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Abstract

We consider a stochastic fluid network where the external input processes are compound

Poisson with heavy-tailed Weibullian jumps. Our results comprise of large deviations estimates

for the buffer content process in the vector-valued Skorokhod space which is endowed with the

product J1 topology. To illustrate our framework, we provide explicit results for a tandem queue.

At the heart of our proof is a recent sample-path large deviations result, and a novel continuity

result for the Skorokhod reflection map in the product J1 topology.
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1 Introduction

The past 25 years have witnessed a significant research activity on queueing systems with heavy

tails, but the important case of queueing networks has received less attention. Early papers

focused on generalised Jackson networks (Baccelli et al. (2005)), monotone separable networks

(Baccelli and Foss (2004)), and max-plus networks (Baccelli et al. (2004)). Recent work on tail

asymptotics of transient cycle times and waiting times for closed tandem queueing networks can

be seen in Kim and Ayhan (2015). In two joint papers with Foss, Masakiyo Miyazawa inves-

tigated queue lengths in a queueing network with feedback in Foss and Miyazawa (2014) and

tandem queueing networks in Foss and Miyazawa (2018). Compared to standard queueing net-

works tracking movements of discrete customers, fluid networks are somewhat more tractable. In
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an early paper, it was recognized that tail asymptotics for downstream nodes could be obtained

by analyzing the busy period of upstream nodes, under certain assumptions (Boxma and Dumas

(1998)). The case of a tandem fluid queue where the input to the first node is a Lévy process with

regularly varying jump sizes has been investigated in Lieshout and Mandjes (2008) exploiting a

Laplace transform expression which is available in that case.

More recently, multidimensional asymptotics for the time-dependent buffer content vector in

a fluid queue fed by compound Poisson processes were investigated in Chen et al. (2019). The

framework in Chen et al. (2019) allows for the analysis of situations in which a large buffer content

may be caused by multiple big jumps in the input process. Such results were established before

for multiple server queues and fluid queues fed by on-off sources (see, for example, Zwart et al.

(2004), Foss and Korshunov (2006), Foss and Korshunov (2012)). The results on fluid networks in

Chen et al. (2019) were derived assuming regular variation of the jumps in the arrival processes.

Work on fluid networks with light-tailed input is surveyed in Miyazawa (2011). The goal of the

present paper is to investigate the case where jumps are semi-exponential (e.g. of Weibull type

exp{−xα} with α ∈ (0, 1)). This case is somewhat more difficult to analyze, especially in the case

where rare events of interest are caused by multiple big jumps in the input process, as exhibited

in the case of the multiple server queue (Bazhba et al. (2019)).

We focus on a stochastic fluid network comprised of d nodes, with external inputs modeled

as compound Poisson processes with semi-exponential increments. We are interested in the event

that an arbitrary linear combination of the buffer contents in the network exceeds a large value. We

write this functional as a mapping of the input processes using the well-known multidimensional

Skorokhod reflection map on the positive orthant (see e.g. Whitt (2002)), and apply a sample-

path large deviations principle for the superposition of Poisson processes, which has recently been

derived in Bazhba et al. (2020). This sample-path large deviation principle has been established

for Poisson processes with semi-exponential jumps, and holds in the product J1 topology. To

apply the contraction principle (the analogue of the continuous mapping argument in a large

deviations context), we need to show that the Skorokhod map has suitable continuity properties.

The J1 product topology is not as strong as the standard J1 topology on R
d, and it turns out

that continuity can only be established for input processes with nonnegative jumps. However,

this result, presented in Theorem 2.1 below, is sufficient for our proof strategy to work.

The contraction principle leads to an expression of the rate function which we analyze in

detail. Under some generality, we show that the upper and lower bound of the large deviations

bounds match. We conjecture that each input process contributes to a large fluid level by a finite

number of big jumps, and the computation of the rate function can be reduced to a concave

optimization problem with a finite number of decision variables. We illustrate this by reducing

the optimization problem to a finite dimensional problem and then explicitly solving it for the

case d = 2 in Section 5.

The outline of this paper is as follows: Section 2 contains a description of our model, the
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topological space in which the input processes are defined, and an introduction to the reflection

map. In Sections 3, 4, and 5 we present our main results: upper and lower large deviation

bounds for the buffer content process, logarithmic asymptotics for overflow probabilities of the

buffer content process over fixed times, and an explicit analysis of the two-node tandem network.

Section 6 contains technical proofs. We end this paper with an appendix where we develop several

auxiliary large deviations results.

2 Model description and preliminary results

2.1 The Model

In this section, we describe our model and we present some preliminary results that are used in

our analysis. We consider a single-class open stochastic fluid network with d nodes. We denote

the total amount of external work that arrives at station i with Ji(t) ,
∑Ni(t)

j=1
J

(j)
i which is a

compound Poisson process with mean γi where {J(j)
i }j=1,2,... is an iid jump size sequence for

each i = 1, . . . , d. If no exogenous input is assigned to node i, then we set Ji(·) ≡ 0, and

γi , 0. We define J as the subset of nodes that have an exogenous input. We assume that

{J1(t) : t ≥ 0}, {J2(t) : t ≥ 0}, . . . , {Jd(t) : t ≥ 0}’s are independent. For notational convenience,

we assume that the Poisson processes {Ni(t)}t≥0 have unit rate for i ∈ J . The key assumption

on the distribution of the jump sizes J
(1)
i for i ∈ J is that they are semi-exponential:

Assumption 1. For each i ∈ J ⊆ {1, . . . , d}, P
(

J
(1)
i ≥ x

)

= e−ciL(x)xα

where α ∈ (0, 1), ci ∈
(0,∞), and L is a slowly varying function such that L(x)/x1−α is non-increasing for sufficiently

large x.

Recall that L is slowly varying if L(ax)/L(x) → 1 as x → ∞ for each a > 0. At each node i ∈
{1, . . . , d}, the fluid is processed and released at a deterministic rate ri. Fractions of the processed

fluid from each node are then routed to other nodes or leave the network. We characterize the

stochastic fluid network by a four-tuple (J , r, Q,X(0)), where J(·) =
(

J1(·), . . . , Jd(·)
)

is the

vector of the assigned input processes at each one of the d nodes, respectively. The vector

r , (r1, . . . , rd)⊺ is the vector of deterministic output rates at the d nodes, Q , [qij ]i,j∈{1,...,d}

is a d× d substochastic routing matrix, and X(0) , (X1(0), . . . ,Xd(0)) is a nonnegative random

vector of initial contents at the d nodes. If the buffer at node i and at time t is nonempty, then

there is fluid output from node i at a constant rate ri. On the other hand, if the buffer of node i

is empty at time t, the output rate equals the minimum of the combined (i.e., both external and

internal) input rates and the output rate ri.

We now provide more details on the stochastic dynamics of our network. A proportion qij of

all output from node i is immediately routed to node j, while the remaining proportion qi , 1 −
∑k

j=1
qij leaves the network. We assume that qii , 0, and the routing matrix Q is substochastic,

so that qij ≥ 0, and qi ≥ 0 for all i, j. We also assume that Qn → 0 as n → ∞ which implies that
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all input eventually leaves the network. Let Q⊺ be the transpose matrix of Q. Though we focus

on time-dependent behavior, we consider the scenario that the fluid network is stable, ensuring

that a high level of fluid is a rare event. Let Q = (I − Q⊺). We guarantee the stability of the

network by posing the following assumption, based on Kella (1996):

Assumption 2. Let γ = (γ1, . . . , γd)⊺, and assume that r > Q−1γ.

