z))− zc
c∑
i=1

πr(i)

[
zi

c−i∑
m=0

h2(m, z)

−z

(
G∗1(λ(1− z))−

c−1∑
m=0

h1(m, z)

) ∑c−i
m=0 d2(m)

1−
∑c−1

m=0 d1(m)

]
, (31)

which establishes (10)-(11). For j = 1, . . . , q − 1, ξj is a zero of multiplicity nj of G∗2(λ(1 −
z)) − zc (notice that ξj 6= 1 for j = 1, . . . , q − 1 since we have assumed, by convention, that
ξq = 1). Therefore, for Nr(z) to be analytic in {|z| ≤ 1} the numerator in (10), defined to be
J(z) (see (11)), must vanish nj times at z = ξj . This gives rise to the conditions (12). On
the other hand,

1 = Nr(1) = lim
z→1

J(z)

G∗2(λ(1− z))− zc
= lim

z→1

d
dzJ(z)

−λ d
dtG

∗
2(t)|t=λ(1−z) − czc−1

=
d
dzJ(z)|z=1

ρ2 − c
,

where the second equality follows by L’Hôpital’s rule which applies since J(1) = 1, as this
can easily be checked. This gives condition (13) and concludes the proof of Proposition 1.

4.3 Special Case: Exponential service times

Define rl = ρl
1+ρl

, l = 1, 2, where we recall that ρl = λ
µl

.

Assume that gi(x) = µie
−µix for i = 1, 2 (exponential service times). By (8)-(9), we obtain

T ∗(s) = p(0)
µ1

µ1 + s
+ p(0)

µ1
µ1 + s

∑
k≥0

rk+1
1

(
µ2

µ2 + s

)b k+1
c
c

+
1− p(0)(1 + ρ1)

1 + ρ2

∑
k,m≥0

P(Nr = m)rk2

(
µ2

µ2 + s

)b k+m
c
c+1

. (32)
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Denote by fT (t) the pdf of the sojourn time T . We have T ∗(s) =
∫∞
0 e−stfT (t)dt. Let us

identity fT (t) from the value of T ∗(s) given in (32). To this end, we need to find functions
h(t), h1,k(t) and h2,k(t) such that∫ ∞

0
e−sth(t)dt =

µ1
µ1 + s∫ ∞

0
e−sth1,k(t)dt =

(
µ2

µ2 + s

)k
, k ≥ 1∫ ∞

0
e−sth2,k(t)dt =

µ1
µ1 + s

·
(

µ2
µ2 + s

)k
, k ≥ 0.

Clearly h(t) = µ1e
−µ1t and h1,k(t) = µ2(µ2t)

k−1e−µ2t/(k − 1)!. When µ1 = µ2, h2,k(t) =
h1,k+1(t) for k ≥ 0. It remains to find h2,k(t) when µ1 6= µ2. From the partial fraction
decomposition

1

µ1 + s
· 1

(µ2 + s)k
=

(−1)k

(µ1 − µ2)k
· 1

µ1 + s
+

k∑
i=1

(−1)k+i

(µ1 − µ2)k+1−i ·
1

(µ2 + s)i
,

and the values found for h(t) and h1,k(t), we obtain

h2,k(t) = (−1)k
(

µ2
µ1 − µ2

)k
µ1e
−µ1t +

µ1
µ2

k∑
i=1

(−1)k+i
(

µ2
µ1 − µ2

)k+1−i (µ2t)
i−1

(i− 1)!
µ2e
−µ2t,

when µ1 6= µ2 and k ≥ 0. Therefore,

fT (t) = p(0)h(t)+p(0)
∑
k≥0

rk+1
1 h1,b k+1

c
c+1(t)+

1− p(0)(1 + ρ1)

1 + ρ2

∑
k,m≥0

P(Nr = m)rk2h1,b k+m
c
c+1(t),

(33)
if µ1 = µ2, and

fT (t) = p(0)h(t)+p(0)
∑
k≥0

rk+1
1 h2,b k+1

c
c(t)+

1− p(0)(1 + ρ1)

1 + ρ2

∑
k,m≥0

P(Nr = m)rk2h1,b k+m
c
c+1(t),

(34)
if µ1 6= µ2.

