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Abstract

This paper considers an observable double-ended queueing system
of passengers and taxis, where matching times follow an exponen-
tial distribution. We assume that passengers are strategic and decide
to join the queue only if their expected utility is nonnegative. We
show that the strategy of passengers is represented by a unique vec-
tor of thresholds corresponding to different cases of the number of
taxis observed in the system upon passenger arrival. Furthermore,
we develop a heuristic algorithm to find an optimal range of fees
to be levied on passengers to maximize social welfare or revenues.

Keywords: Double-ended queueing system, Strategic queueing, Matching
queue
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1 Introduction

1.1 Context and motivation

The topic of queues with strategic customers has attracted considerable atten-
tion. A great deal of attention has been devoted to individual optimality in
observable queueing contexts. One of the interesting and notable extensions in
the topic is double-ended queueing systems, which are practically seen in vari-
ous social issues. In this study, we focus on one of the most typical examples of
double-ended queueing systems: a passenger-taxi queue, which is usually seen
at airports or railway stations.

In a double-ended queue, there usually exist two types of entities arriv-
ing at each side of the queue, forming a matching and leaving the system. In
reality, the matching process usually takes time for several reasons, such as
communication between passengers and taxi drivers or the fact that passen-
gers may bring along bulky luggage; therefore, the boarding time will not be
negligible. Furthermore, there are usually multiple access points for both taxis
and passengers to match.

The lack of examination of such issues in the existing literature motivates
us to consider a general system with nonzero matching times and multiple
servers in this current paper.

1.2 Contributions

Compared to the queueing system with zero matching times, which has been
widely studied in previous studies, the system in this research poses several
challenges. In the system where there is no matching time, passengers and taxis
are not simultaneously present in the queue; therefore, the system state can
be represented by one variable, that is, the number of passengers or taxis in
the queue and passengers base their decision on that variable only. When only
passengers are strategic, due to the monotonic property of the expected waiting
time with respect to the queue length, it is easily implied that passengers adopt
a threshold strategy, indicating that they will balk the queue if observing a
queue length that exceeds a certain threshold. Meanwhile, in the system with
nonzero matching time, the queue may contain both passengers and taxis at
the same time; thus, we need a two-dimensional Markov process to model
this system. In this case, the strategic behavior of passengers depends on two
variables, and the monotonic properties of the expected waiting time with
respect to each variable are not obvious.

The main contributions of this study can be summarized as follows.

• We show that in an observable double-ended queueing system with multiple
servers and nonzero matching times, passengers adopt a threshold strategy
that is represented by a vector of K + 1 thresholds corresponding to K + 1
cases of the number of taxis in the system (K is the maximum number of
taxis present in the system).
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• We present a two-dimensional Markov model with an infinitesimal gener-
ator containing nonhomogeneous block matrices to calculate performance
measures when passengers are strategic.

• We propose a heuristic algorithm that allows us to find an optimal range of
toll fees levied on passengers at which social welfare revenues are maximized.

1.3 Literature review

The study of strategic queueing has attracted attention since the pioneering
study of Naor [1], who considered the threshold-based behavior of customers
arriving at an M/M/1 queueing system where system states can be observed.
Later, Edelson and Hildebrand [2] created a counterpart framework to analyze
customer behavior in case customers cannot observe system states. The two
scenarios are usually referred to as the observable case and the unobservable
case, respectively. The idea further led to various extensions with different
settings, such as nonexponential service distributions [3, 4], reneging behavior
[5, 6], feedback queues [7, 8], and preemptive queues [9, 10]. A comprehensive
and detailed overview of the related literature and methodology is presented
in [11, 12].

In observable queueing contexts, Altman and Shimkin [13] discussed the
mechanism of convergence to a Nash equilibrium in a processor-sharing service
system. Hassin [14] investigated the behavior of queueing customers with a
first-come-last-served discipline. Legros [15] analyzed a service system with
two types of customers classified by the level of emergency of the job. Most
of the studies have shown that social welfare is not optimal when queueing
participants make selfish strategic decisions. Ghosh and Hassin summarized
measurements of this inefficiency in [16].

Double-ended queues have been used for modeling a variety of social sys-
tems, such as sharing economy [17, 18], disasters and repairs [19, 20], allocation
of live organs [21, 22] and transportation [23]. There have been an increasing
number of recent studies on customer behavior in transportation systems. Shi
and Lian [24] analyzed the joining behaviors of passengers in a passenger-taxi
queue with zero matching times. The model was extended by incorporating a
gated policy [25]. In [26], the same system setting was considered in the context
of customer loss aversion. In [27], different levels of information were consid-
ered. [28] considered a matching queue with two types of customers arriving
at each end and differentiated by their priority. An observable taxi-passenger
queue was considered in [29], where the authors attempted to optimize social
welfare by adjusting the maximum buffer at both sides of the queue. [30]
employed Markov modulated fluid flow to analyze a double-ended queue with
abandonment. However, matching times between entities on two sides are
ignored in all of the aforementioned papers.

To the best of our knowledge, the only two papers in which matching times
were considered are [31, 32]. In the former paper, customer strategic behavior
was not considered, while in the latter study, matching times were assumed
to follow a simple two-mass point distribution, which seems to be unrealistic
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since matching times vary on a case-by-case basis. Additionally, the system
was assumed to be a single server in both studies.

The rest of the paper is structured as follows. Section 2 describes our model
and introduces some notation. Next, we analyze the strategic behavior of pas-
sengers in Section 3. In Section 4, we introduce an algorithm to find an optimal
policy to maximize social welfare. In Section 5, we consider the scenario where
the platform owner aims to maximize revenue. Section 6 presents a numerical
example. In the last section, we make some concluding remarks and provide
directions for future research.

2 Model description and notation

We consider an observable system with passengers arriving at a taxi stand
containing S identical access points. The area (including S taxi access points)
can accommodate at most K taxis at the same time (K ≥ S). Passengers and
taxis arrive at the taxi stand according to Poisson processes with arrival rates
λp and λt, respectively. Matching times between passengers and taxi drivers
follow an exponential distribution with mean 1/µ. To simplify the problem,
we treat one passenger and a batch of passengers riding together as the same
entity. When the parking area reaches its maximum capacity, the arrivals of
taxis are blocked, and taxis leave immediately. We assume that the buffer
capacity of passengers is infinite. If a passenger arrives when all access points
are busy or there are no taxis available for matching, the passenger will wait
in the queue under a FCFS (first-come-first-served) service discipline.

