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Abstract

A“scheduled” arrival process is one in which the nth arrival is scheduled for time n, but

instead occurs at n+ ξn , where the ξj ’s are iid. We describe here the behavior of a single server

queue fed by such traffic in which the processing times are deterministic. A particular focus

is on perturbation with Pareto-like tails but with finite mean. We obtain tail approximations

for the steady-state workload in both cases where the queue is critically loaded and under a

heavy-traffic regime. A key to our approach is our analysis of the tail behavior of a sum of

independent Bernoulli random variables with parameters of the form pn ∼ c n−α as n→ ∞, for

c > 0 and α > 1.

1 Introduction

In conventional queueing models, it is frequently assumed that the exogenous arrivals to the system

are described by a renewal (counting) process. Specifically, the sequence χ = (χn : n ≥ 1) of inter-

arrival times of successive customers is assumed to be a sequence of independent and identically

distributed (iid) non-negative random variables (rv’s). More complex (arrival) traffic models can

be obtained by assuming that the χj ’s are Markov-dependent or form a stationary time series.

While such traffic models are frequently appropriate, there are some modelling settings in which

one may seek alternatives. One such setting is that in which arrivals are scheduled in advance; for

example, an outpatient clinic. Patients are typically scheduled to arrive at regular fifteen or twenty

minute intervals. Of course, some patients arrive early for their appointments, and others arrive

late, so that there is some random variation present. A natural traffic model to adopt here is to

assume that the nth patient is scheduled to arrive at the clinic at time nh, but actually arrives

at time nh + ξn, where ξ = (ξn : n ≥ 0) is a stationary sequence of rv’s. We call such an arrival
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process a “scheduled traffic model”, and we refer to the ξn’s as the (random) perturbations about

the schedule. Given our terminology, it therefore seems natural to use the notation S/M/1, S/G/1,

and so forth to refer to a single-server queue in which the arrivals follow a scheduled traffic model,

and in which the processing times are exponential, generally distributed, etc.

Scheduled traffic is described in Cox and Smith (1961) as a possible arrival model to a queue.

However, no analysis is offered for it. Chen et al. (2002) consider an application of the S/D/1

queue to the air traffic control space in the vicinity of an airport, and show that the S/D/1 queue

is frequently stable even when ρ = 1.More recently, Araman and Glynn (2012) show that the arrival

counting process corresponding to a scheduled traffic arrival process with infinite mean Pareto-like

perturbations converges to a fractional Brownian motion with H < 1/2. They also obtain a heavy

traffic limit theorem for a single server queue fed by such traffic. Our primary goal here is the

analysis of queues fed by scheduled traffic when the perturbations have finite mean.

It turns out that in the context of heavy traffic theory, a single server queue fed by a scheduled

traffic with i.i.d. service times, (i.e., S/G/1 queue) behaves exactly the same as a D/G/1 queue.

In that setting, the stochasticity of the i.i.d. random service times dominates the randomness

present in the scheduled arrival process. This has been already established in the case where

the perturbations have infinite mean (see, Araman and Glynn (2012)). We reach here a similar

conclusion for the case of finite-mean perturbations, the details of which are relegated to the last

section. Moreover, in a separate work, we show that the tail asymptotics of the waiting times in

an S/G/1 queue is again the same as that of a D/G/1 queue. In view of all this, and in order to

highlight and expose the impact of scheduled traffic on a queueing system, our primary focus in

this paper is on a single server queue with deterministic service times, (i.e., an S/D/1 queue.)

A recent paper by Honnappa et al. (2018) studies what they call transitory queueing and, in this

context, introduces scheduled traffic, as one case of particular interest. Specifically, they consider

a queueing system that faces a finite number of scheduled arrivals during a given finite horizon

and restrict themselves to perturbations that are uniformly distributed. They develop fluid and

diffusion limits by scaling the number of scheduled arrivals while keeping the horizon and the

perturbations untouched. By doing so, the perturbations become increasingly large relatively to

the duration of the scheduled interarrival times. This leads to an asymptotic regime that is very

different than ours. We also note the work on optimized appointment scheduling in outpatient

care (e.g., Zacharias and Armony (2017) and Kemper et al. (2014)). These works introduce also

uncertainty to an initial traffic that is deterministically scheduled. Zacharias and Armony (2017)

model the process of taking an appointment, as well as the resulting in-clinic queueing that is then

created. They assume that only a fraction of those scheduled will show up, but those showing

up follow a renewal-like process. Kemper et al. (2014) suggest a procedure for optimal regularly

scheduled appointments that will be feeding a D/G/1 like queue. They discuss how to adapt this

procedure when arrivals are perturbed by an i.i.d. r.v. that they assume to be substantially smaller

than a typical job duration.

In the next section, we present some properties of scheduled traffic. We establish a close

connection between scheduled traffic and sums of Bernoulli random variables. In Section 3 we study

the logarithmic and exact tail asymptotics for sums of independent Bernoulli random variables with
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probabilities of the form pn ∼ c n−α as n → ∞, for c > 0 and α > 1. The results we obtain there

allow us to infer the tail asymptotics of the arrival counting process associated with scheduled

traffic. We next analyze the behavior of a single server queue when fed by a scheduled traffic.

Specifically, in Sections 4 and 5 we investigate the S/D/1 queue, and obtain limiting results for the

workload, both when the queue is critically loaded and under a heavy traffic regime. Finally, in

Section 6, we discuss the S/G/1 queue with random service times, and argue that under a heavy

traffic regime, such a queue behaves identically to the corresponding D/G/1 queue.

2 Properties of Scheduled Traffic

Let (ξj : j ∈ Z) be an i.i.d. sequence of perturbations. We note that independence of the ξj’s

seems plausible in many settings, given that perturbation j is typically determined by decisions or

preferences that are idiosyncratic to consumer j. Given the ξj’s, we define the random measure Ñ

via

Ñ(A) =
∑

j

I(j + ξj + U ∈ A),

where U is a uniform r.v. on [0, 1] independent of the ξj’s. It is easily argued that Ñ is time-

stationary, in the sense that Ñ(·+ t)
D
= Ñ(·) for t ∈ R (where

D
= denotes equality in distribution.)

We further define the counting process N =
(
N(t) : t ≥ 0

)
via N(t) = Ñ

(
(0, t]

)
; N(t) counts the

cumulative number of arrivals to the system in (0, t]. Our focus, in this section, is on the scheduled

arrival process N .

We start by noting that regardless of whether ξ0 has infinite mean or not, N is a unit intensity

counting process. Specifically,

EN(t) =
∑

j

∫ 1

0
P
(
j + x+ ξj ∈ (0, t]

)
dx

=
∑

j

∫ 1

0
P
(
j + x+ ξ0 ∈ (0, t]

)
dx

=

∫ ∞

−∞
P
(
r + ξ0 ∈ (0, t]

)
dr

= E

∫ ∞

−∞
I
(
r ∈ (−ξ0, t− ξ0]

)
dr

= t.

In fact, regardless of the tails of the ξj’s, the counting process N has light tails. In particular,

the moment generating function of N(t) is always finite-valued. Specifically, the independence of

the ξj’s ensures that for any θ,
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log (E exp(θ N(t))) =
∑

j

log

(∫ 1

0
E exp

(
θ I

(
j + x+ ξj ∈ (0, t]

))
dx

)

=
∑

j

log

(∫ j+1

j
E exp

(
θ I

(
r + ξ0 ∈ (0, t]

))
dr

)

=
∑

j

log

(
1 + (eθ − 1)

∫ j+1

j
P(r + ξ0 ∈ (0, t]) dr

)

≤ (eθ − 1)
∑

j

∫ j+1

j
P(r + ξ0 ∈ (0, t]) dr = (eθ − 1) t.