The n-order moment of the sojourn time T can be obtained from (33)-(34) as shown below.

By the equality
∫∞
0 νtn (νt)k−1

(k−1)! e
−νtdt = (k+n−1)!

(k−1)!νn which holds for any ν ∈ (0,∞), k ∈ Z+−{0},
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n ∈ Z+, routine algebra gives

E[Tn] =

∫ ∞
0

tnfT (t)dt

= p(0)
n!

µn
+
p(0)

µn

∑
k≥0

rk+1

(
bk+1

c c+ n
)
!

bk+1
c c!

+
1− p(0)(1 + ρ)

(1 + ρ)µn

∑
k,m≥0

P(Nr = m)rk
(
bk+mc c+ n

)
!

bk+mc c!
,

(35)

if µ1 = µ2 := µ with ρ := λ/µ and r := r1 = r2, and

E[Tn] =

p(0)
n!

µn1
+ p(0)

∑
k≥0

rk+1
1

[
(−1)k

(
µ2

µ1 − µ2

)k n!

µn1
+

µ1

µn+1
2

k∑
i=1

(−1)k+i
(

µ2
µ1 − µ2

)k+1−i (n+ i− 1)!

(i− 1)!

]

+
1− p(0)(1 + ρ1)

(1 + ρ2)µn2

∑
k,m≥0

P(Nr = m)rk2

(
bk+mc c+ n

)
!

bk+mc c!
, (36)

if µ1 6= µ2.

Let us now calculate P(Nr = m). From the identity
∫∞
0 θe−θuumdu = m!/θm for m ≥ 0,

we find (cf. (6)-(7))

hl(m, z) = µl

∫ ∞
0

e−(λ+µl)u
(λzu)m

m!
du =

µl(λz)
m

m!(λ+ µl)
× m!

(λ+ µl)m
=

1

1 + ρl

(
zρl

1 + ρl

)m
,

and dl(m) = hl(m, 1) = 1
1+ρl

(
ρl

1+ρl

)m
. With that, Nr(z) in (10) becomes

Nr(z) =
1 + ρ2(1− z)

1− zc − ρ2(1− z)zc
c∑
i=1

πr(i)

[
zi

1 + ρ2

c−i∑
m=0

(
zρ2

1 + ρ2

)m

−z

(
1

1 + ρ1(1− z)
− 1

1 + ρ1

c−1∑
m=0

(
zρ1

1 + ρ1

)m) 1
1+ρ2

∑c−i
m=0

(
ρ2

1+ρ2

)m
1

1+ρ1

∑
m≥c

(
ρ1

1+ρ1

)m
]
. (37)
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From the identities

1

1 + ρ2

c−i∑
m=0

(zr2)
m =

1− (zr2)
c−i+1

1 + ρ2(1− z)

1

1 + ρ2

c−i∑
m=0

rm2 = 1− rc−i+1
2

1

1 + ρ1

c−1∑
m=0

(zr1)
m =

1− (zr1)
c

1 + ρ1(1− z)
1

1 + ρ1

∑
m≥c

rm1 = rc1,

we get from (37)

Nr(z) =
1

1− zc − ρ2(1− z)zc
c∑
i=1

πr(i)

[
zi − zc+1rc−i+1

2 − zc+1

(
1 + ρ2(1− z)
1 + ρ1(1− z)

)(
1− rc−i+1

2

)]
.

(38)

Define Ψ(z) = 1 − zc − ρ2(1 − z)zc. Since Ψ(z) is a polynomial of degree c + 1 it has c + 1
zeros, counting their multiplicity.