Let I(t) and J(t) denote the total number of passengers in the system and
the number of taxis in the system at time t, respectively. Under this setting, the
process {(I(t), J(t))| t ≥ 0} is a continuous-time Markov chain. When agents
are not strategic (that is, there is no balking upon arrival), the transition
diagram can be illustrated in Fig. 1.
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Fig. 1: Transition diagram of the nonstrategic queueing system

A single-server version of this model was thoroughly investigated in [31],
in which the authors derived the stability condition and sojourn time distri-
butions of both passengers and taxis. Furthermore, the stability condition of
the multiserver system with the same setting was derived in [33] as follows.

λp <

S−1∑
j=0

jπj + S

K∑
j=S

πj

µ,

where πj denotes the probability that there are j taxis in an M/M/S/K queue
with arrival rate λt and service rate µ.

In the current research, we add economic parameters and study the system
in equilibrium.

3 Self-optimization

In this section, we derive the strategic behavior of passengers, which is based
on their utility. To maintain the concise and easy-to-follow structure of the
paper, we put lengthy proofs in the Appendices.

Let Up denote the individual utility of an arbitrary passenger who spends
W time units in the system and receives a reward Rp after completing the
service. Assume that each unit of time in the system costs Cp monetary units.
Then, we have

Up = Rp − CpW.

Since sojourn time is stochastic, passengers base their behavior on the
expected utility. Assume that passengers know their reward and waiting cost
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and estimate their expected utility as

E(Up) = Rp − CpE(W ).

If E(Up) ≥ 0, the passenger joins the queue; otherwise, that passenger balks.
It is reasonable to assume that

Rp ≥
Cp

µ
.

This guarantees that passengers are willing to join an empty queue.
Note that the sojourn time can be decomposed into waiting time and service

time, where the expected service time is constant at 1
µ , while the expected wait-

ing time depends on the current system state. Denote by T (p, j) the expected
waiting time of a passenger observing a system state s = (p, j) upon arrival,
where j represents the current number of taxis in the system, and p represents
the current “position” of the passenger. If p = 0 then the passenger is cur-
rently matching at an access point. If p > 0 then the passenger is p steps away
from the taxi stand; in other words, p− 1 is the current queue length (which
does not include passengers in matching) being observed. We need to calculate
all the values of T (p, j) to investigate the strategic behavior of customers. To
this end, we provide a recursive procedure to calculate T (p, j) based on the
first step analysis. Specifically, T (s) is recursively associated with the expected
waiting time at any state si, which is reached by one step from state s, denoted
by T (si), that is,

T (s) = Ts +
∑
i

γiT (si), (1)

where γi is the probability that the passenger moves to the next state si, and Ts

denotes the expected time needed to stay in state s. The one-step transitions
from state (p, j) are illustrated in Fig. 2.

It immediately follows that T (0, j) = 0 for j > 0. When p > 0, using
formula (1), we can derive T (p, j) as follows.

T (p, j) =



1
λt

+ T (p− 1, j + 1) if j = 0,

1
λt+jµ + λt

λt+jµT (p− 1, j + 1) + jµ
λt+jµT (p, j − 1) if 0 < j < S,

1
λt+Sµ + λt

λt+SµT (p, j + 1) + Sµ
λt+SµT (p, j − 1) if j = S,

1
λt+Sµ + λt

λt+SµT (p, j + 1) + Sµ
λt+SµT (p− 1, j − 1) if S < j < K,

1
Sµ + T (p− 1, j − 1) if j = K.

(2)
In what follows, we derive passengers’ strategies in the form of a multi-

threshold vector of maximum positions (at which they are willing to join)
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(a) j = 0 (b) j = K

(c) 0 < j < S (d) j = S (e) S < j < K

Fig. 2: Transition diagrams from state (p, j) (p > 0) with transition probabil-
ities

corresponding to a specific number of taxis present in the system in Theorem
1, which is obtained by Propositions 1 and 3. We present four propositions that
show noticeable properties of expected waiting times and the derived threshold
strategy. To be more specific, Proposition 1 shows the monotonicity property
of T (p, j) with respect to p. Proposition 2 shows the monotonicity property
of T (p, j) with respect to j, which is obtained by Lemmas 1–3. Proposition
3 shows that the expected waiting time reaches infinity as p reaches infinity.
Proposition 4 shows the monotonicity property of thresholds.

Proposition 1 (Monotonicity property of expected waiting times with respect
to the position). T (p, j) ≤ T (p+ 1, j) for any fixed value of j.

Proof See Appendix A. □

This result is intuitive in the sense that with the same number of taxis in
the system, the farther passengers are away from the taxi stand, the longer
they need to wait. However, looking at the recursive formulas, we can see that
such a relationship between T (p, j) and T (p+ 1, j) is not obvious.

Lemma 1

T (1, j) =


1
λt

if 0 ≤ j ≤ S − 1,

λ2
t+(Sµ)2+λt(Sµ)
λt(Sµ)(λt+Sµ)

if j = S,

1
Sµ if S + 1 ≤ j ≤ K.

Proof See Appendix B. □
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This result explicitly shows expected waiting times when passengers are one
step away from the taxi stand. When there are fewer than S taxis, passengers
are expected to wait for 1

λt
units of time. When there are more than S taxis,

passengers are expected to wait for 1
Sµ units of time. Meanwhile, the expected

waiting time for those who observe exactly S taxis in the system is higher at
λ2
t+(Sµ)2+λt(Sµ)
λt(Sµ)(λt+Sµ) units of time.

We use this result to prove the following two lemmas.

Lemma 2 For any fixed value of p,

T (p, j) ≤ 1

jµ
+ T (p, j − 1),

for 1 ≤ j ≤ S − 1.

Lemma 3 For any fixed value of p,

T (p, j − 1) ≤ 1

λt
+ T (p, j),

for S + 2 ≤ j ≤ K.

Proof See Appendices C and D for the proofs of Lemma 2 and Lemma 3, respectively.
□

We use these results to prove the following proposition.