In order to obtain insight into the dependence structure of N , we next study its covariance

properties. Set ∆N(t) = N(t)−N(t− 1) for t ≥ 1, and recall that

Cov(∆N(1),∆N(t))

= ECov
(
(∆N(1),∆N(t))|U

)
+ Cov

(
E(∆N(1)|U),E(∆N(t)|U)

)
;

(2.1)

see p. 392 of Ross (2015). Noting that

∆N(t) =
∑

j

I
(
j + ξj + U ∈ (t− 1, t]

)

=
∑

j

I
(
j − ⌊t⌋+ ξj + U ∈ (t− ⌊t⌋ − 1, t− ⌊t⌋]

)

D
=

∑

k

I
(
k + ξk + U ∈ (t− ⌊t⌋ − 1, t− ⌊t⌋]

)
,

it is evident that E(∆N(t)|U) depends on t only through t − ⌊t⌋. The second term in (2.1) does

not decay to zero as t → ∞ and it reflects the correlation due to the common random placement

of the time origin associated with U . The more informative term on the right-hand side of (2.1) is

Cov
(
(∆N(1),∆N(t))|U

)
. Note that for t ≥ 2,

Cov
(
(∆N(1),∆N(t))|U

)

=
∑

i,j

P(i+ ξi + U ∈ (0, 1], j + ξj + U ∈ (t− 1, t]|U)

−
∑

i,j

P(i+ ξi + U ∈ (0, 1])P(j + ξj + U ∈ (t− 1, t]|U)

=
∑

i 6=j

P(i+ ξi + U ∈ (0, 1], j + ξj + U ∈ (t− 1, t]|U)

−
∑

i,j

P(i+ ξi + U ∈ (0, 1])P(j + ξj + U ∈ (t− 1, t]|U)

= −
∑

i

P(i+ ξ0 + U ∈ (0, 1]|U)P(i + ξ0 + U ∈ (t− 1, t]|U),

(2.2)

so the conditional covariance is always non-positive. This is intuitively reasonable, since scheduled

traffic has the characteristic that if an abnormally large number of customers arrive in an interval,

this reduces the number available to arrive in a subsequent interval. We can now use (2.2) to
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develop asymptotics for the conditional covariance.

Proposition 1

i.) Suppose that ξ0 has a bounded density for which there exists positive constants c1, c2, α1, α2

such that

f(x) ∼ c1 x
−α1−1,

f(−x) ∼ c2 x
−α2−1

as x→ ∞. If α1 < α2, then

Cov
(
(∆N(1),∆N(n))|U

)
∼ −c1 n−α1−1

as n→ ∞, whereas if α2 < α1, then

Cov
(
(∆N(1),∆N(n))|U

)
∼ −c2 n−α2−1

as n→ ∞. If α1 = α2, then

Cov
(
(∆N(1),∆N(n))|U

)
∼ −(c1 + c2)n

−α1−1

as n→ ∞.

ii.) Suppose that ξ0 has a bounded density f for which there exists positive constants d1, d2, β1, β2

such that

f(x) ∼ d1 e
−β1 x,

f(−x) ∼ d2 e
−β2 x

as x→ ∞. If β1 < β2, then

Cov
(
(∆N(1),∆N(n))|U

)
∼ −e−β1 n d1

β1
(eβ1 − 1)

∑

j

e−β1 (j−U)
P(ξ0 + U ∈ (j − 1, j]|U)

as n→ ∞, whereas if β2 < β1, then

Cov
(
(∆N(1),∆N(n))|U

)
∼ −e−β2 n d2

β2
(1− e−β2)

∑

j

e−β2 (j+U)
P(ξ0 + U ∈ (j − 1, j]|U)

as n→ ∞. If β1 = β2, then

Cov
(
(∆N(1),∆N(n))|U

)
∼ −n e−β1 (n+1) d1 d2

β21
(1− e−β1)2

as n→ ∞.

5



Proof: According to (2.2), the conditional covariance is given by

−
∑

j

P(ξ0 + U ∈ (j − 1, j]|U)P(ξ0 + U ∈ (n+ j − 1, n + j]|U)

=−
∑

j>−n/2

P(ξ0 + U ∈ (j − 1, j]|U)P(ξ0 + U ∈ (n + j − 1, n + j]|U)

−
∑

k≤n/2

P(ξ0 + U ∈ (k − n− 1, k − n]|U)P(ξ0 + U ∈ (k − 1, k]|U)

Given our bounded density assumption, the Bounded Convergence Theorem implies that

nα1+1
P(ξ0 + U ∈ (n+ j − 1, n + j]) → c1

as n → ∞, and
(
nα1+1

P(ξ0 + U ∈ (n + j − 1, n + j]) : j > −n/2
)
is uniformly bounded. Another

application of the Bounded Convergence Theorem therefore implies that,

nα1+1
∑

j>−n/2

P(ξ0 + U ∈ (j − 1, j])P(ξ0 + U ∈ (n+ j − 1, n+ j]|U) → c1

as n→ ∞. Similarly,

nα2+1
∑

k≤n/2

P(ξ0 + U ∈ (k − n− 1, k − n]|U)P(ξ0 + U ∈ (k − 1, k]|U) → c2

as n→ ∞, proving part i.).

For part ii.), suppose first that β1 < β2 and note that
∑

j

e−β1j P(ξ0 + U ∈ (j − 1, j]|U) <∞.

Furthermore, our assumption on f guarantees that

eβ1n P(ξ0 + U ∈ (n+ j − 1, n + j]|U) → d1
β1

(eβ1 − 1) e−β1(j−U)

as n→ ∞, and
(
eβ1j P(ξ0+U ∈ (j− 1, j]|U) : j ≥ 0

)
is uniformly bounded. Applying the Bounded

Convergence Theorem, we conclude that

eβ1 n
∑

j>−n

P(ξ0 + U ∈ (j − 1, j]|U)P(ξ0 + U ∈ (n+ j − 1, n+ j]|U)

=
∑

j>−n

P(ξ0 + U ∈ (j − 1, j]|U) e−β1j · eβ1 (n+j)
P(ξ0 + U ∈ (n+ j − 1, n + j]|U)

→ d1
β1

(eβ1 − 1) eβ1U
∑

j

e−β1j P(ξ0 + U ∈ (j − 1, j]|U)

as n→ ∞. Similarly,

eβ2 n
∑

k<0

P(ξ0 + U ∈ (k − n− 1, k − n]|U)P(ξ0 + U ∈ (k − 1, k]|U)

→ d2
β2

(1− e−β2) e−β2U
∑

k<0

P(ξ0 + U ∈ (k − 1, k]|U) eβ2 k
(2.3)
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as n→ ∞, thereby establishing that the conditional covariance satisfies

eβ1n
∑

j

P(ξ0 + U ∈ (j − 1, j]|U)P(ξ0 + U ∈ (n+ j − 1, n + j]|U)

→ d1
β1

(eβ1 − 1)
∑

j

e−β1(j−U)
P(ξ0 + U ∈ (j − 1, j]|U)

as n→ ∞. The case where β2 < β1 can be handled identically.

To handle the case where β1 = β2, we write the conditional covariance as

−
∑

j≥0

P(ξ0 + U ∈ (j − 1, j]|U)P(ξ0 + U ∈ (n+ j − 1, n + j]|U)

−
∑

−n≤j<0

P(ξ0 + U ∈ (j − 1, j]|U)P(ξ0 + U ∈ (n+ j − 1, n+ j]|U)

−
∑

k<0

P(ξ0 + U ∈ (k − n− 1, k − n]|U)P(ξ0 + U ∈ (k − 1, k]|U).