Due to our model specifics, the buffer content at station i is processed at a constant rate ri

from the i-th server; and a proportion qij is routed from the i-th station to the j-th server. To

define the buffer content process we first define the potential content vector X(t)

X(t) , X(0) + J(t) − Qr · t, t ≥ 0.

Let Zi(t) denote the buffer content of the i-th station at time t. We can define the buffer content

process by the so-called reflection map. We first provide an intuitive description of this map. It

is defined in terms of a pair of processes (Z,Y ) that solve the differential equation

dZ(t) = dX(t) + QdY (t), t ≥ 0. (2.1)

Here, Y (·) is non-decreasing and Yi(t) only increases at times where Zi(t) = 0 for all i and all t.

Consequently, as we assume Z(0) = 0, the buffer content is

Z(t) = X(t) + QY (t), t ≥ 0. (2.2)

We call the map X 7→ (Y ,Z) the reflection map. We now provide a more rigorous definition of

this map.

2.2 The reflection map with discontinuities

We start with the definition of the reflection map. Fix an arbitrary T > 0. Let D[0, T ] denote the

Skorokhod space: the space of càdlàg paths over the time horizon [0, T ]. Note that for our large

deviations analyses, we will consider linearly scaled processes in D[0, T ], and hence, this translates

considering the time horizon [0, nT ] for the original unscaled processes. Denote with D↑[0, T ] the

subspace of the Skorokhod space consisting of non-decreasing functions that are non-negative at

the origin. Note that we use the component-wise partial order on D[0, T ] and R
d. That is, we

write x , (x1, . . . , xd) ≤ y , (y1, . . . , yd) in R
d if xi ≤ yi in R for all i ∈ {1, . . . , d}, and we write

ξ , (ξ1, . . . , ξd) ≤ ζ , (ζ1, . . . , ζd) in
∏d

i=1
D[0, T ] if ξ(t) ≤ ζ(t) in R

d for all t ∈ [0, T ].

Definition 2.1. (Definition 14.2.1 of Whitt (2002)) For any ξ ∈
∏d

i=1
D[0, T ] and any reflection

matrix Q = (I −Q⊺), let the feasible regulator set be

Ψ(ξ) ,

{

ζ ∈
d
∏

i=1

D

↑[0, T ] : ξ + Qζ ≥ 0

}

,
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and let the reflection map be

R , (ψ, φ) :

d
∏

i=1

D[0, T ] →
d
∏

i=1

D[0, T ] ×
d
∏

i=1

D[0, T ],

with regulator component

ψ(ξ) , inf {Ψ(ξ)} = inf

{

w ∈
d
∏

i=1

D[0, T ] : w ∈ Ψ(ξ)

}

,

and content component

φ(ξ) , ξ + Qψ(ξ).

The infimum in the definition of ψ may not exist in general. However, in Theorem 14.2.1 of

Whitt (2002), it is proven that the reflection map is properly defined with the component-wise

order. That is,

ψi(ξ)(t) = inf{ωi(t) ∈ R : ω ∈ Ψ(ξ)} for all i ∈ {1, . . . , d} and t ∈ [0, T ].

In addition, the regulator set Ψ(ξ) is non-empty and its infimum is attained in Ψ(ξ) itself. Now,

we state some important results regarding the properties of (φ,ψ). The following result gives an

explicit representation of the solution of the Skorokhod problem.

Result 2.1. (Theorem 14.2.1, Theorem 14.2.5 and Theorem 14.2.7 of Whitt (2002)) If Y (·) =

ψ(X)(·) and Z(·) = φ(X)(·), then (Y (·),Z(·)) solves the Skorokhod problem associated with the

equation (2.1). The mappings ψ and φ are Lipschitz continuous maps w.r.t. the uniform metric.

The next result is a useful property of the Skorokhod map. It allows us to describe the

discontinuities of the reflection map under some mild assumptions.

Result 2.2. (Lemma 14.3.3, Corollary 14.3.4 and Corollary 14.3.5 of Whitt (2002)) Consider

ξ ∈
∏d

i=1
D[0, T ]. Let Disc(ψ(ξ)) and Disc(φ(ξ)) denote the sets of discontinuity points of ψ(ξ)

and φ(ξ), respectively. Then it holds that Disc(ψ(ξ)) ∪ Disc(φ(ξ)) = Disc(ξ). In addition, if ξ

has only positive jumps, then ψ(ξ) is continuous and

φ(ξ)(t) − φ(ξ)(t−) = ξ(t) − ξ(t−).

Result 2.3. (Theorem 14.2.6 of Whitt (2002)) If ξ ≤ ζ in
∏d

i=1
D[0, T ], T > 0, then ψ(ξ) ≥

ψ(ζ).

2.3 Topologies and large deviations

In this section, we introduce our preliminary results on sample-path large deviations for the input

and the content process. We begin with setting the notation. For any β = (β1, . . . , βd) ∈ R
d,

let ‖β‖1 denote the usual ℓ1-norm: ‖β‖1 =
∑d

i=1
|βi|. For ξ = (ξ1, . . . , ξd) ∈

∏d

i=1
D[0, T ], let

5



‖ξ‖ , supt∈[0,T ] ‖ξ(t)‖1. For large deviations results, we mainly work with the J1 topology on

D[0, T ], and it’s product topology on
∏d

i=1
D[0, T ]. Recall that in D[0, T ], J1 topology TJ1 is the

one induced by the J1 metric dJ1 :

dJ1(ξ, ζ) = inf
λ∈Λ[0,T ]

(

sup
t∈[0,T ]

∣

∣ξ ◦ λ(t) − ζ(t)
∣

∣

)

∨
(

sup
t∈[0,T ]

∣

∣λ(t) − e(t)
∣

∣

)

= inf
λ∈Λ[0,T ]

‖ξ◦λ−ζ‖∨‖λ−e‖,

for ξ, ζ ∈ D[0, T ], where e : [0, T ] → [0, T ] is the identity map t 7→ t, and Λ[0, T ] is the set

of all increasing homeomorphisms from [0, T ] to [0, T ]. In order to study networks, we need

to set a topology in the vector-valued function space. That is, we work in the functional

space (
∏d

i=1
D[0, T ],

∏d

i=1
TJ1) which is a product space equipped with the product J1 topol-

ogy
∏d

i=1
TJ1 , which is induced by the product metric dp:

dp(ξ, ζ) =

d
∑

i=1

dJ1(ξi, ζi)

for ξ, ζ ∈
∏d

i=1
D[0, T ] such that ξ = (ξ1, . . . , ξd) and ζ = (ζ1, . . . , ζd). Unless specified otherwise,

all the topological properties discussed in this paper are w.r.t. the topology generated by dp.

2.3.1 Some useful continuous functions

The following two lemmas are elementary. Their proofs are provided in Appendix A.

Lemma 2.2. For β ∈ R
d, let Υβ :

∏d

i=1
D[0, T ] →

∏d

i=1
D[0, T ] be such that Υβ(ξ)(t) =

ξ(t) + β · t. Then,

i) Υβ is Lipschitz continuous w.r.t. dp,

ii) Υβ is a homeomorphism.

Lemma 2.3. For any b ∈ R
d, the mapping ξ 7→ b⊺ξ(T ) from

∏d

i=1
D[0, T ] to R is Lipschitz

continuous w.r.t. dp.