Proposition 2 (Monotonicity property of expected waiting times with respect
to the observed number of taxis). T (p, j) ≤ T (p, j + 1) for j = 0, 1, ..., S − 1,
and T (p, j) ≥ T (p, j + 1) for S, S + 1, ...,K − 1.

Proof See Appendix E. □

Intuitively, at the same arbitrary position, in case the current number of
taxis in the system is greater than or equal to S, expected waiting times become
shorter if there are more taxis in the system. Nevertheless, we see an opposite
association between the number of taxis and waiting times when there are S
or fewer than S taxis in the system. This is because when the number of taxis
in the systems is smaller than or equal to the number of access points, the
number of passengers being served at the taxi stand is equal to the number of
taxis. In this case, more taxis indicates that more passengers occupy the taxi
stand at the time of arrival. Regardless of the number of taxis in the system
(which is less than or equal to S), the passenger at position p needs a fixed
number of p more taxis for his turn to be served. If more passengers match at
access points, it is more likely that the taxi stand becomes more “congested”,
which may slow down the expected waiting time.
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Proposition 3 (Infinity limit of waiting times).

lim
p→+∞

T (p, j) = +∞

for all j = 0, 1, ...,K.

Proof See Appendix F. □

This result indicates that the expected waiting time diverges to infinity if
the current position is infinitely far from the taxi stand. We use this result to
prove the following theorem.

Theorem 1 (Equilibrium strategy of passengers) Passengers who arrive at the sys-
tem adopt a threshold strategy represented by the vector ρs = (ps0, p

s
1, ..., p

s
K), where

psj is the maximum position at which passengers are willing to join the system when
they observe j taxis upon arrival.

Proof This can be obtained from the monotonically nondecreasing property of T (p, j)

with regard to p obtained in Proposition 1. Since Rp − Cp

µ ≥ 0 by assumption

and Rp − CpT (p, j) − Cp

µ → −∞ for all j = 0, 1, ...,K when p → +∞ (due to the

result in Proposition 3), for each fixed value of j, there must exist psj such that

Rp − CpT (p
s
j , j) −

Cp

µ ≥ 0 and Rp − CpT (p
s
j + 1, j) − Cp

µ < 0. psj is the threshold
strategy corresponding to each fixed value of the number of taxis observed upon
arrival. □

Proposition 4 (Monotonicity property of thresholds). psk ≥ psk+1 for k =
0, 1, ..., S − 1, and psk ≤ psk+1 for k = S, S + 1, ...,K − 1.

Proof This can be proved by contradiction.
First, consider the case when 0 ≤ j ≤ S − 1. We will prove psj ≥ psj+1 Assume

that psj < psj+1, which implies psj + 1 ≤ psj+1. Since psj and psj+1 are both decision

thresholds, we must have T (psj + 1, j) > R
C − 1

µ and T (psj+1, j + 1) ≤ R
C − 1

µ , which

imply T (psj + 1, j) > T (psj+1, j + 1). Additionally, by the monotonic properties of
T (p, j) on p and j (obtained in Propositions 1 and 2) and the earlier assumption,
we have T (psj+1, j+1) ≥ T (psj +1, j+1) ≥ T (psj +1, j). This contradiction indicates
psj ≥ psj+1 for j = 0, 1, ..., S − 1.

Second, consider the case when S ≤ j ≤ K−1. We will prove psj ≤ psj+1. Assume
that psj > psj+1, which implies psj ≥ psj+1 + 1. Since psj and psj+1 are both decision

thresholds, we must have T (psj , j) ≤ R
C − 1

µ and T (psj+1 + 1, j + 1) > R
C − 1

µ , which

imply T (psj+1 + 1, j + 1) > T (psj , j). Additionally, by the monotonic properties of
T (p, j) on p and j and the earlier assumption, we have T (psj+1+1, j+1) ≤ T (psj , j+
1) ≤ T (psj , j). This contradiction indicates psj ≤ psj+1 for j = S, S+1, ...,K−1. □
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This result indicates that the strategy threshold decreases as the number
of taxis increases within the range from 0 to S. Passengers adopt a greater
threshold when there are more taxis in the system and the number of taxis is
larger than the number of access points.

4 Overall optimization

Let ξp and ξt denote the expected number of passengers and taxis being
diverted from the service station per unit time, respectively. Let Lp and
Lt denote the expected queue lengths of passengers and taxis. Additionally,
denote by Ct the cost of staying in the system per unit time of taxi drivers
and Rt the reward that taxi drivers receive after completing serving a passen-
ger. Similarly, denote by Cp the cost of staying in the system per unit time
of passengers and Rp the reward (service value) that passengers receive after
being served.

Expected social welfare per unit time of all entities joining the system is
then

U = (λp − ξp)Rp + (λt − ξt)Rt − CpLp − CtLt. (3)

Since social welfare cannot be explicitly expressed in terms of threshold ρ,
we need to use a brute-force search method to find the maximum value of social
welfare. The traditional approach is to search for a socially optimal threshold
strategy in the first place and then derive a corresponding optimal fee range
that adjusts the self-optimal threshold to the socially optimal threshold. Such
an approach is not feasible in this multidimensional case for several reasons.
First, to perform an exhaustive search to find the socially optimal thresh-
old, it is necessary that the number of cases being considered is finite, which
requires an upper limit for the passenger buffer size, while we do not have this
assumption. Second, even if we set a maximum buffer size of passengers at m,
the number of cases to be considered is (m+1)K+1, which becomes massively
large when K and m are large. Finally, even if we manage to find a socially
optimal threshold strategy, there is no guarantee that it can be shifted from
the original self-optimal threshold strategy by implementing a fixed value for
fee θ since the strategy being considered is a vector of K + 1 values.

In this paper, we introduce a heuristic algorithm to find an optimal policy.
Assume that the administrator of the system levies a toll fee θ on each passen-
ger joining the system. We want to find an optimal range of θ that maximizes
expected social welfare. With a toll fee of θ, the expected individual utility of
passengers becomes

E(Up) = Rp − θ − CpE(W ). (4)

Similar to the analysis in the previous section, when a toll fee is imposed, pas-
sengers still self-optimize and adopt a threshold strategy ρ = (p0, p1, ..., pK),
which satisfies the property in Proposition 4. ρ remains unchanged as θ grad-
ually increases within a certain fee range. When θ exceeds the upper bound of
the range, some threshold element(s) pj , which together with its corresponding
number of taxis j yield the longest expected waiting time T (pj , j), decreases by
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1. We then obtain a new ρ and repeat this procedure until all of the elements
in ρ converge to 0, which is also the case where the taxi service becomes too
expensive and passengers have no incentive to engage. Based on this property,
we develop an algorithm to derive ranges of toll fees and strategy thresholds
that passengers adopt accordingly.

