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Abstract

Under the last-in, first-out (LIFO) discipline, jobs arriving later at
a class always receive priority of service over earlier arrivals at any
class belonging to the same station. Subcritical LIFO queueing net-
works with Poisson external arrivals are known to be stable, but an
open problem has been whether this is also the case when external ar-
rivals are given by renewal processes. Here, we show that this weaker
assumption is not sufficient for stability by constructing a family of
examples where the number of jobs in the network increases to infinity
over time.

This behavior contrasts with that for the other classical disciplines:
processor sharing (PS), infinite server (IS), and first-in, first-out (FIFO),
which are stable under general conditions on the renewals of external
arrivals. Together with LIFO, PS and IS constitute the classical sym-
metric disciplines; with the inclusion of FIFO, these disciplines consti-
tute the classical homogeneous disciplines. Our examples show that a
general theory for stability of either family is doubtful.

1 Introduction

Under the preemptive last-in, first-out (LIFO) discipline (or policy), jobs in
a queueing network arriving at a class always receive priority of service over
earlier arrivals at any class belonging to the same station. Service for the
preempted jobs continues after later-arriving jobs have been served. This
rule is quite natural, and corresponds to later occurring tasks always being
given priority over earlier ones, for instance, new jobs being given priority
in a piled stack of work to be done. LIFO is a GAAP accepted accounting
method for inventory.
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The LIFO discipline is one of the four “classical” disciplines that were
analyzed in the famous papers Baskett et al. (1975) and Kelly (1975, 1976),
the other disciplines being processor sharing (PS), infinite server (IS), and
first-in, first-out (FIFO). In these papers, the stability of these four queue-
ing networks was shown when the Poisson input is subcritical, that is, the
corresponding Markov processes are positive recurrent given that work on
the average arrives at a slower rate than it would be served if all servers are
fully active when there are jobs in the network.

Since these papers, substantial progress has been made in showing the
stability of subcritical queueing networks under the PS, IS, and FIFO dis-
ciplines when the input is generalized from Poisson to renewal processes.
However, little is currently known about the stability of the LIFO discipline
in the non-Poisson setting. In this paper, we demonstrate instability for a
family of subcritical LIFO queueing networks by showing that the number
of jobs in the network increases to infinity over time.

To define this family, we first give the network topology and then its
external arrival and service processes. The network consists of four stations,
with a total of six classes, and is pictured in Figure 1. Jobs enter the
network at either Class 1 or Class 4. The jobs arriving at Class 1 are routed
successively through Classes 2 and 3, before leaving the network, and the
jobs arriving at Class 4 are routed successively through Classes 5 and 6
before leaving. Classes 1 and 6 together comprise Station I, Classes 3 and
4 together comprise Station IV, and Classes 2 and 5 each form their own
single-class stations, Stations II and III. Except for the presence of Classes 2
and 5, the network has the same structure as the well-known Rybko-Stolyar
network.

The external arrival and service processes are each symmetrically de-
fined, with jobs entering the upper route following the same rules as those
entering the lower route. For each of the two routes, external arrivals are
given by independent renewal processes, whose interarrival times are i.i.d.
random variables with measure ν given by

ν(dt) = 1
M e−β(t−γM)dt for t ∈ [γM, 2M ], (1)

ν({ 1
M2 }) = 1− 1

M ,

where M is assumed to be large, and β and γ are chosen so that ν has both
measure and mean 1. (One has β > 1, γ < 1, with β ∼ 1, γ ∼ 1 for large
M .)

The service laws at Classes 1, 3, 4, and 6 are all deterministic, whereas
the service laws at Classes 2 and 5 are exponentially distributed, with the
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Figure 1: Squares in top row correspond to Classes 1-3, in order of appear-
ance along their route; similarly, squares in lower row correspond to Classes
4-6, in order of appearance. Classes in left oval belong to Station I, classes
in right oval belong to Station IV; Classes 2 and 5 belong to the one-class
stations, Stations II and III.

means at different classes being given by

m1 = m4 = δ3, m2 = m5 = 1− δ, m3 = m6 = 1− δ + δ3, (2)

where δ = 1/M1/15. We assume that all interarrival and service times are
independent of each other. Since, for small δ,

m1 +m6 = m3 +m4 = 1− δ + 2δ3 < 1, m2 = m5 = 1− δ < 1, (3)

the system is subcritical.
The system is LIFO, with jobs entering a given class always receiving

priority of service over earlier arrivals at any class of its station. (In case
of a “tie”, either priority is allowed.) We assume that the network is pre-
emptive resume, with jobs currently in service being interrupted by arrivals,
and continuing their service in the absence of more recent arrivals. Jobs
originally in the network are assigned an arbitrary ordering for service at
their class.

Denoting by Z(t) the total number of jobs in the network at time t,
Theorem 1 asserts that Z(t)→∞ as t→∞.

Theorem 1. Suppose M is sufficiently large. For any LIFO queueing net-
work with routing as in Figure 1, and external arrival and service processes
as in (1)-(2),

Z(t)→∞ almost surely as t→∞. (4)

The analog of (4) holds for the total work in the network. We comment on
this immediately after the proof of Theorem 3.
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When L = (1− δ + δ3)/δ3 is an integer, one can create a second family
of queueing networks by partitioning the Classes 3 and 6 into L new classes
each, Classes 3.1,...,3.L and 6.1,...,6.L, creating in this manner new Stations
I and IV that each have L + 1 classes (see Figure 2). By immediately
continuing service at Classes 3.(` +1) and 6.(`+1) for jobs departing from
Classes 3.` and 6.`, the new queueing networks thus defined will also have
the LIFO discipline.

The external arrival processes of this second family are again defined
as in (1). The service processes for Classes 1, 2, 4, and 5 are as in the
first family, and have means given by (2). The service times for Classes 3.1
through 3.L and 6.1 through 6.L are deterministic, and satisfy

m3.1 = . . . = m3.L = m6.1 = . . . = m6.L = δ3. (5)

Since the mean service times of each of the classes at Stations I and IV is
equal to δ3, Stations I and IV are of Kelly type, that is, the mean service
times of the classes at the station are equal. The following analog of (3)
holds,

m1+

L∑
`=1

m6.` = m4+

L∑
`=1

m3.` = 1−δ+2δ3 < 1, m2 = m5 = 1−δ < 1, (6)

and so the system is subcritical.
Corollary 1 therefore immediately follows from Theorem 1.

Corollary 1. Suppose M is sufficiently large. For any LIFO queueing net-
work with routing as in Figure 2, external arrival processes as in (1), and
service processes for Classes 1, 2, 4, and 5 as in (2) and Classes 3.` and 6.`
as in (5),

Z(t)→∞ almost surely as t→∞. (7)

1.1 Historical context and some philosophy

The evolution of the theory of multiclass queueing networks has been strongly
influenced by explicit results for the four “classical disciplines”, PS, LIFO,
IS, and FIFO. The first three of these disciplines are symmetric disciplines,
whereas FIFO is a member of the more general family of homogeneous dis-
ciplines. The distinguishing property for homogeneous disciplines is that
the distribution of the ordered position assigned to a job arriving at a sta-
tion and the fraction of service assigned to a job based on its position both
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Figure 2: Squares in top row correspond to Classes 1, 2, and 3.1-3.L, in order
of appearance along their route; similarly, squares in lower row correspond
to Classes 4, 5, and 6.1-6L, in order of appearance. Classes in left circle
belong to Station I, classes in right circle belong to Station IV; Class 2 and
Class 5 belong to the one-class stations, Stations II and III. All classes at a
given station have the same service rule.

do not depend on the class of the job within that station. For symmetric
disciplines, the assigned arrival and service distributions are equal to one
another at each station. (See the original sources Baskett et al. (1975) and
Kelly (1975, 1976, 1979), or the monograph Bramson (2008), for complete
definitions.)