Relation (2.3) shows that the third term is of order O(e−β2 n) as n→ ∞; a similar argument proves

that the first term is of order O(e−β1 n). To handle the second term, we write it as

−
∑

−n≤j<−n/2

P(ξ0 + U ∈ (j − 1, j]|U)P(ξ0 + U ∈ (n+ j − 1, n+ j]|U)

−
∑

−n/2≤j<0

P(ξ0 + U ∈ (j − 1, j]|U)P(ξ0 + U ∈ (n+ j − 1, n + j]|U)

=−
∑

0≤k<n/2

P(ξ0 + U ∈ (k − n− 1, k − n]|U)P(ξ0 + U ∈ (k − 1, k]|U)

−
∑

−n/2≤j<0

P(ξ0 + U ∈ (j − 1, j]|U)P(ξ0 + U ∈ (n+ j − 1, n + j]|U).

(2.4)

But the second term above equals

−
∑

−n/2≤j<0

P(ξ0 + U ∈ (j − 1, j]|U)
d1
β1

(eβ1 − 1) e−β1(n+j−U)
(
1 + o(1)

)
,

as n→ ∞, where the o(1) term is uniform in −n/2 ≤ j < 0. So this sum equals

−
(
1 + o(1)

)
e−β1 n

∑

−n/2≤j<0

P(ξ0 + U ∈ (j − 1, j]|U)
d1
β1

(eβ1 − 1) e−β1(j−U).

Since β1 = β2, P
(
ξ0 + U ∈ (j − 1, j]|U

)
eβ1j → d2

β1
(1 − e−β1) e−β1U as j → −∞. Consequently, the

second term is asymptotic to −e−β1 (n+1)(n/2) d1 d2
β2
1

(1− e−β1)2 as n→ ∞. A similar analysis works

for the first term in (2.4), proving part ii.) for β1 = β2.

As a consequence of Proposition 1 i.), we see that if min{α1, α2} ≤ 1, the conditional autocorre-

lations are non-summable, indicating long-range dependence. This is the parameter range covered
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by Araman and Glynn (2012), in which it was established that N(·) satisfies a functional limit

theorem with fractional Brownian motion having H < 1/2 as a limit.

We turn next to a key representation for N that holds only when E|ξ0| < ∞. In preparation

for stating this result, let

E(t) =
∑

i+U>t

I(i+ ξi + U ≤ t)

L(t) =
∑

i+U≤t

I(i+ ξi + U > t).

The r.v. E(t) represents the total number of early customers at time t, who have arrived earlier than

scheduled, while L(t) is the total number of late customers that will arrive after t but were scheduled

to arrive before t. The Borel-Cantelli lemma makes clear that E(t) is finite-valued a.s. if and only

if Eξ−0
∆
= Emax(−ξ0, 0) <∞ while L(t) is finite-valued a.s. if and only if Eξ+0

∆
= Emax(ξ0, 0) <∞.

Furthermore,
(
(E(t),L(t)) : t ∈ R

)
is a time-stationary process, where for every t, E(t) and L(t)

are independent random variables.

Proposition 2 Suppose that E|ξ0| <∞. Then, for t ≥ 0,

N(t)− t =
( ∑

i+U∈(0,t]

1
)
− t+

(
E(t)− L(t)

)
−

(
E(0)− L(0)

)
. (2.5)

Proof: Observe that

N(t)− t =
∑

i+U∈(0,t]

I(i+ ξi + U ∈ (0, t]) +
∑

i+U>t

I(i+ ξi + U ∈ (0, t])

+
∑

i+U≤0

I(i+ ξi + U ∈ (0, t]) − t

=
∑

i+U∈(0,t]

(
1− I(i+ ξi + U > t)− I(i+ ξi + U ≤ 0)

)
− t

+
∑

i+U>t

(
I(i+ ξi + U ≤ t)− I(i+ ξi + U ≤ 0)

)

+
∑

i+U≤0

I(i+ ξi + U > 0)− I(i+ ξi + U > t).

(2.6)

We now combine the first indicator sum with the sixth (to obtain −L(t)), and the second indicator

sum with the fourth (to obtain −E(0)), thereby proving the result.

We can now prove that N(t)− t converges weakly as t→ ∞, when we let t → ∞ in such a way

that t− ⌊t⌋ is constant.

Theorem 1 Suppose that E|ξ0| <∞, and fix s ∈ [0, 1). Then,

N(n+ s)− (n+ s) ⇒ −s+ I(U ≤ s) +
(
E ′(s)− L′(s)

)
−

(
E(0)− L(0)

)

as n→ ∞, where E ′(s),L′(s), E(0),L(0) are independent of one another given U , and E ′(s)
D
= E(0),

L′(s)
D
= L(0).
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Proof: Recall that

N(n+ s)− (n+ s) =
∑

i+U∈(0,n+s]

1− (n+ s) + (E(n + s)− E(0))− (L(n + s)− L(0)).

We start by observing that

∑

i+U∈(0,n+s]

1− (n+ s) = −s+ I(U ≤ s)

for n ∈ Z+, s ∈ [0, 1). Furthermore, if kn is an integer-valued sequence such that kn/n→ ν ∈ (0, 1)

as n→ ∞, we can write

(
E(n+ s)− E(0),L(n + s)− L(0)

)

=
( ∑

i+U>n+s

I(i+ U + ξi ∈ (0, n + s])−
∑

i+U∈(0,n+s]

I(i+ U + ξi ≤ 0),

∑

i+U∈(0,n+s]

I(i+ ξi + U > n+ s)−
∑

i+U≤0

I(i+ U + ξi ∈ (0, n + s])
)

=
( ∑

i+U>n+s

I(i+ U + ξi ∈ (0, n + s])−
∑

i+U∈(0,kn]

I(i+ U + ξi ≤ 0)−
∑

i+U∈(kn,n+s]

I(i+ U + ξi ≤ 0),

∑

i+U∈(0,kn]

I(i+ ξi + U > n+ s) +
∑

i+U∈(kn,kn+s]

I(i+ ξi + U > n+ s)−
∑

i+U≤0

I(i+ U + ξi ∈ (0, n + s])
)

D
=

(
E ′′(n + s)− Ên − Ê ′′

n, L̂′′
n(n+ s) + L′′

n(n+ s)− L̂n

)
.

Note that because Eξ+0 <∞,

E[L′′
n(n+ s)|U ] =

∑

i+U∈(0,kn]

P(i+ ξi + U > n+ s|U)

≤
∑

j+U≤0

P(ξ0 > n− kn − j − 1) → 0

as n → ∞, proving that L̂′′
n(n + s) ⇒ 0 as n → ∞. Similarly, the fact that Eξ−0 < ∞ implies that

Ê ′′
n ⇒ 0 as n→ ∞. Finally, the four random variables

(
E ′′(n+s), Ên,L′′

n(n+s), L̂n

)
all involve sums

over subsets in i that are disjoint, so they are conditionally independent of one another, given U .

Furthermore, L′′
n(n + s) ⇒ L′(s) and E ′′

n(s) ⇒ E ′(s) while, Ên ⇒ E(0) and L̂n ⇒ L(0) as n → ∞,

proving the theorem.

Note that we must restrict convergence to sequences of the form tn = n + s with n → ∞. In

particular, weak convergence does not hold when t → ∞ without any restrictions. To see this,

consider the case in which ξ0 = 0 a.s. Then,

N(t)− t =
∑

i+U∈(0,t]

1− t

= −(t− ⌊t⌋) + I(U ≤ t− ⌊t⌋),

9



and observe that the distribution of the right-hand side depends on t − ⌊t⌋, regardless of the

magnitude of t.

Theorem 1 shows that N(t)− t is stochastically bounded in t. This is in sharp contrast to the

case in which (for example) N is a unit rate renewal counting process with finite-variance inter-

arrival times, in which event t−1/2
(
N(t)− t

)
converges weakly to a normal r.v. (see Ross (1996)),

so that N(t)− t exhibits stochastic fluctuations of order t1/2.