Algorithm 1 Deriving fee ranges and threshold strategies

1: T ←
{
T (psj , j)| j = 0, 1, ...,K

}
2: τ ← max T
3: δ1 ← 0 ▷ lower bound of fee range (initial)

4: δ2 ← Rp − Cpτ − Cp

µ ▷ upper bound of fee range (initial)

5: ∆ ← [δ1, δ2] ▷ fee range (initial)
6: ρ = (p0, p1, ..., pK) ← (ps0, p

s
1, ..., p

s
K) ▷ threshold corresponding to fee

range (initial)
7: O ← {(∆, ρ)} ▷ initial output: an initial pair of fee range and threshold
8: while ρ ̸= 0 do ▷ 0: zero vector
9: for T (p, j) in T do ▷ updating ρ

10: if T (p, j) = τ then
11: T ← T \ {T (p, j)} ∪ {T (p− 1, j)}
12: pj ← pj − 1
13: end if
14: end for
15: τ ← max T
16: δ1 ← δ2
17: δ2 ← Rp − Cpτ − Cp

µ

18: ∆ ← (δ1, δ2] ▷ updating ∆
19: O ← O ∪ {(∆, ρ)} ▷ updating set of output
20: end while
21: return O

For each pair of (∆, ρ) obtained fromAlgorithm 1, we can correspondingly
derive a value of social welfare by the following procedure.

In this study, we assume that passengers do not renege. Therefore, even
when passengers adopt such a threshold strategy, system states may still exist
at which the passenger queue length exceeds the threshold. Such states cannot
be reached by the joining behavior of passengers but are stochastically attained
in one of the following two scenarios.

• Successive completions of matching events: if a passenger arrives and decides
to join at a certain state (i, j) where i ≤ min{j, S}+ psj , it may be the case
that this passenger will reach a state (i − q, j − q) where q ≤ i, q ≤ j and
i−q > min{j−q, S}+psj−q if q pairs of passengers and taxis finish matching
and leave the system in the next consecutive q events.
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• Successive arrivals of taxis: if a passenger arrives and decides to join at a
certain state (i, j) where i ≤ min{j, S} + psj , it may be the case that this
passenger will reach a state (i + q, j) where j > min{j + q, S} + psj+q if q
taxis arrive in the next consecutive q events.

We then obtain the infinitesimal generator Q of the Markov chain modeling
the system in equilibrium as below.

Q =



B(0) C(0)
A(1) B(1) C(1)

A(2) B(2) C(2)
. . .

. . .
. . .

A(K−1) B(K−1) C(K−1)

A(K) B(K)


,

where block matrices A(j),B(j) and C(j) are dimensionally nonhomogeneous
and defined as follows.

• Q has neither zero columns nor zero rows.
• C(j),B(j+1),A(j+2) have the same number of columns for j = 0, 1, ...,K − 2.
B(0) and A(1) have the same number of columns. C(K−1) and B(K) have the
same number of columns.

• A(j),B(j), C(j) have the same number of rows for j = 1, 2, ...,K−1. B(0) and
C(0) have the same number of rows. A(K) and B(K) have the same number
of rows.

• C(j)i,i = λt, for

i = 0, 1, ...,max

{
j +max

l≥j
(min{l, S}+ pl − l) ,max

l≤j
(min{l, S}+ pl)

}
.

• A(j)
i,i−1 = min(iµ, jµ, Sµ), for

i = 1, 2, ...,max

{
j +max

l≥j
(min{l, S}+ pl − l) ,max

l≤j
(min{l, S}+ pl)

}
.

• B(j)i,i+1 = λp, for i = 0, 1, ...,min{j, S}+ pj − 1.
• All other elements of Q which do not lie on the main diagonal are 0.
• Qi,i = −

∑
j ̸=iQi,j .

We can then derive the steady state probabilities defined as π =
(π0,π1, ...,πK) , where πj = (π0,j , π1,j , ...) is a vector encoding all probabil-
ities when there are j taxis in the system at the steady state by solving the
following equations: {

πQ = 0,

πe = 1,
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where 0 is a zero vector of appropriate dimension, and e is a unit vector of
appropriate dimension.

The blocking probability of taxis is then given by πKe, and the blocking
probability of passengers is

K∑
j=0

∑
i≥pj+min{j,S}

πi,j .

The numbers of passengers and taxis diverted from the system per unit
time are, respectively given by

ξp = λp

K∑
j=0

∑
i≥pj+min{j,S}

πi,j ,

and
ξt = λtπKe.

The mean lengths of the passenger queue and taxi queue are, respectively
given by

Lp =

K∑
j=0

∑
i

iπi,j ,

and

Lt =

K∑
j=0

∑
i

jπi,j .

Substituting ξp, ξt, Lp, Lt into (3), we obtain the value of social welfare with
respect to the fee range ∆ and threshold strategy ρ of passengers. Comparing
all obtained values of social welfare, we acquire the maximum social welfare
together with the corresponding fee range and threshold vector, which yield
that optimal value.

5 Revenue maximization

We examine the case in which the owner of the platform aims to maximize
their revenue by imposing a toll fee of θ on each passenger. We consider the
following two scenarios. In the first scenario, the platform owner collects a
fixed fee for a seasonal toll pass from taxi companies. In this case, revenue
maximization is equivalent to maximizing revenue from passengers. Thus, the
objective function of the platform owner is given by

M1 = (λp − ξp)θ. (5)

In another scenario, the platform owner also levies a toll fee for each
entrance of a taxi, denoted by θt. Assume that this amount is already fixed in
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advance. The objective function in this case is given by

M2 = (λp − ξp)θ + (λt − ξt)θt. (6)

In both scenarios, it is easily seen that the optimal value of the revenue is
attained at one of the fee range upper bounds because all other parameters
remain unchanged within the fee range. Since we already obtained all possible
fee ranges and corresponding parameters in the previous section, it is possible
to compare the revenue in all cases and find the maximum revenue similarly.