Subcritical networks with a symmetric discipline and Poisson external
arrivals are stable irrespective of the distributions of service times at individ-
ual classes, and the corresponding Markov processes are positive recurrent
with equilibria (i.e., stationary distributions) that have an explicit product
form. Subcritical networks with a homogeneous discipline, Poisson exter-
nal arrivals, and exponentially distributed service times that have the same
mean at a given station are also positive recurrent, with equilibria that have
a similar product form. These two families of disciplines are among the
few disciplines for which the equilibria of multiclass queueing networks are
explicitly computable.

These results contributed to overly rosy expectations for the stability
of subcritical queueing networks for arbitrary work-conserving disciplines,
even though their equilibria were not expected to be explicitly calculable.
However, examples in various settings later showed stability need not follow
from subcriticality (see, e.g., Bramson (1994), Lu and Kumar (1991), Rybko
and Stolyar (1992), Seidman (1994)), including for FIFO networks whose
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classes at a given station have unequal mean service times.
On the other hand, in Dai (1995) and Rybko and Stolyar (1992), a

machinery was developed that enabled one to show stability of queueing
networks in a wide range of settings, where external arrivals were allowed
to consist of renewal rather than Poisson processes, and no assumptions on
the service times of classes were needed. In one such application, subcritical
FIFO networks, with classes at a given station having the same mean service
time, were shown to be stable (Bramson (1996a)). Stability for subcritical
PS networks can be shown in a similar manner, and is discussed in the
appendix. Because of the presence of an infinite number of available servers,
IS queueing networks are stable in all settings. Little is currently known
about the stability of subcritical multiclass queueing networks with the LIFO
discipline.

Theorem 1 of this paper shows that subcritical queueing networks with
the LIFO discipline need not be stable. A consequence is the absence of a
uniform framework for establishing the stability of symmetric disciplines, in
contrast to when input is Poisson. On account of Corollary 1, a subcritical
LIFO network being of Kelly type is also not sufficient for stability. So
there is no uniform framework for establishing the stability of homogeneous
disciplines, again in contrast to the Poisson case.

1.2 Overview of the paper

In Section 2, we construct the state space. Since one needs to keep track of
residual times for all jobs except those at Classes 2 and 5, where one does not
wish to know the residual times, the state space is somewhat nonstandard.

The demonstration of Theorem 1 involves the construction of “cycles”.
One shows, at the end of each cycle, that the state of the process is typically
an approximate multiple of the state at the beginning of the cycle, except
that the roles of Classes 1-3 and Classes 4-6 have been switched. In Section
3, this induction step, Theorem 2, is stated, and Theorem 1 is demonstrated
using Theorem 2.

In Section 4, we provide heuristics for the proof of Theorem 2, avoiding
the technical details. We also remark on the behavior of the queueing net-
work under certain modifications. The content in this section is optional,
but may be helpful to the reader.

Theorem 2 is demonstrated by dividing each cycle into two random time
intervals, [0, S1] and [S1, S1 + S2]. The behavior of the network during the
much longer time interval [0, S1] is analyzed in Section 5, where Theorem
3 is demonstrated; most of the technical work in this paper is devoted to
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showing Theorem 3. The behavior of the network during the much shorter
time interval [S1, S1 + S2] is analyzed in Section 6.

In Subsection 1.1, we were somewhat vague about known stability results
for PS queueing networks. In the appendix, we show stability on a dense
set of service time distributions for subcritical PS queueing networks whose
external arrivals are given by renewal processes. The result follows quickly
from results on the stability of subcritical HLPPS queueing networks in
Bramson (1996b). An extension to all service times does not follow in an
obvious manner.

2 State space construction

In this section, we construct the state space S of the Markov process corre-
sponding to the family of LIFO queueing networks in Figure 1. The space
S consists of points x of the form

x ∈ (Z× R̄× R)∞ × Z2 × R2, (8)

subject to appropriate positivity conditions (R̄ := R ∪ {∞}). Only a finite
number of the coordinates of (Z × R̄ × R)∞, indexed by i, are assumed to
be nonzero. For each such nonzero triple, the first coordinate ki is to be
interpreted as the current class of a job in the network, selected from among
the classes ki = 1, 3, 4, 6. The second coordinate si measures how long ago
such a job entered the class; we set si = ∞ for a job i originally at the
class. The third coordinate vi measures the residual service time for a job
at the class. The first coordinate ki is given in descending order, followed
by si, also in descending order. The coordinates z2 and z5 of Z2 are to be
interpreted as the number of jobs at the two remaining classes, Class 2 and
Class 5; since they comprise single class stations, it is not necessary to keep
track of arrival times of jobs, and since we wish to preserve the memoriless
property of the exponentially distributed service times, we do not include
the residual times of jobs in the state space descriptor. The coordinates u1
and u4 of R2 are the residual interarrival times at Classes 1 and 4.

We equip the state space S with the metric

d(x, x′) =

∞∑
i=1

(
(|ki − k′i|+ |si − s′i|+ |vi − v′i|) ∧ 1

)
(9)

+

2∑
i=1

|zai − z′ai |+
2∑
i=1

|ubi − u
′
bi
|,
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where a1 = 2, a2 = 5, b1 = 1, and b2 = 4. We denote by S the standard
Borel σ-algebra inherited from the metric.

The Markov process underlying the LIFO queueing network in Figure
1 is defined to be the stochastic process X(t), t ≥ 0, whose state at any
time is given by a point xt ∈ S that evolves according to the LIFO rule; the
accompanying filtration Ft is defined in the usual manner. Although this
Markov process is not Feller, it is strong Markov. This is not immediate
obvious; for more detail on the construction of the Markov process and its
strong Markov property, see Bramson (2008), Chapter 4.5. (In our present
setting, the definition of coordinates in (8) is slightly different.)

We denote by zk, k = 1, . . . , 6, the number of jobs in each class and by
z =

∑6
k=1 zk the number of jobs in the network. (z2 and z5 are employed

in (9).) Denote by w3 and w6 the immediate workload at Classes 3 and 6,
that is, the sum of the residual service times of all of the jobs currently at
these classes. (Only the immediate workloads at these classes is used.)

The random analogs of the quantities zk, z, w3, w6, u1, and u4 corre-
sponding to X(t) will be denoted by Zk(t), Z(t), W3(t), W6(t), U1(t), and
U4(t). We will also employ Ak(t) to denote the total number of arrivals to
Class k over times (0, t], and by Dk(t) the total number of departures from
Class k over this time interval.

3 The induction step

In this section, we state the induction step, Theorem 2, and then prove
Theorem 1 assuming Theorem 2. The theorem asserts that, at the random
time T , the number of jobs at Class 5 is a large multiple of the number
originally at Class 2 and there are few jobs or work elsewhere, if δ is small
(and hence M is large).