3 Tail Asymptotics for Sums of Bernoulli Random Variables

The analysis of Section 2 establishes that N, E and L all can be clearly represented as sums of

independent Bernoulli r.v.’s. As we will see in the next section, the tail behavior of these r.v.’s

significantly affects the queueing dynamics of systems that are fed by scheduled traffic. In addition,

Bernoulli sums arise in many other applications settings (e.g. credit risk). As a consequence, this

section is focused on tail behavior for such Bernoulli sums.

Let (Ij : j ∈ Z) be a family of independent r.v.’s, in which pj = P(Ij = 1) = 1− P(Ij = 0).

Theorem 2 Suppose that there exist constants c > 0 and α > 1 for which pn ∼ c n−α as n → ∞.

If Z =
∑

j≥0 Ij , then
1

z log z
log P(Z > z) → −α

as z → ∞.

Proof: We shall employ an argument similar to that commonly used in the theory of large devia-

tions; see, for example, p. 44 in Dembo and Zeitouni (1998). (Note, however, that the asymptotic

setting described by Theorem 2 is not covered by traditional large deviations.) We start by observ-

ing that

ψ(θ)
∆
= logE exp

(
θ Z

)
=

∑

j≥0

log
(
pj(e

θ − 1) + 1
)

(where the sum converges absolutely since α > 1). Choose θ = θ(z) such that eθ(z) = rzα (where

r > 0), and note that for ǫ > 0, θ > 0, and z sufficiently large,

ψ
(
θ(z)

)
=

∑

0≤j≤⌊ǫz⌋

log
(
pj(e

θ(z) − 1) + 1
)

+
∑

j>⌊ǫz⌋

log
(
pj(e

θ(z) − 1) + 1
)

≤
∑

0≤j≤⌊ǫz⌋

log
(
eθ(z) + 1

)

+
∑

j>⌊ǫz⌋

log
(
(1 + ǫ)c j−αeθ(z) + 1

)

≤ (⌊ǫz⌋ + 1) log(1 + rzα) +
∑

j>⌊ǫz⌋

log
(
(1 + ǫ) rc (j/z)−α + 1

)
. (3.1)
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Note that the second term in (3.1), when multiplied by 1/z, is a Riemann sum approximation, and

hence

1

z

∑

j>⌊ǫz⌋

log
(
(1 + ǫ) rc (j/z)−α + 1

)

→
∫ ∞

ǫ
log

(
(1 + ǫ) rc x−α + 1

)
dx

as z → ∞. (Specifically, the function log
(
(1 + ǫ) rc x−α + 1

)
is directly Riemann integrable (see

Asmussen (2003)), so the Riemann approximation over [ǫ,∞) converges.) It follows that

limz→∞
1

z log z
ψ
(
θ(z)

)
≤ ǫ α.

Markov’s inequality guarantees that

P(Z > z) ≤ exp
(
− θ(z)z + ψ(θ(z))

)
,

and hence

limz→∞
1

z log z
logP(Z > z) ≤ −α (1− ǫ).

Since ǫ > 0 can be chosen to be arbitrarily small, we conclude that

limz→∞
1

z log z
logP(Z > z) ≤ −α. (3.2)

To obtain the lower bound needed for Theorem 2, we apply a change-of-measure argument. For

z > 0, put

P̃z(·) = EI(·) exp
(
θ(z)Z − ψ(θ(z))

)
,

and let Ẽz(·) be the associated expectation operator. Then,

P(Z > z) = ẼzI(Z > z) exp
(
− θ(z)Z + ψ(θ(z))

)
. (3.3)

Of course,

ẼzZ = ψ′(θ(z)) =
∑

j≥0

pje
θ(z)

pj(eθ(z) − 1) + 1
. (3.4)

So,
1

z
ẼzZ =

∑

j≥0

pj rz
α

pj(rzα − 1) + 1
· 1
z
.

Since pj z
α ∼ c (j/z)−α as j → ∞, a simple adaptation of the earlier Riemann sum approximation

argument proves that
1

z
ẼzZ →

∫ ∞

0

c r

c r + xα
dx

as z → ∞. Similarly,

1

z
vãrzZ =

1

z
ψ′′(θ(z)) =

∑

j≥0

pj (1− pj) e
θ(z)

(pj (eθ(z) − 1) + 1)2
· 1
z

→
∫ ∞

0

c r xα

(c r + xα)2
dx

11



as z → ∞. For ǫ > 0, we now select r > 0 (uniquely) so that
∫ ∞

0

c r

c r + xα
dx = 1 + ǫ.

Observe that because ψ(θ(z)) > 0,

P(Z > z) = ẼzI(Z > z) exp
(
− θ(z)Z + ψ(θ(z))

)

≥ exp
(
− θ(z) z + ψ(θ(z))

)
P̃z(Z > z)

≥ exp
(
− θ(z) z

)
P̃z(Z ≥ z). (3.5)

But for z large enough, we have that

P̃z(Z > z) = P̃z(Z − ẼzZ > z − ẼzZ)

≥ P̃z(Z − ẼzZ > z − (1 + ε− ε/2) z)

≥ P̃z(Z − ẼzZ > −ε z/2)
≥ 1− P̃z(|Z − ẼzZ| > ǫ z/2)

≥ 1− 4
vãrzZ

z2ǫ2
→ 1

as z → ∞, where the last inequality is an application of Chebyshev’s inequality. Hence, (3.5)

implies that

limz→∞

1

z log z
logP(Z > z) ≥ −α,

proving the theorem.

We now turn to the tail of Z when Z is the difference of two independent Bernoulli sums,
∑

j≥0 Ij and
∑

j<0 Ĩj .

Corollary 1 Suppose that E
∑

j<0 Ĩj < ∞ and that there exists c > 0 and α > 1 for which

EIn ∼ c n−α as n→ +∞. If Z =
∑

j≥0 Ij −
∑

j<0 Ĩj, then

1

z log z
log P(Z > z) → −α

as z → ∞.

Proof: We note that P(Z > z) ≤ P(
∑

j≥0 Ij > z), and apply Theorem 2 to conclude that

limz→∞
1

z log z
logP(Z > z) ≤ −α.

For the lower bound, observe that the independence yields

P(Z > z) ≥ P

(∑

j≥0

Ij > z + d,
∑

j<0

Ij ≤ d
)

= P

(∑

j≥0

Ij > z + d
)
P

(∑

j<0

Ij ≤ d
)
.

12



Hence, we apply Theorem 2 to conclude that

limz→∞
1

z log z
logP(Z > z) ≥ limz→∞

1

z log z
logP

(∑

j≥0

Ij > z + d
)
= −α,

proving the result.

We can immediately apply Theorem 2 and its corollary to the tail asymptotics of E ,L and N(t).

Theorem 3

i.) Suppose that ξ0 is such that P(ξ0 > x) ∼ c1x
−α1 as x→ ∞ for c1 > 0, α1 > 1. Then,

1

x log x
logP

(
L(t) > x

)
→ −α1

as x→ ∞.

ii.) Suppose that ξ0 is such that P(ξ0 < −x) ∼ c2x
−α2 as x→ ∞ for c2 > 0, α2 > 1. Then,

1

x log x
log P

(
E(t) > x

)
→ −α2

as x→ ∞.

iii.) Suppose that ξ has a bounded density for which there exist positive constants c1, c2, α1, α2 such

that

f(x) ∼ c1 x
−α1−1,

f(−x) ∼ c2 x
−α2−1

as x→ ∞. Then,

1

x log x
log P

(
N(t) > x

)
→ −min(α1 + 1, α2 + 1)

as x→ ∞.