When G2(x) = 1 − e−µ2x we know (see discussion at the beginning of Section 4) that
Φ(z) := G∗2(λ(1−z))−zc = 1

1+ρ2(1−z)−z
c has c distinct zeros in {|z| ≤ 1} all with multiplicity

one. Let ξ1, . . . , ξc be these zeros. From the identity

Ψ(z) = (1 + ρ2(1− z))Φ(z), (39)

we conclude from the above that ξ1, . . . , ξc are also zeros of Ψ(z). Denote by ξc+1 the (c+ 1)-
st zero of Ψ(z). This zero also has multiplicity one since it cannot be equal to one of the
ξ1, . . . , ξc as otherwise Φ(z) would have c + 1 zeros in {|z| ≤ 1} which would be incorrect.
Since all zeros of Ψ(z) have multiplicity one, we can write Ψ(z) as

Ψ(z) = ρ2

c+1∏
i=1

(z − ξi),

yielding

1

Ψ(z)
=

1

ρ2

c+1∑
i=1

di
z − ξi

,

where di := 1∏c+1
m=1,m 6=i(ξi−ξm)

. From

1

z − ξi
= − 1

ξi

∑
m≥0

zm

ξmi
,
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for |z| < |ξi|, we finally obtain

1

1− zc − ρ2(1− z)zc
=
∑
m≥0

zmwm, ∀ |z| < min
i=1,...,c+1

|ξi|, (40)

with wm := − 1
ρ2

∑c+1
i=1

di
ξm+1
i

. Note that w0 = 1 since the l.h.s. of (40) is equal to one at z = 0

(see Remark 1). Introducing (40) into (38) gives

Nr(z) =
∑
m≥0

c∑
i=1

zmwmπr(i)

(
zi − zc+1rc−i+1

2 − zc+1
(
1− rc−i+1

2

)(1 + ρ2(1− z)
1 + ρ1(1− z)

))

=
∑
m≥0

c∑
i=1

zmwmπr(i)

(
zi − zc+1rc−i+1

2 − zc+1(1− rc−i+1
2 )

(1 + ρ2(1− z))
1 + ρ1

∑
k≥0

zkrk1

)
,(41)

by using the identity 1
1+ρ1(1−z) = 1

1+ρ1

∑
m≥0 z

m
(

ρ1
1+ρ1

)m
= 1

1+ρ1

∑
m≥0 z

mrm1 .

For evaluating T ∗(s) in (32) we need to identify the probabilities πr(j) for j ≥ 1. By
definition of Nr(z) in (30), πr(j) is obtained as the coefficient of zj in (30), that is, by the
coefficient of zj in the r.h.s. of (41). We already know that πr(1), . . . , πr(c) are obtained as
the solution of (12)-(13). We are left with identifying πr(j) for j ≥ c+ 1.

To this end, introduce

S1(z) :=
∑
m≥0

c∑
i=1

zm+iwmπr(i) =

∑
m≥0

zmwm

∑
i≥0

ziπr(i)11≤i≤c


=

∑
j≥1

zj
min(c,j)∑
i=1

wj−iπr(i)

S2(z) :=
∑
m≥0

∑
k≥0

zm+kwmr
k
1 =

∑
j≥0

zj
j∑
l=0

wlr
j−l
1 .

Then,

Nr(z) = S1(z)−
c∑
i=1

rc−i+1
2 πr(i) ·

∑
m≥0

zm+c+1wm

−S2(z) ·
(1 + ρ2)z

c+1 − ρ2zc+2

1 + ρ1
·

c∑
i=1

(1− rc−i+1
2 )πr(i)

=
∑
j≥1

zj
min(c,j)∑
i=1

wj−iπr(i)−A
∑
m≥0

zm+c+1wm −B
∑
j≥0

zj
j∑
l=0

wlr
j−l
1 ((1 + ρ2)z

c+1 − ρ2zc+2),

(42)
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by setting A :=
∑c

i=1 r
c−i+1
2 πr(i) and B := 1

1+ρ1

∑c
i=1(1−r

c−i+1
2 )πr(i) to make notation more

compact.
For j ≥ c+ 1 the coefficient of zj in (42), equals to πr(j), is given by

πr(j) =
c∑
i=1

wj−iπr(i)−Awj−c−1 − (1 + ρ2)B

j−c−1∑
l=0

wlr
j−c−1−l
1 + ρ2B

j−c−2∑
l=0

wlr
j−c−2−l
1 , (43)

where by convention
∑−1

j=0 • = 0.