A key step in our approach is to establish the Lipschitz continuity of the regulator and the

buffer content maps w.r.t. dp. This is executed in Proposition 2.1 and Theorem 2.1 below. Their

proofs are provided in Section 6. Recall that D↑[0, T ] is the subspace of the Skorokhod space

containing non-decreasing paths which are non-negative at the origin. We say that ξ ∈ D[0, T ] is

a pure jump function if ξ =
∑∞

j=1
x(j)

1[u(j),T ] for some x(j)’s and u(j)’s such that x(j) ∈ R and

u(j) ∈ [0, T ] for each j, and the u(j)’s are all distinct. Let D↑
6∞[0, T ] be the subspace of D[0, T ]

consisting of non-decreasing pure jump functions that assume non-negative values at the origin.

Subsequently, let D↑
6k[0, T ] , {ξ ∈ D[0, T ] : ξ =

∑k

j=1
x(j)

1[u(j),T ], x
(j) ≥ 0, u(j) ∈ [0, T ], j =

1, . . . , k} be the subset of D↑
6∞[0, T ] containing pure jump functions of at most k jumps. In

addition, for β ∈ R, let Dβ
6k[0, T ] , {ζ ∈ D[0, T ] : ζ(t) = ξ(t) + β · t, ξ ∈ D

↑
6k[0, T ]} and

D

β
6∞[0, T ] , {ζ ∈ D[0, T ] : ζ(t) = ξ(t) +β · t, ξ ∈ D↑

6∞[0, T ]}. Let D6k[0, T ] denote the subspace
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of D[0, T ] consisting of paths with at most k jumps, i.e. D6k[0, T ] = {ξ ∈ D[0, T ] : |Disc(ξ)| ≤ k}.

Finally, let Dβ [0, T ] , {ζ ∈ D[0, T ] : ζ(t) = ξ(t) + β · t, ξ ∈ D↑[0, T ]}.

Proposition 2.1. Let β = (β1, . . . , βd) ∈ R
d. The regulator map ψ is Lipschitz continuous w.r.t.

dp on
∏d

i=1
D

βi [0, T ] with Lipschitz constant at most d(2d2(2d+ 1)K‖β‖1 +Kd ∨ 1).

Since φ(ξ) = ξ + Qψ(ξ), the following is a corollary of Proposition 2.1.

Theorem 2.1. Let β = (β1, . . . , βd) ∈ R
d. The reflection map R = (φ, ψ) is Lipschitz continuous

w.r.t. dp on
∏d

i=1
D

βi [0, T ].

Note that the restriction of the domain to the paths without downward jumps is essential for

this type of results to hold. Since the order in which the jumps take place matters for the action

of the reflection map, we cannot ensure the continuity of the reflection map without such extra

regularity conditions. The main difficulty arises with paths which have jumps with different signs

in multiple coordinates appearing almost simultaneously (K. Ramanan, personal communication).

2.3.2 The extended sample-path LDP for the potential buffer content process

We first review the notion of extended LDP. Let (S, d) be a metric space, and T denote the

topology induced by the metric d. Let {Xn} be a sequence of S-valued random variables. Let I

be a non-negative lower semi-continuous function on S, and {an} be a sequence of positive real

numbers that tends to infinity as n → ∞.

Definition 2.4. The probability measures of (Xn) satisfy an extended LDP in (S, d) with speed

an and rate function I if

− inf
x∈A◦

I(x) ≤ lim inf
n→∞

log P(Xn ∈ A)

an
≤ lim sup

n→∞

log P(Xn ∈ A)

an
≤ − lim

ǫ→0
inf

x∈Aǫ
I(x)

for any measurable set A.

Here we denote Aǫ , {ξ ∈ S : d(ξ,A) ≤ ǫ} where d(ξ,A) = infζ∈A d(ξ, ζ). The notion of

an extended LDP has been introduced in Borovkov and Mogulskii (2010) and is useful in the

setting of semi-exponential random variables, in which a full LDP is provably impossible, as

shown in Bazhba et al. (2020). One important implication of extended LDP is an analog of the

contraction principle. In the context of the extended LDP, the contraction principle requires

Lipschitz continuity as opposed to mere continuity; see Lemma B.3.

The main results of this paper in Sections 3, 4, and 5 are based on such contraction principles

coupled with an extended LDP associated with the probability measures of the input process J(·).
Specifically, the time evolution of Z(·) may be written as

Z(t) = J(t) − γt+ (γ − Qr)t+ QY (t), t ≥ 0.

Equivalently, if we consider the scaled and centered input process J̄n(·) , 1
n
J(n·)−γ ·e(·), scaled

potential buffer content process Xn(·) , 1
n
X(n·), scaled regulator Yn , 1

n
Y (n·), and scaled
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buffer content Zn , 1
n
Z(n·), then

Zn(t) = J̄n(t) + κt+ QYn(t), t ≥ 0,

where κ , γ − Qr. Note that Zn = φ(Xn) = φ ◦ Υκ(J̄n). Therefore, an extended LDP for Zn

can be deduced from that of Xn, which, in turn, can be deduced from that of J̄n, if φ and Υκ

are Lipschitz continuous in J1 topology. Hence, the Lipschitz continuity of the shifting operator

Υκ and the content component map φ proved earlier in this section will play pivotal roles in our

approach.

Now we conclude this section with establishing the desired extended LDP for the multidi-

mensional input process J̄n and the potential buffer content process Xn of the stochastic fluid

network. For any ξ ∈ D[0, T ], let

I(ξ) =
∑

{t:ξ(t) 6=ξ(t−)}

(ξ(t) − ξ(t−))α .

The next result is an immediate consequence of Theorem 2.3 and Remark 2.2 in Bazhba et al.

(2020), combined with Lemma B.1.

Result 2.4. The probability measures of J̄n satisfy the extended LDP in
(
∏d

i=1
D

−γi [0, T ],
∏d

i=1
TJ1

)

with speed L(n)nα and rate function I(d) :
∏d

i=1
D

−γi [0, T ] → [0,∞], where

I(d)(ξ) =







∑

j∈J
cjI(ξj) if ξj ∈ D↑

6∞[0, T ] for j ∈ J and ξj ≡ 0 for j /∈ J ,

∞ otherwise.

(2.3)

Next, recall that Xn = Υκ(J̄n). Due to Lemma 2.2, Υκ is Lipschitz continuous and is a

homeomorphism with respect to the product J1 metric. The following extended large deviation

principle for Xn(·) is a direct consequence of Result 2.4 and ii) of Lemma B.3.

Result 2.5. The probability measures of Xn satisfy an extended LDP in
(
∏d

i=1
D

−(Qr)i [0, T ],
∏d

i=1
TJ1

)

with speed L(n)nα and with rate function

Ĩ(d)(ξ) =























∑

j∈J
cjI(ξj) if ξj ∈ D(γ−Qr)j

6∞ [0, T ] for j ∈ J

and ξj = −(Qr)j · e for j /∈ J ,

∞ otherwise.