Proof:

For part i.) we recall that L(t) D
= L(0). Furthermore, P(ξj+1 > j) ≤ P(−j + ξ−j + U > 0) ≤

P(ξj > j − 1), so that

P
( ∞∑

j=1

Ij > x
)
≤ P(L(t) > x) ≤ P

( ∞∑

j=0

Ij > x
)
, (3.6)

where the Ij ’s are independent Bernoulli r.v.’s in which Ij = I(ξj > j − 1). Theorem 2 can then

be applied to the extreme members of (3.6), yielding i.). Part ii.) follows similarly. As for iii.),

suppose that α1 ≤ α2 and set Ij = I(j + ξj + U ∈ (0, t]). Fix an integer d ≥ 1 and observe that

13



P
(∑

j≤0

Ij > x
)
≤ P

(
N(t) > x

)

≤ P
(∑

j≤0

Ij > x
)
+ P

(∑

j≤0

Ij ≤ x,
∑

j>0

Ij > x
)

≤ P
(∑

j≤0

Ij > x
)
+

d−1∑

k=0

P

(∑

j≤0

Ij ∈ x [k/d, (k + 1)/d),
∑

j>0

Ij > x (1− (k + 1)/d)
)

≤ (d+ 1) max
0≤k≤d

P
(∑

j≤0

Ij ≥ x k/d
)
P
(∑

j>0

Ij ≥ x (1− (k + 1)/d)+
)
.

(3.7)

Recalling our bounded density assumption, the Bounded Convergence Theorem implies that P(I−j =

1) ∼ c1 t j
−α1−1 and P(Ij = 1) ∼ c2 t j

−α2−1 as j → ∞.

Arguing as for i.) and ii.), we find that

1

x log x
log P

(∑

j≤0

Ij > x
)
→ −(α1 + 1) (3.8)

and
1

x log x
log P

(∑

j>0

Ij > x
)
→ −(α2 + 1) (3.9)

as x→ ∞. Utilizing (3.8) and (3.9), we observe that, for 0 ≤ k ≤ d− 1, the term

1

x log x
log

[
P
(∑

j≤0

Ij ≥ x k/d
)
P
(∑

j>0

Ij ≥ x (1− (k + 1)/d)
]

→ −(α1 + 1) k

d
− (α2 + 1) (d − (k + 1))

d
≤ −(α1 + 1)

d− 1

d

(3.10)

as x→ ∞. Hence, letting x→ ∞ on the extreme terms of (3.7), followed by sending d→ ∞ yields

iii.). A symmetric argument works for α1 > α2.

The next result shows that the large deviations tail exponent of N(t) is not inherited by its equi-

librium limit. In other words, one cannot interchange x → ∞ in the large deviations limit with

t→ ∞ in time.

For our next result, we fix s ∈ [0, 1] and recall Theorem 1 and the quantities E ′(s) and E ′(s)

defined there.

Proposition 3 Suppose that ξ0 is such that P(ξ0 > x) ∼ c1 x
−α1 and P(ξ0 < −x) ∼ c2 x

−α2 as

x→ ∞ for c1, c2 > 0 and α1, α2 > 1. Then,

1

x log x
log P

((
E ′(s)− L′(s)

)
−

(
E(0)− L(0)

)
> x

)
→ −min(α1, α2)

as x→ ∞.
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Proof: Utilizing Corollary 1 and arguing as in the proof of Theorem 3, we find that

1

x log x
log P

(
E ′(s)− L′(s) > x)

)
→ −α2,

and
1

x log x
log P

(
L(0)− E(0) > x)

)
→ −α1

as x→ ∞. We can now use the same upper bound argument as in (3.7) to conclude that

limx→∞
1

x log x
log P

((
E ′(s)− L′(s)

)
−

(
E(0)− L(0)

)
> x

)
≤ −min(α1, α2).

For the lower bound, suppose that α2 ≤ α1. We find that

P

((
E ′(s)− L′(s)

)
−

(
E(0) − L(0)

)
> x

)

≥ P
(
E ′(s)− L′(s) > x+ d

)
P
(
L(0)− E(0) ≥ −d

)
,

so that

limx→∞
1

x log x
logP

((
E ′(s)− L′(s)

)
−

(
E(0) − L(0)

)
> x

)
≥ −α2.

A symmetric argument holds for α1 < α2.

Because of their intrinsic interest and their importance for scheduled queues, we now provide

exact tail asymptotics for Bernoulli sums.

Theorem 4

i.) Suppose that there exists c > 0 and α > 1 such that pn = c n−α(1 + O(1/n)) as n → ∞.

Then,

P(
∑

j≥0

Ij ≥ n) ∼ 1√
2πη∗

r−n
∗ n−αn−1/2 exp

(
ψ(r∗n

α)
)

as n→ ∞, where r∗ satisfies ∫ ∞

0

c r∗
c r∗ + xα

dx = 1

and

η∗ =

∫ ∞

0

c r∗ x
α

(c r∗ + xα)2
dx.

ii.) Suppose that pn = c(w + n)−α for n ≥ 0, where c, w > 0 and α > 1. Then,

P(
∑

j≥0

Ij ≥ n) ∼
( 1√

2π

)α+1 Γ(w)α√
η∗

(c r∗)
1

2
−w n−αn+ 1

2
(α−1)−wα eγn

as n→ ∞, where γ =
∫ 1
0 log

(
1 + 1

c r∗
xα

)
dx+

∫∞
1 log

(
1 + c r∗ x

−α
)
dx+ α+ log(c).
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Proof: We start from the change-of-measure formula (3.3), with the specific choice θ∗(n) = log r∗+

α log n (so that exp(θ∗(n)) = r∗n
α). Then,

P(Z ≥ n) = exp
(
− θ∗(n)n + ψ(r∗n

α)
)
· ẼnI(Z ≥ n) exp

(
− θ∗(n)(Z − n)

)
.

We wish now to apply the local central limit theorem (CLT) to Z under P̃n. Recall (3.4) and note

that

ẼnZ =
∑

j≥0

pj r∗n
α

pj (r∗ nα − 1) + 1

=
∑

j≥0

(n/j)αc r∗
(n/j)α c r∗ − pj + 1

(1 +O(1/j))

=
∑

j≥0

c r∗
c r∗ + (j/n)α − (j/n)α pj

(1 +O(1/j))

=
∑

j≥0

c r∗
c r∗ + (j/n)α +O(n−α) (1 +O(1/j))

=
∑

j≥0

c r∗
c r∗ + (j/n)α

(1 +O(1/j))

=
∑

j≥0

c r∗
c r∗ + (j/n)α

+
∑

0≤j≤kn

O(1/j) +O(k−1
n )

∑

j>kn

c r∗
c r∗ + (j/n)α

= n
∑

j≥0

1

n
v(j/n) +O(log kn) +O(n k−1

n )
∑

j>kn

1

n
v(j/n),

where v(x) = c r∗ (c r∗ + xα)−1 and kn is selected so that kn/n
2/3 → 1 as n→ ∞. But

n
∑

j≥0

1

n
v(j/n) = n

∫ ∞

0
v(x)dx+ n

∑

j≥0

∫ (j+1)/n

j/n
[v(j/n) − v(x)]dx

The defining equation for r∗ implies that
∫∞
0 v(x)dx = 1. Set

ωn(x) =

∫ x

j/n
[v(j/n) − v(y)]dy.

Since ωn is twice differentiable with w′
n(x) = v(j/n) − v(x) and w′′

n(x) = −v′(x), there exists

xj,n ∈ [j/n, (j + 1)/n] such that

ωn

(
(j + 1)/n

)
= ωn(j/n) + 1/n · ω′

n(j/n) + 1/n2 · ω′′
n(xj,n)/2

so that ∫ (j+1)/n

j/n
[v(j/n) − v(y)]dy = −v′(xj,n) ·

1

2n2

and hence

n
∑

j≥0

∫ (j+1)/n

j/n
[v(j/n) − v(x)]dx = −1/2

∑

j≥0

v′(xj,n)
1

n
.
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The latter sum is a Riemann sum approximation to the integral of −1
2v

′(·) over [0,∞). Consequently,

n
∑

j≥0

∫ (j+1)/n

j/n
[v(j/n) − v(x)]dx → −1

2

∫ ∞

0
v′(x)dx = 1/2. (3.11)

Similarly,
∑

j>kn

1

n
v(j/n)−

∫ ∞

kn/n
v(x)dx → 0

as n→ ∞. It follows that

ẼnZ = n+O(n1/3) (3.12)

as n→ ∞. Also, as noted in the proof of Theorem 2,

1

n
vãrnZ → η∗ (3.13)

as n→ ∞.

