
A General “Power-of-d” Dispatching Framework for Heterogeneous

Systems

Jazeem Abdul Jaleel

Sherwin Doroudi

Kristen Gardner

Alexander Wickeham

December 2021

Abstract

Intelligent dispatching is crucial to obtaining low response times in large-scale systems. One

common scalable dispatching paradigm is the “power-of-d,” in which the dispatcher queries d

servers at random and assigns the job to a server based only on the state of the queried servers.

The bulk of power-of-d policies studied in the literature assume that the system is homogeneous,

meaning that all servers have the same speed; meanwhile real-world systems often exhibit server

speed heterogeneity.

This paper introduces a general framework for describing and analyzing heterogeneity-aware

power-of-d policies. The key idea behind our framework is that dispatching policies can make use

of server speed information at two decision points: when choosing which d servers to query, and

when assigning a job to one of those servers. Our framework explicitly separates the dispatching

policy into a querying rule and an assignment rule; we consider general families of both rule

types.

While the strongest assignment rules incorporate both detailed queue-length information

and server speed information, these rules typically are difficult to analyze. We overcome this

difficulty by focusing on heterogeneity-aware assignment rules that ignore queue length informa-

tion beyond idleness status. In this setting, we analyze mean response time and formulate novel

optimization problems for the joint optimization of querying and assignment. We build upon our

optimized policies to develop heuristic queue length-aware dispatching policies. Our heuristic

policies perform well in simulation, relative to policies that have appeared in the literature.

1

ar
X

iv
:2

11
2.

05
82

3v
2

 [
cs

.N
I]

 1
8

D
ec

 2
02

1

1 Introduction

Large-scale systems are everywhere, and deciding how to dispatch an arriving job to one of the

many available servers is crucial to obtaining low response time. One common scalable dispatching

paradigm is the “power-of-d,” in which the dispatcher queries d servers at random and assigns the

job to a server based only on the state of the queried servers. Such policies incur a much lower

communication cost than querying all servers while sacrificing little in the way of performance.

However, many power-of-d policies, such as Join the Shortest Queue-d (JSQ-d)1 [21], share a notable

weakness: they do not account for the fact that, in many modern systems, the servers’ speeds are

heterogeneous. Unfortunately, such heterogeneity-unaware dispatching policies can perform quite

poorly in the presence of server heterogeneity [9]. Indeed, it is not straightforward to determine

how to dispatch in heterogeneous systems to achieve low mean response times. For example, it may

sometimes be desirable to exclude the slowest classes of servers entirely, yet at other times even the

slow servers are needed to maintain the system’s stability.

Motivated by the need for dispatching policies that perform well in heterogeneous systems,

researchers have designed new policies for this setting. For example, under the Shortest Expected

Delay-d (SED-d) policy the dispatcher queries d servers uniformly at random and assigns the arriving

job to the queried server at which the job’s expected delay (the number of jobs in the queue, scaled

by the server’s speed) is the smallest [31]. Under the Balanced Routing (BR) policy, the dispatcher

queries d servers with probabilities proportional to the servers’ speeds and assigns the arriving job to

the queried server with the fewest jobs in the queue [5]. While both of these policies generally lead

to better performance than the fully heterogeneity-unaware JSQ-d policy, there is still substantial

room for improvement. Together, SED-d and BR illustrate a key observation about how to design

heterogeneity-aware power-of-d dispatching policies. There are two decision points at which such

policies can use server speed information: when choosing which d servers to query (exploited by

BR), and when assigning a job to one of those servers (exploited by SED-d).

One of the primary contributions of this paper is the introduction of a general framework to

describe and analyze heterogeneity-aware power-of-d policies; we discuss our framework in detail

in Section 3. Our framework explicitly separates the dispatching policy into a querying rule that

determines how to select d servers upon a job’s arrival, and an assignment rule that determines

where among the d queried servers to send the job. Both SED-d and BR fit within our framework, as

1Throughout, names and abbreviations of individual rules and policies are rendered in sans-serif font; see Ap-
pendix A for a list of individual rules and policies proposed, studied, and/or referenced in this paper.

2

do many other policies that have been proposed and studied in the literature. For example, recent

work has proposed two families of policies that leverage heterogeneity at both decision points by

querying fixed numbers of “fast” and “slow” servers, then probabilistically choosing whether to

assign the job to a fast or a slow server based on the idle/busy statuses of the queried servers [9].

One can also imagine designing new policies within our framework; for example, a policy could

query d servers probabilistically in proportion to their speeds—as in BR—and then assign the job

to the queried server at which its expected delay is smallest—as in SED-d (for more details on how

such policies fit into our framework, see Sections 3 and 7).

Our framework is quite general in the space of querying rules it permits: we allow for any

querying rule that is static (i.e., ignores past querying and assignment decisions) and symmetric

(i.e., treats servers of the same speed class identically). The BR querying rule—viewed separately

from the fact that the BR dispatching policy from [5] uses JSQ assignment—for example, clearly

satisfies these properties. The BR querying rule is a member of what we call the Independent

and Identically Distributed Querying (IID) family of querying rules.2 Each specific policy

within this family selects each of the d servers independently according to the same distribution

over the server speed classes. That is, the IID family of querying rules is parameterized by a set

of probabilities that determine the rates at which each server class is queried.

We consider several families of querying rules that satisfy the static and symmetric properties;

as is the case for the IID family, each family is characterized by its own set of probabilistic

parameters that determine how to select the d servers, and different settings for these parameters

specify different policies within the family (e.g., one parameter setting of the IID querying rule

family yields the BR querying rule, as alluded to above). Other examples of querying rule families

in the literature include Single Random Class (SRC) [22], under which a single server class is

selected probabilistically for each arriving job and all d queried servers are chosen from that class,

and Deterministic Class Mix (DET) [9], under which the d queried servers always contain a

fixed number of servers of each class. We also introduce several new families of querying rules that

generalize those in the literature in various ways.

Our framework also permits a wide range of assignment rules. For example, included in our

framework are the assignment rules such as Shortest Expected Delay (SED) and Join the Shortest

Queue (JSQ), which when paired with Uniform Querying (UNI)—the querying rule defined in Section

2Throughout, names and abbreviations of parameterized families of rules and policies are rendered in bold serif
font; see Appendix A for a list of families of rules and policies proposed, studied, and/or referenced in this paper.

3

3.2 that queries each server with equal probability, regardless of its class—constitute the SED-d and

JSQ-d dispatching policies as they are typically defined in the literature. The SED assignment rule

is especially attractive as it simultaneously incorporates both detailed queue-length information

and server class information when making an assignment decision among the queried servers. The

potentially powerful rules that make use of both class and queue-length information, such as SED,

fall within what we call the Class and Length Differentiated (CLD) family of assignment

rules. Unfortunately, general CLD assignment rules (including SED) preclude tractable exact

performance analysis. In light of this tractability barrier, we introduce the Class and Idleness

Differentiated (CID) family of assignment rules, a subfamily of CLD. The assignment rules in

the CID family eschew detailed queue length information and make assignment decisions based

only on the idle/busy statuses and classes (speeds) of the queried servers. Even with the information

limitations imposed by the CID family, there is a rich space of reasonable ways to assign jobs among

queried servers of different speeds and idle/busy statuses. While it is natural to favor an idle fast

server over a slower server—whether busy or idle—it is less obvious whether a busy fast server or

an idle slow server is preferable; it can even be beneficial to occasionally assign jobs to a busy slow

server over a busy fast server. Following our earlier work in [9], we make decisions of this sort

probabilistically. As a result, policies within the CID family of assignment rules are parameterized

by the probabilities with which each queried server class is assigned the arriving job. Specifically,

each set of parameters that specifies an assignment rule within CID encodes a distribution over

the classes for each type of “scenario” the dispatcher may confront—in terms of the speed classes

of servers queried and their idle/busy statuses. As we show, unlike the dispatching policies driven

by CLD assignment, dispatching policies constructed from any static and symmetric querying rule

and a CID assignment rule are amenable to exact analysis (Section 4).

In light of the fact that we can—and do—analyze CID-driven dispatching polices, the bulk of

this paper (Sections 4–6) is devoted to the study of families of dispatching policies that are formed

by combining one of several families of querying rules (e.g., IID, SRC) with the CID family

of assignment rules. Each resulting family constitutes (often infinitely) many possible individual

dispatching policies, each of which is specified by a different choice of the probabilistic parameters

governing the chosen querying and assignment rule families. In Section 5 we formulate optimization

problems for jointly determining the querying and assignment rule parameterizations that yield the

lowest mean response time for a given set of system parameters (e.g., arrival rate, server classes,

etc.). To the best of our knowledge, this paper is the first to feature a joint-optimization of the

4

querying and assignment decisions across continuous parameter spaces for both rule types; while

our earlier work [9] features a joint optimization, that paper considers only the DET querying

family with only two server classes, which yields at most |DET| = d + 1 possible querying rules.

In addition to our allowance for continuous spaces of querying and assignment rules, in this paper

we allow for any number of server classes, yielding substantially larger and more complicated

optimization problems; for details on the sizes of our optimization problems see Appendix D.

Nonetheless, the problem of selecting an optimal policy from many of the families introduced in

this paper is significantly less computationally intensive than the corresponding problem associated

with DET-based policies, such as those in [9], because the continuous space of our querying rules

allows for purely continuous optimization, obviating the need for combinatorial optimization. We

discuss practical considerations and present a numerical study of the performance of CID-driven

dispatching policies in Section 6.

Understandably, restricting ourselves to the CID assignment rule family leads to sacrifices in

performance; one would expect CLD assignment rules such as SED to yield lower mean response

times when paired with a judiciously chosen querying rule. At the same time, because of the

difficulty of finding exacts mean response times for CLD assignment rules—which make use of both

server speed and detailed queue length information—it is also challenging to systematically identify

querying rules that perform well in tandem with the CLD assignment rules. In Section 7, we offer

the following heuristic remedy to the problem of finding suitable querying rules to be paired with

those assignment rules that are not amenable to tractable analysis: we pair various assignment rules

in CLD (e.g., SED) with a querying rule that was jointly-optimized with a CID assignment rule.

Simulation results demonstrate that these heuristic dispatching policies tend to perform favorably

to other policies—both those existing in the literature and the CID-based policies we study in this

paper. Furthermore, our results yield insights about the relative importance of the querying and

assignment decisions at different system loads: we observe that at light load the querying decision

drives the dispatching policy’s performance, whereas at heavy load the assignment decision plays

the larger role.

While throughout the paper, we operate under the assumption that job sizes are exponentially

distributed, many of our results hold for generally distributed job sizes (see Appendix F for details).

The work presented in this paper is a starting point for the further study of the policies within our

framework; to this end, we discuss ample opportunities for future work in Section 8.

5

2 Literature review

In large-scale systems, the power-of-d is the dominant dispatching paradigm; power-of-d policies

operate by querying d servers uniformly at random and dispatching an arriving job to one of the

queried servers. The best-known policy within this paradigm is Join the Shortest Queue-d (JSQ-d),

under which a job is dispatched to the server with the shortest queue among the d queried servers.

Response time under JSQ-d has been analyzed, under the assumption of homogeneous servers and

exponential service times [21, 37]. JSQ-2 has also been studied in heterogeneous systems with

general service times under both the FCFS [14, 45] and Processor Sharing (PS) scheduling rules [22].

Variants of JSQ-d include JSQ(d, T), under which a job is dispatched to a queried server with

workload less than a threshold T , and Join the Idle Queue-d (JIQ-d), which is a special case of

JSQ(d, T) with T = 0 [12]. While power-of-d policies typically are designed for homogeneous

systems, several heterogeneity-aware policies akin to JSQ-d also have been proposed. These include

Shortest Expected Delay-d (SED-d), which uses server speed information to assign a job to a queried

server based on the expected waiting time rather than the number of jobs in the queue, and

Balanced Routing (BR), which queries d servers with probabilities proportional to their speeds and

then uses JSQ assignment [5]. Other power-of-d-like familes of policies that make use of server speed

information include JIQ-(dF , dS) and JSQ-(dF , dS) [9], as well as the Hybrid SQ(2) Scheme,

which has been studied under the Processor Sharing (PS) scheduling discipline [22]. All of these

policies fit within our framework; we will discuss many of them in more detail, in the context of

our framework, in the sections that follow.

A different stream of related literature focuses on policies that use information about all servers’

states when making dispatching decisions; because these policies do not involve querying a subset of

the servers, they fall outside of our framework. The most well-known policy in this category is Join

the Shortest Queue (JSQ), which is known to minimize mean response time in homogeneous systems

with FCFS scheduling, assuming that service times are independent and identically distributed and

have non-decreasing hazard rate [40, 43]. Mean response time under JSQ has been analyzed approx-

imately under both FCFS scheduling, assuming exponential service times [23], and PS scheduling,

assuming general service times [11]. Join the Idle Queue (JIQ) was proposed as a low-communication

alternative to JSQ [18, 39]; again, the analysis assumes homogeneous servers. More recently, sev-

eral heterogeneity-aware variants on JSQ and JIQ have been proposed and studied [33, 45]. While

some of these policies have been shown to stochastically minimize the queue length distribution

6

in heterogeneous systems [33], this does not imply optimality with respect to mean response time.

Indeed, policies within our framework can outperform these heterogeneity-aware policies that use

state information from all servers (see, e.g., [9]).

Still other scalable heterogeneity-aware policies have been designed for systems with slightly

different modeling assumptions than those we consider in this work. For example, the JFIQ and

JFSQ policies were designed for systems in which jobs have locality constraints (i.e., each job is

capable of running on only a subset of the servers) [41]. While the assignment rules used in

these policies are similar to some of the assignment rules that fit within our framework, the JFIQ

and JFSQ dispatching policies would not be considered part of our framework because they do not

involve querying a subset of servers; instead, the dispatcher considers all compatible servers for each

arriving job. Similarly, the Local Shortest Queue (LSQ) family of policies [36] is orthogonal

to our work; these policies assume multiple dispatchers, each of which store a local—possibly out

of date—view of server states. While some of the policies in the LSQ family are quite similar

to policies in our framework, the analytical approach and key insights of [36] are fundamentally

different from our work because of the use of out of date information.

Another category of heterogeneity-aware dispatching policies that fall outside our framework

includes those policies that are designed specifically for small-scale systems. Policies in this category

use information about all servers’ queue lengths—and sometimes more detailed information—when

making dispatching decisions [2, 3, 7, 13, 32, 35]. These policies typically would not be considered

scalable, and hence are less applicable to the setting we consider in this paper. Some policies, such

as Shortest Expected Delay and Generalized Join the Shortest Queue, have well-defined power-of-d

variants appropriate for large-scale systems. Thus far, analysis of these policies has focused on

systems with only a small number of servers [1, 30, 31, 42]; we consider the power-of-d versions of

these policies, which do fall within our framework, in later sections. Further away from our setting

is work focusing on the “slow server problem,” which asks whether a slow server should be used at

all [15, 16, 17, 20, 26, 27, 28]. These models consider systems with a central queue, and thus, the

policies proposed do not apply to our setting.

3 Model and framework

The framework introduced in this paper necessitates a large volume of notation. Throughout the

paper, notation is defined when introduced. Additionally, most of the notation in the paper is

7

summarized in Appendix A

3.1 Preliminaries

We consider a system with k servers. There are s classes of server speeds,

S ≡ {1, . . . , s}, (1)

where the number of class-i servers is ki; let qi ≡ ki/k be the fraction of servers belonging to class

i. In the interest of both clarity and tractability, we assume that the size (i.e., service requirement

in terms of time) of a job running on a class-i server is exponentially distributed with rate µi (for a

discussion of generally distributed service times, see Appendix F). Classes are indexed in decreasing

order of speed, i.e., µ1 > · · · > µs. We assume that
s∑
i=1

µiqi = 1. Jobs arrive to the system as

a Poisson process with rate λk. Except where stated otherwise, we carry out our analysis in the

regime where k →∞ under the assumption of asymptotic independence (see Section 4 for details).

The goal is to minimize the mean response time E[T], i.e., the end-to-end duration of time from

when a job first arrives to the dispatcher until it completes service at one of the servers. Upon a

job’s arrival, the dispatcher (i) queries a given number (d � k) of servers according to a querying

rule, then (ii) sends the job to one of the queried servers according to an assignment rule, at which

(iii) the job is queued and/or served according to a work-conserving scheduling rule. In this paper,

we are primarily interested in elaborating on and analyzing the consequences of the first two rule

types—querying and assignment; together these two rules constitute the totality of the dispatching

policy. We denote the dispatching policy that uses querying rule QR and assignment rule AR by

〈QR,AR〉. Our goal is to find dispatching policies (i.e., jointly determine how to query servers

and how to assign jobs) that result in low mean response times. While explicitly determining and

evaluating the performance of the optimal policy will be prohibitively difficult, we propose some

families of rules that are simple to implement and understand alongside techniques for identifying

optimal rules within these families given a particular problem instance.

The details of how individual rules function can depend on the parameters of a particular

system (i.e., on the number of server classes s, the server speeds µ1, . . . , µs, the fraction of the

total server count constituting each class, the arrival rate, λ, etc.) and the query count d (which

we can take as given). A family of (querying or assignment) rules, is a collection of individual

rules parameterized by a shared set of additional decision variables (e.g., probabilistic parameters

8

indicating which server classes should be queried or which server should be assigned a job given the

state of the queried servers). We are interested in rule families insofar as they allow us to optimize

over their parameter spaces in order to find the specific rule that minimizes the mean response

time E[T] within that family for a given system parameterization. We note that this optimization

is performed once for a given system; the same querying rule and assignment rule are then applied

throughout the system’s lifetime. Even where optimization is prohibitively intractable, we can

still set parameter values heuristically in the hope of finding strong policies among those available

within a family.

Throughout the paper we use the following convention: the abbreviated names of individual

(querying, assignment, and scheduling) rules and dispatching policies are rendered in a sans-serif

font (e.g., a querying rule QR, an assignment rule AR, and a dispatching policy DP), while those

of entire families of rules and policies are rendered in a bold serif font (e.g., a querying rule family

QRF, an assignment rule family ARF, and a dispatching policy family DPF). Often, we will also

denote families of dispatching policies by extending our notation for individual dispatching rules

〈QR,AR〉 as follows: for an individual querying rule QR and a family of assignment rules ARF,

let 〈QR,ARF〉 ≡ {〈QR,AR〉 : AR ∈ ARF} be the family of dispatching policies constructed from

the individual querying rule QR in combination with any individual assignment rule AR belonging

to the family ARF. By analogy, for a querying rule family QRF and individual assignment rule

AR, let 〈QRF,AR〉 ≡ {〈QR,AR〉 : QR ∈ QRF}. When discussing a family of dispatching policies

where neither querying nor assignment is restricted to an individual rule, we write 〈QRF,ARF〉 ≡

{〈QR,AR〉 : QR ∈ QRF, AR ∈ ARF}.

We assume throughout that the sizes of specific jobs are unknown until they are completed,

and hence we restrict attention to querying, assignment, and scheduling rules that cannot make

use of (i.e., are “blind” to) job size information. We further assume that querying and assignment

decisions are made and carried out instantaneously without any overheads; consequently, jobs may

not be held at the server for dispatching at some later time. Under the assumption of exponentially

distributed job sizes, our analysis and results hold under all work conserving size-blind scheduling

rules. Under general service time distributions this is no longer the case; for a discussion of the

interaction between service time distributions and scheduling rules, see Appendix F).

9

3.2 Overview of querying rules

When a job arrives, the dispatcher queries d servers at random according to a querying rule.

Throughout this paper, in the interest of tractability, brevity, and simplicity, we restrict attention

to those querying rules that are static and symmetric (properties, which we define below).

Definition 1. A querying rule is static if each querying decision is made without reference to any

kind of state information, i.e., the set of servers queried upon a job’s arrival is chosen independently

of all past and future querying and assignment decisions.

Insisting that our querying rules be static is motivated by simplicity, and may preclude some

superior querying rules: it is conceivable that there would be some benefit in weighting the likelihood

that a server is queried in terms of how recently it was queried (or better yet, in terms of how recently

it was assigned a job), which is not possible under static querying rules. We note in particular that

restricting attention to static querying rules precludes round-robin querying (i.e., the rule where all

servers would be put into an ordered list, and one would query by going down the list and querying

the next d servers at each arrival, cycling back to the beginning of the list after querying the server

at the end of the list). Nevertheless, this restriction comes with an important advantage: static

querying rules can be uniquely and unambiguously described in terms of a probability distribution

over the set of all d-tuples of servers. By further imposing that our static querying rules also

be symmetric (according to the definition that follows), we can simplify these distributions even

further.

Definition 2. A static querying rule is symmetric if it is equally likely to query a set of d servers

U1 or U2 whenever U1 and U2 contain the same number of class-i servers for all i ∈ S.

Essentially, a static symmetric querying rule is one where each query is carried out independently

of all others (as with all static querying rules), while no server (respectively combination of servers)

is ex ante treated any differently than any other server (respectively combination of servers) of the

same class (respectively class composition). As with the restriction to symmetric querying rules,

requiring that a querying rule be symmetric may preclude superior dispatching policies.

These restrictions motivate the introduction of some additional notation and terminology. Let

Di denote the number of class-i servers in a given query, let D ≡ (D1, . . . , Ds) denote the class

mix, let di and d ≡ (d1, . . . , ds) denote the realizations of the random variable Di and the random

10

vector D, respectively, and finally let

D ≡ {d : d1 + · · ·+ ds = d} (2)

be the set of all possible class mixes d (involving exactly d servers). Observe that any static

symmetric querying rule can be uniquely and unambiguously defined in terms of a distribution over

the set of all possible query mixes, D. Formally, a querying rule is given by a function p : D → [0, 1]

satisfying
∑

d∈D p(d) = 1. The querying rule selects servers so that P(D = d) = p(d).

We conclude this subsection by introducing the main families of querying rules—in addition to

two individual rules—studied in this paper, taking the query count d as given:

• The General Class Mix (GEN) family consists of all (and only those) querying rules that

are static and symmetric. Note that such querying rules are equally likely to query any

combination of d servers that constitute the same query mix d ∈ D. The following families

are all subsets of GEN.