(2.4)

We are now ready to state our first main result in the next section.
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3 Large deviations for the buffer content process

In this section, we state large deviation bounds for the scaled buffer content process Zn. We apply

an analogue of the contraction principle for extended LDP’s (Lemma B.3) to obtain asymptotic

estimates for the probability measures of (Zn):

Theorem 3.1. The probability measures of Zn satisfy:

i) For any set F that is closed in
(
∏d

i=1
D[0, T ],

∏d

i=1
TJ1

)

,

lim sup
n→∞

1

L(n)nα
log P (Zn ∈ F ) ≤ − lim

ǫ→0
inf

ξ∈F ǫ
IZ(ξ).

ii) For set G that is open in
(
∏d

i=1
D[0, T ],

∏d

i=1
TJ1

)

,

lim inf
n→∞

1

L(n)nα
log P (Zn ∈ G) ≥ − inf

ξ∈G
IZ(ξ),

where

IZ(ζ) = inf
{

Ĩ(d)(ξ) : ζ = φ(ξ), ξ ∈
d
∏

i=1

D

−(Qr)i [0, T ]
}

= inf
{

Ĩ(d)(ξ) : ξ ∈ φ−1(ζ)
}

.

Note that IZ may not be lower semi-continuous, because Ĩ(d) is not a good rate function; see

Bazhba et al. (2020) for details.

Proof. Theorem 2.1 ensures that φ is Lipschitz continuous w.r.t. dp. Therefore, the upper and

lower bounds in i) and ii) follow immediately from the extended LDP for Xn (Result 2.5) and

the (Lipschitz) contraction principle (Lemma B.3).

The function IZ is the solution of a constrained minimization problem over step functions,

with a concave objective function, and a constraint that depends on the solution of the Skorokhod

problem displayed in Theorem 3.1. Though this Skorokhod problem only needs to be evaluated

for step functions, this minimization problem is in general not tractable. To get more concrete

results we look at more specific functionals of the buffer content process in subsequent sections.

4 Asymptotics for overflow probabilities

This section examines the probability that the buffer content associated with a subset of nodes

in the system exceeds a high level. In particular, we fix b = (b1, . . . , bd) ∈ R
d
+ and study the

probability of linear combination of the buffer content at the end of the time horizon exceeding a

threshold given by P(b⊺Zn(T ) ≥ y). Note that for the unscaled process Z, this is the probability
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of congestion at time nT . Let

I ′(x) , inf
{

Ĩ(d)(ξ) : b⊺φ(ξ)(T ) = x, ξ ∈
d
∏

i=1

D

−(Qr)i [0, T ]
}

Define the set V>(y) , {ξ ∈
∏d

i=1
D

(γ−Qr)i

6∞ [0, T ] : b⊺φ(ξ)(T ) ≥ y}, and let V ∗
>(y) be the optimal

value of Ĩ(d) over the set V>(y); i.e. V ∗
>(y) , infξ∈V>(y) Ĩ

(d)(ξ). Similarly, let V>(y) , {ξ ∈
∏d

i=1
D

(γ−Qr)i

6∞ [0, T ] : b⊺φ(ξ)(T ) > y} and set V ∗
>(y) , infξ∈V>(y) Ĩ

(d)(ξ). Note that V ∗
>(y) and

V ∗
>(y) depend on T , but we suppress the dependence for notational simplicity.

Recall that J is the set of nodes with exogenous input. Next, let I+ , {j ∈ {1, . . . , d} : bj > 0}.

The following two lemmas, proven in Section 6, ensure the continuity of V∗
>(·).

Lemma 4.1. Assume that J ∩ I+ 6= ∅. The map x 7→ V ∗
>(x) is α-Hölder continuous:

|V ∗
>(y) − V ∗

>(x)| ≤
(

max
i∈I+

ci

bα
i

)

· |y − x|α.

Lemma 4.2. Assume that J ∩ I+ 6= ∅. It holds that V ∗
>(y) = V ∗

>(y).

We are ready to prove the main result of this Section:

Theorem 4.1. For a fixed b = (b1, . . . , bd) ∈ R
d
+ assume that J ∩ I+ 6= ∅. The overflow

probabilities P (b⊺Zn(T ) ≥ y) satisfy the following logarithmic asymptotics:

lim
n→∞

1

L(n)nα
log P(b⊺Zn(T ) ≥ y) = −V ∗

>(y). (4.1)

Proof. Note first that from Lemma 2.3, b⊺Zn(T ) is a Lipschitz (w.r.t. dp) image of Zn. Note also

that I ′(y) = inf{IZ(ξ) : b⊺ξ(T ) = y}. Therefore, applying Lemma B.3 i) and Theorem 3.1, we

get the asymptotic upper and lower bounds for 1
L(n)nα log P(b⊺Zn(T ) ≥ y) as follows:

lim sup
n→∞

1

L(n)nα
log P(b⊺Zn(T ) ≥ y) ≤ − lim

ǫ→0
inf

x∈[y−ǫ,∞)
I ′(x)

and

lim inf
n→∞

1

L(n)nα
log P(b⊺Zn(T ) ≥ y) ≥ − inf

x∈(y,∞)
I ′(x).

However, from Lemma 4.1 and Lemma 4.2,

− lim
ǫ→0

inf
x∈[y−ǫ,∞)

I ′(x) = − lim
ǫ→0

V ∗
> (y − ǫ) = −V ∗

> (y) ;

− inf
x∈(y,∞)

I ′(x) = −V ∗
>(y) = −V ∗

>(y).

That is, the upper and lower bounds for lim sup and lim inf match, and hence, the limit (4.1)

exists and equals −V ∗
>(y).

Note that V ∗
>(y) is the solution of an infinite dimensional optimization problem. We conjecture

10



that in many problem instances, there exists a k ≥ 1 (that depends on the specific network) such

that
∏d

i=1
D

(γ−Qr)i

6k [0, T ] contains an optimal path that minimizes the rate function Ĩ(·) over

V>(y). In such cases, V ∗
>(y) can be computed by solving the following optimization problem. For

given b ∈ R
d
+ and y > 0, let P ∗

y,k denote the optimal value of the following optimization problem:

inf

d
∑

i=1

ci

k
∑

j=1

(

x
(j)
i

)α

s.t. b
⊺φ(ξ)(T ) ≥ y;

ξi =
∑k

j=1
x

(j)
i 1

[u
(j)

i
,T ]

+ (γ − Qr)1 · e;

x
(j)
i ≥ 0 for i ∈ J , j ∈ {1, . . . , k}, and x

(j)
i = 0 for i /∈ J , j ∈ {1, . . . , k};

u
(j)
i ∈ [0, T ] for i ∈ {1, . . . , d}, j ∈ {1, . . . , k}.

(Py,k)

Then, P ∗
y,k = V ∗

>(y). Note that this means that the large deviations rate is the solution of a

2kd-dimensional optimization problem: the decision variables are the size x
(j)
i and the time u

(j)
i

of the k jumps (j ∈ {1, . . . , k}) in the d coordinates (i ∈ {1, . . . , d}). This provides a significant

reduction in complexity compared to the general setting of Section 3. Nevertheless, even the finite

dimensional problem (Py,k) is still rather intricate: it is an Lα-norm minimization problem with

α ∈ (0, 1). In general, such problems are strongly NP-hard; see Ge et al. (2011), for example. In

addition, checking whether a solution to (Py,k) is feasible requires one to compute the Skorokhod

map φ for step functions, which is nontrivial. To get more explicit results and gain some physical

insights, we consider a two-node tandem network in the next section, where we can reduce the

computation of V ∗
>(y) down to solving (Py,k) with k = 1.