Remark 1 The coefficient of zj in (42) is given by
∑j

i=1wj−iπr(i) for j = 1, . . . , c. However,
it turns out that w1 = · · · = wc−1 = 0 so that, since w0 = 1, the coefficient of zj reduces to
πr(j) for j = 1, . . . , c, as expected.

5 Computing Communication Cost

We define the cost of an allocation as the communication cost associated with an allocated
user-resource pair. Consider communication cost as a function C of the request distance. Then
the expected communication cost across the service network is given as

C = E[cost] =

∞∫
d=0

C(d)dFD(d), (44)

where FD is the request distance distribution.

5.1 Path Loss Based Cost Model

One such cost model is widely used in wireless ad hoc networks is [13]

C(d) = t0d
β. (45)

where β is the path loss exponent and t0 is a constant. Typically β lies between 2 and 4.
When β ∈ Z+ the expected communication cost can be computed as

C = t0(−1)β
dβT ∗(s)

dsβ

∣∣∣∣
s=0

. (46)

For the case when β ∈ R+ \ Z+, let β = n− δ with n ∈ Z+ and 0 < δ < 1. Using results
by Cressie et al. ([11], Theorem 1) under certain conditions we have

C = t0(−1)nΓ(δ)−1
s∫

−∞

(s− z)δ−1d
nT ∗(z)

dzn
dz

∣∣∣∣∣∣
s=0

, (47)

where Γ(·) is the gamma function. Note that, the conditions in ([11], Theorem 1) are met if
the (n+ 1)st moments of X and Z are finite.
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Figure 3: Expected communication cost under path loss based cost model for different values
of β.

5.2 General Cost Model

For more general cost models, FD in (44) can be obtained by inverting the LST T ∗(s) in
Proposition 1. The inverse Laplace transform is given by Bromwich integral [4], [35]

fD(x) =
1

2πi

γ+∞∫
γ−∞

esxT ∗(s)ds, x > 0, (48)

with fD(x) = 0 for x < 0. The integral (48) is a contour integral of the complex function
esxT ∗(s) performed along a line s = γ in the complex plane. γ is arbitrary except for the fact
that s = γ lies to the right of all singularities.

6 Numerical Results

In this section, we examine the effect of β on the expected communication cost obtained
through analysis for path loss based cost model. We consider the mean user density λ = 0.5.
We assume the servers to be distributed according to an exponential distribution with density
µ = 1. We assume c = 2 and t0 = 1. We use numerical methods to compute cost defined in
Section 5.

We first calculated the probabilities πr(1), . . . , πr(c) by solving the set of linear Equations
(12)-(13). We then computed the probabilities πr(j), j > c using (43). We finally plugged
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these values into (35) by doing some truncation in the infinite single and double sum. In
particular, the number of terms considered in the calculations of the single and double sum
in (35) were both 10.

We plot the expected communication cost for different values of β in the path loss based
cost model as shown in Figure 3. We observe that with increase in the value of β, the expected
communication cost increases.

7 Related Literature

Holroyd et al. [21] first obtained upper and lower bounds on the expected request distance
under stable matching policy for the case when users and resources are distributed according
to a Poisson process on a d-dimensional spatial network. Abadi et al. [1] were the first to
derive bounds on expected request distance for a unidirectional policy in a one-dimensional
service network under Poisson distributed users and resources. They assume server capacity
to be one in their analysis. Panigrahy et al. [32] derived expressions for expected request
distance in a more general setting where either users or resources are Poisson distributed
and server capacities are greater than one. Our work complements and extends [32] in the
sense that we derive expressions for request distance distribution for a one-dimensional service
network.

In the queueing theory field, there exists a vast volume of literature on exceptional service
queueing systems. For example, [6], [12], [31], [37] modeled the exceptional queueing system
under different inter-customer arrival times and service time distributions. However, theses
works do not focus on batch service systems. Non-accessible batch service queueing models
with regular (non-exceptional) service have been studied both for continuous time [5], [7], [8],
[9], [14], [34] and discrete time [17], [22], [23], [38]. [15] and [16] studied accessible regular
batch service queues in continuous time and discrete time respectively. [25] discussed queue
length distribution for an accessible regular batch service queueing system for different arrival
and service time distributions. All of the above mentioned models either analyze exceptional
services or accessible batch service queueing systems individually but not both. While authors
in [32] first derived the queue-length distribution for an exceptional service accessible batch
queueing system, we derive sojourn time distribution for such a system under Poisson customer
arrivals and general service time distribution.