6 Numerical analysis

In this section, we illustrate the results with a specific numerical example. Set
λp = 7, λt = 6, µ = 12, S = 4,K = 15, Rp = 20, Rt = 18, Cp = 5, Ct = 5, θt =
10. Calculated results show that

• When there is no intervention from the administrators, passengers adopt
threshold strategy

ρs = (23, 23, 23, 23, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 33)

corresponding to the number of taxis being observed upon arrival ranging
from 0 to 15. This results in an expected social welfare of 136.221.

• Figure 3 shows that social welfare is discretely unimodal with respect to
fee ranges, and peaks at 203.122 when a fee ranging in (16.250, 16.854] is
imposed on each entrance. Within this fee range, passengers adopt strategy

ρo = (3, 3, 3, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14).

Fig. 3: Social welfare with respect to imposed fee
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• The graph in Fig. 4, which is a dashed line (continuous within each range of
toll fees), represents the relationship between the revenue from passengers
and the toll fee levied on them. The maximum revenue from passengers is
114.893 when the platform charges a toll fee of 19.479 monetary units per
passenger entrance.

Fig. 4: Revenue from passengers with respect to imposed fee

• Figure 5 shows that the total revenue is maximum at 173.875 when the
platform charges a toll fee of 19.479 monetary units per entrance of
passengers.

Fig. 5: Platform’s revenue with respect to imposed fee
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When the fee is larger than 19.479, passengers have no incentive to join
the system since their expected utility becomes negative regardless of the
number of taxis observed in the system.

• Finally, we present a sensitivity analysis of passengers’ strategic behavior
with respect to nonnegligible matching times. Except for the mean matching
time, which is let vary, all parameters remain the same as in the previous
experiments. The results are shown in Fig. 6.

Fig. 6: Sensitivity of passengers’ strategic behavior with respect to mean
matching time

It can be observed that the thresholds adopted by passengers increase with
an increased matching rate µ at first and then remain unchanged as µ
becomes larger. Intuitively, as matching times becomes smaller, passengers’
expected sojourn times also decrease, so they are willing to join a longer
queue.

7 Concluding remarks

In this paper, we showed that passengers adopt a threshold-based strategy in a
passenger-taxi queueing system with exponentially distributed matching times
by proving the monotonically nondecreasing property of the expected waiting
time with respect to the initial position upon arrival. We also derived pas-
sengers’ strategies and corresponding optimal fee ranges that maximize social
welfare or revenues. Theoretically, there might exist different threshold strate-
gies that yield higher social welfare or revenues; however, a fixed toll fee cannot
adjust passengers’ behavior so that it coincides with such optimal behavior.
This framework, although more computationally expensive, is a more general
approach to the class of similar problems. For example, with the simple set-
ting of an M/M/1 queueing system considered in the original work of Naor [1],
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instead of looking for a socially optimal threshold strategy from the beginning
and deriving a corresponding fee range, a finite number of pairs of a fee range
and a threshold strategy can be searched based on Algorithm 1 and then the
strategy that yields the maximal social welfare or revenue can be chosen. One
limitation of this approach is that it does not cover the possibility that the
global maximum of social welfare is attained when passengers adopt a higher
threshold strategy and need a subsidy to do so.

In reality, not only passengers but also taxi drivers adopt strategic behavior.
In this case, the strategy of one side (passengers or taxi drivers) may affect
expected waiting times of the other side; therefore, decisions of entities not only
depend on those of others of the same side but also depend on how the other
side behaves, which finally leads to a Nash equilibrium of the system between
two sides. This interesting but highly complex problem will be considered in
the near future.

Acknowledgments. The research of Hung Q. Nguyen was supported by
JST SPRING, Grant Number JPMJSP2124. The research of Tuan Phung-Duc
was supported by JSPS KAKENHI Grant Numbers 18K18006 and 21K11765.

Appendix A Proof of Proposition 1

We will prove Proposition 1 by induction on p. The statement is equivalent
to

T (p, j) ≤ T (p+ 1, j), (A1)

for any fixed values of j.
Since T (0, j) = 0, it is obviously implied from the recursive formulas that

T (0, j) ≤ T (1, j); thus, (A1) holds with p = 0. Assuming that (A1) holds with
p = q − 1 for any integer q ≥ 1, which indicates, for any fixed value of j,

T (q − 1, j) ≤ T (q, j). (A2)

We show that it holds with p = q, which indicates that we need to prove
that, for any fixed value of j,

T (q, j) ≤ T (q + 1, j),

by considering the following 5 cases.

• When j = K, from (2) we have

T (q, j) =
1

Sµ
+ T (q − 1,K − 1), (A3)

and

T (q + 1, j) =
1

Sµ
+ T (q,K − 1). (A4)
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Since T (q − 1,K − 1) ≤ T (q,K − 1) by assumption (A2), from (A3) and
(A4), we obtain

T (q, j) ≤ T (q + 1, j) for j = K. (A5)
• When S < j < K, from (2) we have

T (q, j) =
1

λt + Sµ
+

λt

λt + Sµ
T (q, j + 1) +

Sµ

λt + Sµ
T (q − 1, j − 1),

and

T (q + 1, j) =
1

λt + Sµ
+

λt

λt + Sµ
T (q + 1, j + 1) +

Sµ

λt + Sµ
T (q, j − 1).

Now, due to (A5), it is seen that the inequality T (q, j) ≤ T (q + 1, j) holds
for j = K − 1 because

T (q,K − 1) =
1

λt + Sµ
+

λt

λt + Sµ
T (q,K) +

Sµ

λt + Sµ
T (q − 1,K − 2)

≤ 1

λt + Sµ
+

λt

λt + Sµ
T (q + 1,K) +

Sµ

λt + Sµ
T (q,K − 2)

= T (q + 1,K − 1).