5 A two-node example

We consider a two-node tandem network where content from node 1 flows into node 2, and content

from node 2 leaves the system, i.e. q12 = 1, and qij = 0 otherwise. We assume that each node

has an exogenous input process (i.e. J = {1, 2}). We consider the problem of identifying the log-

asymptotics of the probability of congestion in the second node, i.e., P (b⊺Zn(T ) ≥ y) as n → ∞
where b = (0, 1). That is, our goal is to compute V ∗

>(y) in this specific example.

The next lemma enables us to reduce the feasible region of the optimization problem associated

with V ∗
6(y) from D

(γ−Qr)1
6∞ [0, T ] × D

(γ−Qr)2
6∞ [0, T ] down to D

(γ−Qr)1
61 [0, T ] × D

(γ−Qr)2
61 [0, T ]. In

other words, we can restrict the class of functions to those that have at most one discontinuity in

each coordinate.

Lemma 5.1. Consider the two-node tandem network where d = 2 and Q =

(

1 0

−1 1

)

. Let

ξ ∈
∏d

i=1
D

(γ−Qr)i

6∞ [0, T ]. Then, there exists a path ξ̃ ∈
∏d

i=1
D

(γ−Qr)i

61 [0, T ] such that

i) Ĩ(d)(ξ̃) ≤ Ĩ(d)(ξ),

11



ii) φ(ξ̃)(T ) ≥ φ(ξ)(T ).

Lemma 5.1 implies that computing V ∗
>(y) is equivalent to solving (Py,k) with k = 1 in case of

the two-node tandem networks. Such computation is the subject of the rest of this section. To

keep the presentation concise, we give an outline of the key steps and focus on physical insight.

We first develop an explicit expression for the buffer content at time T for input processes of

the form ξi = (γ − Qr)i · e + xi1[ui,T ], t ∈ [0, T ], xi ≥ 0, ui ∈ [0, T ], i = 1, 2. To develop

physical intuition is it instructive to write the buffer content process at node 2 as the solution of

a one-dimensional reflection mapping, fed by the superposition of ξ2 and the output process of

node 1, which in turn is governed by a one-dimensional reflection mapping as well. To this end,

observe that ψ1(ξ)(t) = − infs≤t{0 ∧ ξ1(s)}, and φ1(ξ)(t) = ξ1(t) − infs≤t{0 ∧ ξ1(s)}. Note also

that (ξ + Qψ(ξ))2 = ξ2 −ψ1(ξ) +ψ2(ξ), and the minimal ψ2(ξ) that regulates this process above

zero is ψ2(ξ)(t) = − infs≤t{0 ∧ (ξ2(s) + infu≤s{0 ∧ ξ1(u)})}. Consequently, we can write

φ2(ξ)(T ) = ξ2(T ) + inf
s≤T

{0 ∧ ξ1(s)} − inf
u≤T

{

0 ∧
{

ξ2(u) + inf
s≤u

{0 ∧ ξ1(s)}
}

}

. (5.1)

Our goal is to minimize the cost c1x
α
1 + c2x

α
2 subject to the constraint φ2(ξ)(T ) ≥ y, over

x1 ≥ 0, x2 ≥ 0, u1 ∈ [0, T ], u2 ∈ [0, T ]. We simplify this problem by identifying convenient

choices of u1 and u2 which do not lose optimality.

To this end, observe that a jump of size x2 at time u2 can instead take place at time u2 = T

without decreasing φ2(ξ)(T ). To determine a convenient choice of u1, note that a jump of size

x1 in node 1 at time u1 causes an outflow of rate r1 from node 1 to node 2 in the interval

[u1, u1 +x1/(r1 −γ1)], and rate γ1 after time u1 +x1/(r1 −γ1). Therefore, we can take u1 such that

u1 + x1/(r1 − γ1) = T , without decreasing φ2(ξ)(T ). This choice is feasible as long as u1 remains

non-negative, i.e. we require that x1/(r1 −γ1) ≤ T . Observe that choosing x1/(r1 −γ1) > T would

not be optimal, as it would increase the cost term involving xα
1 without increasing φ2(ξ)(T ).

We proceed by solving (5.1) by taking ξ1 = (γ − Qr)1 · e + x11[T −x1/(r1−γ1),T ] and ξ2 =

(γ − Qr)2 · e+ x21[T,T ]. Straightforward manipulations show that

φ2(ξ)(T ) = x2 + (r1 + γ2 − r2)+ x1

r1 − γ1
. (5.2)

We see that a jump at node 1 has no effect on the buffer content in node 2 if r2 ≥ r1 +γ2, which is

intuitively obvious since node 2 is still rate stable when the output of node 1 equals r1. Therefore,

x1 = 0 and x2 = y is feasible and minimizes the rate function. Our first conclusion is that

lim
n→∞

1

L(n)nα
log P (b⊺Zn(T ) ≥ y) = −c2y

α, r2 ≥ r1 + γ2. (5.3)

We now turn to the more interesting case r2 < r1 +γ2. We do not lose optimality if the constraint

12



on φ2(ξ)(T ) is tight, so we can impose the constraints

x2 +
r1 + γ2 − r2

r1 − γ1
x1 = y, x1 ∈ [0, (r1 − γ1)T ], x2 ≥ 0. (5.4)

From convex optimization theory, see Corollary 32.3.2 in Rockafellar (1970), the minimum of

the concave objective function c1x
α
1 + c2x

α
2 subject to the constraints (5.4) is achieved over the

extreme points of (5.4). In our particular situation, this implies that an optimal solution should

correspond to one of the following 3 cases: (i) x1 = 0, (ii) x2 = 0, (iii) x1 = (r1 − γ1)T . In case

(iii) we would have x2 = y − (r1 + γ2 − r2)T , which is only feasible if y ≥ (r1 + γ2 − r2)T . Note

also that if y = (r1 + γ2 − r2)T , then (ii) is the case.

Therefore, if y ≤ (r1 +γ2 −r2)T , we can conclude that either case (i) holds with x1 = 0, x2 = y,

and cost c2y
α, or case (ii) holds with x2 = 0, x1 = y r1−γ1

r1+γ2−r2
, and cost c1

(

y r1−γ1
r1+γ2−r2

)α
. We

conclude that for y ≤ (r1 + γ2 − r2)T ,

lim
n→∞

1

L(n)nα
log P (b⊺Zn(T ) ≥ y) = − min

{

c1

(

r1 − γ1

r1 + γ2 − r2

)α

, c2

}

yα. (5.5)

We now turn to the case y > (r1 + γ2 − r2)T . In this case, the time horizon T is small w.r.t.

y: the output of node 1 alone is never enough to cause the buffer content of node 2 to reach

level y at time T . Thus, case (ii) can be excluded, and we only have to compare case (i) and

case (iii). Case (i) has solution x2 = y with cost c2y
α. Case (iii) has solution x1 = (r1 − γ1)T ,

x2 = y− (r1 + γ2 − r2)T , with cost c1((r1 − γ1)T )α + c2(y− (r1 + γ2 − r2)T )α. We conclude that,

if y > (r1 + γ2 − r2)T ,

lim
n→∞

1

L(n)nα
log P (b⊺Zn(T ) ≥ y) = − min{c2y

α, c1((r1−γ1)T )α+c2(y−(r1+γ2−r2)T )α}. (5.6)

To give a numerical example, take y = 2, T = 1, r1 = r2 = 3, γ1 = γ2 = 1. In this case, the

inequality y > (r1 + γ2 − r2)T holds. To evaluate (5.6), note that the cost of case (i) equals c22α

and the cost of case (iii) equals c12α + c2. So we conclude that case (iii) is the most likely way for

the event {b⊺Zn(1) ≥ 2} to occur if c1 ≤ c2(1 − 2−α), corresponding to a most likely behavior of

two big jumps: x1 = 2, occuring at node 1 at time 0, and x2 = 1, occuring at node 2 at time 1.