• The Independent Querying (IND) family consists of those querying rules in GEN where

each of the d servers to be queried is chosen independently according to some (but not

necessarily the same) probability distribution over the set of classes S. Consider the following

example of a policy in IND when s = d = 3: always query at least one class-1 server,

exactly one class-2 server, and either an additional class-1 server or a class-3 server with

equal probability. Note that we ignore the possibility of a single server being queried more

than once, as we are primarily concerned with the setting where the number of servers in

each class ki →∞.

• The Independent and Identically Distributed Querying (IID) family consists of those

querying rules in GEN where each of the d servers to be queried are chosen independently

according to the same probability distribution over the set of classes S, and hence, the random

vector D is drawn from a multinomial distribution under IID querying. IID is a subfamily

of IND.

• The Deterministic Class Mix (DET) family consists of those querying rules in GEN that

always query the same class mix for some fixed class mix d ∈ D. DET is a subfamily of

IND.

11

• The Single Random Class (SRC) family consists of those querying rules in GEN that

select one of the s server types according to some probability distribution over the set of

classes S and then queries d servers all of that class.

• The Single Fixed Class (SFC) family consists of those querying rules that always query

d class-i servers for some fixed class i ∈ S. Such rules essentially discard all servers except

those of the chosen class, rendering the system homogeneous. The SFC family consists of

only s querying rules and is precisely the intersection of the IID and DET families as well

as the intersection of SRC and any (nonzero) number of the IND, IID and DET families.

• The Uniform Querying (UNI) rule is equally likely to query any combination of d servers. To

elaborate, the UNI querying rule is a member of the IID family where each of the d servers

queried is a class-i server with a probability equal to the fraction of servers that belong to

class i (i.e., with probability qi).

• The Balanced Routing (BR) rule queries d servers independently, with the probability that any

given server is queried being proportional to its speed. To elaborate, the BR querying rule

is a member of the IID family where each of the d servers queried is a class-i server with a

probability equal to the fraction of the total system-wide service capacity provided by class-i

servers (i.e., with probability µiqi).

Remark 1. In [5], Balanced Routing referred to what would be understood in our framework as

the dispatching policy constructed from (i) what we call the Balanced Routing querying rule and

(ii) the Join the Shortest Queue assignment rule. From this point forward, in our paper we use the

acronym BR to refer to the Balanced Routing querying rule and not the dispatching policy.

Figure 1a depicts the set inclusion relationships between querying rule families and individual

querying rules described above.

3.3 Overview of assignment rules

Once a set of servers has been queried, the job is assigned to one of these servers according to an

assignment rule, which specifies a distribution over the servers queried. Our assignment rules are

allowed to depend on state information, consisting of knowledge of each queried server’s class (and

hence, their associated µi and qi values) and knowledge of the queue length—including the job or

12

GEN

IND DET

SRC

IID
SFC•UNI •BR

(a) Querying rule families. Note that SFC
is the intersection of any two of the IID,
DET, and SRC families. Moreover, we
have SFC = IND ∩ SRC.

CLD

CID LDID

CD
• JIQ

• JSQ

• SED
ND

•

(b) Assignment rule families. Note that we
have CD ∩ ID = {ND}.

Figure 1: Set inclusion diagrams for the querying rule families (a) and assignment rule families (b)
discussed in this paper. In both diagrams rule families are shown as regions and individual rules
are shown as points.

jobs in service, if any—at each queried server. We restrict attention to assignment rules that satisfy

restrictions analogous to those adopted for our querying rules.

Definition 3. An assignment rule is static if each assignment decision is made without direct

regard to past querying or assignment decisions (although such decisions can impact the state at a

server, which assignment rules may use).

Remark 2. More formally, let Xt denote the state of the entire system at the time of the t-th

assignment (including the queue length at and class of each of the servers in the system) and let

~At denote the result of the t-th query (by analogy with the notation ~A, which we introduce in

Section 7.1). Let Ft denote the natural filtration of {Xt, ~At}. An assignment policy is static if the

(potentially random) assignment choice given ~At is the same as the assignment choice given Ft.

Definition 4. A static assignment rule is symmetric if it does not use information about the

specific identities of the queried servers and can only use their state information. That is, given

a set of queried servers with identical states, the job is equally likely to be assigned to any one of

those servers and the probability with which that job is assigned to one of those servers depends

only on the state (and not the identities) of those servers and the states (and not the identities) of

the other queried servers.

We consider six families of static and symmetric assignment rules. We proceed to describe these

families, which differ from one another in the ways they can differentiate the states of the queried

13

servers for the the purpose of making assignment decisions:

• The Non-Differentiated (ND) assignment rule cannot differentiate between server states. This

is equivalent to uniform assignment among the servers in the query. We note that using the

ND assignment rule is antithetical to the purpose of the power-of-d paradigm, as an equivalent

dispatching policy can always implemented with d = 1.

• Assignment rules in the Class Differentiated (CD) family may differentiate between server

states only on the basis of class information.

• Assignment rules in the Idleness Differentiated (ID) family may differentiate between

server states only on the basis of idleness information, e.g., Join the Idle Queue (JIQ).

• Assignment rules in the Length Differentiated (LD) family may differentiate between

server states only on the basis of queue-length information, e.g., Join the Shortest Queue

(JSQ).

• Assignment rules in the Class and Idleness Differentiated (CID) family may differentiate

between server states only on the basis of class and idleness information.

• Assignment rules in the Class and Length Differentiated (CLD) family may differentiate

between server states on the basis of both class and queue-length information, e.g., Shortest

Expected Delay (SED).

As shown in Figure 1b, the CLD family includes all of the other assignment rule families under

consideration. Naturally, among the dispatching policies that we consider, those that achieve the

best performance (i.e., the lowest mean response time) necessarily make use of the querying rules

in the CLD family. Specific policies that belong to only the CLD family (among the six men-

tioned above) may be amenable to numerical response time approximation. However, the curse of

dimensionality frequently obstructs the use of optimization techniques for the systematic discovery

of strong-performing policies within this family. Meanwhile, the study of the LD family can exhibit

complications similar to those exhibited by CLD, while lacking the advantage of exploiting het-

erogeneity to obtain low response times. Therefore, CID—which subsumes CD and ID—emerges

as the richest family under consideration that is amenable to analysis, so we devote Sections 4–6

to exploring this family of assignment rules (in conjunction with the various families of querying

14

rules introduced in Section 3.2). We explore the wider CLD family of assignment rules in Sec-

tion 7, where we leverage our extensive study of CID-driven dispatching policies (presented in the

aforementioned sections) to find superior policies with assignment rules in CLD.

4 Analysis of 〈QRF,CID〉

In this section, we examine the CID family of assignment rules in detail. We provide a formal

presentation of this family (Section 4.1), prove stability results (Section 4.2), and present an analysis

of the mean response time of the 〈GEN,CID〉 dispatching policies (Section 4.3).

4.1 Formal presentation of the CID family of assignment rules

Assignment rules in the CID family are—as the family’s name clearly suggests—length-blind but

idle-aware, i.e., such an assignment rule can observe and make assignment decisions based on the

idle/busy status of each of the queried servers, but it cannot observe the queue length at each busy

server (of course, the queue length at each idle server must be 0). By eschewing examining detailed

queue length information, we facilitate tractable analysis. Meanwhile, idle-awareness motivates the

introduction of some new notation: we encode the idle/busy statuses of the queried servers by

a ≡ (a1, . . . , as), where ai is the number of idle class-i servers among the di queried. The set of all

possible a vectors is given by A ≡ {a : a1 + · · · + as ≤ d}. Note that ai and a are realizations of

the random variable Ai and the random vector A (which are defined analogously to Di and D),

respectively.

Formally, this assignment rule is given by a family of functions αi : A×D → [0, 1] parameterized

by i ∈ S. For all a ∈ A and d ∈ D such that a ≤ d (element-wise) these families must satisfy∑
i∈S αi(a,d) = 1 and αi(a,d) = 0 if di = 0. Given such a family of functions (together with a

query resulting in vectors a ∈ A and d ∈ D) the dispatcher sends the job to a class-i server with

probability αi(a,d). At this point we assign to an idle class-i server (if possible) or a busy class-i

server (otherwise), chosen uniformly at random.

We prune the set of assignment rules by avoiding rules that allow assignment to a slower server

when a faster idle server has been queried. That is, αi(a,d) = 0 whenever there is a class j < i such

that aj ≥ 1. Moreover, whenever a 6= 0, the value of αi(a,d) depends only on the realized value

of the random variable J ≡ min{j ∈ S : Aj > 0}—the class of the fastest idle queried server—

and on d (specifically, on the realization of the random set {j < J : dj > 0}). For notational

15

convenience, we take min ∅ ≡ s+ 1, so that J is defined on S̄ ≡ S ∪ {s+ 1} = {0, 1, 2, . . . , s, s+ 1}

and J = s + 1 when all queried servers are busy, in which case there is no idle server and we

can consider the (non-existent) fastest idle queried server as belonging to (the non-existent) class

s+ 1. This structure allows us to introduce the following abuse of notation that will facilitate the

discussion of our analysis: αi(j,d) ≡ αi(a,d) for all j ∈ S̄ and a ∈ A such that J = j whenever

A = a, i.e., such that j = min{j′ ∈ S : aj′ > 0}. Note that as a consequence of this notation, we

have αi(s + 1,d) = αi(0,d). Further note that we must have αi(j,d) = 0 whenever di = 0 (we

cannot send the job to a server that was not queried) and moreover we set αi(j,d) = 0 whenever

dj = 0 and j 6= s+ 1 (the fastest queried idle server must of course be queried).

4.2 Stability

In this section, we identify necessary and sufficient conditions for the existence of a stable dis-

patching policy within the 〈QRF,CID〉 family for the various families of querying rules, QRF,

presented in Section 3.2. We say that the system is stable if the underlying Markov chain is pos-

itive recurrent. This is a necessary condition for achieving finite mean response time. In order

to establish stability, it is sufficient to show that, when busy, each server experiences an average

arrival rate that is less than its service rate. This implies that the mean time between visits to the

idle state is finite, and hence that the underlying Markov chain is positive recurrent as required.

Let λB
i denote the average arrival rate to a busy class-i server.

Definition 5. The system is stable if, for all server classes i ∈ S, we have λB
i < µi.

Proposition 1. Recalling that λ is the average arrival rate per server (i.e., λk is the total arrival

rate to the system), the following necessary and sufficient conditions for stability hold:

1. There exists a policy in the 〈SRC,CID〉 family such that the system is stable if and only if

λ < 1.

2. There exists a policy in the 〈SFC,CID〉 family such that the system is stable if and only if

λ < maxj µjqj.

3. Consider a dispatching policy in the 〈DET,CID〉 family, where the query mix is always d

(note that each individual policy within 〈DET,CID〉 has only one query mix). The system

is stable if and only if λ <
∑

i : di>0

µiqi.

16

4. Under 〈BR,CID〉, the system is stable if and only if λ < 1.

5. There exists a policy in 〈IID,CID〉 such that the system is stable if and only if λ < 1.

6. There exists a policy in each of 〈IND,CID〉 and 〈GEN,CID〉 such that the system is stable

if and only if λ < 1.

Proof. We prove each time separately:

1. Consider a querying rule in SRC where the probability that all queried servers are of class i

is given by µiqi. Then, by Poisson splitting, the class-i servers act like a homogeneous system,

independent of all other server classes, with a total arrival rate λkµiqi = λkiµi. Given that

only class-i servers are present in the query, the CID assignment rule will assign the arriving

job to an idle server, if one is present in the query, and a busy server chosen uniformly at

random (among the servers in the query) if not. This assignment rule is symmetric among

class-i servers, and so the arrival rate to an individual class-i server is λµi, which is less than

µi, ensuring the stability of the system, provided that λ < 1.

2. SFC effectively throws out all server classes except one, which we will call class i; by a similar

argument as in the proof for SRC, the class-i subsystem will remain stable provided that

λ < µiqi. Then the largest stability region is achieved by selecting the server class with the

largest total capacity.

3. Given that we always query according to some fixed query mix d ∈ D, construct an assignment

rule in CID (yielding a dispatching policy in 〈DET,CID〉) under which, for all i ∈ S such

that di > 0, the job is dispatched to a queried class-i server (chosen uniformly at random

without considering any idle/busy statuses) with probability µiqi

/ ∑
j:dj>0

µjqj (note that this

assignment rule is a member of CD ⊆ CID as it ignores idle/busy statuses, and therefore

does not adhere to our pruning of the space of assignment rules). Then the total arrival rate

to class-i servers is

λk · µiqi∑
j:dj>0

µjqj
= µiki ·

λ∑
j:dj>0

µjqj
,

which is less than µiki, ensuring stability of the class-i servers, provided that λ <
∑
j:dj>0

µjqj .

4. From [5], we have that 〈BR, JSQ〉 is stable if and only if λ < 1. For all (i,d) ∈ S ×D let βi(d)

denote the probability that an arriving job is sent to a class-i server under 〈BR, JSQ〉, given

17

that the query mix is d (i.e., βi(d) is the probability that the shortest queue is at a class-i

server, given query mix d). Now form a policy in the family 〈BR,CID〉 by sending the job

to a queried class-i server (chosen uniformly at random without considering any idle/busy

statuses) with probability βi(d) for all (i,d) ∈ S × D (note that this assignment rule is a

member of CD ⊆ CID as it ignores idle/busy statuses, and therefore does not adhere to our

pruning of the space of assignment rules). The probability that an arriving job is dispatched to

a class-i server is the same under this newly defined policy in 〈BR,CID〉 as under 〈BR, JSQ〉;

the only difference is that now all jobs can be viewed as being routed entirely probabilistically.

This will not change the stability region, as λB
i remains unchanged for all i ∈ S.

5. This follows from the stability condition for 〈BR,CID〉, which is a member of 〈IID,CID〉.

6. This follows from item 5 above and the fact that 〈IID,CID〉 ⊆ 〈IND,CID〉 ⊆ 〈GEN,CID〉.

Note that in proving the existence of a stable dispatching policy in the 〈DET,CID〉 and

〈BR,CID〉 families (items 3 and 4 of Proposition 1, respectively), we constructed stable dispatching

policies where the assignment rules were members of CD ⊆ CID, and hence, did not adhere to

our pruning rules. It is not hard to modify these policies to also prove the existence of stable

dispatching policies within these families that make use of idle/busy statuses and adhere to our

pruning rules. Consider the simple modification where whenever the original policy would assign

the job to a server that is slower than the fastest idle server (or to a busy server of the same speed),

instead assign the job to the fastest idle server (if there is more than one fastest idle server, assign

the job to one of them chosen uniformly at random). This modification decreases the arrival rate

to busy servers and increases the arrival rate to idle servers, which cannot destabilize the system.

We also present the following result, which amounts to a necessary condition for stability under

the UNI querying rule and any assignment rule:

Proposition 2. For any dispatching policy using the UNI querying rule, the system is unstable if

there exists a server class i ∈ S such that λ > µi/q
d−1
i .

Proof. Under UNI, a query mix consists of only class-i servers—and hence, the arriving job must

be dispatched to a class-i server under any assignment rule—with probability qdi . The total arrival

rate to the class-i subsystem is then greater than or equal to λkqdi . The system is unstable if

18

this total arrival rate is greater than the capacity of the class-i subsystem, i.e., if λkqdi > µiki, or,

equivalently, if λ > µi/q
d−1
i .

4.3 Mean response time analysis

We proceed to present a procedure for determining the mean response time E[T] under 〈QR,AR〉

for any static symmetric querying rule QR (i.e., any QR ∈ GEN) and any AR ∈ CID that yield a

stable system.

We carry out all analysis in steady-state and rely on mean-field theory. We let k →∞, holding

qi fixed for all i ∈ S; consequently, we also have ki → ∞ for all i ∈ S. We further assume

that asymptotic independence holds in this limiting regime, meaning that (i) the states of (i.e.,

the number of jobs at) all servers are independent, and (ii) all servers of the same class behave

stochastically identically (see Appendix B for simulation evidence in support of this assumption).

With the asymptotic independence assumption in place, we now find the overall mean response

time as follows:

Proposition 3. Let λI
i and λB

i denote respectively the arrival rates to idle and busy class-i servers.

Then the overall system mean response time is

E[T] =
1

λ

s∑
i=1

qi

(
(1− ρi)λI

i + ρiλ
B
i

µi − λB
i

)
, (3)

where ρi is the fraction of time that a class-i server is busy, given by

ρi ≡
λI
i

µi − λB
i + λI

i

. (4)

Proof. First observe that under our querying and assignment rules, servers of the same class are

equally likely to be queried and, within a class, servers with the same idle/busy status are equally

likely to be assigned a job. Hence, by Poisson splitting, it follows that (for any i ∈ S) each class-i

server experiences status-dependent Poisson arrivals with rate λI
i when idle and rate λB

i when busy.

Now observe that each class-i server, when busy, operates exactly like a standard M/M/1

system (under the chosen work-conserving scheduling rule) with arrival rate λB
i and service rate µi.

Since, by virtue of their own presence, jobs experience only busy systems, the mean response time

experienced by jobs at a class-i server—which we denote by E[Ti]—is 1/(µi − λB
i). Furthermore,

standard M/M/1 busy period analysis gives the expected time of the busy period duration at a

19

class-i server as E[Bi] ≡ 1/(µi − λB
i); we note that the standard analysis of the M/M/1 queueing

system also tells us that while E[Bi] = E[Ti], Bi and Ti are not identically distributed.

Applying the Renewal Reward Theorem immediately yields that ρi (the fraction of time that a

class-i server is busy) is as given in Equation 5 as claimed:

ρi =
E[Bi]

1/λI
i + E[Bi]

=
λI
i

µi − λB
i + λI

i

. (5)

Finally, we find the system’s overall mean response time by taking a weighted average of the

mean response times at each server class. Let λi ≡ (1−ρi)λI
i +ρiλ

B
i denote the average arrival rate

experienced by a class-i server. Recalling that qi = ki/k, it follows that the proportion of jobs that

are sent to a class-i server is kiλi/(kλ) = qiλi/λ, and hence

E[T] =
s∑
i=1

(
qiλi
λ

)
E[Ti] =

1

λ

s∑
i=1

qi

(
(1− ρi)λI

i + ρiλ
B
i

µi − λB
i

)
, (6)

which completes the proof.

Remark 3. Note that while mean response times are insensitive to the choice of (size-blind)

scheduling rule, the distribution (and higher moments) of response time do not exhibit this insensi-

tivity. The same method presented in this section can also allow one to readily obtain the Laplace

Transform of response time under many work-conserving scheduling rules. For example, under First

Come First Served (FCFS) scheduling one could use the result that T̃i(w) = (µi − λi)/(µi − λi +w)

for an M/M/1/FCFS with arrival and service rates λi and µi, respectively, to obtain the overall

transform of response time T̃ (w).

In order to use Proposition 3 to determine E[T] values, we must be able to compute the arrival

rates λI
i and λB

i for each i ∈ S. The following notation will prove useful in expressing these rates:

for all i ∈ S̄ ≡ {1, 2, . . . , s+1} and d ∈ D, we let bi(d) denote the probability that all queried servers

that are faster than those in class i are busy (i.e., all queried servers with classes in {1, 2, . . . , i− 1}

are busy). It immediately follows that

bi(d) ≡ P(A1 = · · · = Ai−1 = 0|D = d) =

i−1∏
`=1

ρd`` . (7)

Remark 4. Note that for all d ∈ D, we have b1(d) = 1 as it is vacuously true that all queried

20

servers faster than server 1 are busy as no such servers exist. Moreover, bs+1(d) denotes the

probability that all queried servers are busy given that D = d.

In the following theorem, we present a pair of equations (parameterized by i ∈ S) for λI
i and

λB
i .

Theorem 1. For all i ∈ S, the arrival rates to idle and busy class-i servers (i.e., λI
i and λB

i ,

respectively), satisfy

λI
i =

λ

qi

∑
d∈D

{
dibi(d)p(d)αi(i,d)

di∑
ai=1

(
di − 1

ai − 1

)
(1− ρi)ai−1ρdi−aii

ai

}
(8)

λB
i =

λ

qiρi

∑
d∈D

p(d)

s+1∑
j=i+1

bj(d)
(

1− ρdjj
)
αi(j,d)

 , (9)

where we use the abuse of notation ρ
ds+1

s+1 ≡ 0.

Theorem 1 yields 2s equations, which we can solve as a system for the 2s unknowns {λI
i}i∈S

and {λB
i }i∈S , where we take {ρi}si=1 and {bi(d)}s+1

i=1 to be as defined by Equations (5) and (7),

respectively. With the λI
i and λB

i (and consequently, the ρi) values determined for all i ∈ S, we can

then compute E[T] directly from Equation (6), completing our analysis.

The rest of this section is devoted to proving Theorem 1, by way of two lemmas. Both lemmas

will be concerned with the quantities rI
i(d) and rB

i (d), defined for all i ∈ S as follows: for all

d ∈ D for which di > 0, rI
i(d) (respectively, rB

i (d)) denotes the probability that the job is assigned

to the tagged (class-i) server under query mix d given that the tagged server is queried and idle

(respectively, busy). Meanwhile, for all d ∈ D for which di = 0, we adopt the convention where

rI
i(d) ≡ 0 and rB

i (d) ≡ 0.

Lemma 1. The arrival rates λI
i and λB

i are given by:

λI
i =

λ

qi

∑
d∈D

dip(d)rI
i(d) (10)

λB
i =

λ

qi

∑
d∈D

dip(d)rB
i (d). (11)

Proof. Recall that the rate at which the tagged server is queried does not depend on its idle/busy

status. Given query mix d, the probability that the query includes the tagged server is di/ki (by

symmetry). Because a query is of mix d with probability p(d) = P(D = d), the tagged server is

21

queried at rate

λk
∑
d∈D

(
di
ki

)
p(d) =

λ

qi

∑
d∈D

dip(d).

Of course, the tagged server’s presence in the query does not guarantee that the job will be assigned

to it. The arrival rate from queries with mix d observed by the tagged server when it is idle is

λk

(
di
ki

)
p(d)rI

i(d) =

(
λ

qi

)
dip(d)rI

i(d),

with the analogous expression holding when the tagged server is busy. It follows that the overall

arrival rates to an idle and busy class-i server (i.e., λI
i and λB

i , respectively) are as claimed.