Theorem 2. Let X(t) be the Markov process associated with the queueing
network in Figure 1 satisfying (1)-(2). Suppose that, for large M , δ =
1/M1/15, and N ≥ 2M/δ,

Z2(0) = N, W3(0) ≤ δ2N,
∑
k 6=2,3

Zk(0) ≤ δN. (10)

Then there exists a stopping time T , satisfying T ∈ [N/3δ, 3N/δ], such that

Z5(T ) ≥ N/4δ, Z1(T ) + Z2(T ) ≤ 103δN, (11)

Z3(T ) = Z4(T ) = 0, W6(T ) ≤ δ3N,
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and
Z(t) ≥ N/4, for all t ∈ [0, T ], (12)

all hold on a set GN with P (GN ) ≥ 1 − Cδe
−cδN for some Cδ, cδ > 0

depending on δ.

Proof of Theorem 1 assuming Theorem 2. SupposeX(0) satisfies the assump-
tions of Theorem 2 for a given N . Since the evolution of jobs along the upper
and lower routes of the network in Figure 1 is symmetric, one can repeat-
edly iterate the theorem by switching the roles of Classes 1-3 with those
of Classes 4-6, and applying the strong Markov property. One obtains in
this manner a sequence of stopping times T0, T1, T2, . . ., with T0 = 0 and
Tn ∈ [(N/3δ)n, (3N/δ)n] for n ≥ 1, such that

Z(t) ≥ (1/4δ)nδN, for all t ∈ [Tn−1, Tn] and n ∈ Z+, (13)

holds on a set G∞N , with

P (G∞N ) ≥ 1−
∞∑
n=1

Cδe
−cδ(1/4δ)nδN . (14)

The right hand side of (14) can be made arbitrarily close to 1 by choosing
N sufficiently large. On G∞N , one has lim inft→∞ Z(t)/t > 0. So, Theorem
1 will follow by showing, on the set where lim inft→∞ Z(t) < ∞, that X(t)
satisfying (10) must eventually occur for some N ≥ N0 and arbitrarily large
N0.

Since ν has a positive density on (γM, 2M) with M large, one can check
that B := {z = 0 and u1 ≤ 1/M2} is accessible, with uniform probability
by a fixed time, from any state x ∈ S with z ≤ z0 and given z0. So, off of the
set where limt→∞ Z(t) =∞, B will be revisited at arbitrarily large times.

Set t1 = 2(2δ3 +1/M2)N0, where N0 is large. We claim that, for X(0) ∈
B,

P
(
X(t1) satisfies (10), for some N ≥ N0

)
≥ e−4N0/M/2. (15)

It follows from (15) and the previous paragraph that, off of the set where
limt→∞ Z(t) =∞, X(t) will eventually satisfy (10) for N ≥ N0 and arbitrar-
ily largeN0. This will complete the proof of the theorem upon demonstration
of (15).

To demonstrate (15), restart X(t) at x ∈ B. Set N ′ = 2N0, and denote
by FN ′ the event on which (a) at Class 1, the firstN ′ non-residual interarrival
times are each 1/M2 (“short”) and the next d2δ3N ′/Me interarrival times
are all at least M (“long”) and (b) at Class 4, the first d(2δ3+1/M2)N ′/Me
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non-residual interarrival times are all long. On FN ′ , only a few jobs enter
the network over (0, t1], other than the N ′ jobs corresponding to short in-
terarrivals. Since short interarrivals occur with probability 1 − 1/M , long
interarrivals with probability 1/M , and δ = 1/M1/15, one can check that

P (FN ′) ≥ e−2N
′/M = e−4N0/M . (16)

The service time of jobs at Class 1 is deterministic with m1 = δ3 >>
1/M . On FN ′ , there will therefore be almost N ′ jobs at Class 1 at time
N ′/M2, and few jobs elsewhere in the network. The service time of jobs at
Class 2 is memoryless with m2 = 1−δ. After a further elapsed time of 2δ3N ′,
there will therefore be, with high probability, few jobs anywhere in the
network except at Class 2, where there will be N jobs with N ≈ N ′ = 2N0.
At Class 3, the immediate workload will be much less than δ2N ′. So, X(t1)
will satisfy the assumptions of (10) for some N , with N ≥ N0. Together
with (16), this implies (15), which completes the proof of the theorem.

4 Basic ideas behind the proof of Theorem 2

The proof of Theorem 2 employs reasoning similar in spirit to that used in Lu
and Kumar (1991) and Rybko and Stolyar (1992), where the number of jobs
in the network increases proportionately over periodic “cycles”, during which
the uneven distribution of jobs “starves” stations for work. The reasoning
is trickier for the LIFO discipline, both because of the basic nature of the
discipline, and because of the possibility that many partially served jobs will
accumulate at some of the classes. Here, we motivate the network topology
in Figure 1, and the choice of arrival and service times in (1) and (2) used
to demonstrate Theorem 2.

The main reason for the choice of uneven interarrival times and short
service times at Class 4 is to in effect create a low priority class there.
Because of the large gaps in arrivals caused by the rare interarrival times of
length at least γM and the much more common extremely short interarrival
times of length 1/M2, overwhelmingly most arrivals are tightly bunched
together, with large gaps in between. Together with the assumptions on
the other classes, this will ensure that most of the arrivals at Class 3 occur
during these gaps and so, because of the LIFO discipline, receive a higher
priority of service than do the bunched together arrivals at Class 4.

In order for this picture to hold, one needs the flow of jobs to Class 3
to be evenly spaced. This is accomplished by the consistent service of jobs
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at Class 2: the service rule there is exponentially distributed and hence
memoriless, which ensures an even flow of jobs to Class 3 as long as Class
2 is not empty. Moreover, since the mean service time at Class 3 is only
slightly greater than it is at Class 2, work can only accumulate slowly at
Class 3. (Many mostly served jobs could conceivably accumulate there.)

The mean service time m2 = 1 − δ at Class 2 is only slightly less than
the mean time for jobs to arrive at Class 1. So, as long as jobs arriving at
Class 1 proceed quickly to Class 2, approximately N/δ jobs will need to be
served at Class 2 before Class 2 is first empty, if Z2(0) = N . So, the time
S1 at which Class 2 first empties will be approximately N/δ.

By time S1, approximately N/δ jobs will have entered the network at
Class 4. The jobs at Class 3 will have priority over most of the jobs arriving
at Class 4; since Class 3 will be empty only a small fraction of the time
before Class 2 is empty, few jobs arriving at Class 4 over (0, S1] will have
completed service by time S1.

As reasoned above, there is comparatively little work remaining at Class
3 at time S1. There are also comparatively few jobs at any of the other
classes, aside from Class 4: Since few jobs are served at Class 4 up until
time S1, Class 5 will experience a minimal load over that time and so will
have few jobs at time S1. For the same reason, few jobs will arrive at Class
6 from Class 5. Since m1 = δ3 << 1, jobs in Class 1 require little service.
Consequently, there will be few jobs at the station that comprises Classes 1
and 6 at time S1.

To sum up: At time S1, Class 4 has approximately N/δ jobs, Class 3 has
comparatively little work remaining, and all other classes have comparatively
few jobs. Moreover, over [0, S1], there will always be at least on the order
of N jobs at either Class 2 or Class 4, and so at least this many jobs in the
network. These conclusions are stated in Theorem 3, which summarizes the
behavior of the queueing network up until time S1.