One may wonder if Lemma 5.1 can be extended to general stochastic fluid networks so that the

computation of V ∗
>(y) can always be reduced to solving (Py,k) with k = 1. (This means that their

large deviations behaviors are consequences of at most one jump in the external input process to

each node.) Unfortunately, this is not the case. We conclude this section with an example for

which restricting the number of jumps in each coordinate to at most one is strictly sub-optimal.
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Consider α = 1/2, T = 2, y = 2 + δθ,

γ =









ǫ

0

0









, r =









4 + ǫ

2 + ǫ

1 + ǫ









, Q =









0 1 0

0 0 1

0 0 0









, b =









δ

0

1









, γ − Qr =









−4

2

1









,

where ǫ = 0.1, δ < 1/4, θ < 1, and c1 = c2 = 1. Let ξ be the superposition of the fluid limit

(γ − Qr) · e of the potential buffer content vector and two jumps of size 4 and θ in the first

coordinate at the beginning and at the end of the time horizon, respectively. That is,

ξ(t) =









−4t+ 41[0,T ](t) + θ1[T,T ](t)

2t

t









.

Then, Ĩ(d)(ξ) = 2 +
√
θ and

φ(ξ)(T ) =









θ

0

2









.

However, any ξ̃ (in the effective domain of Ĩ(d)) with only one jump in the first coordinate takes

the following form:

ξ̃(t) =









−4t+ x1[s,T ](t)

2t

t









for some s ∈ [0, T ] and x ∈ (0,∞). Note that if s > 0, the third coordinate cannot reach 2.

Therefore, we see that s has to be zero. Now, we see that for φ(ξ̃)(T ) to be greater than φ(ξ)(T )

cooridnate-wise as claimed in ii) of Lemma 5.1, x has to be at least 4T + θ. However, since δ < 1,

this means that Ĩ(d)(ξ̃) ≥
√

4T + θ >
√

4 +
√
θ = Ĩ(d)(ξ). That is, no ξ̃ with only one jump in

the first coordinate satisfies the conclusion of Lemma 5.1. In fact, this system of tandem queues

still turns out to be a counterexample even if we change the statement of Lemma 5.1 so that ii)

is b⊺φ(ξ̃)(T ) ≥ b⊺φ(ξ)(T ). To see this, note first that if x < 4(T − s), then b⊺φ(ξ̃)(T ) < y, and

hence, we only consider the case x ≥ 4(T − s), where

b
⊺φ(ξ̃)(T ) = δ(x− 4(T − s)) + T − s = δx+ (1 − 4δ)(T − s).

Note also that since we assume δ < 1/4, this is maximized at s = 0. Therefore, for b⊺φ(ξ̃)(T ) to

be greater than or equal to y, we need x to be greater than or equal to 4T + θ. This implies that

Ĩ(d)(ξ̃) ≥
√

4T + θ >
√

4 +
√
θ = Ĩ(d)(ξ). Therefore, solving (Py,k) with k = 1 won’t give the

correct log asymptotics for P(b⊺φ(Xn)(T ) ≥ y) in general.
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6 Complementary proofs

6.1 Proofs of Lemma 4.1 and 4.2

Next, we focus on the continuity of V∗
>(·). Let D+[0, T ] be the subspace of D[0, T ] that contains

paths with only positive discontinuities: D+[0, T ] = {ξ ∈ D[0, T ] : ξ(t) − ξ(t−) ≥ 0, ∀t ∈ [0, T ]}.

Recall that D6k[0, T ] = {ξ ∈ D[0, T ] : |Disc(ξ)| ≤ k}.

Lemma 6.1. Suppose that a = (a1, . . . , ad) ∈ R
d
+, ξ ∈

∏d

i=1
D

(γ−Qr)i

6∞ [0, T ], and ζ = ξ + a1{T }.

Then

i) ψ(ζ) = ψ(ξ),

ii) φ(ζ)(T ) = φ(ξ)(T ) + a, and

iii) Ĩ(d)(ζ) ≤ Ĩ(d)(ξ) +
∑d

i=1
cia

α
i .

Proof. For i), from the proof of the Theorem 14.2.2 in Whitt (2002), we see that for any ω ∈
∏k

i=1
D[0, T ] the regulator component ψ(ω) is the limit (w.r.t. ‖ · ‖) of ρn

ω(0) where 0 is the

zero function and ρn
ω is the n fold composition of ρω :

∏d

i=1
D

↑[0, T ] →
∏d

i=1
D

↑[0, T ] such that

ρω(η)(t) = 0 ∨ sups∈[0,t]{Qη(s) − ω(s)}. Note that ρω(η)(t) depends only on η(s) and ω(s) for

s ∈ [0, t]. Therefore, ψ(ω)(t) depends on ω(s) for s ∈ [0, t] only. Therefore, ψ(ζ)(t) = ψ(ξ)(t)

for t ∈ [0, T − ǫ] for any ǫ > 0. The continuity implies that ψ(ζ)(T ) = ψ(ξ)(T ) as well, which

concludes the proof of part i).

For ii), observe that φ(ζ)(T ) = ζ(T ) + Qψ(ζ)(T ) = ξ(T ) + a + Qψ(ξ)(T ) = φ(ξ)(T ) + a.

For iii), we assume that ξ(j)(t) = −(Qr)j(t) for j /∈ J since if not Ĩ(d)(ζ) = Ĩ(d)(ξ) = ∞,

and the inequality holds trivially. Let ζ = (ζ1, . . . , ζd), and ξ = (ξ1, . . . , ξd). Since the function

x 7→ xα, α ∈ (0, 1), is sub-additive,

I(ζi) =
∑

t∈[0,T ):ξi(t) 6=ξi(t−)

(ξi(t) − ξi(t−))α + (ξi(T ) − ξi(T−) + ai)
α

≤
∑

t∈[0,T ):ξi(t) 6=ξi(t−)

(ξi(t) − ξi(t−))α + (ξi(T ) − ξi(T−))α + aα
i

= I(ξi) + aα
i .

Therefore, Ĩ(d)(ζ) =
∑

j∈J
cjI(ζj) ≤

∑

j∈J
cjI(ξj) +

∑

j∈J
cja

α
j ≤ Ĩ(d)(ξ) +

∑d

j=1
cja

α
j .

Proof of Lemma 4.1. W.l.o.g., let y ≥ x ≥ 0. Then V>(y) ⊆ V>(x), and hence, V ∗
>(y) ≥ V ∗

>(x) ≥
0. For any ǫ > 0, there exists a ζ ∈ V>(x) so that Ĩ(d)(ζ) < V ∗

>(x) + ǫ. Next, fix j ∈ I+ and let

ξ = ζ + v1{T } where v = (0, . . . , y−x
bj
, . . . , 0). Due to ii) of Lemma 6.1,

b
⊺φ(ξ)(T ) = b

⊺(φ(ζ)(T ) + v) = b
⊺φ(ζ)(T ) + bj

(y − x)

bj
≥ x+ y − x = y.
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Hence, ξ ∈ V>(y). Due to iii) of Lemma 6.1,

Ĩ(d)(ξ) ≤ Ĩ(d)(ζ) +
cj

bα
j

· (y − x)α ≤ Ĩ(d)(ζ) +
(

max
i∈I+

ci

bα
i

)

· (y − x)α.