Then, it is easily obtained by induction on j, that

T (q, j) ≤ T (q + 1, j) for S < j < K. (A6)

• When j = 0, from (1) we have

T (q, 0) =
1

λt
+ T (q − 1, 1), (A7)

and

T (q + 1, 0) =
1

λt
+ T (q, 1). (A8)

Since T (q − 1, 1) ≤ T (q, 1) because of the inductive assumption, from (A7)
and (A8) we obtain

T (q, j) ≤ T (q + 1, j) for j = 0. (A9)

• When 0 < j < S, from (2) we have

T (q, j) =
1

λt + jµ
+

λt

λt + jµ
T (q − 1, j + 1) +

jµ

λt + jµ
T (q, j − 1),

and

T (q + 1, j) =
1

λt + jµ
+

λt

λt + jµ
T (q, j + 1) +

jµ

λt + jµ
T (q + 1, j − 1),
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Now, due to (A9), it is seen that the inequality T (q, j) ≤ T (q + 1, j) holds
for j = 1 because

T (q, 1) =
1

λt + µ
+

λt

λt + µ
T (q − 1, 2) +

µ

λt + µ
T (q, 0)

≤ 1

λt + µ
+

λt

λt + µ
T (q, 2) +

µ

λt + µ
T (q + 1, 0)

= T (q + 1, 1).

Then, it is easily obtained by induction on j, that

T (q, j) ≤ T (q + 1, j) for 0 < j < S. (A10)

• Last, when j = S, from (2) we have

T (q, j) =
1

λt + Sµ
+

λt

λt + Sµ
T (q, S + 1) +

Sµ

λt + Sµ
T (q, S − 1), (A11)

and

T (q + 1, j) =
1

λt + Sµ
+

λt

λt + Sµ
T (q + 1, S + 1) +

Sµ

λt + Sµ
T (q + 1, S − 1).

(A12)
However, note that T (q, S+1) ≤ T (q+1, S+1) and T (q, S−1) ≤ T (2, S−1)
(implied from results (A6) and (A10)). Therefore, from (A11) and (A12),
we obtain

T (q, j) ≤ T (q + 1, j) for j = S. (A13)

Equations (A5), (A6), (A9), (A10), (A13) complete our proof.

Appendix B Proof of Lemma 1

We prove Lemma 1 by induction on j.
First, note that

T (1, 0) =
1

λt
+

λt

λt + Sµ
T (0, 1) =

1

λt
,

and

T (1,K) =
1

Sµ
+

Sµ

λt + Sµ
T (0,K − 1) =

1

Sµ
.

By induction on j, we have

T (1, j) =
1

λt + jµ
+

λt

λt + jµ
T (0, j − 1) +

jµ

λt + jµ
T (1, j − 1)

=
1

λt + jµ
+

jµ

λt + jµ
.
1

λt
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=
1

λt
,

for 1 ≤ j ≤ S − 1; and

T (1, j) =
1

λt + Sµ
+

λt

λt + Sµ
T (1, j + 1) +

Sµ

λt + Sµ
T (0, j − 1)

=
1

λt + Sµ
+

λt

λt + Sµ
.
1

Sµ

=
1

Sµ
,

for S + 1 ≤ j ≤ K − 1.
Finally,

T (1, S) =
1

λt + Sµ
+

λt

λt + Sµ
T (1, S + 1) +

Sµ

λt + Sµ
T (1, S − 1)

=
1

λt + Sµ
+

λt

λt + Sµ
.
1

Sµ
+

Sµ

λt + Sµ
.
1

λt

=
λ2
t + (Sµ)

2
+ λt (Sµ)

λt (Sµ) (λt + Sµ)
.

It can also be noted that

T (1, S)− T (1, S − 1) =
λ2
t + (Sµ)

2
+ λt (Sµ)

λt (Sµ) (λt + Sµ)
− 1

λt

=
Sµ

λt(λt + Sµ)
> 0,

and

T (1, S)− T (1, S + 1) =
λ2
t + (Sµ)

2
+ λt (Sµ)

λt (Sµ) (λt + Sµ)
− 1

Sµ

=
λt

Sµ(λt + Sµ)
> 0.

Appendix C Proof of Lemma 2

We prove this lemma by induction on p. We can easily see that it holds with
p = 0 and p = 1 due to Lemma 1. Assume that it holds with p = q−1 for any
integer q ≥ 2. Additionally, assume that when p = q − 1, the inequality holds
in the case of j = S (we show that, under the same inductive assumptions,
it also holds when p = q and j = S later in Proposition 2). Then, from
assumptions we have
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T (q − 1, j) ≤ 1

jµ
+ T (q − 1, j − 1), for 1 ≤ j ≤ S. (C14)

We show that the inequality holds with p = q, which indicates that we
need to prove that

T (q, j) ≤ 1

jµ
+ T (q, j − 1), for 1 ≤ j ≤ S − 1. (C15)

Assume there exists 1 ≤ j ≤ S − 1 such that

T (q, j) >
1

jµ
+ T (q, j − 1). (C16)

From (2) we have

T (q, j) =
1

λt + jµ
+

λt

λt + jµ
T (q − 1, j + 1) +

jµ

λt + jµ
T (q, j − 1)

<
1

λt + jµ
+

λt

λt + jµ
T (q − 1, j + 1) +

jµ

λt + jµ

(
T (q, j)− 1

jµ

)
=

λt

λt + jµ
T (q − 1, j + 1) +

jµ

λt + jµ
T (q, j),

which is equivalent to

T (q, j) < T (q − 1, j + 1). (C17)

On the other hand, we also have

T (q − 1, j + 1) <
1

(j + 1)µ
+ T (q − 1, j), (C18)

according to the inductive assumption. From (C16), (C17) and (C18), we
obtain

1

jµ
+ T (q, j − 1) <

1

(j + 1)µ
+ T (q − 1, j + 1),

which implies
T (q, j − 1) < T (q − 1, j). (C19)

Additionally, from (2) we have

T (q, j − 1)

=
1

λt + (j − 1)µ
+

λt

λt + (j − 1)µ
T (q − 1, j) +

(j − 1)µ

λt + (j − 1)µ
T (q, j − 2)

>
1

λt + (j − 1)µ
+

λt

λt + (j − 1)µ
T (q, j − 1) +

(j − 1)µ

λt + (j − 1)µ
T (q, j − 2)
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(due to (C19)). This implies

T (q, j − 1) >
1

(j − 1)µ
+ T (q, j − 2).