We designate by T = S1 + S2 the time after S1 at which the station
comprising Classes 3 and 4 is first empty. Because of the relatively little
work at time S1 remaining at Class 3, the short service time δ3 at Class 4,
and the small number of jobs arriving from elsewhere over (S1, T ], S2 will
be of order δ2N . Because of the relatively short timespan [S1, T ], nearly
all of the order of N/δ jobs arriving at Class 5 from Class 4 will still be at
Class 5 at time T . This gives the desired lower bound on Z5(T ) in (11) of
Theorem 2 and the lower bound in (12) on Z(t), for t ∈ (S1, T ]. Relatively
few jobs will have arrived at Class 1 over (S1, T ], and so Z1(T ) +Z2(T ) will
be sufficiently small for (11). By the definition of S2, Z3(T ) = Z4(T ) = 0.

The number of jobs arriving at Class 6, which is of order of magnitude
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δ2N , will nevertheless be too great for the recursion argument we wish to
employ. However, m6 −m5 = δ3 is sufficiently small so that the amount of
work W6(T ) that accumulates at Class 6 over the timespan δ2N of (S1, T ]
is less than δ3N , which is the desired bound on W6(T ) in (11). With this
last bound, we have thus motivated all of the bounds in (11) and (12). This
completes our motivation behind the proof of Theorem 2.

We conclude this section with some remarks on the choices of service
times we have made in (2) and on the stability of the LIFO discipline for
single class networks.

Remark 1 Classes 2 and 5 are stipulated to have exponentially dis-
tributed service times. The proofs of Theorems 1 and 2 would be essentially
the same if we replaced the deterministic times of Classes 1, 3, 4, and 6 by
exponentially distributed service times. However, Corollary 1 would then
not follow from Theorem 1 since the distributions resulting by adding the
service times at Classes 3.1,...,3.L and 6.1,...,6.L would be gamma and not
exponentially distributed.

Remark 2 In this paper, we consider preemptive LIFO, rather than
nonpreemptive LIFO, where a job currently in service at a class completes
its service before more recent arrivals are served. For nonpreemptive LIFO,
Theorem 1 and its corollary continue to hold under the same assumptions.
In that setting, one has the option of replacing the exponentially distributed
service times at Classes 2 and 5 with deterministic times having the same
means, since there can be a most one partially served job at each of these
classes at any given time and therefore no sudden arrival of many jobs at
Classes 3 and 6. Similarly, one no longer needs to employ the immediate
workload rather than the number of jobs for bounds at Classes 3 and 6.

Remark 3 Theorem 1 demonstrates the instability of a family of sub-
critical multiclass queueing networks with the preemptive LIFO discipline.
As stated in Remark 2, an analogous result holds for the nonpreemptive
LIFO discipline. Are subcritical single class queueing networks with either
of these disciplines necessarily stable? For any nonpreemptive discipline of
a single class queueing network, it is easy to see that the order of service
of jobs at a station does not affect the stability of the queueing network,
provided knowledge of their service times is not used. The FIFO discipline
is stable for subcritical single class queueing networks, assuming the exter-
nal arrivals satisfy (59) and (60) (see, e.g., Bramson (2008) for references).
Consequently, so are subcritical single class nonpreemptive LIFO queueing
networks. Conditions under which subcritical single class queueing networks
with the preemptive LIFO discipline are stable or unstable appear not to be
known.
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5 Behavior up until time S1

We demonstrate Theorem 2 by dividing the time interval [0, T ] into two
subintervals, [0, S1] and [S1, T ], where S1 is the first time at which Class 2
is empty. The length of [0, S1] will be of order N/δ, whereas [S1, T ] will be
comparatively short. Most of the effort in showing Theorem 2 will be in
analyzing the behavior of the queueing network over [0, S1], which will be
done in this section. The main result is Theorem 3, which gives bounds on
Zk(S1), for k 6= 3, and W3(S1), as well as a lower bound on Z(t) over [0, S1].

Theorem 3. Let X(t) be the Markov process associated with the queueing
network in Figure 1 satisfying (1)-(2), with initial conditions satisfying those
of Theorem 2 for some N ≥ 2M/δ. Then there exists a stopping time S1,
with S1 ∈ [N/2δ, 2N/δ], such that

Z4(S1) ∈ [N/3δ, 3N/δ], Z2(S1) = 0, (17)

W3(S1) ≤ 7δ2N, Zk(S1) ≤ 7δ2N for k = 1, 5, 6,

and
Z(t) ≥ N/3, for all t ∈ [0, S1], (18)

all hold on a set GS1 with P (GS1) ≥ 1− Cδe−cδN for some Cδ, cδ > 0.

5.1 Two large deviations lemmas

In this subsection, we state two basic large deviation lemmas. The first,
Lemma 1, can be obtained by using the moment generating function and
Markov’s inequality (see, e.g., Theorem 15 and Lemma 5, in Chapter 3 of
Petrov (1975)).

Lemma 1. Let X1, X2, . . . be i.i.d. positive random variables with mean µ
and P (X1 ≥ x) ≤ e−αx for x ≥ x0 and some α, x0 > 0. Set Sn =

∑n
i=1Xi

and β? = β(β ∧ 1). Then there exists c > 0 such that, for all β > 0,

P (|Sn − µn|/n ≥ β) ≤ e−cβ
?n for all n ≥ 0. (19)

Setting Nt = max{n : Sn ≤ t}, one obtains by inverting (19) and a bit
of calculation:

P (|Nt − µ−1t|/t ≥ β) ≤ Ce−cβ
?t for all t ≥ 0, (20)

for appropriate C, c > 0 not depending on β. This bound will be applied
repeatedly in the section to D2(t) and A4(t), as well as to other departure
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and arrival times. Summing (20) over t = t0, t0 + 1, . . . and interpolating in
between, one obtains that, for appropriate C > 0 and each t0 ≥ 0,

P (|Nt − µ−1t|/t ≥ β for any t ≥ t0) ≤ C(β? ∧ 1)−1e−cβ
?t0 . (21)

(The explicit dependence on β in the bounds (19)-(21) will only be used in
Lemma 2 and Proposition 1. Bounds in other applications will be of the
form Cδe

−cδt, where the relationship with β is suppressed.)
For the next lemma, consider a queue at which jobs arrive according to

a rate-(1 + η) Poisson process and each job requires 1 unit of time to be
served before exiting the queue. Let Wt denote the immediate workload at
time t, that is, the amount of time required for all jobs then at the queue
to be served, provided no other jobs arrive. The lemma will be used in
Propositions 1 and 4 to obtain bounds on the state at Classes 3 and 4, until
Class 2 is empty.