We see that

V ∗
>(y) ≤ Ĩ(d)(ξ) ≤ Ĩ(d)(ζ) + max

1≤i≤d:bi>0

ci

bα
i

(y − x)α < V ∗
>(x) + max

{1≤i≤d:bi>0}

ci

bα
i

(y − x)α + ǫ.

This leads to V ∗
>(y) − V ∗

>(x) ≤ max{1≤i≤d:bi>0}
ci

bα
i

(y − x)α + ǫ. We obtain the desired result by

letting ǫ tend to 0. Thus, |V ∗
>(y) − V ∗

>(x)| ≤ max{1≤i≤d:bi>0}
ci

bα
i

· |y − x|α.

We conclude this section with the proof of Lemma 4.2.

Proof of Lemma 4.2. For any ǫ > 0, we have that V ∗
>(y+ǫ) ≥ V ∗

>(y). Hence, in view of Lemma 4.1,

|V ∗
>(y) − V ∗

>(y)| = V ∗
>(y) − V ∗

>(y) ≤ V ∗
>(y + ǫ) − V ∗

>(y) ≤
(

max
i∈I+

ci

bα
i

)

· |ǫ|α.

Now, we let ǫ go to 0 to obtain the desired result.

6.2 Proof of Lemma 5.1

For any η ∈ D[0, T ], let η↓ ∈ D[0, T ] denote the running infimum η↓(t) , infs∈[0,t] 0 ∧ η(s) for all

t ∈ [0, T ]. The following simple lemma is useful for proving Lemma 5.1.

Lemma 6.2. Suppose that η, ω ∈ D[0, T ] are such that η ≥ ω and η(T ) = ω(T ). Then (η −
η↓)(T ) ≤ (ω − ω↓)(T ).

Proof. Since η↓ ≥ ω↓, we have η − η↓ ≤ η − ω↓. Therefore, (η − η↓)(T ) ≤ (η − ω↓)(T ) =

(ω − ω↓)(T )

Now we prove Lemma 5.1.

Proof of Lemma 5.1. Since we assume that ξ = (ξ1, ξ2) ∈ D(γ−Qr)1
6∞ [0, T ]×D(γ−Qr)2

6∞ [0, T ], we can

write, ξ1 = (γ1−r1)e+
∑∞

j=1
x(j)

1[u(j),T ] and ξ2 = (γ2+r1−r2)e+
∑∞

j=1
y(j)

1[v(j),T ] for x(j), y(j) ≥
0 and u(j), v(j) ∈ [0, T ], j = 1, 2, . . .. Consider ξ′ = (ξ1, ξ

′
2) where ξ′

2 = (γ2 + r1 − r2)e + ȳ1[T,T ]

and ȳ =
∑∞

j=1
y(j). Then, by the subadditivity of x 7→ xα, Ĩ(d)(ξ′) ≤ Ĩ(d)(ξ).

Note that since

ξ + Qψ(ξ) =

(

ξ1 + ψ1(ξ)

ξ2 − ψ1(ξ) + ψ2(ξ)

)

and ξ
′ + Qψ(ξ′) =

(

ξ1 + ψ1(ξ′)

ξ′
2 − ψ1(ξ′) + ψ2(ξ′)

)

,

we see that ψ1(ξ) = ψ1(ξ′) = −ξ↓
1 , and hence, φ1(ξ) = φ1(ξ′) = ξ1−ξ↓

1 . Also, φ2(ξ) = ξ2−ψ1(ξ)−
(ξ2 − ψ1(ξ))↓ and φ2(ξ′) = ξ′

2 − ψ1(ξ) − (ξ′
2 − ψ1(ξ))↓. Note that since ξ2 − ψ1(ξ) ≥ ξ′

2 − ψ1(ξ)

and (ξ2 − ψ1(ξ))(T ) = (ξ′
2 − ψ1(ξ))(T ), Lemma 6.2 implies that

φ2(ξ)(T ) = ξ2 − ψ1(ξ) − (ξ2 − ψ1(ξ))↓ ≤ ξ2 − ψ1(ξ) − (ξ′
2 − ψ1(ξ))↓ = φ2(ξ′)(T ).
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Therefore, we found ξ′ ∈ D

(γ−Qr)1
6∞ [0, T ] × D

(γ−Qr)2
61 [0, T ] such that Ĩ(d)(ξ′) ≤ Ĩ(d)(ξ) and

φ(ξ′)(T ) ≥ φ(ξ)(T ). Now, let ξ′′ , (ξ′
1, ξ

′
2) where ξ′

1 = (γ1 − r1)e + x̄1
[T −

x̄−φ1(ξ′)(T )
r1−γ1

,T ]
and

x̄ =
∑∞

j=1
x(j). Note that ψ1(ξ′′) ≥ ψ1(ξ′) and ψ1(ξ′′)(T ) = ψ1(ξ′)(T ). To see this, let

T ′ , T − x̄−φ1(ξ′)(T )
r1−γ1

. Note that

T ′ = T − x̄− ξ1(T ) + ξ↓
1(T )

r1 − γ1
= T − x̄− (γ1 − r1)T − x̄+ ξ↓

1(T )

r1 − γ1
= − ξ↓

1(T )

r1 − γ1
.

From the construction of ξ′
1, it “attains” its infimum at T ′−, and hence, (ξ′

1)↓(t) = ξ′
1(T ′−) =

T ′(γ1 − r1) = ξ↓
1(T ) for t ∈ [T ′, T ]. Note also that from the forms of ξ1 and ξ′

1, we clearly have

ξ′
1(t) ≤ ξ(t) for t ∈ [0, T ′]. Therefore, (ξ′

1)↓ ≤ ξ↓
1 and (ξ′

1)↓(T ) = ξ↓
1(T ). Since ψ1(ξ′′) = −(ξ′

1)↓

and ψ1(ξ′) = −ξ↓
1 , we obtain the relationships between ψ1(ξ′′) and ψ1(ξ′) claimed above. Now,

again from Lemma 6.2, we get φ2(ξ′′)(T ) ≥ φ2(ξ′)(T ). Note that we constructed ξ′′ in such a

way that φ1(ξ′′)(T ) = φ1(ξ′)(T ) = φ1(ξ)(T ). Note also that Ĩ(d)(ξ′′) ≤ Ĩ(d)(ξ′). We arrive at the

conclusion of the lemma by setting ξ̃ = ξ′′.

6.3 Proof of Proposition 2.1 and Theorem 2.1

Recall that
∏d

i=1
D[0, T ] is the Skorokhod space equipped with the product J1 topology and

D

↑[0, T ] , {ξ ∈ D[0, T ] : ξ is non-decreasing on [0, T ] and ξ(0) ≥ 0}. D↑[0, T ] is a closed subspace

of D[0, T ] w.r.t. the J1 topology. Hence,
∏d

i=1
D

↑[0, T ] is a closed subspace of
∏d

i=1
D[0, T ] w.r.t.

the product J1 topology. Since Dβ [0, T ] is the image of D↑[0, T ] under the homeomorphism Υβ,

we have that
∏d

i=1
D

βi [0, T ] is a closed subset of
∏d

i=1
D[0, T ].