We are now ready to apply the local CLT due to Davis and McDonald (1995). We first write

Z =
∑bn

j=0 Ij + Yn, where bn → ∞ fast enough that ẼnY
2
n /n → 0 as n → ∞. It is easily verified

that the conditions of the Lindeberg-Feller CLT apply to (Z − ẼnZ)/(vãrnZ)
1/2; see p. 205 of

Chung (1974). Furthermore, by recalling that, vãrnIj = P̃n(Ij = 1) P̃n(Ij = 0), we conclude

that the sequence Qn =
∑

j≤bn
min

(
P̃n(Ij = 0), P̃n(Ij = 1)

)
that appears in the hypotheses of

Theorem 1.2 of Davis and McDonald (1995) can be lower bounded by
∑

j≤bn
vãrnIj ∼ n η∗ as

n→ ∞. Consequently, Theorem 1.2 asserts that

P̃n(Z = k) = φ
(k − ẼnZ√

n η∗

) 1√
n η∗

(1 + o(1))

uniformly in k as n → ∞, where φ(·) is the density of a N (0, 1) r.v. Hence, in view of (3.12) and

(3.13),

P̃n(Z = n+ k) = φ
( k√

n η∗

) 1√
n η∗

(1 + o(1))

as n→ ∞, so that

ẼnI(Z ≥ n) exp
(
− θ∗(n) (Z − n)

)

=
∑

k≥0

P̃n(Z = n+ k) exp
(
− θ∗(n) k

)

∼ 1√
2π n η∗

as n→ ∞, proving part i.).

Part ii.) is a special case of i.). All that is needed is the development of an asymptotic for

ψ(r∗ n
α), to the order of o(1). Denoting (as usual) the gamma function by Γ(·), we write
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ψ(r∗ n
α) =

n−1∑

j=0

log
(
c (j +w)−α (r∗ n

α − 1) + 1
)

+
∑

j≥n

log
(
c (j +w)−α (r∗ n

α − 1) + 1
)

= log
( n−1∏

j=0

( n

j + w

)α
(c r∗)

n
)
+

n−1∑

j=0

log
(
1 +

(j + w

n

)α 1

c r∗
− 1

c r∗ nα
)

+
∑

j≥n

log
(
1 + c r∗

(j + w

n

)−α
(1− 1

r∗ nα
)
)

= log

((
nn Γ(w)

Γ(w + n)

)α

(c r∗)
n

)
+ n

∫ 1+w/n

w/n
log

(
1 +

1

c r∗
xα − 1

c r∗nα
)
dx

+ n

∫ ∞

1+w/n
log

(
1 + c r∗ x

−α (1− 1

r∗ nα
)
)
dx

+ n
n−1∑

j=0

∫ (j+1)/n

j/n
[hn(j/n) − hn(x)]dx + n

∑

j≥n

∫ (j+1)/n

j/n
[h̃n(j/n) − h̃n(x)]dx,

(3.14)

where

hn(x) = log
(
1 + (x+

w

n
)α

1

c r∗
− 1

c r∗nα
)
,

h̃n(x) = log
(
1 + c r∗ (x+

w

n
)−α(1− 1

r∗ nα
)
)
.

The first term in the third equality is due to the property of the Gamma function whereby for

any z > 0, Γ(z + 1) = zΓ(z). Set h(x) = log
(
1 + 1

c r∗
xα

)
, h̃(x) = log

(
1 + c r∗ x

−α
)
. Arguing as in

(3.11), the sum of the last two terms converges to

− 1/2

∫ 1

0
h′(x)dx− 1/2

∫ ∞

1
h̃′(x)dx

= −1/2 (h(1) − h(0)) − 1/2 (h̃(∞)− h̃(1))

= −1/2 (log(1 +
1

c r∗
)− log(1 + c r∗)) = 1/2 log(c r∗).

(3.15)

Also,

n

∫ 1+w/n

w/n
log

(
1 +

1

c r∗
xα − 1

c r∗nα
)
dx

= n

∫ 1+w/n

w/n
log

(
1 +

1

c r∗
xα

)
dx+O(n1−α)

= n

∫ 1

0
log

(
1 +

1

c r∗
xα

)
dx+w h(1) − w h(0) + o(1)

(3.16)

as n→ ∞. Similarly,

n

∫ ∞

1+w/n
log

(
1 + c r∗ x

−α (1− 1

nα
)
)
dx

= n

∫ ∞

1
log

(
1 + c r∗ x

−α
)
dx− w h̃(1).

(3.17)

18



Finally, we use the asymptotic

Γ(w + n) ∼
√
2π n

(
w + n− 1

e

)n+w−1

as n→ ∞ (see p. 63 of Feller (1971)), to conclude that

(
nnΓ(w)

Γ(w + n)

)α

∼
(
Γ(w)√
2π

)α

n(−w+1/2)α eαn (3.18)

as n→ ∞. Combining (3.14) through (3.18) yields part ii.).

With Theorem 4 at our disposal, we can now derive exact asymptotics for the r.v.’s E(t) and

L(t). For example, in view of the fact that the proof of part ii.) holds uniformly in w,

P(E(0) ≥ n) ∼
( 1√

2π

)α+1
√
c r∗
η∗

E

[
Γ(U)α

(c r∗ nα)U

]
n−αn+ 1

2
(α−1) eγn

as n → ∞, provided that P(ξ0 ≤ −x) = c x−α for x > 1 and where γ is the same constant defined

in Theorem 4

4 Behavior of the S/D/1 Workload Process under Critical Loading

In this section, we consider a queue that is fed by a scheduled traffic in which each customer’s

service time requirement is of unit duration, and in which the server has the capacity to process

work at unit rate. Under these assumptions, the rate at which work arrives per unit time equals

the service capacity of the system, so that the queue is subject to critical loading.

Note that the total work to arrive in (0, t] is given by N(t). Let W (t) be the workload in the

system at time t (i.e. t+W (t) is the first time subsequent to t at which the system would empty

if no additional work were to arrive after t.) If W (0) = 0, then

W (t) = max
0≤s≤t

[
(N(t)− t)− (N(s)− s)

]
.

Our goal is to analyze the behavior of W (t) for t large.

If E|ξ0| <∞, Proposition 2 applies so that

W (t) = max
0≤s≤t

[
E(t)− E(s)−L(t) + L(s)

]
+Op(1), (4.1)

whereOp(1) is a term that is stochastically bounded in t. Because of the stationarity of
((
E(t),L(t)

)
:

t ∈ R
)
, the first term in (4.1) has the same distribution as

M(t) = max
0≤s≤t

[
E(0)− E(−(t− s))− L(0) + L(−(t− s))

]
,

= max
0≤r≤t

[
E∗(r)− L∗(r)

]
− E∗(0) + L∗(0),

(4.2)

Note that E∗(·) is the “early customer” process for the time-reversed system in which the pertur-

bations are given by (−ξ−j : j ∈ Z), and L∗(·) is the corresponding “late customer” process. As a
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result, E∗(r)
d
= L(−r) and L∗(r)

d
= E(−r). As a matter of fact these equalities hold pathwise except

for the fact that E∗ and L∗ are generated following the uniform distribution, 1− U , instead of U .

Given that E∗ and L∗ are non-negative processes for which E∗(r) is independent of L∗(r) for r ∈ R,

it is evident that the growth of M(t) will be determined by E∗ and that the left tail of −ξ0 (or right
tail of ξ0) governs the large time behavior of M(·) (and hence W (·)). The dominance of the right

tail of ξ0 over the left tail is perhaps explained by the fact that the left tail induces the arrival of

“early customers” from the future evolution of the queue. More such early arrivals in an interval

mean fewer potential customers available from which to stimulate a future burst of arrivals, so that

the left tail has less influence over “growing” M(·) over time.