Lemma 2. Define Wt as above, with W0 = 0, and set B = {t ≥ 0 : Wt = 0}.
Then, for η ∈ (0, 1] and appropriate C, c > 0,

P (|B| ≥ x) ≤ (C/η2)e−cη
2x for all x ≥ 0, (22)

and

P (Wt ≥ 2ηt for some t ≥ t0) ≤ (C/η2)e−cη
3t0 for all t0 ≥ 0. (23)

Proof. To obtain (22) and (23), we compare the process Wt with Xt = Yt−t,
where Yt is a rate-(1 + η) Poisson process and X0 = 0. Set BX = {t ≥ 0 :
Xt ≤ 0}. Coupling the processes Wt and Xt by allowing the same random
input for each, Wt ≥ Xt for all t. Therefore, (22) will follow by showing its
analog,

P (|BX | ≥ x) ≤ (C/η2)e−cη
2x for x ≥ 0, (24)

for appropriate C, c > 0. Setting Bt = {s ∈ [0, t] : Ws = 0}, one has
Wt −Xt = |Bt| ≤ |B|. Plugging this into (22), one can check that (23) will
follow from

P (Xt ≥ 2ηt for some t ≥ t0) ≤ (C/η2)e−cη
2t0 , (25)

for appropriate C, c > 0.
The bound in (25) follows directly from (21). To show (24), note that,

by integrating (20), ∫ ∞
t0

P (Xt ≤ 0)dt ≤ (C/cη2)e−cη
2t0 , (26)

14



t = 0 t = t0
4 clusters

= 1/M2 ∼M = 1/M2

Figure 3: A realization depicting the arrival times of jobs at either Class 1
or at Class 4, with dots indicating these arrival times. In this case, there
are four clusters Ci overlapping [0, t0]. The distance between jobs within a
cluster is always 1/M2; the distance between clusters is random and approx-
imately M (since γ ∼ 1).

with C, c > 0 not depending on η for η ∈ (0, 1]. On |BX | ≥ x, Xt ≤ 0 must
occur for at least 1 unit of time on t ≥ x− 1, so

P (|BX | ≥ x) ≤
∫ ∞
x−1

P (Xt ≤ 0)dt ≤ (C ′/cη2)e−cη
2x,

for appropriate C ′ > 0, which implies (24) for a new choice of C.

5.2 Demonstration of Theorem 3

In order to demonstrate Theorem 3, we employ six propositions on the
evolution of the queueing network that is due to the continuing service of
jobs at Class 2 over [0, S1]. An outline of the reasoning is given in Section
4.

For Proposition 1, we will employ Lemmas 3 and 4. We begin by observ-
ing that the interarrival times at Class 4 are either very long or very short.
This allows us to decompose the sequence of arrivals into clusters, with an
individual cluster C consisting of a finite sequence of jobs where the inter-
arrival times between members of the cluster are each of length 1/M2, and
these jobs are preceded and followed by interarrival times of length t ≥ γM .
(The first arrival after time 0 is assumed to begin a cluster.) We denote
successive clusters by Ci, i ∈ Z+ (see Figure 3). Since γ ∼ 1, the following
lemma is immediate.

Lemma 3. The number of clusters at Class 4 overlapping the time interval
(0, t0] is at most d2t0/Me for any t0 > 0.

We denote by Li the number of jobs in Ci and by Ui the time of arrival
of the first job of this cluster. Also denote by Yi the amount of time on the
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interval (Ui+Li/M
2, Ui+1]∩ (0, t0] that Class 3 does not have any jobs that

arrived after Ui +Li/M
2. Over (Ui +Li/M

2, Ui+1], all Class 3 jobs arriving
after Ui + Li/M

2 will have priority over the jobs in Class 4 because of the
LIFO rule.

We also introduce Ỹi, which is defined in the same way as Yi, but for
a modified process where the arrival stream of jobs at Class 3 is now given
by a rate-(1 − δ)−1 Poisson process instead of by actual departures from
Class 2, and the time interval (Ui +Li/M

2, Ui+1] corresponding to Ỹi is not
intersected by (0, t0]. One can couple the original and modified processes so
that an arrival at Class 3 for the modified process always occurs whenever
an arrival for the original process occurs. The sequence (Yi)i∈Z+ is not i.i.d.
However, setting

At0 = {Z2(t) > 0 for all t ∈ [0, t0)}, (27)

it is easy to check the following:

Lemma 4. The sequence (Ỹi)i∈Z+ is i.i.d. For ω ∈ At0 and Ui+1 ≤ t0,

Yi = Ỹi; for ω ∈ At0 and all i, Yi ≤ Ỹi.

Proposition 1 provides an upper bound on the number of jobs that can
depart from Class 4 on the event At0 . The bound is due to “most” arriving
jobs at Class 3 having higher priority than “most” jobs at Class 4, and
Class 3 seldom being empty. This reasoning will employ the relatively low
number of clusters of jobs at Class 4 together with there being “few” jobs
in each cluster that can have higher priority than the jobs in Class 3. In the
proposition, the choice of the term δ3 is somewhat arbitrary – we require at
least this power, but δn could instead be used if we defined δ = M1/(n+12).

We denote by Do
4(t) the number of jobs originally in Class 4 that have

departed the class by time t

Proposition 1. Let X(t) be the Markov process associated with the queueing
network in Figure 1 satisfying (1)-(2), with any initial condition. Then, for
appropriate Cδ, cδ > 0,

P (D4(t0) ≥ δ3t0 +Do
4(t0) ;At0) ≤ Cδe−cδt0 , (28)

where At0 is as in (27).

Proof. By time Ui + Li/M
2, all jobs in Ci have arrived at Class 4, and jobs

arriving at Class 3 after then have priority over these jobs. Consequently, the
time over (Ui, Ui+1] that is available for service of jobs in Class 4 is at most
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Li/M
2+Yi. Because of Lemma 4, the dominating sequence (Li/M

2+Ỹi)i∈Z+

is i.i.d.
Each job at Class 4 requires δ3 amount of service. Applying Lemmas 3

and 4, it follows that, on At0 ,

D4(t0)−Do
4(t0) ≤

d2t0/Me∑
i=1

(Li/M
2 + Yi)/δ

3 ≤
d2t0/Me∑
i=1

(Li/M
2 + Ỹi)/δ

3. (29)

It follows quickly from (1) that

P (Li ≥ `) ≤ e−`/M for any ` ≥ 0.

On the other hand, by (22) of Lemma 2, with η = δ3/2,

P (Ỹi ≥ x) ≤ (C/δ6)e−cδ
6x for x ≥ 0,

and some C, c > 0. It follows from these two displays (the main contribution
is from the latter) that the summands on the right hand side of (29) are
dominated by random variables

Vi := (2/cδ9)(Ri + log[2C/δ6]),

where Ri are independent and mean-1 exponentially distributed.
By (19), for y ≥ y0 > 0 and some C ′, c′ > 0 depending on y0,

P

( bt∑
i=1

Ri ≥ bt(1 + y)

)
≤ C ′e−c′bty.

Substituting in Vi for Ri and applying δ = M1/15, it follows from the above
two displays and a bit of computation that

P

( d2t0/Me∑
i=1

Vi ≥ δ3t0
)
≤ C ′exp

{
− c′δ12t0

( c
2
− 2δ3(log[2C/δ6] + 1)

)}
≤ C ′e−cc′δ2t0/4,

with the second inequality holding since c/2 is the dominant term inside of
the large parentheses on the right hand side. The desired inequality (28)
follows from this display and (29).
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We denote by S1 the stopping time at which Z2(t) = 0 first occurs. In
the remainder of this section and in Section 6, we will examine the behavior
of X(S1), and then restart the process there. Our first result provides an
elementary upper bound on S1.

Proposition 2. Let X(t) be the Markov process associated with the queue-
ing network in Figure 1 satisfying (1)-(2), with initial conditions satisfying
Z1(0) + Z2(0) ≤ 2N for some N . Then

P (S1 ≥ 2N/δ) ≤ Cδe−cδN (30)

for appropriate Cδ, cδ > 0.