By induction on j, it finally implies

T (q, 1) >
1

µ
+ T (q, 0). (C20)

However,

T (q, 1)− T (q, 0) =

(
1

λt + µ
+

λt

λt + µ
T (q − 1, 2) +

µ

λt + µ
T (q, 0)

)
− T (q, 0)

=
1

λt + µ
+

λt

λt + µ
T (q − 1, 2)− λt

λt + µ
T (q, 0)

=
1

λt + µ
+

λt

λt + µ
T (q − 1, 2)− λt

λt + µ

(
1

λt
+ T (q − 1, 1)

)
=

λt

λt + µ
(T (q − 1, 2)− T (q − 1, 1))

≤ λt

λt + µ
.
1

2µ
(due to the inductive assumption)

<
1

µ
,

which contradicts (C20). This indicates that (C15) holds and thus completes
the proof.

Appendix D Proof of Lemma 3

We prove this lemma by induction on p. We can easily see that it holds with
p = 0 and p = 1 due to Lemma 1. Assume that it holds with p = q−1 for any
integer q ≥ 2. Additionally, assume that when p = q − 1, the inequality holds
in the case of j = S (we will show that, under the same inductive assumptions,
it also holds when p = q and j = S later in Proposition 2). Then, from
assumptions we have

T (q − 1, j − 1) ≤ 1

λt
+ T (q − 1, j), for S + 1 ≤ j ≤ K. (D21)

We show that the inequality holds with p = q, which indicates that we
need to prove that

T (q, j − 1) ≤ 1

λt
+ T (q, j), for S + 2 ≤ j ≤ K. (D22)
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First, notice that

T (q,K − 1)− T (q,K)

=

(
1

λt + Sµ
+

λt

λt + Sµ
T (q,K) +

Sµ

λt + Sµ
T (q − 1,K − 2)

)
− T (q,K)

=
1

λt + Sµ
− Sµ

λt + Sµ
T (q,K) +

Sµ

λt + Sµ
T (q − 1,K − 2)

=
1

λt + Sµ
− Sµ

λt + Sµ

(
1

Sµ
+ T (q − 1,K − 1)

)
+

Sµ

λt + Sµ
T (q − 1,K − 2)

=
Sµ

λt + Sµ
(T (q − 1,K − 2)− T (q − 1,K − 1))

≤ Sµ

λt + Sµ
.
1

λt
(due to the inductive assumptions)

<
1

λt
,

which indicates that (D22) holds with j = K. Now, we make an inductive
assumption on j; and for any S + 2 ≤ j ≤ K − 1, consider the following

T (q, j − 1)− T (q, j)

=

(
1

λt + Sµ
+

λt

λt + Sµ
T (q, j) +

Sµ

λt + Sµ
T (q − 1, j − 2)

)
−
(

1

λt + Sµ
+

λt

λt + Sµ
T (q, j + 1) +

Sµ

λt + Sµ
T (q − 1, j − 1)

)
=

λt

λt + Sµ
(T (q, j)− T (q, j + 1)) +

Sµ

λt + Sµ
(T (q − 1, j − 2)− T (q − 1, j − 1))

≤ λt

λt + Sµ
.
1

λt
+

Sµ

λt + Sµ
.
1

λt
(due to the inductive assumptions)

=
1

λt
.

Appendix E Proof of Proposition 2

We prove Proposition 2 by induction on p. The statement is equivalent to
the following inequalities.

T (p, j) ≤ T (p, j + 1), for 0 ≤ j ≤ S − 1, (E23)

and
T (p, j) ≥ T (p, j + 1), for S ≤ j ≤ K − 1. (E24)

We already showed that (E23) and (E24) hold with p = 0 and p = 1 in
Lemma 1. Assuming that (E23) and (E24) hold with p = q−1 for any integer
q ≥ 2, which indicates that
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T (q − 1, j) ≤ T (q − 1, j + 1), for 0 ≤ j ≤ S − 1,

and
T (q − 1, j) ≥ T (q − 1, j + 1), for S ≤ j ≤ K − 1.

We show that it holds with p = q, which indicates that we need to prove
that

T (q, j) ≤ T (q, j + 1), for 0 ≤ j ≤ S − 1,

and
T (q, j) ≥ T (q, j + 1), for S ≤ j ≤ K − 1.

by considering the following 5 cases.

• When j = 0, consider the following

T (q, 1)− T (q, 0) =

(
1

λt + µ
+

λt

λt + µ
T (q − 1, 2) +

µ

λt + µ
T (q, 0)

)
− T (q, 0)

=
1

λt + µ
+

λt

λt + µ
T (q − 1, 2)− λt

λt + µ
T (q, 0)

=
1

λt + µ
+

λt

λt + µ
T (q − 1, 2)− λt

λt + µ

(
1

λt
+ T (q − 1, 1)

)
=

λt

λt + µ
(T (q − 1, 2)− T (q − 1, 1))

≥ 0 (due to the inductive assumption),

which indicates that
T (q, 0) ≤ T (q, 1). (E25)

• When 1 ≤ j ≤ S − 2, from (2) we have

T (q, j) =
1

λt + jµ
+

λt

λt + jµ
T (q − 1, j + 1) +

jµ

λt + jµ
T (q, j − 1), (E26)

and

T (q, j + 1) =
1

λt + (j + 1)µ
+

λt

λt + (j + 1)µ
T (q − 1, j + 2)

+
(j + 1)µ

λt + (j + 1)µ
T (q, j). (E27)

We prove T (q, j) ≤ T (q, j + 1) by contradiction. Assuming ∃j, T (q, j) >
T (q, j + 1), combining with (E27) we have

T (q, j) >
1

λt + (j + 1)µ
+

λt

λt + (j + 1)µ
T (q−1, j+2)+

(j + 1)µ

λt + (j + 1)µ
T (q, j),
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which is equivalent to

T (q, j) >
1

λt
+ T (q − 1, j + 2).

However, we also have T (q− 1, j+2) ≥ T (q− 1, j+1) (due to the inductive
assumption), so

T (q, j) >
1

λt
+ T (q − 1, j + 1). (E28)

From (E26) and (E28) we obtain

T (q, j) <
1

λt + jµ
+

λt

λt + jµ

(
T (q, j)− 1

λt

)
+

jµ

λt + jµ
T (q, j − 1),

which is equivalent to
T (q, j) < T (q, j − 1).