Lemma 2. For all i ∈ S and all d ∈ D such that di > 0, the probability that the job is assigned to

the tagged class-i server under query mix d given that the tagged server is queried and idle is

rI
i(d) = bi(d)αi(i,d)

di∑
ai=1

(
di − 1

ai − 1

)
(1− ρi)ai−1ρdi−aii

ai
. (12)

Proof. Observe that since we are assuming that the assignment policy AR ∈ CID, the job can

be assigned to the tagged server only if all faster servers in the query are busy, which occurs

with probability bi(d) (see Equation 4.3 for details) for a given query mix d ∈ D. If this is the

case, then with probability αi(i,d) the job is assigned to an idle class-i server chosen uniformly at

random; hence, the tagged server is selected among the ai idle class-i servers with probability 1/ai.

Enumerating over all possible cases of Ai = ai when the tagged class-i server is idle, we find the

probability that the tagged server is assigned the job when queried with mix d:

rI
i(d) = bi(d)αi(i,d)

di∑
ai=1

P(Ai = ai|D = d, tagged class-i server is idle)

ai

= bi(d)αi(i,d)

di∑
ai=1

(
di − 1

ai − 1

)
(1− ρi)ai−1ρdi−aii

ai
, (13)

where the latter equality follows from the fact that Ai ≥ 1 when the tagged idle server is busy, and

so

(Ai|D = d, tagged class-i server is idle) ∼ (Ai|D = d, Ai ≥ 1) ∼ Binomial(di − 1, 1− ρi) + 1,

which is in turn a consequence of our asymptotic independence assumption.

22

Lemma 3. For all i ∈ S and all d ∈ D such that di > 0, the probability that the job is assigned to

the tagged class-i server under query mix d given that the tagged server is queried and busy is

rB
i (d) =

1

diρi

s+1∑
j=i+1

bj(d)
(

1− ρdjj
)
αi(j,d), (14)

where (as in the statement of Theorem 1) we use the abuse of notation ρ
ds+1

s+1 ≡ 0.

Proof. We determine rB
i (d) by conditioning on the random variable J , denoting the class of the

fastest idle queried server (see Section 4.1 for details). Recall that J ≡ min{j ∈ S : Aj > 0}, where

we take min ∅ ≡ s+ 1, so that J = s+ 1 whenever all servers are busy. Letting rB
i (d|J = j) denote

the probability that the job is assigned to the tagged (class-i) server under query mix d given that

J = j and the tagged server is queried and busy, the law of total probability yields

rB
i (d) =

s+1∑
j=1

rB
i (d|J = j) · P(J = j|D = d, tagged class-i server is busy). (15)

In order to compute rB
i (d), we first observe that, for all j ∈ S̄, the job is assigned to some

class-i server with probability αi(j,d) (recall that αi(s+ 1,d) ≡ αi(0,d) in our abuse of notation),

and hence the probability that the job is assigned to some class-i server given that J = j is

rB
i (d|J = j) =

αi(j,d)

di
. (16)

It now remains to determine P(J = j|D = d, tagged class-i server is busy). First, we address the

case where J = j for some j ∈ S. Since AR ∈ CID, whenever j ∈ {1, 2, . . . , i}, we must have

αi(j,d) = 0 as the query contains an idle server at least as fast as the tagged (class-i) server (which

happens to be busy). Hence, we may restrict attention to j > i, in which case—recalling that bj(d)

denotes the probability that all queried servers faster than the tagged (class-i server) are busy, as

given by Equation (7)—we have

P(J = j|D = d, tagged class-i server is busy) = P(J = j|D = d, Ai < Di) =
bj(d)

(
1− ρdjj

)
ρi

,

(17)

where we recall that ρ
ds+1

s+1 ≡ 0 and note that the 1/ρi factor is introduced due to the fact that

Ai < Di (because the server is known to be busy).

23

We can now combine Equations (15), (16), and (17) together with the fact that αi(j,d) = 0

whenever j ∈ {1, 2, . . . , i} in order to obtain the claimed formula for rB
i (d).

The proof of Theorem 1 follows from Lemmas 1, 2, and 3, together with the convention that

rI
i(d) ≡ 0 and rB

i (d) ≡ 0 whenever di = 0.

5 Finding optimal dispatching under CID assignment

Based on the analysis in the previous section, we can now write a nonlinear program for determining

optimal dispatching policies in the 〈QRF,ARF〉 family for various choices of QRF. This amounts

to jointly determining an optimal probability distribution p over query mixes and an optimal family

of functions constituting the assignment rule αi (for i ∈ S).

Each choice of querying rule family QRF yields a different optimization problem. All of these

optimization problems can be formulated to share a common objective function. Meanwhile, the

set of permissible querying rules (i.e., the chosen querying rule family QRF) restricts the set of

feasible decision variables. Naturally, formulating problems in this way, if QRF′ ⊆ QRF, then the

feasibility region of the optimization problem associated with 〈QRF′,CID〉 is contained within that

associated with 〈QRF,CID〉, and hence, all such optimization problems have feasibility regions

contained within that of 〈GEN,CID〉. Consequently, if we can solve the problem associated

with 〈GEN,CID〉, then solving a problem associated with 〈QRF,CID〉 for another querying rule

family QRF will never yield a policy that results in a strictly lower mean response time than the

one we have already found. In fact, the problem associated with 〈GEN,CID〉 can be viewed as a

“relaxation” of the others.

While the above discussion seems to suggest that one need only study the optimization problem

associated with 〈GEN,CID〉, there are several reasons for studying problems associated with

〈QRF,CID〉 for other querying rule families, QRF ⊆ GEN. First, as discussed in Appendix D,

many of the feasibility regions associated with the other optimization problems can be expressed

as polytopes in a space with far fewer dimensions than those studied under GEN, suggesting that

these other problems might be solved more efficiently. Numerical evidence that we will present in

Section 6.3 corroborates this suggestion. Second, as we shall discuss in detail throughout Section 6,

these problems are often prohibitively difficult to solve, so we rely on heuristics to find strong

performing (although not necessarily optimal) solutions within each family of dispatching policies.

Therefore, it will sometimes be the case that even though QRF′ ⊆ QRF, a heuristic (rather

24

than truly optimal) “solution” to a problem associated with 〈QRF′,CID〉 may outperform those

obtained from 〈QRF,CID〉. Finally, some families of rules with simpler structures may be more

desirable for practical implementation purposes.

Before presenting our optimization problems, we note that we have not consistently formu-

lated each problem as a restriction on the problem associated with 〈GEN,CID〉. While for any

〈QRF,CID〉 there exists at least one formulation of the optimization problem that resembles that

of 〈GEN,CID〉 with additional constraints, we have opted for a more “natural” approach where

we tailor the optimization problem for each dispatching policy 〈QRF,CID〉 to the structure of the

choice of querying rule family QRF.

Remark 5. The optimization problems that we study are of the form where we minimize f : X → R

on the feasible set X such that for each x ∈ X , x corresponds to a dispatching policy that yields

an overall mean response time E[T] = f(x). We say that two optimization problems with feasible

regions X1 and X2, respectively are equivalent formulations of one another if both (i) for each

x1 ∈ X1, there exists an x2 ∈ X2 such that the policies corresponding to x1 in the first problem and

x2 in the second yield stochastically identical systems, and (ii) the analogous statement holds for

each x2 ∈ X2. While all formulations of a given problem have solutions that yield identical system

behavior, some formulations may be more tractable (or more amenable to heuristic analysis) than

others.

5.1 Finding optimal 〈GEN,CID〉 dispatching policies

We begin by considering the case where QRF = GEN, i.e., the case where we allow for all

possible (static symmetric) querying rules, where all functions p : D → [0, 1] are valid so long as∑
d∈D p(d) = 1.

Since both p and all of the αi functions take arguments from a domain with finitely many

elements, we would like to treat each evaluation of these functions as a decision variable, i.e., we

would like to treat p(d) for each d ∈ D and αi(a,d) for each triple (i,a,d) ∈ S×A×D (or αi(j,d)

for each triple (i, j,d) ∈ S × S̄ × D when using our abuse of notation) as decision variables, with

appropriate constraints. However, as we have discussed earlier, we have pruned the decision space

so that αi(a,d) depends only on the class of the fastest idle queried server J ≡ min{j ∈ S : Aj > 0}

realized under the event (A,D) = (a,d) and on the (realized value of the) set of classes of queried

servers that are faster than class-J servers {j < J : Dj > 0} under the same event. For example

consider a setting where s = 4 and d = 6, where d1 = (4, 0, 1, 1), a1 = (0, 0, 1, 1), d2 = (2, 0, 3, 1),

25

and a2 = (0, 0, 3, 0). Under both the events (A,D) = (a1,d1) and (A,D) = (a2,d2), we have J =

3, while {j < J : Dj > 0} = {1}, and so we must have αi(a1,d1) = αi(a2,d2)—and equivalently,

using our abuse of notation, we must have αi(3,d1) = αi(3,d2)—for all i ∈ {1, 2, 3, 4}.

The pruning described above could be enforced in our optimization problem through the in-

troduction of constraints, but we may also approach pruning more directly by reducing the set of

decision variables. We opt for the latter, to which end we introduce the map γ : S̄ × D → D. In

order to define γ, let I{·} denote the indicator function, let ei denote the i-th s-dimensional unit

vector (so that, e.g., when s = 4, we have e3 ≡ (0, 0, 1, 0)) and let h(d) ≡ min{` ∈ S : d` > 0}

denote the class of the fastest queried server (regardless of whether this server is idle or busy). The

map γ is defined as follows:

γ(j,d) 7→
s∑
i=1

I{di > 0 and i ≤ j}ei +

(
d−

s∑
i=1

I{di > 0 and i ≤ j}

)
eh(d),

(so that, e.g., when s = d = 8, we have γ(5, (0, 2, 1, 0, 3, 0, 2, 0)) = (0, 6, 1, 0, 1, 0, 0, 0))). Given

some j ∈ S̄ and d ∈ D, γ(j,d) is the unique query mix with the maximum possible number of

queried class-h(d) servers such that the realized value of the set {j < J : Dj > 0} is the same under

events (J,D) = (j,d) and (J,D) = (j, γ(j,d))—thus guaranteeing that αi(j,d) and αi(j, γ(j,d))

are identical due to the pruning. We note that the fact that the number of class-h(d) queried

servers is maximized is not of any particular significance; rather, the map γ allows us to specify

a unique query mix to act as a “representative” for all query mixes that would be treated in the

same way by the assignment rule under a given realization of the random variable J . Returning to

our optimization problem, observe that we can reduce the dimensionality of the feasible region by

assigning values only to those αi(j,d) when (i, j,d) ∈ T where the set T represents a pruned set of

triples (i, j,d), for which each αi(j,d) can be assigned a distinct nonzero value in formulating an

assignment rule:

T ≡
{

(i, j,d) ∈ S × S̄ × D : i ≤ j, di > 0, (j ≤ s) =⇒ dj > 0, γ(j,d) = d
}
. (18)

Meanwhile, wherever the optimization problem would make reference to αi(j,d), we instead write

the decision variable αi(j, γ(j,d)) as both values are the same. Furthermore, as defined in Equa-

tion (18), T excludes triples (i, j,d) ∈ S × S̄ × D where (i) j < i, (ii) di = 0, or (iii) dj = 0 and

j 6= s+ 1. Defining T in such a way allows us to omit αi(j,d) for such triples, as all of these values

26

must be 0 (see Section 3.3 for details). In order to write the
∑s

i=1 αi(j,d) = 1 constraints concisely,

without reference to αi(j,d) for triples (i, j,d) 6∈ T , we need a way to specify those (j,d) pairs that

can form a triple (i, j,d) ∈ T with one or more classes i ∈ S, so we also introduce the notation P

to denote such pairs:

P ≡
{

(j,d) ∈ S̄ × D : (∃i ∈ S : (i, j,d) ∈ T)
}
. (19)

Similarly, in expressing the inner sum in Equation (9), we avoid making reference to the same

forbidden triples and ensure that j ≥ i + 1, by introducing the following notation for any fixed

(i,d) ∈ S × D:

Ji(d) ≡ {j ∈ {i+ 1, i+ 2, . . . , s+ 1} : (i, j, γ(j,d)) ∈ T }. (20)

Finally, building upon our analysis in Section 4 (including requiring λB
i < µi for all i ∈ S in

order to guarantee stability), we have the following optimization problem:

27

Optimization Problem for the 〈GEN,CID〉 family

Given values of s, d, λ, and µi and qi (both given for all i ∈ S), determine nonnegative values of the

decision variables λIi and λBi (both for all i ∈ S), p(d) (for d ∈ D), and αi(j,d) (for all (i, j,d) ∈ T)

that solve the following nonlinear program:

min
1

λ

s∑
i=1

qi

(
(1− ρi)λIi + ρiλ

B
i

µi − λBi

)

s.t. λIi =
λ

qi

∑
d∈D

{
dibi(d)p(d)αi(i, γ(i,d))

di∑
ai=1

(
di − 1

ai − 1

)
(1− ρi)ai−1ρdi−ai

i

ai

}
(∀i ∈ S)

λBi =
λ

qiρi

∑
d∈D

p(d)
∑

j∈Ji(d)

bj(d)
(

1− ρdj

j

)
αi(j, γ(i,d))

 (∀i ∈ S)

λBi < µi (∀i ∈ S)∑
d∈D

p(d) = 1

∑
i∈S:

(i,j,d)∈T

αi(j,d) = 1 (∀(j,d) ∈ P)

where for all i ∈ S in writing ρi we are denoting the expression λIi/
(
µi − λBi + λIi

)
with ρ

ds+1

s+1 ≡ 1 for all

d ∈D, and for all j ∈ S̄ in writing bj(d) we are denoting the expression
∏j−1

`=1

(
λI`/

(
µ` − λB` + λI`

))d` .

The p(d) values (for all d ∈ D) and the αi(j,d) values (for all (i, j,d) ∈ T together with αi(j,d) = 0

for all (i, j,d) 6∈ T) from an optimal solution specify the querying and assignment rules associated

with an optimal 〈GEN,CID〉 dispatching policy, respectively.

5.2 Finding optimal 〈IID,CID〉 dispatching policies

We now turn our attention to the case where QRF = IID as it is simpler to address IID before

the more general (but less general than GEN) IND family. Under the IID querying rule, the d

servers are queried independently according to an identical probability distribution over the set of

server classes S. For any querying rule QR ∈ IID we can express the probability distribution p

over query mixes D in terms of an auxiliary distribution p̃ over the set of classes S. Specifically,

we express p̃ as a function p̃ : S → [0, 1] that is subject to the constraint
∑s

i=1 p̃(i) = 1, where p̃(i)

is the probability that an arbitrary queried server is of class i. In particular, due to the structure

of querying rules in IID, we query d servers independently according to IID according to p̃ upon

28

each arrival, yielding

p(d) =

(
d

d1, d2, . . . , ds

) s∏
i=1

p̃(i)di = d!
s∏
i=1

p̃(i)di

di!
,

that is, any QR ∈ IID makes independent queries with querying mixes D that are multinomially

distributed random vectors. Moreover, such a querying rule QR is uniquely identified by p̃. The

above observations allow us to express the optimization problem for 〈IID,CID〉 as a modification

of the optimization problem for 〈GEN,CID〉 (see Appendix C).

5.3 Finding optimal 〈IND,CID〉 dispatching policies

When QR ∈ IID, the function p̃ : S → [0, 1] governed the probability distribution by which servers

were queried: specifically, p̃(i) denoted the probability that any individual queried server is of class

i. We extend this notion to the case where we can query d servers according to potentially different

distributions (i.e., when QR ∈ IND) as follows: let p̃1, p̃2, . . . , p̃d : S → [0, 1] denote a family of

functions such that p̃`(i) denotes the probability that upon any job’s arrival, the `-th server queried

is of class i.

Remark 6. All servers are queried simultaneously (under all querying rules, including those con-

tained IND in particular), and so the order of the queries is irrelevant (i.e., a querying rule speci-

fied by p̃1, p̃2, . . . , p̃d performs indistinguishably from one specified by p̃′1 = p̃σ(1), p̃
′
2 = p̃σ(2), . . . , p̃

′
d =

p̃σ(d), for any permutation σ : {1, 2, . . . , d} → {1, 2, . . . , d}).

We would like to define p(d) in terms of p̃1, p̃2, . . . , p̃d. With this end in mind, we introduce

some additional notation: let

Q ≡ {1, 2, . . . , d} and ~Q ≡ (Q1,Q2, . . . ,Qs), (21)

where each Q` is a subset of Q (i.e., ~Q is an s-tuple of subsets of Q), and let B(d) denote the set of

all s-tuples ~Q that form a partition of Q such that the `-th entry of ~Q contains exactly `i elements.

That is,

B(d) =

{
~Q : (∀` ∈ S : Q` ⊆ Q, |Q`| = d`),

s⋃
`=1

Q` = Q

}
.

Crucially, B(d) corresponds to the ways that d queries can result in the query mix d. With the

29

above notation defined, we can now write the following:

p(d) =
∑
~Q∈B(d)

s∏
i=1

∏
u∈Qi

p̃u(i).

The optimization problem for the 〈IND,CID〉 family of dispatching policies—presented in Ap-

pendix C—then follows readily from that of 〈GEN,CID〉 family.

5.4 Finding optimal 〈DET,CID〉 dispatching policies

We now address the case where QRF = DET. For any QR ∈ DET, p is such that there exists

some specifically designated d ∈ D where p(d) = 1 and p(d′) = 0 for all d′ ∈ D\{d}. That is,

we always query deterministically, so that D = d upon every job arrival. When attempting to

find optimal 〈DET,CID〉 dispatching policies, we need to evaluate the mean response time under

each 〈DQRd,CID〉 dispatching policy, where DQRd is an individual querying rule in DET that

always queries a set of servers with query mix d (further note that all querying rules in DET are

of this form; hence, we have DET = {DQRd : d ∈ D}). Then we choose the value of d (and the

corresponding policy AR ∈ CID) that yields the best mean response time. Hence, the optimization

problem for the 〈DET,CID〉 family of dispatching policies consists of solving |D| optimization

subproblems and then comparing the objective values of these subproblems. While our approach

can be seen as a disjunctive nonlinear program composed of a single objective function on the

union of several nonlinear feasibility regions, one could also approach this optimization problem as

a single mixed integer nonlinear program (MINLP).

Since we need only consider D = d in each subproblem, we can dispense with the need for the

map γ in this setting, however it will be useful to introduce the following analogues of S, T , P,

and Ji(d):

S(d) ≡ {i ∈ S : di > 0} (22)

T (d) ≡
{

(i, j) ∈ S × S̄ : i ≤ j, di > 0, (j ≤ s) =⇒ dj > 0
}

(23)

P(d) ≡
{
j ∈ S̄ : (∃i ∈ S : (i, j) ∈ T (d))

}
= {j ∈ S : dj > 0} ∪ {s+ 1} (24)

Ji(d) ≡ {j ∈ {i+ 1, i+ 2, . . . , s+ 1} : (i, j) ∈ T (d)} . (25)

While Equation (25) may appear to be a redefinition of Ji(d) it is actually consistent with the

earlier definition provided in Equation (20).

30

With the above notation defined we can formulate the optimization problem for the 〈DET,CID〉

family of dispatching policies, which we present in Appendix C.

5.5 Finding optimal 〈SRC,CID〉 dispatching policies

We first observe that when a dispatching policy’s querying rule QR ∈ SRC, then assignment

decisions under that policy are always among servers of the same class, so if we further impose

that the dispatching policy’s assignment rule AR ∈ CID, then the assignment decision amounts

to sending the job to an idle queried server (chosen uniformly at random) whenever the query

includes such a server and to any (busy) server (chosen uniformly at random) otherwise. Just

as the querying rules in the IID family were uniquely specified by some probability distribution

over the serer classes, p̃, querying rules in the SRC family are also specified by such a probability

distribution, which we denote by p̂. Specifically, let p̂ : D → [0, 1] be a distribution that satisfies

P(D = dei) = p̂(i) for all i ∈ S and P(D = d) = 0 for all d ∈ D\{de1, de2, . . . , des}, where dei

corresponds to the query mix where d class-i servers have been queried (i.e., it denotes the vector of

length s with all zero entries, except for an entry of d at position i). In particular, the αi(j,d) values

are immaterial, and we do not need to optimize over them. This yields the associated optimization

problem provided in Appendix C.

5.6 Finding optimal 〈SFC,CID〉 dispatching policies

As we have remarked earlier there are exactly i policies SFC contains exactly s querying rules.

Specifically, we always query d class-i servers for some fixed i ∈ S. As the querying rule is specified

by the choice of this fixed value of i alone, we can disregard querying probabilities. Moreover, as

all queried servers are of the same class, we can also disregard assignment probabilities. Hence,

optimization amounts to choosing the fixed value of i ∈ S that minimizes the mean response time.

To this end, as in the case where QRF = DET, we make use of subproblems (and alternatively

could have made uses of integer variables), although this time we only have s such subproblems.

The associated optimization problem is presented in Appendix C.

We note that the solution to each subproblem does not depend on the objective function (al-

though objective function values must be computed to find i∗, the index of the subproblem with

the lowest objective function value). Moreover, each subproblem will have at most one feasible so-

lution. Essentially, solving each subproblem merely requires one to solve a system of two nonlinear

equations in two constrained unknowns: λI
i ∈ [0,∞) and λB

i ∈ [0, µi).

31

5.7 Finding optimal 〈QR,CID〉 dispatching policies

We also formulate an optimization rule in order to determine optimal assignment rules AR ∈ CID

given any individual querying rule QR ∈ QRF as specified by some p : D → [0, 1], as long as that

querying rule yields a stable system under some assignment rule. Since the probability distribution

over D is specified, we need only determine the assignment probabilities. This optimization problem

(i.e., the one associated with 〈QR,CID〉) is presented in Appendix C.

We are particularly interested in the UNI and BR rules, defined by

p(d) =

(
d

d1, d2, . . . , ds

)(
1

sd

)
= d!

/(
sd

s∏
i=1

di!

)

and

p(d) =

(
d

d1, d2, . . . , ds

) s∏
i=1

(µiqi)
di = d!

s∏
i=1

(µiqi)
di

di!
,

respectively, in accordance with the fact that both are members of the IID family (see Section 5.2).