Proof. For any time t, A2(t) ≤ A1(t) + Z1(0); adding Z2(0) to this gives an
upper bound on the number of jobs to have visited Class 2 by time t. On
the other hand, since the interarrival distribution satisfies (1), with mean 1,
and m2 = 1− δ, it follows from (20) that

P
(
D2(2N/δ) ≤ A1(2N/δ) + Z1(0) + Z2(0) ; Z2(s) > 0 for all s ∈ [0, t]

)
≤ Cδe−cδN ,

for appropriate Cδ, cδ > 0. Off of the exceptional set in the display, S1 <
2N/δ, which implies (30).

The following result is a quick consequence of Propositions 1 and 2. It
provides an upper bound on the number of jobs ever to visit Classes 5 and
6 over t ∈ [0, S1] and is important for establishing the long-term cyclical
growth of Z(t).

Corollary 2. Let X(t) be the Markov process associated with the queue-
ing network in Figure 1 satisfying (1)-(2), with initial conditions satisfying
Z1(0) + Z2(0) ≤ 2N for some N . Then

P
(
D4(S1) ≥ 2δ2N+Z4(0)

)
≤ P

(
D4(S1) ≥ 2δ2N+Do

4(S1)
)
≤ C δe

−cδN

(31)
for appropriate Cδ, cδ > 0. Hence, denoting by VS1 the total number of jobs
ever to be in either Class 5 or Class 6 over [0, S1],

P
(
VS1 ≥ 2δ2N +

∑6

k=4
Zk(0)

)
≤ Cδe−cδN . (32)

We employ Corollary 2 to obtain the following upper bound on Z1(t),
for t ∈ [0, S1], and the following lower bound on S1.
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Proposition 3. Let X(t) be the Markov process associated with the queueing
network in Figure 1 satisfying (1)-(2), with initial conditions satisfying those
of Theorem 2 for some N ≥ 2M/δ. Then

P (Z1(t) ≥ 7δN for some t ∈ [0, S1]) ≤ Cδe−cδN (33)

and
P (S1 ≤ N/2δ) ≤ Cδe−cδN (34)

for appropriate Cδ, cδ > 0.

Proof. The demonstration of (33) is rather long; by employing (33), the
demonstration of (34) will be quick.

Demonstration of (33). For given s, set

As = {Z1(t) = 0 for some t ∈ [s, s+ 3δN ]},
Bs ={Z1(t) ≥ 7δN for some t ∈ [s+ 3δN, s+ 6δN ]}.

We claim that

P (As ∩Bs) ≤ Cδe−cδN and P (Ac
s) ≤ Cδe−cδN (35)

for s ≤ S1 − 3δN and appropriate Cδ, cδ > 0. On As, there is at most time
6δN for at least 7δN jobs to arrive at empty Class 1 in order for Bs to hold,
so the first inequality in the display follows from (1) and (20) applied to
A1(s+ 6δN)−A1(s).

For the second inequality, note that, on account of (10) and (32) of
Corollary 2, there are typically at most 2δN jobs in Class 6 to interfere
with the service of Class 1 jobs over times [s, s + 3δN ], and they require
only time 2δN to be served. Also, the service time of Class 1 jobs is δ3,
Z1(0) ≤ δN and, by (30) of Proposition 2, the number of arrivals by time
s+ 3δN is at most A1(2N/δ). Applyimg (20), the time required to serve all
Class 1 jobs arriving by time S1 is therefore typically at most 3δ2N . Since
2δN + 3δ2N < 3δN , the second inequality follows.

By (35),
P (Bs) ≤ 2Cδe

−cδN .

Denoting by I the set of s that are multiples of 3δN and s ≤ S1 − 3δN , it
follows that

P
(⋃

s∈I
Bs

)
≤ Cδe−cδN (36)

for another choice of Cδ, cδ > 0. The bound in (33), but restricted to
t ∈ [3δN, S1], follows from (36). The extension to t ∈ [0, S1] follows from
(10), (32), and (20) applied to A1(3δN).
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Demonstration of (34). Since N ≥ 2M/δ, one has U1(0) ≤ δN . There-
fore, by (1), (2), and (21),

P
(
A1(t) ≤ (1− δ2)t− 2δN for any t ≥ 0

)
≤ Cδe−cδN , (37)

P
(
D2(t) ≥ (1 + δ + 2δ2)t+ δN for any t ≥ 0

)
≤ Cδe−cδN , (38)

for appropriate Cδ, cδ > 0. Together with Z2(0) ≥ N and (33), (37) and
(38) imply that Z2(t) > 0 for t ≤ N/2δ, off of the exceptional sets in (33),
(37), and (38). This implies (34).

We employ the preceding three propositions to obtain the following upper
bound on W3(S1) and lower bound on Z4(t), for t ∈ [N/3, S1]. We require
a bound on W3(S1) rather than on Z3(S1) because of the possible presence
of many mostly served jobs at Class 3.

Proposition 4. Let X(t) be the Markov process associated with the queueing
network in Figure 1 satisfying (1)-(2), with initial conditions satisfying those
of Theorem 2 for some N ≥ 2M/δ. Then

P
(
W3(S1) ≥ 7δ2N

)
≤ Cδe−cδN (39)

and
P
(
Z4(t) ≤ (1− 5δ)t for some t ∈ [N/3, S1]

)
≤ Cδe−cδN (40)

for appropriate Cδ, cδ > 0.

Proof. Since N ≥ 2M/δ, one has U4(0) ≤ δN . Together with (1) and (21),
this implies

P
(
A4(t) ≤ (1− 4δ)t for some t ≥ N/3

)
≤ Cδe−cδN

for appropriate Cδ, cδ > 0. Together with (28) of Proposition 1, this implies
(40).

Since m2 = 1− δ, m3 −m2 = δ3, and W3(0) ≤ δ2N , it follows from (23)
of Lemma 2 that, for given t0,

P
(
W3(t) ≥ 3δ3t+ δ2N for some t ≥ t0

)
≤ Cδe−cδt0 , (41)

for appropriate Cδ, cδ > 0. By (30) of Proposition 2 and (34) of Proposition
3, S1 ∈ (N/2δ, 2N/δ)c occurs only on an exceptional set. Inequality (39)
follows by applying these bounds together with that in (41).
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The following corollary of Proposition 4 allows us to improve on Corol-
lary 2 by bounding more precisely the number of jobs leaving Class 4 after
time N/3 and the total number of jobs to be in Classes 5 or 6 over [N,S1].

Corollary 3. Let X(t) be the Markov process associated with the queueing
network in Figure 1 satisfying (1)-(2), with initial conditions satisfying those
of Theorem 2 for some N ≥ 2M/δ. Then

P (Do
4(S1) 6= Do

4(N/3)) ≤ Cδe−cδN , (42)

and
P (D4(S1)−D4(N/3) ≥ 2δ2N) ≤ Cδe−cδN (43)

for appropriate Cδ, cδ > 0. Denoting by VNS1
the total number of jobs ever to

be in either Class 5 or Class 6 over [N,S1],

P (VNS1
≥ 2δ2N) ≤ Cδe−cδN . (44)

for a new choice of cδ > 0.

Proof. By (40) of Proposition 4,

P (Z4(t) ≤ Z4(0) for some t ∈ [N/3, S1]) ≤ Cδe−cδN/3

for appropriate Cδ, cδ > 0. So, off of the exceptional set, no job originally
at Class 4 can depart over [N/3, S1] because of the LIFO property, and (42)
follows. Inequality (43) follows from (31) of Corollary 2.