Theorem 5 Suppose that Eξ−0 < ∞ and that there exists constant c > 0 and α > 1 for which

P(ξ0 > x) ∼ c x−α as x→ ∞. Then,

W (t)

log t/ log log t
⇒ 1/α

as t→ ∞.

Proof: Clearly,

max
0≤r≤t

[
E∗(r)− L∗(r)

]
≤ max

0≤r≤t
E∗(r)

≤ max
1≤n≤⌊t⌋+1

max
0≤s<1

E∗(n− s).

For 0 ≤ s < 1 and n ≥ 1,

E∗(n− s) =
∑

j+U≤−n+s

I(j + U + ξj > −n+ s)

≤
∑

j+U≤−n+s

I(j + U + ξj > −n)

= E∗(n) +
∑

−n<j+U≤−n+s

I(j + U + ξj > −n)

≤ E∗(n) +
∑

−n<j+U≤−n+s

1

= E∗(n) + 1 (4.3)

So,

max
0≤r≤t

[
E∗(r)− L∗(r)

]
≤ 1 + max

1≤n≤⌊t⌋+1
E∗(n).
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Hence, for ε > 0 and t sufficiently large,

P

(
max
0≤r≤t

[
E∗(r)− L∗(r)

]
>

1 + 3 ε

α

log t

log log t

)

≤ P

(
max

0≤n≤⌊t⌋+1
E∗(n) >

1 + 2 ε

α

log t

log log t

)

≤
⌊t⌋+1∑

n=1

P

(
E∗(n) >

1 + 2 ε

α

log t

log log t

)

≤ (⌊t⌋+ 1)P
(
E∗(0) >

1 + 2 ε

α

log t

log log t

)

= (⌊t⌋+ 1) exp
(
log

(
P
(
L(0) > 1 + 2 ε

α

log t

log log t

)))

≤ (⌊t⌋+ 1) exp
(
− (1 + ε) log t

)

= O(t−ε) → 0 (4.4)

as t→ ∞, where we used Theorem 3 for the final inequality.

To obtain the necessary lower bound, fix ε ∈ (0, 1/8α) and note that for such ε, 1 − 2 ε +

ε2 < 1 − 2 ε − ε2 + ε/2α (< 1). Choose τ in the interval (1 − 2 ε + ε2, 1 − 2 ε − ε2 + ε/2α). Put

b(t) = (1/α)(log t/ log log t), c(t) = (1 − 2ε)2 b(t)2, and k(t) = ⌈tτ ⌉. As in the proof of Theorem 2,

we find that for θ > 0,

P(E(0) ≥ n) ≤ P
( ∑

j≥−1

I(j + ξj ≤ 0) ≥ n
)

≤ exp
(
− θn+

∑

j≥−1

log
(
P(j + ξ0 ≤ 0)(eθ − 1) + 1

))

≤ exp
(
− θn+

∑

j≥−1

P(j + ξ0 ≤ 0)(eθ − 1)
)

= exp
(
− θn+ (eθ − 1)E

⌈−ξ0⌉∑

j=−1

1
)

≤ exp
(
− θn+ (eθ − 1)(Eξ−0 + 3)

)
.

By setting θ = log n, we conclude that

P
(
E(0) ≥ n)

)
≤ exp

(
− n log n+O(n)

)

so that

P
(
E(0) ≥ ε b(t)

)
≤ t−ε/2α (4.5)

for t sufficiently large. In addition, an examination of the proof of Theorem 2 shows that under

the conditions stated there,

1

z log z
log P

( ⌈z2⌉∑

j=0

Ij > z
)
→ −α (4.6)

as z → ∞.
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We now subdivide the interval [−t, 0] into k(t) subintervals of equal length, and let r1, r2, ..., rk(t)

be the right endpoints of the k(t) subintervals.

Then,

P

(
max
0≤r≤t

[
E∗(r)− L∗(r)

]
> (1− 3 ε) b(t)

)

≥ P

(
max

1≤i≤k(t)

[
L(ri)− E(ri)

]
> (1− 3 ε) b(t)

)

≥ P

(
max

1≤i≤k(t)

[
(L(ri)− E(ri)) I

(
E(ri) ≤ ε b(t)

)]
> (1− 3 ε) b(t)

)

≥ P

(
max

1≤i≤k(t)

[
L(ri) I

(
E(ri) ≤ ε b(t)

)]
> (1− 2 ε) b(t)

)

≥ P

(
max

1≤i≤k(t)
L(ri) > (1− 2 ε) b(t)

)

− P

(
max

1≤i≤k(t)
L(ri)I

(
E(ri) > ε b(t)

)
> (1− 2 ε) b(t)

)

≥ P

(
max

1≤i≤k(t)
L(ri) > (1− 2 ε) b(t)

)

−
k(t)∑

i=1

P

(
L(ri)I

(
E(ri) > ε b(t)

)
> (1− 2 ε) b(t)

)

≥ P

(
max

1≤i≤k(t)
L(ri) > (1− 2 ε) b(t)

)

− k(t)P
(
L(0) > (1− 2 ε) b(t), E(0) > ε b(t)

)

≥ P

(
max

1≤i≤k(t)

∑

ri−c(t)≤j≤ri−1

I(j + ξj > ri) > (1− 2 ε) b(t)
)

− k(t)P
(
L(0) > (1− 2 ε) b(t)

)
P

(
E(0) > ε b(t)

)

= 1−
(
1− P

( ∑

−c(t)≤j≤−1

I(j + ξj > 0) > (1− 2 ε) b(t)
))k(t)

(4.7)

− k(t)P
(
L(0) > (1− 2 ε) b(t)

)
P

(
E(0) > ε b(t)

)
,

where we used the independence of L(0) and E(0) and that of disjointly indexed indicator r.v.’s for

both of the last two lines displayed above.

Given (4.6), it follows that

P

( ∑

−c(t)≤j≤−1

I(j + ξj > 0) > (1− 2 ε) b(t)
)
≥ t−(1−2 ε)−ε2

for t sufficiently large. In view of the choice of τ , we conclude that

(
1− P

( ∑

−c(t)≤j≤−1

I(j + ξj > 0) > (1− 2 ε) b(t)
))k(t)

→ 0 (4.8)

as t→ ∞. On the other hand,

P

(
L(0) > (1− 2 ε) b(t)

)
≤ t−(1−2 ε)+ε2
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for t sufficiently large. Given (4.5) and our choice of τ , we find that

k(t)P
(
L(0) > (1− 2 ε) b(t)

)
P

(
E(0) > ε b(t)

)
→ 0 (4.9)

as t→ ∞. Relations (4.4), (4.7), (4.8) and (4.9) prove the theorem.

Theorem 5 shows that the workload of the S/D/1 queue under critical loading increases very

slowly (at log t/
(
log log t

)
rate), even in the presence of “heavy tailed” perturbations. This is in

sharp contrast to the t1/2 increase in workload that occurs under critical loading for a G/D/1

queue, in which the arriving traffic is described by a renewal process with finite positive variance

(see Glynn (1990)). This result makes clear the significant positive impact that scheduling can have

upon queue performance.