By induction on j (by repeating the same procedure), it finally implies

T (q, 1) < T (q, 0),

which contradicts (E25) that is proved above. This contradiction indicates
that

T (p, j) ≥ T (p, j + 1), for 1 ≤ j ≤ S − 2. (E29)

• When j = K − 1, consider the following

T (q,K − 1)− T (q,K)

=

(
1

λt + Sµ
+

λt

λt + Sµ
T (q,K) +

Sµ

λt + Sµ
T (q − 1,K − 2)

)
− T (q,K)

=
1

λt + Sµ
+

Sµ

λt + Sµ
T (q − 1,K − 2)− Sµ

λt + Sµ
T (q,K)

=
1

λt + µ
+

Sµ

λt + Sµ
T (q − 1,K − 2)− Sµ

λt + µ

(
1

Sµ
+ T (q − 1,K − 1)

)
=

Sµ

λt + Sµ
(T (q − 1,K − 2)− T (q − 1,K − 1))

≥ 0 (due to the inductive assumption),

which indicates that
T (q,K − 1) ≥ T (q,K). (E30)

• When S + 1 ≤ j ≤ K − 2, from (2) we have

T (q, j) =
1

λt + Sµ
+

λt

λt + Sµ
T (q, j + 1) +

Sµ

λt + Sµ
T (q − 1, j − 1), (E31)
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and

T (q, j + 1) =
1

λt + Sµ
+

λt

λt + Sµ
T (q, j + 2) +

Sµ

λt + Sµ
T (q − 1, j). (E32)

Due to the inductive assumption, we have T (q − 1, j − 1) ≥ T (q − 1, j);
therefore, due to (E30), the inequality T (q, j) ≥ T (q, j + 1) holds for j =
K − 2. By induction on j, we obtain

T (q, j) ≥ T (q, j + 1) for S + 1 ≤ j ≤ K − 2.

Next, we prove that T (q, S) ≥ T (q, S + 1). From (2) we have

T (q, S) =
1

λt + Sµ
+

λt

λt + Sµ
T (q, S + 1) +

Sµ

λt + Sµ
T (q, S − 1), (E33)

and

T (q, S + 1) =
1

λt + Sµ
+

λt

λt + Sµ
T (q, S + 2) +

Sµ

λt + Sµ
T (q − 1, S).

To prove the above inequality, we show that

T (q, S − 1) ≥ T (q − 1, S). (E34)

From (2) we have

T (q, S − 1)

=
1

λt + (S − 1)µ
+

λt

λt + (S − 1)µ
T (q − 1, S) +

(S − 1)µ

λt + (S − 1)µ
T (q, S − 2)

≥ 1

λt + (S − 1)µ
+

λt

λt + (S − 1)µ
T (q − 1, S)

+
(S − 1)µ

λt + (S − 1)µ

(
T (q, S − 1)− 1

(S − 1)µ

)
(due to Lemma 2)

=
λt

λt + (S − 1)µ
T (q − 1, S) +

(S − 1)µ

λt + (S − 1)µ
T (q, S − 1),

which implies that (E34) is true. Therefore,

T (q, S) ≥ T (q, S + 1). (E35)

From (E33) and (E35), we have

T (q, S) ≤ 1

λt + Sµ
+

λt

λt + Sµ
T (q, S) +

Sµ

λt + Sµ
T (q, S − 1),
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which implies

T (q, S − 1) +
1

Sµ
≥ T (q, S),

and this also completes the proof of Lemma 2.
• Finally, we prove that T (q, S) ≥ T (q, S − 1). To show the above equality,
first note that

T (q, S − 1)

=
1

λt + (S − 1)µ
+

λt

λt + (S − 1)µ
T (q − 1, S) +

(S − 1)µ

λt + (S − 1)µ
T (q, S − 2)

≤ 1

λt + (S − 1)µ
+

λt

λt + (S − 1)µ
T (q − 1, S) +

(S − 1)µ

λt + (S − 1)µ
T (q, S − 1),

due to (E29), and this implies

T (q, S − 1)− T (q − 1, S) ≤ 1

λt
. (E36)

Now, due to (E36), Lemma 3 and the inductive assumptions, we have

T (q, S)− T (q, S + 1)

=

(
1

λt + Sµ
+

λt

λt + Sµ
T (q, S + 1) +

Sµ

λt + Sµ
T (q, S − 1)

)
−
(

1

λt + Sµ
+

λt

λt + Sµ
T (q, S + 2) +

Sµ

λt + Sµ
T (q − 1, S)

)
=

λt

λt + Sµ
(T (q, S + 1)− T (q, S + 2)) +

Sµ

λt + Sµ
(T (q, S − 1)− T (q − 1, S))

≤ λt

λt + Sµ
.
1

λt
+

Sµ

λt + Sµ
.
1

λt

=
1

λt
,

which indicates that

T (q, S) ≤ 1

λt
+ T (q, S + 1). (E37)

(Note that this conclusion also completes the proof of Lemma 3).
Now, due to (E37), we have

T (q, S) =
1

λt + Sµ
+

λt

λt + Sµ
T (q, S + 1) +

Sµ

λt + Sµ
T (q, S − 1)

≥ 1

λt + Sµ
+

λt

λt + Sµ

(
T (q, S)− 1

λt

)
+

Sµ

λt + Sµ
T (q, S − 1)
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=
λt

λt + Sµ
T (q, S) +

Sµ

λt + Sµ
T (q, S − 1),

which implies T (q, S) ≥ T (q, S − 1).

Appendix F Proof of Proposition 3

First we prove that

T (p, 0) ≥ p

λt
, (F38)

for all p = 1, 2, ....
This inequality holds for p = 1 because T (1, 0) = 1

λt
. Assume that it also

holds for p = q ≥ 1, indicating that T (q, 0) ≥ q
λt
. We have

T (q + 1, 0) =
1

λt
+ T (q, 1)

≥ 1

λt
+ T (q, 0) (due to Proposition 2)

≥ q + 1

λt
.

Therefore, by induction on p, we obtain that (F38) is true. limp→+∞
p
λt

=
+∞, which implies

lim
p→+∞

T (p, 0) = +∞.

By induction on j using formula (2), we can easily obtain

lim
p→+∞

T (p, j) = +∞.

for all j = 0, 1, 2, ...,K.
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