For (44), note that, by (32) of Corollary 2 and the initial conditions of
Theorem 2,

P (VS1 ≥ 3δN) ≤ Cδe−cδN

for appropriate Cδ, cδ > 0. It therefore follows after applying (20) to A1(N)
and D5(N) that, for some stopping time S0 ∈ [N/3, N ],

P (Zk(S0) = 0 for k = 1, 5, 6) ≥ 1− Cδe−cδN

for a new choice of Cδ, cδ > 0. Display (44) follows from this and (43).

Employing (44) of Corollary 3, we obtain the following stronger version
of (33) of Proposition 3.

Proposition 5. Let X(t) be the Markov process associated with the queueing
network in Figure 1 satisfying (1)-(2), with initial conditions satisfying those
of Theorem 2 for some N ≥ 2M/δ. Then

P
(
Z1(t) ≥ 7δ2N for some t ∈ [N,S1]

)
≤ Cδe−cδN . (45)
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Proof. The argument is the same as that for (33) except for minor changes.
For given s, we now set

As = {Z1(t) = 0 for some t ∈ [s, s+ 5δ2N ]},
Bs ={Z1(t) ≥ 7δ2N for some t ∈ [s+ 5δ2N, s+ 6δ2N ]}.

The events As ∩ Bs and Ac
s each occur with low probability: On As, there

is at most time 6δ2N for at least 7δ2N jobs to arrive at empty Class 1 in
order for Bs to hold. On the other hand, because of (44), there are typically
at most 2δ2N jobs in Class 6 to interfere with the service of Class 1 jobs
over times [s, s+ 5δ2N ]. Also, the service time of Class 1 jobs is δ3 and the
time required to serve all of these jobs is typically strictly less than 3δ2N .
So the same reasoning as for (33) implies that As will typically occur.

The remainder of the argument for (45) follows that of the proof of
Proposition 3.

The following proposition estimates Z4(S1) and gives a lower bound on
Z(t) over [0, S1]; it follows quickly from previous results.

Proposition 6. Let X(t) be the Markov process associated with the queueing
network in Figure 1 satisfying (1)-(2), with initial conditions satisfying (10)
of Theorem 2 for some N ≥ 2M/δ. Then

P
(
Z4(S1) ∈ [N/3δ, 3N/δ]c

)
≤ Cδe−cδN (46)

and
P
(
Z(t) ≤ N/3 for any t ∈ [0, S1]

)
≤ Cδe−cδN (47)

for appropriate Cδ, cδ > 0.

Proof. The inequality in (46) follows from the upper and lower bounds on
S1 given in (30) and (34), the lower bound on Z4(t) in (40), and by applying
(20) to A4(t).

Up until time N/2, the inequality for (47) follows from Z2(0) = N and
by applying (20) to D2(t); on [N/2, S1], the inequality follows from (31) and
by again applying (20) to A4(t).

Combining the preceding results, we obtain Theorem 3.
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Proof of Theorem 3. The assertion for S1 follows from (30) of Proposition
2 and (34) of Proposition 3. The assertion for Z4(S1) follows from (46) of
Proposition 6, and that for W3(S1) follows from (39) of Proposition 4. The
assertion for Zk(S1), for other k, follows from (44) of Corollary 3, (45) of
Proposition 5, and Z2(S1) = 0. The assertion for Z(t) follows from (47) of
Corollary 6.

6 Demonstration of Theorem 2

Proposition 7. Let X(t) be the Markov process associated with the queueing
network in Figure 1 satisfying (1)-(2). Suppose that, for some N and a ∈
[1, N ],

Z4(0) = N, W3(0) ≤ aδ3N,
∑
k 6=3,4

Zk(0) ≤ aδ3N. (48)

Then there exists a stopping time S2, with S2 ≤ 4aδ2N , such that

Z5(S2) ≥ (1− 5aδ2)N, Z1(S2) + Z2(S2) ≤ 5aδ2N, (49)

Z3(S2) = Z4(S2) = 0, W6(S2) ≤ 10aδ5N,

and
Z(t) ≥ (1− 5aδ2)N, for all t ∈ [0, S2], (50)

all hold on a set GS2 with P (GS2) ≥ 1− Cδe−cδN for some Cδ, cδ > 0.

Proof. By showing that, off of an exceptional set, the amount of work ever
to be present at Station IV over [0, 4aδ2N ] is strictly less than 4aδ2N , it
will follow that

Z3(t) = Z4(t) = 0 for some t ≤ 4aδ2N, (51)

which implies the first part of the claim by setting S2 equal to the first such
t.

By (20),

P
(
A1(4aδ

2N) ≥ 4aδ2(1 + δ2)N
)
≤ Cδe−cδN (52)

for appropriate Cδ, cδ > 0. By (48), off of this exceptional set, the number
of jobs arriving at Class 3 over (0, 4aδ2N ] is at most 4aδ2

(
1 + δ/4 + δ2

)
N .

Since m3 = 1− δ+ δ3, it follows from this that the amount of work arriving
at Class 3 over (0, 4aδ2N) is at most

4aδ2
(
1 + δ/4 + δ2

)(
1− δ + δ3

)
N ≤ 4aδ2

(
1− 3δ/4 + δ2

)
N ; (53)
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together with W3(0) ≤ aδ3N , this implies that the total amount of work
ever to be at Class 3 over [0, 4aδ2N ] is at most 4aδ2(1− δ/2 + δ2)N .

The analog of (52), but for Class 4, togther with m4 = δ3 and Z4(0) = N ,
implies that the total amount of work ever to be at Class 4 over [0, 4aδ2N ]
is at most

δ3
(
N + 4aδ2(1 + δ2)N

)
.

Adding this bound to the bound in (53) shows that the total amount of
work ever to be at Station IV over [0, 4aδ2N ] is at most

4aδ2
(
1− δ/4 + 2δ2

)
N < 4aδ2M,

which implies (51).
By applying (20) to A1(S2) and Z1(0) + Z2(0) ≤ aδ3N ,

P (Z1(S2) + Z2(S2) ≥ 5aδ2N) ≤ Cδe−cδN

and, by applying (20) to D5(S2) and the definition of S2,

P (Z5(S2) ≤ (1− 5aδ2)N) ≤ Cδe−cδN , (54)

for some Cδ, cδ > 0. Moreover, because of m1 = m6 − m5 = δ3 and the
above two bounds on A1(S2) and D5(S2), the total amount of work ever to
be at Station I over [0, S2], and hence at Class 6, is at most

2δ3 · 5aδ2N = 10aδ5

off an exceptional set. Since Z3(S2) = Z4(S2) = 0 by the definition of S2,
this completes the demonstration of (49). The same reasoning as for (54)
implies (50), which completes the proof of the proposition.

The proof of Theorem 2 follows quickly from Theorem 3 and Proposition
7 by setting N = Z4(S1) and a = 63 in Proposition 7. (The factor 63 is
used because of the possible range of 9 for Z(S1) in (49) and the coefficient
7 in the bounds on Zk(S1).)

Proof of Theorem 2. Setting T = S1 + S2, the lower bound on T is imme-
diate from Theorem 3 and the upper bound also follows because S2 ≤ N off
of the exceptional set in Proposition 7. The bound on Z5(T ) follows from
the lower bound on Z4(S1) in (17) and the lower bound on Z5(S2) in (49).
The bound on Z1(T ) + Z2(T ) follows from that in (17) with a = 63; since
Station IV is empty at time T , Z3(T ) = Z4(T ) = 0. The bounds on W3(S1)
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in (17) and W6(S2) in (49) imply the bound on W6(T ). The lower bound
on Z(t) over [0, T ] follows from the corresponding bounds in (18) and (50).