Note that some other specific querying rules—especially those that never query servers of one or

more classes—allow for significant pruning of the space of assignment rule.

6 Numerical results for CID assignment

In this section we compare the performance of dispatching policies found by numerically solving

our optimization problems associated with 〈QRF,CID〉 for various querying rule families QRF

(including the single-rule family QRF = {BR}). In these comparisons we will examine both

performance (i.e., mean response time), and the computation time associated with determining the

optimal parameters for the querying and/or assignment rules.

6.1 Parameter settings

We provide numerical results for a variety of parameter settings (i.e., problem instances), where

each parameter setting consists of a choice of s, d, λ, µ1, . . . , µs, and q1, . . . , qs. Our choices of λ, s,

and d resemble a full factorial design, while our choices of µ1, . . . , µs and q1, . . . , qs clearly depend

on s and are subject to the normalization constraint
∑s

i=1 µiqi = 1.

Specifically, we examine all combinations of s, d, and λ, where s, d ∈ {2, 3, 4} and λ ∈

{0.05, 0.10, . . . , 0.95} (although when plotting curves, we instead consider λ ∈ {0.02, 0.04, . . . , 0.98}).

32

For each (s, d, λ) setting, we then consider one set of µ1, . . . , µs corresponding to each subset of

s − 1 elements of {1.25, 1.50, 2, 3, 5}: for each {R1, R2, . . . , Rs−1} ⊆ {1.25, 1.50, 2, 3, 5}, ordered so

that R1 > R2 > . . . > Rs−1, we let µi = Riµs for each i ∈ S\{s} (i.e., Ri ≡ µi/µs).. That is, in

each parameter setting each server that does not belong to the slowest class runs at a speed that is

25%, 50%, 100%, 200%, or 400% faster than the speed of the slowest server, with each parameter

setting accommodating s− 1 such speedup factors. The speed of the slowest server depends on the

values of q1, q2, . . . , qs (see below), as follows:

µs =

(
qs +

s−1∑
i=1

Riqi

)−1

.

Meanwhile, for each (s, d, λ,R1, R2, . . . , Rs−1) setting, we consider the following (q1, q2, . . . , qs) com-

binations: {
(q1, q2, . . . , qs) ∈ Qs : (∀i ∈ S : 6qi ∈ Z, qi > 0),

s∑
i=1

qi = 1

}
.

That is, we consider all (and only those) combinations (q1, q2, . . . , qs) where we can view each server

class as holding a (nonzero integer) number of “shares”—out of a total of 6 such shares—with each

class being allocated a number of servers proportional to the number of shares it holds. This

methodology for selecting µi and qi values was chosen to allow for a wide variety of parameter

settings while ensuring that in each setting no class is particularly under- or over-represented nor

so much slower or faster than others. In this way, we avoid extreme parameter settings that render

certain classes (and hence, certain aspects of querying and assignment rules) inconsequential.

Note that there are 3 choices for s, 3 choices for d, 19 choices for λ,
(

5
s

)
choices of speed

configurations for each choice of s, and also
(

5
s

)
“share” configurations for each choice of s (that

is, 5 choices of each configuration when s = 4 and 10 choices of each configuration when s = 2 or

s = 3). Hence, we consider a total of (3)(19)
(
52 + 102 + 102

)
= 12 825 parameter settings. These

parameter settings can be broken down into 1 875 settings for each of the 19 λ values. Alternatively,

they can broken down by the choice of s: 1 425 settings where s = 2, and 5 700 settings each when

s = 3 and s = 4.

6.2 Numerical optimization methodology and notation

All of the numerical results we present throughout this section were obtained using code written in

the programming language Julia. We used the JuMP package [6] in Julia to define our optimization

33

models (see Section 5), and we solved these problems using the Interior Point Optimizer (IPOPT)

optimization package [19, 38]. Note that due to the presence of nonconvexity in our optimization

problems, IPOPT does not consistently yield globally optimal solutions. Hence, for each policy

family, we should view the associated “optimal” solution yielded by IPOPT as being the parameters

of a heuristically chosen policy belonging to that family. For further implementation details and

small caveats to the results presented in this section, see Appendix E.

Now consider an arbitrary querying rule family QRF and an arbitrary assignment rule family

ARF. Let the (admittedly cumbersome) notation

IPOptD〈QRF,ARF〉 ≡
〈

IPOptQ〈QRF,ARF〉, IPOptA〈QRF,ARF〉

〉
denote the dispatching policy specified by the IPOPT solution to the optimization problem as-

sociated with the 〈QRF,ARF〉 family of dispatching policies (assuming such an optimization

problem exists, has been identified, and can be implemented and given to IPOPT). That is, for

a querying rule family QRF (e.g., GEN), we use IPOPT to “solve” an optimization problem

that involves jointly selecting querying and assignment probabilities, resulting in a querying rule

(belonging to QRF), which we denote by IPOptQ〈QRF,ARF〉, and an assignment rule (belong to

ARF), which we denote by IPOptA〈QRF,ARF〉. Recall that in all of the optimization problems

that we have proposed in Section 5, we have always considered ARF = CID, so to alleviate

the burden imposed by this cumbersome notation, we can omit the reference to the assignment

rule family whenever we take it to be CID. That is, we take CID as the “default” assign-

ment rule family and use the notation IPOptDQRF ≡
〈
IPOptQQRF, IPOptAQRF

〉
, where we let

IPOptQQRF ≡ IPOptQ〈QRF,CID〉 ∈ QRF and IPOptAQRF ≡ IPOptA〈QRF,CID〉 ∈ CID, from

which it follows that IPOptDQRF = IPOptD〈QRF,CID〉.

Remark 7. We abuse this notation by adapting it for use with specific policies, rather than only

families, so that, e.g., IPOptDBR ≡ IPOptD{BR}, and IPOptD〈SRC,JSQ〉 ≡ IPOptD〈SRC,{JSQ}〉.

6.3 Comparison of querying rule families with respect to E[T] and optimization

runtime

We proceed to evaluate the performance of the IPOptDGEN, IPOptDIND, IPOptDIID, IPOptDSRC,

and IPOptDBR dispatching policies. We omit examination of the DET and SFC querying rule

families as well as the UNI querying rule, as under many of our parameter settings, any dispatching

34

policy constructed from such querying rules yields an unstable system (see Section 4.2 on stability

and Section 6.1 on our parameter settings). We examine the performance of IPOptDDET across a

small set of parameters (taken from our earlier work in [9]) at the end of this section.

We evaluate the E[T] values yielded by each of the dispatching policies under consideration, for

each of the 12 825 parameter settings described in Section 6.1. For each policy, we then compute the

mean and median value of both E[T] and the optimization runtime (measured in seconds) across

all of our parameter settings. Figure 2 illustrates the tradeoff between E[T] and optimization run-

time as aggregated across our parameter settings. In Figure 2 (left) we plot the (mean E[T], mean

runtime) pairs associated with each policy, while in Figure 2 (right) we plot the analogous pairs

for median values. Before describing Figure 2 in detail, we introduce one additional policy, moti-

vated by the surprising observation that both IPOptDIND and IPOptDIID outperform IPOptDGEN

with respect to the mean value of E[T] across the parameter set, with IPOptDIND outperforming

IPOptDGEN with respect to the analogous median value as well. We observe this despite the fact

that IID ⊆ IND ⊆ GEN, which means that the best GEN-driven dispatching policy must per-

form at least as well as the best IND- and IID-driven policies; unfortunately, as IPOPT does not

consistently find true optimal solutions, the solution found by IPOPT for a particular family can

occasionally outperform the solution it finds for a more general family. We can construct a new

policy to remedy the somewhat lackluster performance of IPOptDGEN by exploiting the fact that

we can seed IPOPT with a feasible solution before running it to solve an optimization problem.

Thus far, we have only discussed results which were obtained by running IPOPT without seeding it

with an initial solution, however, IPOPT frequently yields noticeably better solutions to the opti-

mization problem associated with the 〈GEN,CID〉 family when seeded with the IPOPT solution

associated with the 〈IND,CID〉 (as compared to the solution yielded by the “unseeded” problem

associated with the 〈GEN,CID〉). We use the notation IPOptDSEED
GEN ≡

〈
IPOptQSEED

GEN, IPOptASEED
GEN

〉
to refer to this new heuristic dispatching policy (see Appendix E for details). One can similarly

construct other heuristics for choosing initial values (e.g., seeding the IID optimization problem

with the solution IPOPT found for the BR optimization problem, and even using the solution to

the aforementioned seeded problem as a seed for the IND optimization problem, etc.); we exten-

sively explored different heuristics for choosing initial values (e.g., seeding the IID optimization

problem with the solution IPOPT found for the BR optimization problem); we found that—unlike

IPOptASEED
GEN—other alternative heuristics yielded negligible benefits in comparison to their “un-

seeded’ counterparts.

35

0.0

0.4

0.8

1.2

1.6

1.50 1.52 1.54 1.56 1.58
mean E[T]

m
ea

n
ru

n
ti

m
e

0.0

0.4

0.8

1.2

1.6

0.97 0.99 1.01 1.03
median ET

m
ed

ia
n
E[
T

]

IPOptDIND IPOptDBR

IPOptDGEN IPOptDSRC

IPOptDSEED
GEN

IPOptDIID

Figure 2: Plots of the (mean E[T], mean runtime) pairs (left) and (median E[T], median runtime)
pairs (right) calculated across all parameter settings defined in Section 6.1 for six dispatching
policies.

Both the mean and the median results indicate that there is a tradeoff between E[T] and runtime:

families that require a longer runtime to solve the optimization problem tend to yield lower E[T]

values. Note, however, that the trends exhibited in Figure 2 do not imply that the families have the

same ordering with respect to E[T] and runtime for any specific parameter setting; indeed, some

trends suggested by Figure 2(left) are reversed in Figure 2(right). For example, while IPOptDIID

appears to dominate IPOptDGEN with respect to both mean measures, IPOptDIID has a higher

(i.e., worse) median E[T] value than IPOptDGEN.

Overall IPOptDBR and IPOptDSRC feature the lowest runtimes but at the expense of the worst

performance (i.e., they have the highest E[T] values). The fast runtime of IPOptDBR can be at-

tributed to the fact that it need only optimize over assignment; despite arising from the “smallest”

of the optimization problems in many respects (see Table 2), IPOptDSRC features a higher runtime

than IPOptDBR. Meanwhile, IPOptDIID and IPOptDGEN offer an improvement in performance

at the cost of additional runtime. Surprisingly, IPOptDIND has a longer runtime (and as previ-

ously discussed, better performance than) IPOptDGEN despite arising from solving a problem of a

smaller (nominal) size. An examination of the optimization problem associated with 〈IND,CID〉,

as presented in Appendix C, provides a potential explanation for the exceptionally long runtimes

associated with IPOptDIND: the constraints in this optimization problem with λB
i on the left-hand

side are very complicated. As previously noted, IPOptDSEED
GEN achieves the best E[T] by building off

of the strong performance of IPOptDIND. Of course, this comes at a significant runtime expense,

as one must now solve two optimization problems.

Throughout the entire parameter set, all of the optimization problems ran in well under one

minute; the mean and median runtime associated with each of the dispatching policies examined was

under 2 seconds. In practice, these differences in runtimes are small enough that they would likely

not be a significant factor, as this optimization would only need to be performed once to configure

36

the system.Thus, while the tradeoff between E[T] and runtime is of theoretical interest, IPOptDSEED
GEN

represents the best practical choice of dispatching policy among those studied here when achieving

low E[T] is the foremost goal. On the other hand, if the simplicity or interpretability of the policy

is of value to the system designer, IPOptDIID provides a reasonable alternative to IPOptDSEED
GEN.

The results in Figure 2 were aggregated across the entire space of parameter settings; in Figure 3

we instead present results for a collection of settings where all parameters are fixed except for λ.

This allows us to provide a direct comparison of how our dispatching policies perform with respect

to their E[T] values across the spectrum of arrival rates. We first observe that IPOptDSRC and

IPOptDBR each exhibit their best performance in different ranges of λ values, which provides some

insight into the reversed relationship these policies exhibit when comparing their mean and median

E[T] values over the entire parameter set. That said, these two policies perform considerably

worse than the other policies examined. Both IPOptDIID and IPOptDIND achieve performance

comparable to IPOptDSEED
GEN, with IPOptDIND indistinguishable from IPOptDSEED

GEN at all but a small

range of λ values.

6.4 The “optimal” dispatching policies found by IPOPT

In the previous subsection we have evaluated the performance of the dispatching policies resulting

from the optimal solutions found by IPOPT when given the optimization problems associated with

the 〈QRF,CID〉 family of dispatching rules under various querying rule families QRF. In this

subsection, we turn to numerically studying the solutions (as found by IPOPT) themselves; that

is, we study the best policies found by IPOPT across our parameter settings, although to facilitate

comprehensible visualizations, we restrict attention to the setting where s = d = 2. We also restrict

attention to those (IPOPT-determined) dispatching policy families that performed best based on

the study from the previous subsection: IPOptDIID, IPOptDIND, IPOptDGEN, and IPOptDSEED
GEN.

We caution that the results presented here may reveal more about the idiosyncrasies of IPOPT

than they do about the “true optimal” policies belong to the dispatching policy families of interest.

Figure 4 shows four plots—one for each of the aforementioned families of dispatching policies.

In each plot the optimal policy associated with each parameter setting is denoted by a single point.

Each point’s position in the ternary plot gives the values of p(2, 0), p(1, 1), and p(0, 2), which

collectively describe the policy’s querying rule; note that p(2, 0) + p(1, 1) + p(0, 2) = 1. Meanwhile,

the color or shading of each point denotes the α1(0, (1, 1)) parameter associated with the policy—in

all cases plotted, this single parameter uniquely identifies the assignment rule, as in all such cases

37

1.00

1.05

1.10

1.15

0 0.25 0.50 0.75
λ

E[
T

]
n

o
rm

a
li

ze
d

b
y

th
a
t

o
f

IP
O

p
tD

S
E
E
D

G
E
N

IPOptDIND

IPOptDIID

IPOptDSRC

IPOptDBR

Figure 3: E[T] relative to that of IPOptDSEED
GEN (i.e., E[T]DP/E[T]IPOptDSEED

GEN) as a function of λ
for the parameter settings where s = d = 3, λ varies over {0.02, 0.04, . . . , 0.98}, (q1, q2, q3) =
(1/3, 1/6, 1/2) and (R1, R2) = (5, 2), yielding (µ1, µ2, µ3) = (2, 4/5, 2/5), for the dispatching policies
DP ∈ {IPOptDIND, IPOptDIID, IPOptDSRC, IPOptDBR}.

IPOPT reported α1(2, (1, 1)) = 0, and all other assignment rule parameters can be computed from

these two. That is, we find that in all of the optimal policies reported by IPOPT, jobs are never

assigned to busy class-1 servers when an idle class-2 server has been queried.

Remark 8. In Figure 4, we see that the lowest values of α1(0, (1, 1)) are associated with those

policies where p(1, 1) = 0; however, such policies are precisely those where the choice of α1(0, (1, 1))

is immaterial; When we fix p(1, 1) = 0, E[T] is entirely insensitive to α1(0, (1, 1)), as it doesn’t

matter how we assign jobs under the query mix (1, 1) if the probability of querying according to such

a mix is set to zero.

Upon looking at Figure 4 we immediately observe the following: (i) all IPOptDIID policies lie

on a “curve” on the ternary plot, (ii) all IPOptDIND policies lie on either a curve or satisfy at least

one of the p(2, 0) = 0 or p(0, 2) = 0 line segments, (iii) all IPOptDGEN policies line on at least one

of the p(2, 0) = 0, p(1, 1) = 0, or p(0, 2) = 0 line segments, and (iv) the IPOptQSEED
GEN policies exhibit

qualitatively similar behavior to that associated with IPOptDIND, although far fewer of the points

lie on a curve.

Closer inspect reveals that all of the curves alluded to above are indeed the same. In fact, this

curve is defined by

{
(p(2, 0), p(1, 1), p(0, 2)) =

(
x2, 2x(1− x), (1− x)2

)
: x ∈ [0, 1]

}
,

which is precisely the set of querying rules comprising IID when s = d = 2 (i.e., this is the

38

0.00 0.25 0.50 0.75 1.00
α1 (0, (1, 1))

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.
2

0.
4

0.
6

0.
8 1

p(1, 1)p(
0,

2)

p(2, 0)

(a) IPOptDIID

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.
2

0.
4

0.
6

0.
8 1

p(1, 1)p(
0,

2)
p(2, 0)

(b) IPOptDIND

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.
2

0.
4

0.
6

0.
8 1

p(1, 1)p(
0,

2)

p(2, 0)

(c) IPOptDGEN

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.
2

0.
4

0.
6

0.
8 1

p(1, 1)p(
0,

2)

p(2, 0)

(d) IPOptDSEED
GEN

Figure 4: IPOPT optimal dispatching policies s = d = 2. The parameter α1(2, (1, 1)) = 0 in all
cases shown.

39

the feasible set of querying rules for the optimization problem associated with 〈IID,CID〉 when

s = d = 2). Meanwhile, with some work, one can show that the set of querying rules comprised

by IND when s = d = 2 corresponds to the region bounded by the “IID curve” and the lines

p(2, 0) = 0 and p(0, 2) = 0 (inclusive). We find that every querying rule reported as optimal by

IPOPT that is contained within IND—which includes all of the querying rules of the IPOptQSEED
GEN

policies—is specifically contained within the boundary of IND.

The only dispatching policies reported by IPOPT that do not use IND querying are a subset

of the IPOptQGEN policies where p(1, 1) = 0; in fact, such policies use SRC querying. Meanwhile,

the IPOptQSEED
GEN policies are always within IND: it appears that seeding IPOPT with the “IND

solution” when giving it a “GEN problem” allows IPOPT to avoid finding dispatching policies

using SRC querying in favor of those using IND querying, ultimately yielding better performance.

Moreover, we observe that very few IPOptDSEED
GEN policies actually lie on the curve (i.e., very few such

policies are in IID); the optimal policies tend to be those where either p(2, 0) = 0 or p(0, 2) = 0.

Such querying rules are precisely those that are either deterministic, or “semi-deterministic” in the

sense that at least one server of a chosen (fixed) class i ∈ {1, 2}, and determines the class for the

remaining query randomly.

We leave it to future work to determine whether, how, and to what extent these observations

can (i) yield results concerning “true optimal” policies and (ii) be generalized to the cases where

s > 2 and/or d > 2.

Remark 9. While we have avoided plotting results for IPOptDBR in the interest of brevity, we note

here that we find two kinds of solutions associated with the optimization problem for IPOptDBR:

those where α1(2, (1, 1)) = 0 as in the case of the policies discussed above, and those where

α1(0, (1, 1)) = 1, while α1(2, (1, 1)) > 0. The latter policies are precisely those where jobs are never

assigned to a class-2 server when a class-1 server has been queried except—and only sometimes—

when said class-2 server is idle and the class-1 server is busy. We conjecture that the need to

consider such policies under BR is a result of the fact that BR prohibits any optimization associated

with the querying rule.

6.5 Performance under the DET querying rule family

Finally, we study DET in the case where s = 2 and d = 4 by comparing the performance of

IPOptDDET to that of the JIQ(2, 2) and JSQ(2, 2) dispatching policies studied in [9]. We consider

E[T] under these three policies, normalized to that under IPOptDSEED
GEN, for all 12 combinations of R1

40

1.0

1.2

1.4

1.6

0.00 0.25 0.50 0.75
λ

E[
T

]
n
o
rm

a
li
ze

d
b
y

th
a
t

o
f

IP
O

p
tD

S
E
E
D

G
E
N

JIQ(2, 2)

JSQ(2, 2)

IPOptDDET

Figure 5: E[T] relative to that of IPOptDSEED
GEN (i.e., E[T]DP/E[T]IPOptDSEED

GEN) as a function of
λ for the parameter settings where s = 2 and d = 4, λ varies over {0.02, 0.04, . . . , 0.98},
(q1, q2) = (4/5, 1/5), and R1 = 5, yielding (µ1, µ2) = (25/21, 5/21), for the dispatching policies
DP ∈ {JIQ(2, 2), JSQ(2, 2), IPOptDDET}.

and (q1, q2) that are studied in Section 5.2 of [9]. All of these 12 combinations yield similar insights;

Figure 5 shows results for the particular setting in which R1 = 5 and (q1, q2) = (4/5, 1/5) (note

that this parameterization is not a member of the space discussed in Section 6.1, rather it is taken

from [9]). The JIQ(2, 2) dispatching policy often performs considerably worse than IPOptDDET,

the performance of which is indistinguishable from IPOptDSEED
GEN except at the highest load values.

However, despite its generally strong performance, there is no advantage to using the IPOptDDET

policy instead of IPOptDSEED
GEN, as IPOptDDET features a substantially higher mean runtime: across

the parameter settings shown in Figure 5 (respectively, all of the parameter settings considered

in Section 5.2 of [9]), the mean runtime of IPOptDDET is more than 95% higher (respectively,

more than 20% higher) than that of IPOptDSEED
GEN. This high runtime is likely due to the fact

that IPOptDDET must solve six smaller subproblems, whereas IPOptDSEED
GEN solves only two (larger)

optimization problems. Meanwhile, the queue length-aware JSQ(2, 2) policy tracks JIQ(2, 2) at low

load, but considerably outperforms the other policies, including IPOptDSEED
GEN, as load approaches

1. This suggests that there is considerable value in investigating CLD-driven dispatching policies,

which we explore in the next section.

Remark 10. The JIQ(2, 2) dispatching policy from [9] would be denoted in our framework as

IPOptDDQR(2,2)
∈ 〈DET,CID〉, recalling that DQRddenotes the querying rule that always queries so

that D = d. Note that while JSQ(2, 2) ∈
〈
DQR(2,2),CLD\(CID ∪ LD)

〉
fits within our framework,

JSQ(2, 2) does not use what our framework would describe as JSQ assignment, i.e., JSQ(2, 2) 6=〈
DQR(2,2), JSQ

〉
. Specifically, JSQ(2, 2) is a variant of JIQ(2, 2) that, given a set of queried servers,

assigns an incoming job to the same class that the job would be assigned to under JIQ(2, 2). However,

while JIQ(2, 2) ultimately assigns the job to a server chosen uniformly at random among those

41

queried from the selected class, JSQ(2, 2) assigns the incoming job to a server chosen uniformly at

random among those queried servers with the shortest queue(s) from the selected class.