8 Conclusion

In this work we analyzed the expected communication cost associated with MTR allocation
policy in a one-dimensional distributed service network. We derived expressions for the LS
transform of request distance distribution for Poisson distributed users with general inter-
resource distance distributions and discussed few special cases. Using the request distance
distribution, we computed the expected communication cost for a path loss based cost model.
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Going further we expect to analyze the service network for other inter-user and inter-server
distributions under different cost models.
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10 Appendix

10.1 Proof of Corollary 1

When c = 1 it is easy to derive from (5) that p(0) = 1−ρ2
1−ρ2+ρ1 . Letting c = 1 in (8) gives

T ∗(s) =
(1− ρ2)G∗1(s)
1− ρ2 + ρ1

+
λ(1− ρ2)G∗2(s)

(1− ρ2 + ρ1)(λ− s)
∑
k≥0

(
λG∗2(s)

λ− s

)k
I1(s, k)

+
λρ1Nr(G

∗
2(s))

(1− ρ2 + ρ1)(λ− s)
∑
k≥0

(
λG∗2(s)

λ− s

)k
I2(s, k). (49)

We have by (9)

∑
k≥0

(
λG∗2(s)

λ− s

)k
Il(s, k) =

(λ− s)G∗l (s)
λ(1−G∗2(s))− s

−
∫ ∞
0

e−λxgl(x)
∑
j≥0

((λ− s)x)j

j!

∑
k≥j

(
λG∗2(s)

λ− s

)k
dx

=
(λ− s)G∗l (s)

λ(1−G∗2(s))− s
− λ− s
λ(1−G∗2(s))− s

∫ ∞
0

e−λxgl(x)
∑
j≥0

(λG∗2(s)x)j

j!
dx

=
(λ− s)(G∗l (s)−G∗l (λ(1−G∗2(s)))

λ(1−G∗2(s))− s
, l = 1, 2. (50)

Introducing (50) into (49) yields

T ∗(s) =
(1− ρ2)G∗1(s)
1− ρ2 + ρ1

+
λ

(1− ρ2 + ρ1)(λ(1−G∗2(s))− s)
(51)

× [(1− ρ2)G∗2(s)(G∗1(s)−G∗1(λ(1−G∗2(s))) + ρ1Nr(G
∗
2(s))(G

∗
2(s)−G∗2(λ(1−G∗2(s))))] .

It remains to calculate Nr(z) in (10)-(11) when c = 1. We have (recall that hl(0, z) = dl(0) =
G∗l (λ) for l = 1, 2)

Nr(z) =
z

G∗2(λ(1− z))− z

[
h2(0, z)− (G∗1(λ(1− z))− h1(0, z))

d2(0)

1− d1(0)

]
πr(1)

=
zG∗2(λ)

G∗2(λ(1− z))− z

[
1− G∗1(λ(1− z))−G∗1(λ))

1−G∗1(λ)

]
πr(1)

=
zG∗2(λ)(1−G∗1(λ(1− z)))

(G∗2(λ(1− z))− z)(1−G∗1(λ))
πr(1). (52)

The constant πr(1) is obtained from (13). We easily find

πr(1) =
(1− ρ2)(1−G∗1(λ))

ρ1G∗2(λ)
,
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so that by (52)

Nr(z) = (1− ρ2)
z(1−G∗1(λ(1− z)))
ρ1(G∗2(λ(1− z))− z)

. (53)

Finally, by (51)-(53)

T ∗(s) =
(1− ρ2)G∗1(s)
1− ρ2 + ρ1

− λ(1− ρ2)G∗2(s)(1−G∗1(s))
(1− ρ2 + ρ1)(λ(1−G∗2(s))− s)

=
(1− ρ2)(sG∗1(s) + λ(G∗2(s)−G∗1(s)))

(1− ρ2 + ρ1)(s− λ(1−G∗2(s)))
,

which concludes the proof of Corollary 1.

29