Remark 4 We commented after Theorem 1 that the analog of (4) holds
for the total amount of work in the network. More precisely, we denote by
W(t) the total workload in the network at time t, that is, the sum of the
immediate workload due to the residual service times of jobs currently at
their respective classes, together with the service times of these jobs at all
classes they will visit before leaving the network. Then

W(t)→∞ almost surely as t→∞. (55)

We sketch here the argument for (55), using bounds from the demon-
stration of Theorem 2. Under the assumptions in (10) of Theorem 2, the
reasoning for (47) of Proposition 6 implies that

P
(
both Z2(t) ≤ N/3 and Z4(t) ≤ N/3 for any t ∈ [0, S1]

)
≤ Cδe−cδN

(56)
and the reasoning for (54) of Proposition 7 implies that

P
(
Z4(t) + Z5(t) ≤ (1− 5aδ2)N for any t ∈ [S1, T ]

)
≤ Cδe−cδN , (57)

where, in each case, Cδ, cδ > 0. In particular, (56) was obtained by bounding
the number of jobs at Class 2, at time 0, that can leave Class 2 over [0, N/2],
and the number of jobs at Class 4, at time N/2, that can leave Class 4 over
[N/2, S1]; and (57) was obtained by bounding the number of jobs that can
leave Class 5 over [S1, T ].

The service laws at Classes 2 and 5 are each exponentially distributed
with mean 1 − δ, and jobs currently at Class 4 must pass through Class
5 before leaving the network. Together with the previous paragraph and
elementary large deviations estimates, these observations imply that

P (W(t) ≤ N/6 for any t ∈ [0, T ]) ≤ Cδe−cδN (58)

for appropriate Cδ, cδ > 0. The limit (55) follows from (58) and the same
induction argument as for (14) in the proof of Theorem 1.

7 Appendix

As mentioned in Subsection 1.1, the processor sharing (PS) discipline is sta-
ble for all subcritical queueing networks with Poisson input and exponen-
tially distributed service times; its equilibrium distribution can be written
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explicitly in its famous “product form”. As with symmetric queueing net-
works in general, the exponentially distributed service law can be relaxed to
a mixture of Erlang distributions. (An Erlang distribution is the distribution
of a sum of i.i.d. exponentially distributed random variables.) This gener-
alization employs the method of stages (see, e.g., Bramson (2008), Kelly
(1979)), and the resulting equilibria are again explicit. It is not difficult to
check that mixtures of Erlang distributions are dense in the weak topology
in the set of distribution functions (see, e.g., Exercise 3.3.3 in Kelly (1979).)

Consider a subcritical queueing network with Poisson input, but arbi-
trary service distribution. Because of the explicit nature of the equilibria
for mixtures of Erlang distributions, one can choose a sequence of queueing
networks whose service distributions converge to the service distributions of
the given network and the corresponding sequence of equilibria is tight. Be-
cause of this, the above representation of equilibria extends to all subcritical
PS queueing networks with Poisson input (Barbour (1976)). In particular,
these queueing networks with general service distributions are stable.

This explicit representation no longer holds when external arrivals are
generalized to renewal processes. However, for networks with general in-
terarrival distributions (assuming only (59) and (60) below) but where the
service times are exponentially distributed, one can compare PS networks
with networks with the head-of-the-line processor sharing (HLPPS) disci-
pline. The service rule for the HLPPS discipline is the same as that for PS,
except that all service a class receives is devoted to the earliest arriving job
at that class, rather than being spread out uniformly among jobs at that
class. When the service distributions are exponentially distributed, the spe-
cific rule assigning service within a class does not affect the rate at which
jobs leave the class, and so processes with the PS and HLPPS disciplines
and exponentially distributed service times have the same law.

The stability of subcritical HLPPS networks can be shown under interar-
rival distributions satisfying (59) and (60), and general service distributions
by employing the standard machinery of fluid limits (Corollary 1 of Theorem
1, in Bramson (1996b)). This technique unfortunately produces little qual-
itative information about the nature of the equilibria for the corresponding
queueing networks.

In this appendix, we make two observations. First, that the connection
between the PS and HLPPS disciplines, together with the method of stages,
enables one to quickly show, using known results, the stability of subcritical
PS networks, with interarrival times satisfying (59) and (60), for a dense
family of service distributions. This is done in Proposition 9 below.

The second observation is that it nevertheless appears to be difficult to
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extend this result to all service distributions. One cannot use the above
argument that was applied for Poisson input without somehow first showing
the tightness of the equilibria for the corresponding sequence of queueing
networks. Because of lack of a direct characterization of these equilibria,
it is not clear how to proceed. Nevertheless, based on “obvious” intuition,
such stability should hold for subcritical PS queueing networks with both
general renewal input and service distributions.

For Proposition 9, we first state Corollary 1 of Theorem 1 (Bramson
(1996b)) when the service times are exponentially distributed. Two assump-
tions on the interarrival times are required: The interarrival time distribu-
tions are unbounded, that is, denoting by ξk(i), i ∈ Z+, the i.i.d. interarrival
times at a class k with external arrivals,

P (ξk(1) ≥ x) > 0 for all x. (59)

Moreover, for some `k > 0 and non-negative qk(·), with
∫∞
0 qk(x)dx > 0,

P (ξk(1) + · · ·+ ξ(`k) ∈ dx) ≥ qk(x)dx, (60)

that is, the above sum dominates Lebesque measure in an appropriate sense.
We note that both properties are only needed to ensure that all states com-
municate with one another; they are not needed to show that the total
number of jobs in the network Z(t) is tight (without these conditions, the
residual interarrival times could synchronize in some manner).

Proposition 8. Any subcritical HLPPS queueing network with exponen-
tially distributed service times and whose external interarrival times satisfy
(59) and (60) is stable.

In Section 1, LIFO queueing networks, with routing given by Figure
1, were reinterpreted as LIFO networks, with routing given by Figure 2,
by decomposing the service time at a class into service times at successive
classes at the same station. Since the PS discipline is symmetric, the same
reasoning can be applied to it as well; in fact, since service is assigned
uniformly to all jobs within a station, it is easy to see that any reclassification
of classes within a station will not affect service.

This reasoning can be applied to service times that are mixtures of Er-
lang distributions, as in the method of stages. One thus extends results
on the equilibria for subcritical PS networks with renewal external arrivals
and exponentially distributed service times to subcritical PS networks with
renewal external arrivals and service times that are mixtures of Erlang dis-
tributions. This reasoning was applied for Poisson external arrivals (see,

27



e.g., Kelly (1979)). In the current setting, one does not obtain an explicit
formula for equilibria, but stability nevertheless follows:

Proposition 9. Any subcritical PS queueing network whose external inter-
arrival times satisfy (59) and (60) and whose service times are mixtures of
Erlang distributions is stable.

Proof. By Proposition 8, any HLPPS network whose external interarrivals
satisfy (59) and (60) and whose service times are exponentially distributed
is stable. By the above reasoning, the same queueing network, but with the
PS rather than the HLPPS discipline, is also stable. On account of the PS
discipline, the evolution of a queueing network will be the same when classes
at a given same station are combined into a single class. It follows from this
that a subcritical PS network whose external interarrival times satisfy (59)
and (60) and whose service times are mixtures of Erlang distributions will
be stable.
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