7 The CLD family of assignment rules

In this section, we discuss assignment rules in CLD beyond those in the CID family. After pre-

senting a general structure for CLD assignment rules (Section 7.1) and discussing the difficulty

of analyzing dispatching policies using such assignment rules, we turn our attention to the de-

velopment of heuristic CLD-driven dispatching policies (Section 7.3). Simulations suggest that

our heuristic policies perform favorably relative to existing dispatching policies presented in the

literature (Section 7.4). These heuristic policies allow for length-aware assignment while leveraging

our analysis of querying rules under CID (length-blind) assignment, as presented in the preceding

sections.

7.1 Formal presentation of the CLD family of assignment rules

In this section, we present a generalization of the CID family of assignment rules to account for

queue lengths (rather than just idle/busy statuses), resulting in the CLD family of assignment

rules. This family encompasses all static and symmetric assignment rules that can observe both

the class (i.e., speed) of, and queue length at, each of the queried servers in assigning a newly

arrived job. Throughout this subsection, we introduce a variety of new notation. To aid the reader,

this new notation is summarized in Table 1.

Remark 11. When we refer to the “queue length” of/at a server, we mean the number of jobs

occupying that server’s subsystem: this includes all jobs currently being served by the server and all

those waiting for service.

Recall that our study of the CID family of assignment rules motivated us to encode the idle/busy

statuses of the queried servers by the random vector A, which takes on realizations of the form

a ≡ (a1, . . . , as) ∈ A ≡ {a : a1 + · · · + as ≤ d}, where ai is the number of idle class-i servers

among the di queried. Analogously, in studying the CLD family it will be helpful to encode the

number of class-i servers of each possible queue length among the di queried. To this end, for each

n ∈ N ≡ {0, 1, . . .}, let A(n) ≡
(
A

(n)
1 , A

(n)
2 , . . . , A

(n)
s

)
be a random vector taking on realizations

of the form a(n) ≡
(
a

(n)
1 , a

(n)
2 , . . . , a

(n)
s

)
∈ A where A

(n)
i (respectively a

(n)
i) is the random variable

42

A
(n)
i r.b.

a
(n)
i

≡ Number of queried class-i servers with a queue length of n p.
42

A(n) r.b.
a(n)

≡ {A(n)
0 , A

(n)
1 , . . . , A

(n)
s } r.b. {a(n)

0 , a
(n)
1 , . . . , a

(n)
s } . p.

42
~A r.b. ~a ≡ {A(0),A(1), . . .} r.b. {a(0),a(1), . . .} . p.

43

~A ≡
{
~a :
∑s

i=1

∑∞
n=0 a

(n)
i = d

}
; Set of all possible realizations ~A p.

43

α
(n)
i (~a) ≡ Probability that the job is assigned to a class-i server with n jobs

when ~A ≡ ~a .
p.
43

αi(~a) ≡ Probability that the job is assigned to a class-i server with n∗i jobs

when ~A ≡ ~a .

p.
44

n∗i ≡ min
{
m ∈ N : a

(m)
i > 0

}
; Queue length of the shortest queue among

queried class-i servers .

p.
44

Table 1: Table of Notation for Section 7.1 (“r.b.” stands for “realized by”)

(respectively the realization of the random variable) giving the number of queried class-i servers with

a queue length of n. Three observations follow immediately from these definitions: (i) A(0) = A,

(ii) A(n) ≤D (element-wise) for all n ∈ N, and (iii)
∑∞

n=0 A
(n) = D.

Now let ~A ≡ {A(0),A(1), . . .}, denote the realizations of this random object by ~a ≡ {a(0),a(1), . . .},

and denote the set of all such realizations by ~A ≡
{
~a :
∑s

i=1

∑∞
n=0 a

(n)
i = d

}
. Each realized aggre-

gate query state can now be fully described by some ~a ∈ ~A, allowing us to treat d as a derived

quantity: d =
∑∞

n=0 a
(n).

Formally, a CLD assignment rule is uniquely specified by a family of functions α
(n)
i : ~A → [0, 1]

parameterized by (i, n) ∈ S × N, where α
(n)
i (~a) denotes the probability that a job seeing a query

with aggregate state ~A = ~a is assigned to a class-i server with a queue length of n. Clearly, we

must have α
(n)
i (~a) = 0 whenever a

(n)
i = 0 and

∑s
i=1

∑∞
n=0 α

(n)
i (~a) = 1 for all ~a ∈ ~A.

As an illustrative example, let us see how an assignment rule that opts to ignore queue length

information (apart from idleness information) can be implemented via such a family of functions.

Specifically, let us consider an assignment rule from the CID family (noting that such an assignment

rule is also a member of the CLD family, as CID ⊆ CLD), defined (as in Section 4.1) by some

family of functions αi : S̄×D → [0, 1] parameterized by i ∈ S, where αi(j,d) denotes the probability

that a job is assigned to a queried class-i server, given that it sees J = j as the class of the fastest

idle server and a query mix D = d. In this case, letting j ≡ min{` : a
(0)
` > 0} (where we again use

43

the convention that min ∅ ≡ s+ 1) we can define α
(n)
i (~a) in terms of αi(j,d) as follows:

α
(0)
i (~a) =


αi(j,d) if i = j

0 otherwise

(26)

α
(n)
i (~a) =


a

(n)
i αi(j, d)∑∞
m=1 a

(m)
i

if i ≤ j

0 otherwise

(∀n ≥ 1). (27)

Equation (26) gives the probability of assigning the job to an idle class-i server, and Equation (27)

gives the probability of assigning the job to a busy class-i server with n jobs in its queue. While

the first equation is straightforward, the latter becomes clear by making the following observation:

if we ignore queue lengths beyond idle/busy statuses, once we have chosen to assign the job to a

busy class-i server, we choose one such server at random, and hence, the job is sent to a class-i

server with a queue length of n with probability a
(n)
i

/∑∞
m=1 a

(m)
i .

Now observe that if one opts to make full use of queue length information, then whenever one

assigns a job to a class-i server it is naturally favorable to assign the job to the class-i server with

the shortest queue among those queried. If we prune the space of CLD assignment rules in this

fashion (which would leave out the CID assignment rules), then we can instead uniquely specify

assignment rules by a family of functions αi : ~A → [0, 1] that are parameterized only by i ∈ S (rather

than also being parameterized by n ∈ N). In this case, letting n∗i ≡ min
{
m ∈ N : a

(m)
i > 0

}
(i.e.,

letting n∗i be the queue length of the shortest queue among queried class-i servers) for each i ∈ S

(with n∗i ≡ ∞ whenever di = 0), we can express (the original) α
(n)
i (~a) in terms of (the new) αi(~a)

as follows:

α
(n)
i (~a) =


αi(~a) if n = n∗i

0 otherwise

.

7.2 Examples of CLD assignment rules

Two examples of assignment rules in CLD\CID that we can specify using families of functions

αi : ~A → [0, 1] (where we again use n∗i to denote the queue length of the shortest queue among

queried class-i servers) include JSQ and SED.

Remark 12. When we refer to JSQ and SED, we are referring to just the assignment rules,

rather than the traditional JSQ and SED dispatching policies studied in the literature in small scale

44

settings, or the JSQ-d and SED-d dispatching policies, which in our framework are referred to as the

〈UNI, JSQ〉 and 〈UNI, SED〉 dispatching policies respectively. Moreover, note that JSQ is actually a

member of the LD family—a subfamily of CLD that allows for leveraging queue length information,

but is blind to server classes (i.e., speeds).

We discuss these two rules (i.e., JSQ and SED) in greater detail—together with a third assign-

ment rule in CLD\CID, Shortest Expected Wait (SEW), which we introduce here—below:

• Join the Shortest Queue (JSQ) is an individual assignment rule that is a member of the LD

family (and therefore also the CLD family) that assigns the job to a queried server (chosen

uniformly at random) among those with the shortest queue (regardless of their class). It is

specified by

αi(~a) =
a
(n∗i)
i

∏s
`=1 I{n∗i ≤ n∗`}∑s

i′=1 a
(n∗

i′)
i′

∏s
`=1 I

{
n∗i′ ≤ n∗`

} .
• Shortest Expected Delay (SED) is an individual assignment rule that is a member of the CLD

family that assigns the job to a queried server (chosen uniformly at random) among those

on which the job would complete soonest in expectation under the assumption of First Come

First Serve (FCFS) scheduling (regardless of the actual scheduling rule being implemented).

By observing that the expected delay experienced by a job (under FCFS scheduling) that is

assigned to a class-i server with n other jobs already in its queue is (n+ 1)/µi, we find that

the SED assignment rule is specified by

αi(~a) =
a
(n∗i)
i

∏s
`=1 I

{
n∗i +1
µi
≤ n∗`+1

µ`

}
∑s

i′=1 a
(n∗

i′)
i′

∏s
`=1 I

{
n∗
i′+1

µi′
≤ n∗`+1

µ`

} .

• Shortest Expected Wait (SEW) is an individual assignment rule that is a member of the CLD

family that assigns the job to a queried server (chosen uniformly at random) among those on

which the job would enter service soonest in expectation under the assumption of First Come

First Serve (FCFS) scheduling (regardless of the actual scheduling rule being implemented).

Unlike SED, SEW does not account for the expected size of the arriving job, 1/µi. By

observing that the expected waiting time until entering service experienced by a job (under

FCFS scheduling) that is assigned to a class-i server with n other jobs already in its queue is

45

n/µi, we find that the SEW assignment rule is specified by

αi(~a) =
a
(n∗i)
i

∏s
`=1 I

{
n∗i
µi
≤ n∗`

µ`

}
∑s

i′=1 a
(n∗

i′)
i′

∏s
`=1 I

{
n∗
i′
µi′
≤ n∗`

µ`

} .
Remark 13. Our nomenclature is perhaps imperfect, as delay is sometimes used to refer to time

in queue, but here we are using delay (in the name of SED—which we inherit from the literature)

to refer to the time in system and wait (in the name of SEW) to refer to the time in queue.

We also introduce a variant of each of the above policy that breaks “ties” in favor of faster

servers: (i) JSQ?, (ii) SED?, and (iii) SEW? act like the (i) JSQ, (ii) SED, and (iii) SEW assignment

rules, except jobs are always assigned to one the fastest servers (chosen uniformly at random)

among those queried servers that have the (i) shortest queue, (ii) the shortest expected delay (i.e.,

at which the job would experience the shortest expected response time), and (iii) the shortest wait

(i.e., at which the job would experience the shortest time in queue), respectively. Note that while

JSQ ∈ LD, JSQ? ∈ CLD\LD, as JSQ? makes use of class information in breaking ties between

queried servers with the same queue length. These rules are specified by the following:

αi(~a) =

i−1∏
`=1

I{n∗i < n∗`}
s∏

`=i+1

I{n∗i ≤ n`}. (JSQ?)

αi(~a) =
i−1∏
`=1

I

{
n∗i + 1

µi
<
n∗` + 1

µ`

} s∏
`=i+1

I

{
n∗i + 1

µi
≤
n∗` + 1

µ`

}
(SED?)

αi(a) =

i−1∏
`=1

I

{
n∗i
µi

<
n∗`
µ`

} s∏
`=i+1

I

{
n∗i
µi
≤
n∗`
µ`

}
(SEW?).

7.3 A heuristic for finding strong dispatching policies using CLD assignment

The analysis of general assignment rules in the CLD family introduces intractability issues that

we were able to avoid in our analysis of the CID family of assignment rules. There are two

key challenges for identifying strong dispatching policies with assignment rules in CLD\CID.

First, while the αi functions designating the CID policies had a finite domain (A × D, and after

subsequent pruning S̄×D), those functions specifying assignment rules for CLD policies—even with

the pruning introduced in Section 7.1—have an infinite domain (~A). Hence, the CLD assignment

rules span an infinite dimensional space, unlike the finite-dimensional polytopes spanned by their

CID counterparts (see Appendix D for details); the former generally precludes straightforward

46

optimization, while the latter facilitates it.

The second challenge associated with identifying strong dispatching policies with assignment

rules that take queue lengths into account is the lack of exact performance analysis for most dis-

patching policies in CLD\CID. Thus, even if we could solve an infinite-dimensional optimization

problem (i.e., even if we could overcome the first challenge), it is impossible to formulate the

objective function for such an optimization problem.

We attempt to jointly overcome these challenges by populating a roster of heuristic dispatching

policies designed based on the CID-driven policies of Sections 3–6. In the next subsection, we show

(via simulation) that many of these policies perform well relative to the aforementioned CID-driven

policies.

We address the first challenge (i.e., the infinite dimensional space spanned by the CLD assign-

ment rules) by limiting ourselves to the example assignment rules discussed in Section 7.2: JSQ,

SED, SEW, JSQ?, SED?, and SEW?. Note that these are individual assignment rules, rather than

assignment rule families, which obviates the need for optimizing continuous probabilistic parame-

ters.

One hopes that even without sophisticated fine-tuned probabilistic parameters, the greedy SED

and SEW assignment rules (with or without class-based tie-breaking) still manage to yield stronger

performance than the length-blind CID-driven dispatching policies—at least when paired with a

judiciously chosen querying rule. Meanwhile, by studying JSQ, we can assess the extent to which

queue-length information can lead to strong performance even in the absence of heterogeneity-

awareness in the assignment decision.

The second challenge (i.e., the lack of performance analysis as a basis for optimization), then,

reduces to the problem of choosing a querying rule to use in conjunction with our six chosen

assignment rules. We propose three ideas for choosing an appropriate querying rule—ultimately,

each approach will add additional dispatching policies to our roster.

The first idea for choosing a querying rule is to use the same approach that we are taking on

the assignment side. That is, we can limit ourselves to one (or some small number of) individual

querying rule(s). Of the two specific individual querying rules discussed in this paper, UNI does not

guarantee stability, while BR does (see Section 4.2 for details). For this reason, we add the following

six dispatching policies to our roster: 〈BR, JSQ〉, 〈BR,SED〉, 〈BR,SEW〉, 〈BR, JSQ?〉, 〈BR,SED?〉,

and 〈BR,SEW?〉.

The remaining two ideas involve leveraging the diversity of querying rules available within the

47

families studied throughout this paper, as it is unnecessarily restrictive to only consider dispatching

policies that involve no optimization (i.e., that involve combining a specific individual querying rule

with a specific individual assignment rule, as above). The broadest querying rule family that we

have studied is, of course, GEN; unfortunately, analyzing exact mean response times under, e.g.,

〈GEN, JSQ〉 and 〈GEN,SED〉 appears to be intractable.

Our second idea presents one way to overcome this tractability limitation: we restrict attention

to the SRC family of querying rules, where one selects a class at random (according to some fixed

distribution) upon the arrival of each job and then queries d servers of that class. SRC querying

eliminates the possibility of needing to make assignment decisions between servers running at

different speeds, meaning that pairing SRC with any of our six individual assignment rules yields

the same dispatching policy; we will refer to this single policy as 〈SRC, JSQ〉. Furthermore, because

assignment decisions are always made among servers of the same speed, the analysis of 〈SRC, JSQ〉

reduces to that of s independent homogeneous systems under JSQ. This exact analysis allows us

to use IPOPT to find the IPOptD〈SRC,JSQ〉 dispatching policy, which we add to our roster of

dispatching policies.

Remark 14. As noted above, the analysis of 〈SRC, JSQ〉 reduces to that of s independent homoge-

neous systems under the 〈UNI, JSQ〉 dispatching policy (referred to in the literature as JSQ-d). The

mean response time in such homogeneous systems was analyzed exactly in [21, 37]. We then rely

on IPOPT to determine the “optimal” p̂(i) parameters for i ∈ S (i.e., the probability of querying

each single class i, see Section 5.5). We further note that 〈SRC, JSQ〉 was previously studied in

the case of s = 2, under the Processor Sharing (PS) scheduling discipline, in [22].

Our third idea is to use a novel heuristic that leverages our previous study of 〈QRF,CID〉

dispatching policies from Sections 3–6. Our heuristic constructs a dispatching policy by com-

bining a individual querying rule found by IPOPT and any one of our six individual assign-

ment rules. Specifically, the heuristic uses the IPOptQSEED
GEN querying rule (i.e., the querying

rule yielded by the IPOPT solution to the optimization problem associated with 〈GEN,CID〉,

seeded with the IPOPT solution for 〈IND,CID〉). Note that our choice of querying rule (i.e.,

IPOptQSEED
GEN) is not contingent on the choice of assignment rule, as tractability necessitates fore-

going any kind of joint optimization. To this end we complete our roster with the following

six policies:
〈
IPOptQSEED

GEN, JSQ
〉
,
〈
IPOptQSEED

GEN,SED
〉
,
〈
IPOptQSEED

GEN,SEW
〉
,
〈
IPOptQSEED

GEN, JSQ?
〉
,〈

IPOptQSEED
GEN, SED?

〉
, and

〈
IPOptQSEED

GEN, SEW?
〉
.

48

7.4 Simulation-driven performance evaluation of dispatching policies using CLD

assignment

We simulate the 〈BR, JSQ〉, 〈BR,SED〉,
〈
IPOptQSEED

GEN, JSQ
〉
, and

〈
IPOptQSEED

GEN,SED
〉

dispatching

policies in a system with k = 3000 servers under under the same collection of parameter settings

studied in Figure 3 in Section 6.3. We simulate 10 000 000 arrivals to the system and record the

observed response time for each. We then average these values (discarding the first 1 000 000 to

allow the system to “reach a steady state” where the running average response time was observed

to stabilize) to obtain a E[T] value under each policy at each value of λ. We omit results for

λ ∈ {0.92, 0.94, 0.96, 0.98} as the observed variance of response times across successive runs exceeded

1% of the mean in these cases. Running longer simulations with more arrivals could reduce the

variance in these cases, but doing so would have been prohibitively expensive in terms of the

simulation runtime.

In Figure 6, we plot the simulated E[T] of each of the above dispatching policies—as well as the

computational (non-simulated, based on the assumption where k →∞) results for IPOptDIID and

IPOptD〈SRC,JSQ〉—normalized by the E[T] value IPOptDSEED
GEN ≡

〈
IPOptQSEED

GEN, IPOptASEED
GEN

〉
as a

function of λ. We examined a number of other parameter settings and chose this parameter setting

in order to make the trends more salient, although qualitatively similar results are exhibited across

most of the parameter settings observed.

We observe that at low values of λ, the BR-driven policies perform poorly, because they occa-

sionally query no servers of the fastest class, even though under such light traffic one would like to

discard all but the fastest servers. These policies continue to be the worst performers—as, in addi-

tion to using slow servers, queues begin to build up at these servers—until a certain point where the

gap between these policies and the others begins to close. Meanwhile, in this low-λ regime, all of

the other policies (including the normalizing policy, IPOptDSEED
GEN, which does not make use of queue

length information) perform near-identically, because all of them query essentially only the fastest

servers, and most of these servers are idle, rendering the assignment rule immaterial. At higher λ,

we enter an “assignment-driven regime,” where all of our CLD-based policies outperform the CID-

based IPOptDSEED
GEN policy. We call this an “assignment-driven regime” because the performance of

the policies become differentiated from one another primarily on the basis of their assignment rules.

That is, even though, e.g., IPOptDSEED
GEN ≡

〈
IPOptQSEED

GEN, IPOptASEED
GEN

〉
and

〈
IPOptQSEED

GEN, SED
〉

use

the same querying rule—which is optimized for use with CID assignment—the latter achieves bet-

49

1.0

1.5

2.0

0.00 0.25 0.50 0.75

JSQ Policies

λ

N
or

m
al

iz
ed

E[
T

]

0.5

1.0

1.5

2.0

0.00 0.25 0.50 0.75

SEW Policies

λ

N
or

m
al

iz
ed

E[
T

]

IPOptD〈SRC,JSQ〉

〈BR, JSQ〉

〈BR, JSQ?〉〈
IPOptQSEED

GEN, JSQ
〉

〈
IPOptQSEED

GEN, JSQ?
〉

〈BR,SED〉

〈BR, SED?〉〈
IPOptQSEED

GEN, SED
〉

〈
IPOptQSEED

GEN, SED?
〉

〈BR,SEW〉

〈BR, SEW?〉〈
IPOptQSEED

GEN, SEW
〉

〈
IPOptQSEED

GEN, SEW?
〉

0.8

1.0

1.2

0.00 0.25 0.50 0.75

SED Policies

λ

N
or

m
al

iz
ed

E[
T

]

0.6

0.8

1.0

1.2

0.00 0.25 0.50 0.75

Best Policies

λ

N
o
rm

a
li
ze

d
E[
T

]

Figure 6: E[T] relative to that of IPOptDSEED
GEN (i.e., E[T]DP/E[T]IPOptDSEED

GEN) as a function of
λ for the parameter settings where s = d = 3, with λ varying over {0.02, 0.04, . . . , 0.90},
(q1, q2, q3) = (1/3, 1/6, 1/2) and (R1, R2) = (5, 2), yielding (µ1, µ2, µ3) = (2, 4/5, 2/5), for the
dispatching policies DP constructed from the BR and IPOptQSEED

GEN querying rules when paired with
the JSQ and JSQ? assignment rules (upper left), the SED and SED? assignment rules (lower left),
and the SEW and SEW? assignment rules (upper right). In the lower right, we compare the “best”
policy (obtaining the lowest E[T] value on the majority of λ values) from each of the other three
subfigures:

〈
IPOptQSEED

GEN, JSQ?
〉
,
〈
IPOptQSEED

GEN, SEW?
〉
, and

〈
IPOptQSEED

GEN, SED
〉
. We also include

the IPOptD〈SRC,JSQ〉 dispatching policy in the lower right subfigure. All E[T] values were obtained
through simulation except for those associated with IPOptD〈SRC,JSQ〉 and the normalizing policy,

IPOptQSEED
GEN. Note that not all subfigures use the same scale for the vertical axis.