5 Behavior of the S/D/1 Workload Process in Heavy Traffic

We now turn to the analysis of the S/D/1 queue when the system has more service capacity than is

needed. We assume, as in Section 4, that work is arriving at unit rate (on average) via deterministic

service time requirements of unit size, but give the server a capacity to process work at the rate

1/ρ with ρ < 1 (so that the queue’s utilization factor is ρ). Let Wρ(·) be the associated workload

process. Then,

Wρ(t) = max
0≤s≤t

[
E(t)− E(s)− L(t) + L(s) + a(t)− a(s)− 1− ρ

ρ
(t− s)

]
,

where a(t)
∆
= −(t− ⌊t⌋) + I(U ≤ t− ⌊t⌋). As argued in Section 4, Wρ(t)

D
=Mρ(t), where

Mρ(t) = max
0≤r≤t

[
E∗(r)− L∗(r)− 1− ρ

ρ
r + a(0) − a(−r)

]
+ L∗(0)− E∗(0). (5.1)

Since Mρ(t) րMρ(∞) a.s. as t → ∞, it follows that Wρ(t) ⇒ Wρ(∞) as t → ∞, where Wρ(∞)
D
=

Mρ(∞). Our key result in this section describes the “heavy traffic” behavior of Wρ(∞) as ρր 1.

Theorem 6 Suppose that Eξ−0 < ∞ and that there exist constants c > 0 and α > 1 for which

P(ξ0 > x) ∼ c x−α as x→ ∞. Then,

log log
(

1
1−ρ

)

log
(

1
1−ρ

) Wρ(∞) ⇒ 1

α
(5.2)

as ρր 1.

Proof: Note that for 1/2 < ρ < 1,

max
r≥0

[
E∗(r)− L∗(r)− 1− ρ

ρ
r
]

≥ max
0≤r≤1/(1−ρ)

[
E∗(r)− L∗(r)− 1− ρ

ρ
r
]

≥ max
0≤r≤1/(1−ρ)

[
E∗(r)− L∗(r)

]
− 2.
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Of course, Theorem 5 establishes that

log log
(

1
1−ρ

)

log
(

1
1−ρ

) max
0≤r≤1/(1−ρ)

[
E∗(r)− L∗(r)

]
⇒ 1

α
(5.3)

as ρր 1, proving the required lower bound for (5.2).

To prove the upper bound, observe that

max
r≥0

[
E∗(r)− L∗(r)− (1− ρ

ρ
r
]

≤ max
0≤r≤

(

1

1−ρ

)1+ε

[
E∗(r)− L∗(r)

]
+ max

r≥
(

1

1−ρ

)1+ε

[
E∗(r)− 1− ρ

ρ
r
]
. (5.4)

Application of Theorem 5 proves that

log log
(

1
1−ρ

)

log
(

1
1−ρ

) max
0≤r≤

(

1

1−ρ

)1+ε

[
E∗(r)− L∗(r)

]
⇒ 1 + ε

α
(5.5)

as ρր 1. On the other hand,

P

(
max

r≥
(

1

1−ρ

)1+ε

[
E∗(r)− 1− ρ

ρ
r
]
≥ 1

)

≤ P

(
max
n≥0

[
max
0≤s≤1

E∗
(( 1

1− ρ

)1+ε
+ n+ s

)
−

( 1

1− ρ

)ε 1
ρ
− 1− ρ

ρ
n
]
≥ 1

)

≤ P

(
max
n≥1

[
E∗

(( 1

1− ρ

)1+ε
+ n

)
− 1

(1− ρ)ε
− (1− ρ)n

]
≥ 0

)
, (5.6)

where we used (4.3) for the last inequality. The quantity (5.6) can, in turn, be upper bounded by

∞∑

n=0

P

(
E∗(0) ≥ 1

(1− ρ)ε
+ (1− ρ)n

)
.

Theorem 3 proves that

P(E∗(0) ≥ t) ≤ exp(−α t)

for t sufficiently large, and hence the above sum is dominated by

∞∑

n=0

exp
(
− α

( 1

(1− ρ)ε
+ (1− ρ)n

))

= exp
(
− α

(1− ρ)ε

)(
1− exp

(
− α (1− ρ)

))−1

∼ exp
(
− α

(1− ρ)ε

) ( 1

α (1− ρ)

)
→ 0

as ρր 1. Relations (5.3), (5.4), (5.5), and (5.6) then prove the theorem, in view of the fact that ε

can be made arbitrarily small.
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This S/D/1 heavy traffic limit theorem should be contrasted against the analogous G/D/1 limit

theorem, for which the steady-state r.v. Wρ(∞) scales as 1/(1 − ρ) as ρ ր 1; (see Glynn (1990)).

For the G/D/1 queue, time scales of order 1/(1− ρ)2 are needed in order that fluctuations of order

1/(1−ρ) are exhibited (when Wρ(0) = 0) (see again Glynn (1990)). The proof of Theorem 6 shows

that the time scale needed for Wρ to reach equilibrium is of order 1/(1 − ρ), so that the S/D/1

queue equilibrates more quickly than does the G/D/1 queue.

6 Remarks on the S/G/1 Queue

This paper has focussed thus far on the S/D/1 queue. We now turn to a discussion of the S/G/1

queue, in which the service requirements (Vi : i ≥ 1) associated with the sequence of arriving

customers is assumed to be i.i.d. and independent of N . In this setting the total work Λ(t) to

arrive in the interval (0, t] is given by

Λ(t) =

N(t)∑

i=1

Vi.

Our main objective here is to point out that if the Vi’s are random (i.e. non-degenerate), then the

behavior of the S/G/1 queue closely resembles that of the corresponding D/G/1 queue in which

ξi ≡ 0 for i ∈ Z.

Our first result shows that, in great generality, Λ satisfies the same functional central limit

theorem (FCLT) as does Λ′, where

Λ′(t) =

⌊t⌋∑

i=1

Vi.

Proposition 4 Suppose that E|ξ0| <∞ and EV p
1 <∞ for p > 2. Then

1√
t

sup
0≤s≤t

|Λ(s)− Λ′(s)| ⇒ 0

as t→ ∞.

Proof: First, we recall that max1≤i≤n |Vi| = o(n1/p) a.s. as n → ∞; (see, p. 278 of Feller

(1971)). Also,

t−1/2 max
0≤s≤t

∣∣∣∣∣∣

N(s)∑

i=1

Vi −
⌊s⌋∑

i=1

Vi

∣∣∣∣∣∣

≤ t−1/2 max
0≤i≤N(t)+t

|Vi| · max
0≤s≤t

|N(s)− s|

=
max0≤i≤3 t |Vi|

t1/p
· max0≤s≤t |N(s)− s|

t1/2−1/p

= o(1) · max0≤s≤t |N(s)− s|
t1/2−1/p

a.s. (6.1)
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as t→ ∞, where the first equality is due to the fact N(t)− t ≤ t a.s. We further note that Eξ0 <∞
guarantees that E exp

(
θL(n)

)
< ∞ for θ > 0. In particular,

∑
n≥1 P

(
exp(θL(n)) > n

)
< ∞, and

hence the Borel-Cantelli lemma insures that, limn→∞
L(n)
logn ≤ 1/θ a.s. Hence,

limn→∞
max1≤i≤n L(i)

log n
≤ 1/θ a.s.

Since |L(n+ s)− L(n)| ≤ 1 for 0 ≤ s < 1 (see (4.3) for a similar bound involving E),

limt→∞
max1≤s≤t L(s)

log t
≤ 1/θ a.s.

for θ > 0. Similarly, limt→∞max1≤s≤t E(s)/ log t ≤ 1/θ a.s. for θ > 0, because Eξ−0 < ∞. Propo-

sition 2 then completes the proof.

As a consequence, the input to the S/G/1 queue satisfies the same FCLT as for the D/G/1.

Hence, the heavy traffic theory for the S/G/1 with random service times is identical to that for the

corresponding D/G/1 queue. This fact is illustrated in the next result.

Corollary 2 Under the assumptions of Proposition 4

n−1/2
(N(n·)∑

i=1

Vi − nEV1 ·
)
⇒

√
varV1B(·)

as n → ∞, in D(0,∞), where B(·) is a standard Brownian motion, and ⇒ corresponds here to

weak convergence in D(0,∞) (see, Billingsley (1999) for the definition).
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