50

ter performance because the advantage of CLD-based assignment outweighs the benefit of jointly

optimizing the querying and assignment rules. The existence of such a regime is a result of the fact

that, in heavy traffic, all querying rules that maintain the system’s stability must result in similar

λB
i values, meaning that dispatching policies that stabilize the system are distinguished from one

another primarily in terms of their assignment rules.

Two of the dispatching policies under consideration emerge as the consistently strongest per-

formers:
〈
IPOptQSEED

GEN,SEW?
〉

and IPOptD〈SRC,JSQ〉. It may appear surprising that
〈
IPOptQSEED

GEN, SEW?
〉

consistently outperforms its counterparts that make use of SED or SED?. It turns out that (assum-

ing a judiciously chosen querying rule) it is crucial to make use of idle queried servers whenever

possible; unlike SED and SED?, SEW and SEW? never send jobs to busy servers when an idle server

has been queried. The strong performance of
〈
IPOptQSEED

GEN, SEW?
〉

also highlights the value of our

analysis of CID-based dispatching policies: even though such length-unaware policies do not them-

selves necessarily achieve the best performance (especially at high λ), we see that the CID-based

optimization of the querying rule allows for the development of considerably stronger CLD-based

policies. Such policies are likely to be difficult to discover using, e.g., a grid search approach.

Remark 15. In fact, the best-performing 〈QR, SEW?〉 policies found by a simulation-driven grid

search (over QR ∈ GEN) performed no better than
〈
IPOptQSEED

GEN,SEW?
〉
. We performed this

grid search to validate the performance of our heuristic policies, but, even with a fairly coarse

search, this took on the order of an hour for a single value of λ, while one can obtain a better

performing IPOptQSEED
GEN policy in mere seconds by leveraging on our optimization problems rather

than simulations. Our experience leads us to conclude that the high dimensionality of the GEN

family renders such searches poorly-suited for practice.

Meanwhile, IPOptD〈SRC,JSQ〉 also exhibits consistently strong performance across the range of

λ values. We can attribute its excellent performance to the fact that—unlike the other CLD-based

policies under consideration—IPOptD〈SRC,JSQ〉 features a querying rule that is optimized for use

with its own assignment rule, rather than for use with a CID assignment rule.

8 Conclusion

This paper provides a comprehensive framework for dispatching in scalable systems in the presence

of heterogeneous servers, by examining two separate components of the dispatching policy: the

querying rule and the assignment rule. We highlight tradeoffs associated with the choice of each

51

rule: less restrictive families of querying rules allow for lower mean response times at the cost of

increased solution runtime. Meanwhile, some assignment rules lend themselves to tractable analysis,

while others boast better performance (insofar as observed from simulations). Moreover, at some

system loads, both the querying and assignment decision can be crucial, while at more extreme

loads, one decision plays a more dominant role over the other (subject to stability constraints).

Our framework illuminates several potentially fruitful areas of future work. First, this paper

restricts attention to symmetric and static querying and assignment rules. There has been little

study of asymmetric rules (of either kind) in the literature when all jobs are ex ante identical (i.e.,

when dispatching is size blind and all jobs are equally important). Yet we believe that the explicit

and separate consideration of—and study of the interaction between—querying and assignment

rules suggests how asymmetry might be exploited to develop superior dispatching policies even

when jobs are ex ante identical. A judiciously chosen asymmetric assignment rule may be able to

synergistically exploit the asymmetry introduced by the querying rule. Meanwhile, future research

could allow for dynamic, rather than merely static, querying and/or assignment rules, permitting

the incorporation of round-robin-like dispatching decisions into our framework, which would ne-

cessitate novel analysis. Another direction for future work involves generalizing our framework

to heterogeneous systems with multiple dispatchers, as considered in [34, 44]. Such a generaliza-

tion likely would require a different approach for selecting policy parameters, as each dispatcher

possesses only a partial view of the system’s arrival process.

While this paper presents a comprehensive examination of querying rules within the space

restricted by the aforementioned assumptions, the bulk of our analysis focused on the CID family,

where assignment rules eschew making decisions on the basis of detailed queue length information

in favor of idleness information. The performance analysis of even CLD-based dispatching policies

remains an open problem, and while the explicit analysis of the set of all CLD assignment rules

(in conjunction with querying rules coming from, say GEN) may prove intractable, we anticipate

that many policies incorporating more detailed—if still restricted—queue length information are

amenable to analysis. Moreover, we imagine that many such policies may outperform the CID-

driven dispatching policies studied in this paper.

Finally, there remain open problems on the theoretical front. For example, throughout our

analysis asymptotic independence remains an assumption (although one that is validated by sim-

ulation) for which future work may provide a universal rigorous justification (as past work has for

more restricted special cases of our framework). There is also ample room for optimization theory

52

to shed further light on the structure of the optimization problems presented in this work.

References

[1] Banawan, S., Zeidat, N.: A comparative study of load sharing in heterogeneous multicomputer

systems. In: Proceedings. 25th Annual Simulation Symposium, pp. 22–31. IEEE (1992)

[2] Banawan, S.A., Zahorjan, J.: Load sharing in heterogeneous queueing systems. In: In Proc.

of IEEE INFOCOM’89, pp. 731–739 (1989)

[3] Bonomi, F.: On job assignment for a parallel system of processor sharing queues. IEEE Trans.

Comput. 39(7), 858–869 (1990)

[4] Bramson, M., Lu, Y., Prabhakar, B.: Asymptotic independence of queues under randomized

load balancing. Queueing Systems (2012). DOI 10.1007/s11134-012-9311-0

[5] Chen, H., Ye, H.Q.: Asymptotic optimality of balanced routing. Operations research 60(1),

163–179 (2012)

[6] Dunning, I., Huchette, J., Lubin, M.: Jump: A modeling language for mathematical optimiza-

tion. SIAM review 59(2), 295–320 (2017)

[7] Feng, H., Misra, V., Rubenstein, D.: Optimal state-free, size-aware dispatching for heteroge-

neous m/g/-type systems. Performance Evaluation 62(1), 475 – 492 (2005). DOI https://doi.

org/10.1016/j.peva.2005.07.031. URL http://www.sciencedirect.com/science/article/

pii/S0166531605001100. Performance 2005

[8] Gardner, K., Harchol-Balter, M., Scheller-Wolf, A., Van Houdt, B.: A better model for job

redundancy: Decoupling server slowdown and job size. IEEE/ACM transactions on networking

25(6), 3353–3367 (2017)

[9] Gardner, K., Jaleel, J.A., Wickeham, A., Doroudi, S.: Scalable load balancing in the presence

of heterogeneous servers. Performance Evaluation p. 102151 (2020)

[10] Gittins, J., Glazebrook, K., Weber, R.: Multi-armed bandit allocation indices. John Wiley &

Sons (2011)

[11] Gupta, V., Harchol-Balter, M., Sigman, K., Whitt, W.: Analysis of join-the-shortest-queue

routing for web server farms. Performance Evaluation 64(9-12), 1062–1081 (2007)

53

http://www.sciencedirect.com/science/article/pii/S0166531605001100
http://www.sciencedirect.com/science/article/pii/S0166531605001100

[12] Hellemans, T., Bodas, T., Van Houdt, B.: Performance Analysis of Workload Dependent Load

Balancing Policies. Proceedings of the ACM on Measurement and Analysis of Computing

Systems (2019). DOI 10.1145/3341617.3326150

[13] Hyytiä, E.: Optimal routing of fixed size jobs to two parallel servers. INFOR: Information

Systems and Operational Research 51(4), 215–224 (2013). DOI 10.3138/infor.51.4.215. URL

https://doi.org/10.3138/infor.51.4.215

[14] Izagirre, A., Makowski, A.: Light traffic performance under the power of two load balancing

strategy: the case of server heterogeneity. SIGMETRICS Performance Evaluation Review

42(2), 18–20 (2014)

[15] Koole, G.: A simple proof of the optimality of a threshold policy in a two-server queueing

system. Systems and Control Letters 26(5), 301–303 (1995)

[16] Larsen, R.L.: Control of Multiple Exponential Servers with Application to Computer Systems.

Ph.D. thesis, College Park, MD, USA (1981)

[17] Lin, W., Kumar, P.R.: Optimal Control of a Queueing System with Two Heterogeneous

Servers. IEEE Transactions on Automatic Control 29(8), 696–703 (1984)

[18] Lu, Y., Xie, Q., Kliot, G., Geller, A., Larus, J., Greenberg, A.: Join-idle-queue: A novel load

balancing algorithm for dynamically scalable web services. Performance Evaluation 68(11),

1056–1071 (2011)

[19] Lubin, M., Dunning, I.: Computing in Operations Research Using Julia. INFORMS Journal

on Computing 27(2), 238–248 (2015). DOI 10.1287/ijoc.2014.0623. URL https://doi.org/

10.1287/ijoc.2014.0623

[20] Luh, H.P., Viniotis, I.: Threshold control policies for heterogeneous server systems. Mathe-

matical Methods of Operations Research 55(1), 121–142 (2002)

[21] Mitzenmacher, M.: The power of two choices in randomized load balancing. IEEE Transactions

on Parallel and Distributed Systems 12(10), 1094–1104 (2001)

[22] Mukhopadhyay, A., Mazumdar, R.: Analysis of randomized join-the-shortest-queue (jsq)

schemes in large heterogeneous processor-sharing systems. IEEE Transactions on Control

of Network Systems 3(2), 116–126 (2016)

54

https://doi.org/10.3138/infor.51.4.215
https://doi.org/10.1287/ijoc.2014.0623
https://doi.org/10.1287/ijoc.2014.0623

[23] Nelson, R.D., Philips, T.K.: An approximation to the response time for shortest queue routing,

vol. 17. ACM (1989)

[24] Nuijens, M., et al.: The foreground-background queue. PhD Dessertation, University of Ams-

terdam (2004)

[25] Rai, I.A., Urvoy-Keller, G., Biersack, E.W.: Analysis of las scheduling for job size distributions

with high variance. In: Proceedings of the 2003 ACM SIGMETRICS international conference

on Measurement and modeling of computer systems, pp. 218–228 (2003)

[26] Rubinovitch, M.: The Slow Server Problem. Journal of Applied Probability 22(1), 205–213

(1985)

[27] Rubinovitch, M.: The Slow Server Problem: A Queue with Stalling. Journal of Applied

Probability 22(4), 879–892 (1985)

[28] Rykov, V.V., Efrosinin, D.V.: On the slow server problem. Automation and Remote Control

70(12), 2013–2023 (2009)

[29] Scully, Z., Harchol-Balter, M., Scheller-Wolf, A.: Soap: One clean analysis of all age-based

scheduling policies. Proceedings of the ACM on Measurement and Analysis of Computing

Systems 2(1), 1–30 (2018)

[30] Selen, J., Adan, I., Kapodistria, S.: Approximate performance analysis of generalized join

the shortest queue routing. In: Proceedings of the 9th EAI International Conference on

Performance Evaluation Methodologies and Tools, pp. 103–110. ICST (Institute for Computer

Sciences, Social-Informatics and . . . (2016)

[31] Selen, J., Adan, I., Kapodistria, S., van Leeuwaarden, J.: Steady-state analysis of shortest

expected delay routing. Queueing Systems 84(3-4), 309–354 (2016)

[32] Sethuraman, J., Squillante, M.S.: Optimal stochastic scheduling in multiclass parallel queues.

SIGMETRICS Perform. Eval. Rev. 27(1), 93–102 (1999). DOI 10.1145/301464.301483. URL

http://doi.acm.org/10.1145/301464.301483

[33] Stolyar, A.: Pull-based load distribution in large-scale heterogeneous service systems. Queueing

Systems 80(4), 341–361 (2015)

55

http://doi.acm.org/10.1145/301464.301483

[34] Stolyar, A.L.: Pull-based load distribution among heterogeneous parallel servers: the case of

multiple routers. Queueing Systems 85(1-2), 31–65 (2017)

[35] Tantawi, A.N., Towsley, D.: Optimal static load balancing in distributed computer systems.

Journal of the ACM (JACM) 32(2), 445–465 (1985)

[36] Vargaftik, S., Keslassy, I., Orda, A.: Lsq: Load balancing in large-scale heterogeneous systems

with multiple dispatchers. IEEE/ACM Transactions on Networking (2020)

[37] Vvedenskaya, N., Dobrushin, R., Karpelevich, F.: Queueing system with selection of the

shortest of two queues: An asymptotic approach. Problemy Peredachi Informatsii 32(1),

20–34 (1996)

[38] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-

search algorithm for large-scale nonlinear programming. Mathematical Programming

106(1), 25–57 (2006). DOI 10.1007/s10107-004-0559-y. URL https://doi.org/10.1007/

s10107-004-0559-y

[39] Wang, C., Feng, C., Cheng, J.: Distributed join-the-idle-queue for low latency cloud services.

IEEE/ACM Transactions on Networking 26(5), 2309–2319 (2018)

[40] Weber, R.R.: On the optimal assignment of customers to parallel servers. Journal of Applied

Probability 15(2), 406–413 (1978)

[41] Weng, W., Zhou, X., Srikant, R.: Optimal load balancing with locality constraints. Proceedings

of the ACM on Measurement and Analysis of Computing Systems 4(3), 1–37 (2020)

[42] Whitt, W.: Deciding which queue to join: Some counterexamples. Operations research 34(1),

55–62 (1986)

[43] Winston, W.: Optimality of the shortest line discipline. Journal of Applied Probability 14(1),

181–189 (1977)

[44] Zhou, X., Shroff, N., Wierman, A.: Asymptotically optimal load balancing in large-scale

heterogeneous systems with multiple dispatchers. Performance Evaluation 145, 102146 (2021)

[45] Zhou, X., Wu, F., Tan, J., Sun, Y., Shroff, N.: Designing low-complexity heavy-traffic delay-

optimal load balancing schemes: Theory to algorithms. Proceedings of the ACM on Measure-

ment and Analysis of Computing Systems 1(2), 39 (2017)

56

https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10107-004-0559-y

A Appendix: Tables of Notation

Table 2: Table A1: Querying Rule and Policy Abbreviations

Querying Rule Families
DET ≡ Deterministic Class Mix . p. 11
GEN ≡ General Class Mix . p. 11
IND ≡ Independent Querying . p. 11
IID ≡ Independent and Identically Distributed Querying p. 11
QRF ≡ Generic notation for an arbitrary querying rule family . p. 9
SFC ≡ Single Fixed Class . p. 12
SRC ≡ Single Random Class . p. 12

Individual Querying Rules
BR ≡ Balanced Routing querying rule . p. 12
DQRd ≡ Individual querying rule in DET that always queries according to class mix d p. 30
IPOptQ〈QRF,ARF〉 ≡ Querying rule used by the “optimal” policy in 〈QRF,ARF〉 found by IPOPT p. 34

IPOptQQRF ≡ Abbreviated notation for IPOptQ〈QRF,CID〉 . p. 34

IPOptQSEED
GEN ≡ Querying rule used by the IPOptDSEED

GEN dispatching policy . p. 35
QR ≡ Generic notation for an arbitrary individual querying rule . p. 8
UNI ≡ Uniform Querying . p. 12

Table 3: Table A2: Assignment Rule and Policy Abbreviations

Assignment Rule Families
ARF ≡ Generic notation for an arbitrary assignment rule family . p. 9
CD ≡ Class Differentiated . p. 14
CID ≡ Class and Idleness Differentiated . p. 14
CLD ≡ Class and Length Differentiated . p. 14
ID ≡ Idleness Differentiated . p. 14
LD ≡ Length Differentiated . p. 14

Individual Assignment Rules
AR ≡ Generic notation for an arbitrary individual assignment rule p. 8
IPOptA〈QRF,ARF〉 ≡ Assignment rule used by the “optimal” policy in 〈QRF,ARF〉 found by IPOPT p. 34

IPOptAQRF ≡ Abbreviated notation for IPOptA〈QRF,CID〉 . p. 34

IPOptASEED
GEN ≡ Assignment rule used by the IPOptDSEED

GEN dispatching policy p. 35
JSQ ≡ Join the Shortest Queue assignment rule . p. 45
JSQ? ≡ Variant of JSQ where ties are broken in favor of faster classes p. 46
ND ≡ Non-Differentiated . p. 14
SED ≡ Shortest Expected Delay assignment rule . p. 45
SED? ≡ Variant of SED where ties are broken in favor of faster classes p. 46
SEW ≡ Shortest Expected Wait assignment rule . p. 45
SEW? ≡ Variant of SEW where ties are broken in favor of faster classes p. 46

57

Table 4: Table A3: Dispatching Rule and Policy Abbreviations

Dispatching Policy Families
〈QRF,ARF〉 ≡ Dispatching policy family using QRF querying and ARF assignment p. 9
〈QRF,AR〉 ≡ Disp. policy family using QRF querying with the individual AR assignment

rule .
p. 9

〈QR,ARF〉 ≡ Disp. policy family using the individual QR querying rule with ARF assignment p. 9

DPF ≡ Generic notation for an arbitrary dispatching policy . p. 9

Individual Dispatching Policies
〈QR,AR〉 ≡ Dispatching policy using the QR querying rule and AR assignment rule p. 8
DP ≡ Generic notation for an individual dispatching policy . p. 8
IPOptD〈QRF,ARF〉 ≡ “Optimal” dispatching policy in 〈QRF,ARF〉 found by IPOPT p. 34

IPOptDQRF ≡ Abbreviated notation for IPOptD〈QRF,CID〉 . p. 34

IPOptDSEED
GEN ≡ Variant of the IPOptDGEN dispatching policy, where the associated optimization

problem is “seeded” with the parameters of the IPOptDIND policy
p. 35

58

Table 5: Table A4: List of Notations

αi(a,d) ≡ Probability that the job is assigned to a class-i server when A = a and D = d p. 15
αi(j,d) ≡ Notation for αi(a,d) when A = a is such that the fastest idle queried server belongs to class j . . p. 16
A ≡ (A1, . . . , As); Random vector representing the number of queried idle servers of each class p. 15
Ai ≡ Random variable representing the number of queried idle class-i servers . p. 15
A ≡ {a : a1 + · · ·+ as ≤ d}; Set of all possible values of the random vector A (given a fixed d) p. 15
a ≡ (a1, . . . , as); Realization of the random vector A . p. 15
ai ≡ Realization of the random variable Ai . p. 10
Bi ≡ Busy period duration at a class-i server . p. 20

bi(d) ≡
∏i−1

`=1 ρ
d`
` ; Probability that all queried servers faster than those of class-i in are busy p. 20

d ≡ Total number of servers to be queried . p. 8
D ≡ (D1, . . . , Ds); Random vector representing the number of queried servers of each class p. 10
Di ≡ Random variable representing the number of queried class-i servers . p. 10
D ≡ {d : d1 + · · ·+ ds = d}; Set of all possible values of the random vector D (given a fixed d) p. 11
d ≡ (d1, . . . , ds); Realization of D representing the class mix . p. 10
di ≡ Realization of Di representing the number of class-i servers in the query . p. 10
γ(j,d) ≡ Mapping where αi(j,d) = αi(j, γ(j,d)) under our assignment rule pruning for all (i, j,d) p. 26
h(d) ≡ min{` ∈ S : d` > 0}; The fastest class included in a query when D = d . p. 26
J ≡ min{j ∈ S : Aj > 0} (with min ∅ ≡ s+ 1); Class of the fastest idle queried server p. 15
Ji(d) ≡ Set of classes j > i for which (i, j, γ(j,d)) ∈ T . p. 27
k ≡ Total number of servers . p. 8
ki ≡ Number of class i servers for i ∈ S . p. 8
λ ≡ Overall mean arrival rate to a server . p. 8
λi ≡ Mean arrival rate to a class-i server . p. 20
λBi ≡ Mean arrival rate to a busy class-i server . p. 16
λIi ≡ Mean arrival rate to an idle class-i server . p. 19
µi ≡ Speed of a class-i server . p. 8
P ≡ Set of (j,d) pairs that can form a triple with some i ∈ S so that (i, j,d) ∈ T p.27
P(d) ≡ Set of server classes j that can form a triple with d and some i ∈ S so that (i, j,d) ∈ T p.30
p(d) ≡ P(D = d); The probability that D = d; the function p(·) uniquely specifies the querying rule . . . p. 11
Q ≡ {1, 2, . . . , d}; Set of indices for each queried server in a query . p. 29
qi ≡ ki/k; Proportion of servers which belong to class i for i ∈ S . p. 8
ρi ≡ Fraction of time a class-i server is busy . p. 20
Ri ≡ µi/µs; Speed of class-i servers normalized by that of the slowest (i.e., class-s) servers p. 32
rBi (d) ≡ Probability that a busy queried tagged class-i server is assigned the job when D = d p. 21
rIi(d) ≡ Probability that an idle queried tagged class-i server is assigned the job when D = d p. 21
s ≡ Number of server classes . p. 8
S ≡ {1, . . . , s}; Set of server class indices . p. 8
S̄ ≡ {1, . . . , s+ 1}; Set of all possible values for the random variable J . p. 16
S(d) ≡ {i ∈ S : di > 0}; Indices of server classes included in the query . p. 30
T ≡ Set of triples (i, j,d) for which each αi(j,d) can take a distinct value in our pruning. p. 26
T (d) ≡ Set of pairs (i, j) (given d) for which each αi(j,d) can take a distinct value in our pruning p. 30
T ≡ Response time of a job (not conditioned on the class of the server on which the job runs) p. 8
Ti ≡ Response time of a job that runs at a class-i server . p. 19

59

B Appendix: Asymptotic Independence Verification

In this appendix we verify the validity of the asymptotic independence assumption via simulation.

We simulate a system with k servers for k ∈ {25, 75, 125, . . . , 925, 975} under the IPOptDSEED
GEN dis-

patching policy at arrival rates λ ∈ {0.4, 0.6, 0.8}; service times are exponentially distributed with

rates (µ1, µ2, µ3) = (2, 4/5, 2/5) and class proportions are given by (q1, q2, q3) = (1/3, 1/6, 1/2).

Figure 7a shows the simulated mean response times in comparison to our theoretical results under

the asymptotic independence assumption (where k →∞). As k grows large, the simulated results

appear to converge to the theoretical results, suggesting that the asymptotic independence assump-

tion indeed holds for our system (simulations for higher values of k, e.g., 2000, 3000, etc. further

corroborate this finding).

Figure 7b show the corresponding results under hyperexponential service. Specifically, the

service time of jobs on a class-i server is equally likely to be distributed according to an exponential

distribution with rate 5µi/2 and one with rate 5µi/8, resulting in C2 = 1.72; note that the average

service time of a job running on a class-i server remains 1/µi (as was the case in the system with

exponentially distributed service times). Further note that the policy used is still “optimized”

under the assumption of exponential service times (i.e., for any given value of λ, the parameters

defining the querying and assignment rules are the same as those used above). Our simulations

(including those at higher k values) again suggest that as k grows the asymptotic independence

assumption holds.

60

0.0

0.5

1.0

1.5

2.0

0 250 500 750 1000

k (number of servers)

E[
T

]

(a) Exponential Service

0.0

0.5

1.0

1.5

2.0

0 250 500 750 1000

k (number of servers)

E[
T

]

(b) Hyperexponential Service (C2 = 1.72)

λ = 0.4 (theoretical)

λ = 0.4 (simulated)

λ = 0.6 (theoretical)

λ = 0.6 (simulated)

λ = 0.8 (theoretical)

λ = 0.8 (simulated)

Figure 7: Simulated mean response times for varying values of k (together with the theoretical
values for k →∞ under the asymptotic independence assumption) for a system with (q1, q2, q3) =
(1/3, 1/6, 1/2) and mean service times (1/µ1, 1/µ2, 1/µ3) = (1/2, 5/4, 5/2) under the IPOptDSEED

GEN;
Figures 7a and 7b are in the settings with exponentially (C2 = 1) and hyperexponentially (C2 =
1.72) distributed service times, respectively.

61

C Appendix: Additional optimization problems

Optimization Problem for 〈IID,CID〉
Given values of s, d, λ, and µi and qi (both ∀i ∈ S), determine the nonnegative values of

the decision variables λI
i, λ

B
i , and p̃(i) (each ∀i ∈ S) and αi(j,d) (∀(i, j,d) ∈ T) that solve

the following nonlinear program:

min
1

λ

s∑
i=1

qi

(
(1− ρi)λIi + ρiλ

B
i

µi − λBi

)

s.t. λIi =
d!λ

qi

∑
d∈D

{
bi(d)

(
s∏

`=1

p̃(`)d`

d`!

)
αi(i, γ(i,d))

di∑
ai=1

(
di − 1

ai − 1

)
(1− ρi)ai−1ρdi−ai

i

ai

}
(∀i ∈ S)

λBi =
d!λ

qiρi

∑
d∈D


(

s∏
`=1

p̃(`)d`

d`!

) ∑
j∈Ji(d)

bj(d)
(

1− ρdj

j

)
αi(j, γ(i,d))

 (∀i ∈ S)

λBi < µi (∀i ∈ S)

s∑
i=1

p̃(i) = 1

∑
i∈S:

(i,j,d)∈T

αi(j,d) = 1 (∀(j,d) ∈ P)

where for all i ∈ S in writing ρi we are denoting the expression λI
i/
(
µi − λB

i + λI
i

)
with

ρ
ds+1

s+1 ≡ 0 for all d ∈ D, and for all j ∈ S̄ in writing bj(d) we are denoting the expression∏j−1
`=1

(
λI
`/
(
µ` − λB

` + λI
`

))d` .
The p̃(i) values (for all i ∈ S) and the αi(j,d) values (for all (i, j,d) ∈ T together with

αi(j,d) = 0 for all (i, j,d) 6∈ T) from an optimal solution specify the querying and assignment

rules of an optimal policy, respectively.

62

Optimization Problem for 〈IND,CID〉
Given values of s, d, λ, and µi and qi (both given ∀i ∈ S), determine the nonnegative

values of the decision variables λI
i and λB

i (∀i ∈ S), p̃u(i) (∀(u, i) ∈ Q × S), and αi(j,d)

(∀(i, j,d) ∈ T) that solve the following nonlinear program:

min
1

λ

s∑
i=1

qi

(
(1− ρi)λIi + ρiλ

B
i

µi − λBi

)

s.t. λIi =
λ

qi

∑
d∈D

dibi(d)

 ∑
~Q∈B(d)

s∏
i=1

∏
u∈Qi

p̃u(i)

αi(i, γ(i,d))

di∑
ai=1

(di − 1

ai − 1

) (1− ρi)ai−1ρ
di−ai
i

ai

 (∀i ∈ S)

λBi =
λ

qiρi

∑
d∈D


 ∑

~Q∈B(d)

s∏
i=1

∏
u∈Qi

p̃u(i)

 ∑
j∈Ji(d)

bj(d)
(

1− ρdjj
)
αi(j, γ(i,d))

 (∀i ∈ S)

λBi < µi (∀i ∈ S)∑
d∈D

p̃u(d) = 1 (∀u ∈ Q)

∑
i∈S:

(i,j,d)∈T

αi(j,d) = 1 (∀(j,d) ∈ P)

where for all i ∈ S in writing ρi we are denoting the expression λI
i/
(
µi − λB

i + λI
i

)
with

ρ
ds+1

s+1 ≡ 0 for all d ∈ D, and for all j ∈ S̄ in writing bj(d) we are denoting the expression∏j−1
`=1

(
λI
`/
(
µ` − λB

` + λI
`

))d` .
The p̃u(i) values (for all (u, i) ∈ Q× S) and the αi(j,d) values (for all (i, j,d) ∈ T together

with αi(j,d) = 0 for all (i, j,d) 6∈ T) from an optimal solution specify the querying and

assignment rules of an optimal policy, respectively.

63

Optimization Problem for 〈DET,CID〉

For each d ∈ D solve the following subproblem:

Given values of s, d = (d1, d2, . . . , ds), λ, and µi and qi (both ∀i ∈ S(d)), determine the nonnegative values of

the decision variables λIi and λBi (both ∀i ∈ S(d)) and αi(j,d) (∀(i, j) ∈ T (d)) that solve the following nonlinear

program:

min
1

λ

s∑
i=1

qi

(
(1− ρi)λIi + ρiλ

B
i

µi − λBi

)

s.t. λIi =
λdibi(d)αi(i,d)

qi

di∑
ai=1

(di − 1

ai − 1

) (1− ρi)ai−1ρ
di−ai
i

ai
(∀i ∈ S(d))

λBi =
λ

qiρi

∑
j∈Ji(d)

bj(d)
(

1− ρdjj
)
αi(j,d) (∀i ∈ S(d))

λBi < µi (∀i ∈ S(d))∑
i∈S:

(i,j)∈T (d)

αi(j,d) = 1 (∀j ∈ P(d))

where for all i ∈ S in writing ρi we are denoting the expression λIi/
(
µi − λBi + λIi

)
with ρ

ds+1
s+1 ≡ 0, and for all

j ∈ S̄ in writing bi(d) we are denoting the expression
∏i−1

`=1

(
λI`/

(
µ` − λB` + λI`

))d` .

Then identify d∗, the query mix that yielded the lowest subproblem objective function value

among all query mixes d ∈ D. This query mix d∗ specifies the querying rule associated with

〈DET,CID〉, while the αi(j,d
∗) values (for all (i, j) ∈ T (d∗) together with αi(j,d

∗) = 0

for all (i, j) 6∈ T (d∗) and αi(j,d) = 0 for all (i, j,d) ∈ S × S̄ × (D\{d∗}) from a solution to

the subproblem associated with d∗ specifies the assignment rule associated with an optimal

policy.

64

Optimization Problem for 〈SRC,CID〉

Given values of s, d, λ, and µi and qi (both given ∀i ∈ S), determine the nonnegative

values of the decision variables λI
i and λB

i (both ∀i ∈ S), and p̂(i) (∀i ∈ S) that solve the

following nonlinear program:

min
1

λ

s∑
i=1

qi

(
(1− ρi)λI

i + ρiλ
B
i

µi − λB
i

)

s.t. λI
i =

λdp̂(i)

qi

d∑
ai=1

(
d− 1

ai − 1

)
(1− ρi)ai−1ρd−aii

ai
(∀i ∈ S)

λB
i =

λp̂(i)ρd−1
i

qi
(∀i ∈ S)

λB
i < µi (∀i ∈ S)

s∑
i=1

p̂(i) = 1

where for all i ∈ S in writing ρi we are denoting the expression λI
i/
(
µi − λB

i + λI
i

)
.

The p̂(i) values (for all i ∈ D) from an optimal solution specifies the querying rule associated

with an optimal policy.

65

Optimization Problem for 〈SFC,CID〉

For each i ∈ S solve the following subproblem:

Given values of s, λ, µi, and qi determine the nonnegative values of λI
i and λB

i that solve the following

nonlinear program (noting that the objective function below is irrelevant as there is at most one feasible

solution):

min
qi
λ

(
(1− ρi)λI

i + ρiλ
B
i

µi − λB
i

)
s.t. λI

i =
λd

qi

d∑
ai=1

(
d− 1

ai − 1

)
(1− ρi)ai−1ρd−ai

i

ai

λB
i =

λρd−1
i

qi

λB
i < µi

where for all i ∈ S in writing ρi we are denoting the expression λI
i/
(
µi − λB

i + λI
i

)
with ρ

ds+1
s+1 ≡ 0, and

for all j ∈ S̄ in writing bi(d) we are denoting the expression
∏i−1

`=1

(
λI
`/
(
µ` − λB

` + λI
`

))d` .

Then identify i∗, the class (or any class) that yielded the lowest subproblem objective function

value among all classes i ∈ S. An optimal querying rule for the 〈DET,CID〉 dispatching

policy is that which always queries d class-i∗ servers, i.e., the querying defined by p(d) =

d · I{d = dei∗}.

66

Optimization Problem for 〈QR,CID〉

Given values of s, d, λ, and µi and qi (both given ∀i ∈ S) and some specific querying rule QR

defined by some function p : D → [0, 1] so that p(d) = P(D = d) determine the nonnegative

values of the decision variables λI
i and λB

i (both ∀i ∈ S) and αi(j,d) (∀(i, j,d) ∈ T) that

solves the following nonlinear program:

min
1

λ

s∑
i=1

qi

(
(1− ρi)λI

i + ρiλ
B
i

µi − λB
i

)

s.t. λI
i =

λ

qi

∑
d∈D

{
dibi(d)p(d)αi(i, γ(i,d))

di∑
ai=1

(
di − 1

ai − 1

)
(1− ρi)ai−1ρdi−aii

ai

}
(∀i ∈ S)

λB
i =

λ

qiρi

∑
d∈D

p(d)
∑

j∈Ji(d)

bj(d)
(

1− ρdjj
)
αi(j, γ(i,d))

 (∀i ∈ S)

λB
i < µi (∀i ∈ S)∑
i∈S:

(i,j,d)∈T

αi(j,d) = 1 (∀(j,d) ∈ P)

where for all i ∈ S in writing ρi we are denoting the expression λI
i/
(
µi − λB

i + λI
i

)
with

ρ
ds+1

s+1 ≡ 1 for all d ∈ D, and for all j ∈ S̄ in writing bj(d) we are denoting the expression∏j−1
`=1

(
λI
`/
(
µ` − λB

` + λI
`

))d` .
The αi(j,d) values (for all (i, j,d) ∈ T together with αi(j,d) = 0 for all (i, j,d) 6∈ T) from

an optimal solution specifies the assignment rule of an optimal policy.

67

D Problem size

In this section we address the sizes of the optimization problems presented in the preceding section

as a theoretical proxy for problem tractability. A more practical measure of tractability (computer

runtime) will be presented in the following section, which focuses on numerical results.

D.1 Measures of problem sizes

We measure problem sizes in terms of the number of variables (VAR), the number of linear equality

constraints (LEC), and the number of nonlinear equality constraints (NEC). We omit nonnegativity

constraints, as there is one for each variable. We also omit the number of upper-bound constraints

(UBC) in all of our problems, as these always correspond to half the number of NECs. This is

because there is always exactly one UBC for each λB
i variable and always exactly one NEC for each

λI
i and each λB

i variable (which are equally numerous). In the case of the problems associated with

the DET and SFC families we report the problem size associated with each subproblem and the

number of subproblems overall (SP). Note that for DET not all subproblems are the same size, so

we report all numbers in terms of the query mix, d ∈ D, associated with the subproblem. We report

these problem size measures in Table 1; each entry is determined by straightforward inspection of

the relevant optimization problem (as presented in Section 5 or Appendix C).

VAR LEC NEC DIM SP

GEN 2|S|+ |D|+ |T | |P|+ 1 2|S| |D|+ |T | − |P| − 1 1

IND (|Q|+ 2)|S|+ |T | |P|+ |Q| 2|S| d|S|+ |T | − |P| − |Q| 1

IID 3|S|+ |T | |P|+ 1 2|S| |S|+ |T | − |P| − 1 1

DET 2|S(d)|+ |T (d)| |P(d)| 2|S(d)| |T (d)| − |P(d)| |D|
SRC 3|S| 1 2|S| 1 1

SFC 2 0 2 0 |S|
QR 2|S|+ |T | |P| 2|S| |T | − |P| 1

Table 6: Optimization problem sizes for 〈QRF,CID〉 (for six querying rule families QRF) and
for 〈QR,CID〉 (for an individual querying rule QR, e.g., BR or UNI) in terms of the number
of variables (VAR), the number of linear equality constraints (LEC), the number of nonlinear
equality constraints (NEC), and the number of parameter dimensions of the polytope of all feasible
dispatching policies (DIM). For the two querying rule families resulting in multiple subproblems
(i.e., DET and SFC) the aforementioned quantities associated with each subproblem are given (as
a function of d ∈ D in the case of DET). The number of subproblems (SP) in each optimization
problem are also provided.

We also introduce a measure which captures the dimension (DIM) of the polytope of param-

68

eter vectors specifying dispatching policies in Euclidean space. We think of this dimension as

corresponding to the number of “degrees of freedom” when specifying the querying (p) and as-

signment (αi) rules. For example, when s = 3, for any (j,d) ∈ P, the three variables α1(j,d),

α2(j,d), and α3(j,d) collectively contribute only two degrees of freedom, because the constraint

α1(j,d)+α2(j,d)+α3(j,d) = 1 causes any one of these variables to always be uniquely determined

in terms of the other two. Consequently, the number of dimensions corresponds to the number of

variables minus the number of nonlinear equality constraints (because there is one such constraint

for each variable that does not specify the dispatching polices, i.e., for each λI
i and λB

i variable)

minus the number of linear equality constraints (because these are normalization constraints, each

of which reduces the “degrees of freedom” by one).

We note that further pruning is possible, so these problem sizes are particular to the way that

we have formulated the problems. First, we could eliminate the linear equality constraints and one

variable occurring in each such constraint writing out this variable when it appears elsewhere in

the optimization problem as one less the sum of the other variables appearing in the constraint;

e.g., we could set p(de1) equal to 1−
∑
D\{de1}

p(d) in the optimization problem associated with

〈GEN,CID〉. Second, problems allow for multiple optimal solutions in a way that could allow for

further pruning opportunities that we have ignored. For example, consider the following constraints

of the optimization problem associated with 〈GEN,CID〉:

λI
i =

λ

qi

∑
d∈D

{
dibi(d)p(d)αi(i, γ(i,d))

di∑
ai=1

(
di − 1

ai − 1

)
(1− ρi)ai−1ρdi−aii

ai

}
(∀i ∈ S)

λB
i =

λ

qiρi

∑
d∈D

p(d)
∑

j∈Ji(d)

bj(d)
(

1− ρdjj
)
αi(j, γ(i,d))

 (∀i ∈ S)

∑
i∈S:

(i,j,d)∈T

αi(j,d) = 1 (∀(j,d) ∈ P).

These are the only constraints in which the αi(j,d) variables appear for all (i, j,d) ∈ T ; these

variables do not appear in the objective function. Now consider an optimal solution and set the

λI
i, λ

B
i , and p(d) variables in the above constraints to values associated with that optimal solution.

Observe that any set of α(i, j,d) values satisfying these constraints would also be optimal. Noting

that all of these constraints are linear in the α(i, j,d) variables, the set of vectors of these variables

satisfying these constraints form a polytope of at least |T |−2|S|−|P| dimensions, suggesting ample

69

potential for further pruning.

D.2 Numerical evaluation of problem sizes

Table 1 presents the size of the problems associated with of our querying rule families in terms of

the measures introduced in Section D.1. In order to facilitate drawing insights from these problem

sizes, in this section, we present numerical values for the entries of that table. Before presenting

these numerical values, we observe that most of the entries in Table 1 are presented in terms of

|S|, |Q|, |D|, |T |, and |P|, which depend on s and/or d, and are the cardinalities of sets defined

respectively in Equations (1), (2), (18), (19), and (21). Consequently, computing the desired

problem size measures as numerical values would require a method for computing the cardinalities

of the aforementioned sets of s and d. Moreover, in the case of DET, we also need to compute

|S(d)|, |T (d)|, and |P(d)|, which are the cardinalities of sets defined respectively in Equations (22),

(23), and (24); since it would be inconvenient to examine these values for each d ∈ D, we instead

examine the maximum and average values of these sets over all d ∈ D. To this end, we present

expressions for all these quantities of interest in Proposition 4.

Proposition 4. Let Ψn
m ≡ |{U ⊆ {1, 2, . . . , n} : |U| ≤ m}| =

∑m
`=0

(
n
`

)
denote the number of

subsets of cardinality at most m (including the empty set) taken from a set of cardinality n. The

cardinalities of S, Q, D, T , and P—along with the maximum value and summation over all query

mixes d ∈ D of the cardinalities of S(d), T (d), and P(d)—are as follows:

|S| = s, |Q| = d

|D| =
(
s+ d− 1

d

)

|T | = sΨs−1
d−1 +

s∑
i=1

Ψi−1
d−1 +

s∑
j=i+1

Ψj−2
d−2


|P| = Ψs

d +
s∑
j=2

Ψj−1
d−1

max
d∈D
|S(d)| = min(s, d)

∑
d∈D

|S(d)|
|D|

=
sd

s+ d− 1

max
d∈D
|T (d)| =

min
(
s2 + 3s, d2 + 3d

)
2∑

d∈D

|T (d)|
|D|

=
sd(sd+ 3s+ 3d− 7)

2(s+ d− 1)(s+ d− 2)

max
d∈D
|P(d)| = min(s, d) + 1∑

d∈D

|P(d)|
|D|

=
sd+ s+ d− 1

s+ d− 1
.

Moreover, for all d ∈ D, we have

|T (d)| = |S(d)|2 + 3|S(d)|
2

and |P(d)| = |S(d)|+ 1.

70

Proof. Clearly, |S| = |{1, 2, . . . , s}| = s and |Q| = |{1, 2, . . . , d}| = d. Meanwhile, |D| is the number

of query mixes consisting of d servers drawn from s classes, which corresponds exactly to the number

of multisets of cardinality d taken from a set of cardinality s, so standard combinatorial reasoning

(e.g., the so-called “stars and bars” technique) yields |D| =
(
s+d−1
d

)
. We proceed to prove the

remaining six formulas separately.

Counting |T |. Recalling that

T ≡
{

(i, j,d) ∈ S × S̄ × D : i ≤ j, di > 0, (j ≤ s) =⇒ dj > 0, γ(j,d) = d
}
,

we count |T | by counting the number of elements in each set in the partition described by the

equation

T =
s⋃
i=1

{(i′, j,d) ∈ T : i′ = i}

and then summing these counts:

|T | =
s∑
i=1

|{(i′, j,d) ∈ T : i′ = i}|

=

s∑
i=1

s+1∑
j=i

|{(i′, j′,d) ∈ T : (i′, j′) = (i, j)}|

=
s∑
i=1

s+1∑
j=i

|{d ∈ D : (i, j,d) ∈ T }|

=
s∑
i=1

|{d ∈ D : (i, i,d) ∈ T }|+

 s∑
j=i+1

|{d ∈ D : (i, j,d) ∈ T }|

+ |{d ∈ D : (i, s+ 1,d) ∈ T }|


=

s∑
i=1

Ψi−1
d−1 +

 s∑
j=i+1

Ψj−2
d−2

+ Ψs−1
d−1


= sΨs−1

d−1 +

s∑
i=1

Ψi−1
d−1 +

s∑
j=i+1

Ψj−2
d−2

 ,

with the penultimate step requiring some further justification, which we now provide. By the

definition of T (and specifically, the definition of the map γ), for any fixed i ∈ S and j ∈ S̄ such

that j ≥ i, the triple (i, j,d) ∈ T for some d ∈ D if and only if the query mix d satisfies the

following conditions:

• The query mix d consists of at least one class-i server.

71

• The query mix d consists of at least one class-j server if j ∈ S i.e., j 6= s+ 1.

• The query mix d consists of no servers that are slower than class j (if j = s+1 all such d ∈ D

satisfy this requirement vacuously).

• No more than one server of each class except for the fastest class is queried under the query

mix d.

Hence, there exists an isomorphism between such mixes d and the set of subsets of S consisting of

at most d classes (elements), which include both i and (if j 6= s+1) j, and possibly some additional

classes slower than class i (selected from any of the classes {i+ 1, i+ 2, . . . , j − 1, j + 1, . . . , s}).

|{d ∈ D} : (i, j,d) ∈ T | = |{U ⊆ {1, 2, . . . ,min(j, s)} : |U| ≤ d, i ∈ U , j ∈ U ∪ {s+ 1}}|

=


|{U ⊆ {1, 2, . . . , i− 1} : |U| ≤ d− 1}| = Ψi−1

d−1 if i = j

|{U ⊆ {1, 2, . . . , j − 2} : |U| ≤ d− 2}| = Ψj−2
d−2 if i < j < s+ 1

|{U ⊆ {1, 2, . . . , s− 1} : |U| ≤ d− 1}| = Ψs−1
d−1 if j = s+ 1

,

as Ψn
m ≡ |{U ⊆ {1, 2, . . . , n} : |U| ≤ m}| =

∑m
`=0

(
n
`

)
. Hence, we have justified the equations above,

and proved the claimed count of |T |.

Counting |P|. Recalling that

P ≡
{

(j,d) ∈ S̄ × D : (∃i ∈ S : (i, j,d) ∈ T)
}
,

we count |P| by counting the number of elements in each set in the partition described by the

equation

P =

s⋃
j=1

{(j′,d) ∈ P : j′ = j}

72

and then summing these counts:

|P| =
s+1∑
j=1

|{(j′,d) ∈ P : j′ = j}|

=
s+1∑
j=1

|{d ∈ D : (j,d) ∈ P}|

=

s+1∑
j=1

|{d ∈ D : (∃i ∈ S : (i, j,d) ∈ T)}|

= |{U ⊆ S : 1 ≤ |U| ≤ d}|+
s∑
j=1

|{U ⊆ {1, 2, . . . , j − 1} : |U| ≤ d}|

= (|{U ⊆ S : |U| ≤ d}| − |{U ⊆ S : |U| = 0}|) +

|{U ⊆ ∅ : |U| ≤ d}|+
s∑
j=2

|{U ⊆ {1, 2, . . . , j − 1} : |U| ≤ d}|


= (Ψs

d − 1) +

1 +
s∑
j=2

Ψj−1
d−1

 ,

= Ψs
d +

s∑
j=2

Ψj−1
d−1.

Evaluating max
d∈D
|S(d)| and

∑
d∈D
|S(d)|. Recalling that S(d) ≡ {i ∈ S : di > 0}, observe that

we must clearly have |S(d)| ≤ min(s, d); in fact, this inequality holds tightly, e.g., when d =

max(d− s, 0)es +

min(s,d)∑
i=1

ei, we have |S(d)| = min(s, d). Therefore, max
d∈D
|S(d)| = min(s, d) as claimed.

Next, we evaluate the mean value of |S(d)| over all d ∈ D. To this end we count |{S(d) : d ∈

D, |S(d)| = `}| = |{d ∈ D : |S(d)| = `}| for each ` ∈ {1, 2, . . . , d}. This count must correspond to

the number of ways that d indistinguishable balls can be put into s distinguishable bins such that

exactly ` bins are nonempty. It follows from this observation that |{d ∈ D : |S(d)| = `}| =
(
s
`

)(
d−1
d−`
)

because there are
(
s
`

)
ways of choosing ` nonempty bins from among s possible bins, and—since

each of the ` nonempty bins necessarily includes at least one ball—there are (by the “stars and

bars” technique)
(`+(d−`)−1

d−1

)
=
(
d−1
d−`
)

ways of distributing the remaining d− ` balls among these `

bins. We then use these counts to compute the desired mean value as follows:

1

|D|
∑
d∈D

|S(d)| = 1

|D|

d∑
`=1

` (|{S(d) : d ∈ D, |S(d)| = `}|) =
1

|D|

d∑
`=1

`

(
s

`

)(
d− 1

d− `

)
=

sd

(s+ d− 1)|D|

(
s+ d− 1

d

)
=

sd

s+ d− 1
,

where the penultimate inequality can be verified using a computer algebra system and the last

equality follows from the previously established fact that |D| =
(
s+d−1
d

)
.

73

Expressing |T (d)| in terms of |S(d)| and evaluating max
d∈D
|T (d)| and

∑
d∈D
|T (d)|. Recalling

that

T (d) ≡
{

(i, j) ∈ S × S̄ : i ≤ j, di > 0, (j ≤ s) =⇒ dj > 0
}
,

and S(d) ≡ {i ∈ S : di > 0}, observe that we can partition T (d) into the three sets {(i, i) : i ∈ S(d)},{
(i, j) ∈ S(d)2 : i < j

}
, and {(i, s+1): i ∈ S(d)}. Using this partition, we compute |T (d)| in terms

of S(d):

|T (d)| = |{(i, i) : i ∈ S(d)}|+
∣∣{(i, j) ∈ S(d)2 : i < j

}∣∣+ |{(i, s+ 1): i ∈ S(d)}|

= |S(d)|+
(
|S(d)|

2

)
+ |S(d)| = |S(d)|2 + 3|S(d)|

2
,

as claimed.

Since |T (d)| is monotonically increasing in |S(d)|, the former is maximized at precisely those

values of d where the latter is maximized, allowing us to obtain the claimed result on the maximum

value of |T (d)| over all d ∈ D:

max
d∈D
|T (d)| = max

d∈D

{
|S(d)|2 + 3|S(d)|

2

}
=

min(s, d)2 + 3 min(s, d)

2
=

min
(
s2 + 3s, d2 + 3d

)
2

.

Our expression of |T (d)| in terms of |S(d)| also allows us to prove the claim regarding the mean

value of |T (d)| over all d ∈ D in a fashion similar to that used to prove the claim regarding the

analogous mean value associated with |S(d)|:

1

|D|
∑
d∈D

|T (d)| = 1

|D|

d∑
`=1

(
`2 + 3`

2

)
(|{S(d) : d ∈ D, |S(d)| = `}|) =

1

|D|

d∑
`=1

(
`2 + 3`

2

)(
s

`

)(
d− 1

d− `

)
=

sd(sd+ 3s+ 3d− 7)

2(s+ d− 1)(s+ d− 2)
,

where the last equality can be verified using a computer algebra system.

Expressing |P(d)| in terms of |S(d)| and evaluating max
d∈D
|P(d)| and

∑
d∈D
|P(d)|. Recalling

that

P(d) ≡
{
j ∈ S̄ : (∃i ∈ S : (i, j) ∈ T (d))

}
= {j ∈ S : dj > 0} ∪ {s+ 1},

we must clearly have |P(d)| = |S(d)| + 1, as S(d) ≡ {` ∈ S : d` > 0}. We readily obtain the

74

remaining claimed results:

max
d∈D
|P(d)| = max

d∈D
{|S(d)|+ 1} = min(s, d) + 1

1

|D|
∑
d∈D
|P(d)| = 1

|D|
∑
d∈D

{|S(d)|+ 1} =
1

|D|

(
|D|+

∑
d∈D

|S(d)|

)
= 1 +

1

|D|
∑
d∈D

|S(d)| = 1 +
sd

s+ d− 1
=
sd+ s+ d− 1

sd
.

Using Proposition 4, we present numerical values of the problem sizes associated with the

optimization problems of interest for each combination of s, d ∈ {2, 3, 4, 5} in Table 7; we omit

the optimization problem associated with 〈SFC,CID〉, as it features s problems and the sizes of

all of the subproblems (insofar as our measures are concerned) are constant in both s and d. For

〈DET,CID〉 we report the maximum and average measures across the subproblems (of which there

is one for each d ∈ D; we also report the number of subproblems). As average measures may not

be integers, we round them to the nearest integer to conserve space.

Across most of our measures and combinations of s and d, the problem associated with GEN

is larger than that associated with IND (although there are exceptions, particularly with LEC),

which is in turn larger than that associated with IID, with those associated with QR and SRC

following in that order (with SRC problem sizes being much smaller than those associated with the

other families/rules at higher s and d). The proportional disparity in problem sizes with respect to

most of our measures becomes substantially more pronounced as both s and d grow. Meanwhile,

while each subproblem associated with DET is small, the number of subproblems grows sharply

in s and d, suggesting that the optimization problem associated with 〈DET,CID〉 is generally

the most computationally intensive among the problems studied in this paper. As the DET-

driven dispatching policies are the only ones studied in [9] (to our knowledge, the only work that

jointly optimizes querying and assignment rules), one important contribution of this paper is the

generalization of the DET querying rule family to families (i.e., IND and GEN) that more readily

lend themselves to efficient optimization.

75

d
=

2
d

=
3

d
=

4
d

=
5

P
ol

ic
y

V
A

R
L

E
C

N
E

C
D

IM
V

A
R

L
E

C
N

E
C

D
IM

V
A

R
L

E
C

N
E

C
D

IM
V

A
R

L
E

C
N

E
C

D
IM

G
E

N
15

7
4

4
16

7
4

5
17

7
4

6
18

7
4

7
IN

D
16

8
4

4
18

9
4

5
20

10
4

6
22

11
4

7
II

D
14

7
4

3
14

7
4

3
14

7
4

3
14

7
4

3
m

ax
9

3
4

2
3

9
3

4
2

4
9

3
4

2
5

9
3

4
2

6
D

E
T

av
g

6
2

3
1

S
P

6
2

3
1

S
P

7
3

3
1

S
P

7
3

3
1

S
P

S
R

C
6

1
4

1
6

1
4

1
6

1
4

1
6

1
4

1

s
=

2

Q
R

12
6

4
2

12
6

4
2

12
6

4
2

12
6

4
2

G
E

N
30

13
6

11
40

1
5

6
19

45
15

6
24

51
15

6
30

IN
D

30
14

6
10

39
1
7

6
16

42
18

6
18

45
19

6
20

II
D

27
13

6
8

33
1
5

6
12

33
15

6
12

33
15

6
12

m
ax

9
3

4
2

6
15

4
6

5
10

15
4

6
5

15
15

4
6

5
2
1

D
E

T
av

g
6

2
3

1
S

P
8

3
4

2
S

P
9

3
4

2
S

P
10

3
4

3
S

P

S
R

C
9

1
6

2
9

1
6

2
9

1
6

2
9

1
6

2

s
=

3

Q
R

24
12

6
6

30
1
4

6
10

30
14

6
10

30
14

6
10

G
E

N
50

21
8

21
84

2
9

8
47

10
7

31
8

68
1
28

31
8

89
IN

D
48

22
8

18
76

3
1

8
37

88
34

8
46

92
35

8
49

II
D

44
21

8
15

68
2
9

8
31

76
31

8
37

76
31

8
37

m
ax

9
3

4
2

10
15

4
6

5
20

22
5

8
9

35
22

5
8

9
5
6

D
E

T
av

g
7

3
3

1
S

P
9

3
4

2
S

P
11

3
5

3
S

P
12

4
5

4
S

P

S
R

C
12

1
8

3
12

1
8

3
12

1
8

3
12

1
8

3

s
=

4

Q
R

40
20

8
12

64
2
8

8
28

72
30

8
34

72
30

8
34

G
E

N
75

31
10

34
15

5
5
1

10
94

23
0

61
1
0

15
9

2
96

63
10

22
3

IN
D

70
32

10
28

13
5

5
3

10
72

18
0

64
1
0

10
6

1
95

67
10

11
8

II
D

65
31

10
24

12
5

5
1

10
64

16
5

61
1
0

94
1
75

63
10

10
2

m
ax

9
3

4
2

15
15

4
6

5
35

22
5

8
9

70
30

6
10

14
1
2
6

D
E

T
av

g
7

3
3

1
S

P
10

3
4

3
S

P
12

4
5

4
S

P
14

4
6

5
S

P

S
R

C
15

1
10

4
15

1
10

4
15

1
1
0

4
15

1
10

4

s
=

5

Q
R

60
30

10
20

12
0

5
0

10
60

16
0

60
1
0

90
1
70

62
10

98

T
ab

le
7:

P
ro

b
le

m
si

ze
s

fo
r

th
e

op
ti

m
iz

at
io

n
p
ro

b
le

m
s

a
ss

o
ci

at
ed

w
it

h
〈Q

R
F
,C

ID
〉

fo
r

fi
v
e

q
u
er

y
in

g
ru

le
fa

m
il
ie

s
Q

R
F

an
d

fo
r
〈Q

R
,C

ID
〉

(f
o
r

an
in

d
iv

id
u
al

q
u
er

y
in

g
ru

le
Q

R
)—

in
te

rm
s

of
V

A
R

,
L

E
C

,
N

E
C

,
an

d
D

IM
—

fo
r

ea
ch

co
m

b
in

at
io

n
of
s,
d
∈
{2
,3
,4
,5
}.

F
or

th
e

ca
se

w
h
er

e
Q

R
F

=
D

E
T

w
e

p
re

se
n
t

b
ot

h
th

e
m

ax
im

u
m

(l
ab

el
ed

“m
ax

”)
an

d
av

er
a
ge

(l
ab

el
ed

“a
v
g”

)
p
ro

b
le

m
si

ze
m

ea
su

re
s,

ro
u
n
d
in

g
av

er
ag

es
to

th
e

n
ea

re
st

in
te

ge
r;

w
e

al
so

p
re

se
n
t

th
e

n
u
m

b
er

of
su

b
p
ro

b
le

m
s

(a
b

ov
e

th
e

le
tt

er
s

“
S
P

”
on

th
e

fa
r

ri
gh

t
o
f

th
e

b
ox

as
so

ci
at

ed
w

it
h

ea
ch

(s
,d

)
p
ai

r
in

th
e

ro
w

s
la

b
el

ed
“D

E
T

”
).

76

E Appendix: Notes on implementation and numerical results

In this section, we present some notes on the implementation of the numerical computations and

results presented in Sections 6 and 7.

E.1 System specifications and implementation

The numerical results in Section 6 were obtained on a system with an Intel i7-7500U CPU @

2.70GHz with 16GB of 2133MHz RAM running the Windows 10 Home 64-bit operating system.

These numerical results were obtained using code written in the programming language Julia. We

used the JuMP package [6] in Julia to define our optimization models and we solved these problems

using the Interior Point Optimizer (IPOPT) optimization algorithm [19].

The JuMP package facilitates formulating the optimization problems as presented in the paper.

For our optimization problem, we used an alternate γ mapping defined as follows:

γ(j,d) 7→
s∑
i=1

I{di > 0 and i ≤ j}ei.

This alternate definition should not influence the solutions or the size of the optimization problem

in any way. The optimization problem resulting from this alternate mapping is equivalent to that

obtained using the mapping defined in Section 5.

E.2 Failure to find solutions

We note that while IPOPT returned a solution for more than 99.99% of these optimization problems,

there were 5 optimization problems where IPOPT failed to find a solution (arising from 2 and 3

parameter settings for the 〈IND,CID〉 and 〈IID,CID〉 families, respectively). These cases were

omitted from the average and median E[T] calculations for the corresponding policies, but were

included in the policy runtimes. We took the runtime in these cases to be the time it took for

IPOPT to report that it failed to find a solution.

E.3 Computing IPOptDSEED
GEN

The IPOptDSEED
GEN policy is found using the following methodology: we seed the optimization problem

associated with 〈GEN,CID〉 with an initial value corresponding to the parameters of IPOptDIND

(where possible) and augment this optimization problem by imposing an additional constraint

77

that the objective function value be no higher than E[T]IPOptDIND + 10−3; this additional slack of

10−3 helped obtain better solutions, presumably by avoiding complications that would arise due to

numerical imprecision. We take the IPOptDSEED
GEN policy to be specified by the solution IPOPT finds

to this optimization problem, unless IPOPT fails to find a solution (which occurs across 2.44%

of our parameter settings), in which case we set IPOptDSEED
GEN = IPOptDIND. Finally, whenever

IPOPT fails to find any solution to the optimization problem associated with 〈IND,CID〉 (which

occurred in only 2 of our 12 825 parameter settings), we set IPOptDSEED
GEN = IPOptDGEN.

78

F General service times and scheduling rules

In this section we briefly discuss how the consideration of general (rather than exponential) service

distributions impacts the framework and analysis presented thus far in this paper. This generaliza-

tion also necessitates giving explicit consideration to the ramifications of the choice of scheduling

rule.

F.1 The general service distribution model

We now relax the assumption that job sizes (i.e., service requirements in terms of time) are dis-

tributed according to an exponential distribution. Instead, we now assume that the size of a job

running on a class-i server is drawn from a general distribution with cdf Gi and mean 1/µi, where

all such distributions have the same “shape,” i.e., Gi(x) = G`(µix/µ`). For example, job sizes could

be drawn from Pareto distributions, so that for each i ∈ S, a job’s size at a class-i server follows

the cdf Gi(x) = 1−
(
κ−1
κµix

)κ
, for κ > 2.

Remark 16. We provide one interpretation of the assumption that job size distributions have the

same shape at all server classes: each job’s size X is drawn—independently of the server on which

it ultimately runs—from some distribution G with mean 1; the job would then require X/µi time

units of service to run on a server of speed µi (see [8] for further discussion on this assumption).

F.2 Analysis under general service distributions and various scheduling rules

With the new assumption described above, the analysis of E[T] now depends on the choice of

scheduling rule, SR; stability results remain unchanged. The only changes to the analysis presented

in Section 4 are the formula for E[Ti] and the resulting formula for E[T]. Rather than using

the M/M/1 formula for E[Ti], we now use the M/G/1/SR formula. Recall that we have restricted

attention to size-blind working-conserving scheduling rules. Common examples of such rules include

First Come First Served (FCFS), Processor Sharing (PS) and Preemptive Last Come First Served

(PLCFS). We also note that the analysis in Section 4 relies on the assumption that, as the number

of servers approaches infinity, all queue states become independent. This assumption has, in general,

been more difficult to prove in settings with general service time distributions. The result has been

shown for the Least-Loaded(d) dispatching policy, for the JSQ(d) dispatching policy under FCFS

scheduling when the service time distribution has decreasing hazard rate, and for any dispatching

policy provided that the arrival rate is sufficiently small and that the service time distribution

79

has finite first and second moments [4]. See Appendix B for simulation studies supporting the

asymptotic independence assumption under our model.

Under FCFS scheduling, using the Pollaczek-Khinchine formula (for the mean response time in

an M/G/1/FCFS system) we find that

E[Ti] =

(
1 + C2

)
λB
i

2µi(µi − λB
i)

+
1

µi
, (28)

where the squared coefficient of variation C2 ≡ E[X2]/E[X]2 − 1 for X ∼ G (equivalently, for

X ∼ Gi for any i ∈ S). These changes result in a modified objective function for all of the

optimization problems presented in this paper, but they leave the variables and constraints of these

problems unchanged. Specifically, the new objective function under the FCFS scheduling rule is as

follows:

E[T] =
s∑
i=1

(
qiλi
λ

)
E[Ti] =

1

λ

s∑
i=1

qiλi

((
1 + C2

)
λB
i

2µi(µi − λB
i)

+
1

µi

)
. (29)

Meanwhile, under both PS and PLCFS, E[Ti] = 1/(µi−λi), just as it was under the assumption

of exponentially distributed job sizes for all work-conserving size-blind scheduling rules. Therefore,

under both PS and PLCFS, the analysis presented in Section 4 holds without modification (assuming

that asymptotic independence holds).

In principle one could generalize this model by allowing for “greater heterogeneity” across server

classes. Specifically, one could allow an entirely different cdf Gi for the service distribution (rather

than merely considering scalings of the same distributions), and one could also implement a different

scheduling rule at each server class (perhaps to compensate for the different job size distributions).

While analyzing policies under such generalizations may at first appear to be straightforward, these

generalizations can introduce complications that are best explored in future work. Most notably,

there is no longer a natural “ordering” on server classes as two server classes may have the same

“speed,” (so that jobs will have the same mean service time at each) but with different service time

distribution “shapes.” Moreover, even when one server class is faster than another, differences in

the service time distribution “shapes” and scheduling rules employed at each class may confound

the use of a clear-cut ordering, and possibly necessitate more care in the pruning of CID assignment

rules than that presented earlier in this paper.

80

F.3 Age-based assignment and scheduling rules

The allowance of general service distributions introduces new state information that can be used to

further differentiate busy servers (even those of the same class) from one another for the purpose

of assignment. Specifically, we define the attained service level (ASL) of a job (sometimes referred

to as a job’s age) at any given time to be the number of units of processing time received by the

job thus far. For example, under FCFS a job that has been in service for 2 minutes has an ASL of 2

minutes. Now consider a slightly more complicated example: under PS a job that has been present

at a server for 2 minutes, where it spent the first minute alone and the second minute sharing the

server with one other job has an ASL of 1.5 minutes.

Scheduling rules informed by the ASLs of the jobs present at a server have been explored

extensively in the literature. One common size-blind work-conserving ASL-based policy is the

Least Attained Service (LAS)—also known as Foreground-Background (FB)—scheduling rule [24, 25],

which can be generalized to the Gittins Index Policy [10, 29]. In principle, for any such policy with

a known closed-form mean response time formula, our performance analysis will once again hold

with a properly modified objective function incorporating said formula.

The consideration of ASLs also significantly complicates the construction of assignment rules.

In general, the aggregate state associated with a query would need to include each queried server’s

class together with the ASL of each job at that server. Moreover, a job’s expected remaining size

can be non-monotonic in that job’s ASL, which may obstruct straightforward attempts at pruning

the space of assignment rules. Note, however, that some scheduling rules can greatly simplify the

aggregate query states that one can encounter: for example, under any non-preemptive scheduling

rule (e.g., FCFS) at most one job at each server will have a non-zero ASL.

81

	1 Introduction
	2 Literature review
	3 Model and framework
	3.1 Preliminaries
	3.2 Overview of querying rules
	3.3 Overview of assignment rules

	4 Analysis of QRF, CID
	4.1 Formal presentation of the CID family of assignment rules
	4.2 Stability
	4.3 Mean response time analysis

	5 Finding optimal dispatching under CID assignment
	5.1 Finding optimal GEN, CID dispatching policies
	5.2 Finding optimal IID, CID dispatching policies
	5.3 Finding optimal IND, CID dispatching policies
	5.4 Finding optimal DET, CID dispatching policies
	5.5 Finding optimal SRC, CID dispatching policies
	5.6 Finding optimal SFC, CID dispatching policies
	5.7 Finding optimal QR, CID dispatching policies

	6 Numerical results for CID assignment
	6.1 Parameter settings
	6.2 Numerical optimization methodology and notation
	6.3 Comparison of querying rule families with respect to E[T] and optimization runtime
	6.4 The ``optimal'' dispatching policies found by IPOPT
	6.5 Performance under the DET querying rule family

	7 The CLD family of assignment rules
	7.1 Formal presentation of the CLD family of assignment rules
	7.2 Examples of CLD assignment rules
	7.3 A heuristic for finding strong dispatching policies using CLD assignment
	7.4 Simulation-driven performance evaluation of dispatching policies using CLD assignment

	8 Conclusion
	A Appendix: Tables of Notation
	B Appendix: Asymptotic Independence Verification
	C Appendix: Additional optimization problems
	D Problem size
	D.1 Measures of problem sizes
	D.2 Numerical evaluation of problem sizes

	E Appendix: Notes on implementation and numerical results
	E.1 System specifications and implementation
	E.2 Failure to find solutions
	E.3 Computing IPOptDGENSEED

	F General service times and scheduling rules
	F.1 The general service distribution model
	F.2 Analysis under general service distributions and various scheduling rules
	F.3 Age-based assignment and scheduling rules