6.3.1 Some supporting lemmas

Lemma 6.3. Suppose that λ, µ ∈ Λ[0, T ]. Then, ‖λ ◦ µ− e‖ ≤ ‖λ− e‖ + ‖µ− e‖.

Proof. ‖λ ◦ µ− e‖ = ‖λ − µ−1‖ ≤ ‖λ− e‖ + ‖µ−1 − e‖ = ‖λ− e‖ + ‖e− µ‖ ≤ 2δ.

We now consider properties of continuous and increasing time deformations wi, i = 1, . . . , d.

Lemma 6.4. If wi ∈ Λ[0, T ] for each i = 1, . . . , d, then ŵ(s) = min{w1(s), . . . , wd(s)} and

w̌(s) = max{w1(s), . . . , wd(s)} also belong to Λ[0, T ].

Proof. The min and max of continuous and increasing functions are increasing and continuous.

The other properties are easily verified.

Recall that ψ is Lipschitz continuous w.r.t. ‖ · ‖ (Theorem 14.2.5 of Whitt (2002)). Let K

denote the Lipschitz constant of ψ w.r.t. ‖ · ‖, which only depends on Q; in paticular, K doesn’t

depend on T .
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Lemma 6.5. Let β = (β1, . . . , βd) ∈ R
d and ζ ∈

∏d

i=1
D

βi [0, T ]. For any w ∈ Λ[0, T ], it holds

that

‖ψ(ζ) ◦ w − ψ(ζ)‖ < K‖β‖1 · ‖w − e‖.

Proof. Consider an arbitrary s ∈ [0, T ]. If w(s) ≥ s, since ψ(ζ) is an increasing function,

ψ(ζ)(w(s)) ≥ ψ(ζ)(s). Moreover, since ζ ∈
∏d

i=1
D

βi [0, T ], ζ has the following representa-

tion: ζ(t) = ξ(t) + β · t, where ξ ∈
∏d

i=1
D

↑[0, T ]. Consequently, for t > u, ζ(t) − ζ(u) =

ξ(t) − ξ(u) + β · (t− u) ≥ β · (t− u). This implies that

ζ(w(s)) = ζ((w(s) − s) + s) ≥ ζ(s) + β · (w(s) − s). (6.1)

Next, consider the path ζ̃1 where

ζ̃1(t) =







ζ(t), t ∈ [0, s],

ζ(s) + β · (t− s), t ∈ [s, w(s)].

Since ζ̃1 ≤ ζ over [0, w(s)], Result 2.3 gives that ψ(ζ̃1)(w(s)) ≥ ψ(ζ)(w(s)). Furthermore, let

ζ̃2(t) =







ζ(t), t ∈ [0, s],

ζ(s), t ∈ [s, w(s)].

Then we have that ψ(ζ̃2)(w(s)) = ψ(ζ)(s). Therefore,

0 ≤ ψ(ζ)(w(s)) − ψ(ζ)(s) ≤ ψ(ζ̃1)(w(s)) − ψ(ζ̃2)(w(s)) ≤ K sup
t∈[0,w(s)]

‖ζ̃1(t) − ζ̃2(t)‖1

≤ K‖β‖1 · |w(s) − s| ≤ K‖β‖1 · ‖w − e‖. (6.2)

Next, we consider the case w(s) ≤ s. Since ψ(ζ) is an increasing function, ψ(ζ)(s) ≥ ψ(ζ)(w(s)).

Furthermore, since ζ ∈
∏d

i=1
D

βi [0, T ], we have that

ζ(s) = ζ((s− w(s)) + w(s)) ≥ ζ(w(s)) + β(s− w(s)). (6.3)

Next, consider the path ζ̃1, where

ζ̃1(t) =







ζ(t), t ∈ [0, w(s)],

ζ(s) + β(t− w(s)), t ∈ [w(s), s].

Since ζ̃1 ≤ ζ over [0, s], Result 2.3 gives that ψ(ζ̃1)(s) ≥ ψ(ζ)(s). On the other hand, let

ζ̃2(t) =







ζ(t), t ∈ [0, w(s)],

ζ(s), t ∈ [w(s), s].
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We then have that ψ(ζ̃2)(s) = ψ(ζ)(w(s)). Therefore,

0 ≤ ψ(ζ)(s) − ψ(ζ)(w(s)) ≤ ψ(ζ̃1)(s) − ψ(ζ̃2)(s) ≤ K sup
t∈[0,s]

‖ζ̃1(t) − ζ̃2(t)‖1

≤ K‖β‖1 · |w(s) − s| ≤ K‖β‖1 · ‖w − e‖. (6.4)

From (6.2) and (6.4), we get (regardless of the value of w(·) at s)

‖ψ(ζ)(w(s)) − ψ(ζ)(s)‖1 ≤ dK‖β‖1 · ‖w − e‖ = K‖β‖1 · ‖w − e‖.

Taking the supremum over s ∈ [0, T ], we arrive at the conclusion of the lemma.

Note that, if β = 0 and ζ ∈
∏d

i=1
D

βi [0, T ], then ζ belongs to
∏d

i=1
D

↑[0, T ] and is non-

negative at the origin. This implies ψ(ζ) = 0 and the upper bound in Lemma 6.5 holds trivially.

Next, we state two more lemmas which are needed in our proof for the Lipschitz continuity of the

regulator map in
∏d

i=1
D

βi [0, T ]. Let ι ∈ D[0, T ] be ι(t) ≡ 1, and ι = (ι, . . . , ι) ∈
∏d

i=1
D[0, T ].

Lemma 6.6. Consider w = (w1, . . . , wd), each component of which is a time deformation in

Λ[0, T ]. Recall ŵ and w̌ in Lemma 6.4. That is, w̌(t) = max{w1(t), . . . , wd(t)}, and ŵ(t) =

min{w1(t), . . . , wd(t)}. Define the vector valued functions ŵ, w̌, and e from [0, T ] to [0, T ]d as

ŵ , (ŵ, . . . , ŵ), w̌ , (w̌, . . . , w̌), and e , (e, . . . , e). For any ξ ∈
∏d

i=1
D

βi [0, T ],

i) ψ(ξ1 ◦ w1, . . . , ξd ◦ wd) ≤ ψ(ξ) ◦ ŵ + (d+ 1)K‖β‖∞ · ‖w − e‖ · ι, and

ii) ψ(ξ1 ◦ w1, . . . , ξd ◦ wd) + (d+ 1)K‖β‖∞ · ‖w − e‖ · ι ≥ ψ(ξ) ◦ w̌.

Proof. We start with i). Since ξ ∈
∏d

i=1
D

βi [0, T ] and ŵ(s) ≤ wi(s), we have that for each

i = 1, . . . , d,

ξi(wi(s)) ≥ ξi(ŵ(s)) − ‖β‖∞(wi(s) − ŵ(s)), s ∈ [0, T ].

Note also that since
∣

∣ŵ(t) − e(t)
∣

∣ =
∣

∣wj(t) − e(t)
∣

∣ for some j,

‖e−ŵ‖ = sup
0∈[0,T ]

d
∑

i=1

∣

∣ŵ(t)−e(t)
∣

∣ ≤ sup
0∈[0,T ]

d
∑

i=1

d
∑

j=1

∣

∣wj(t)−e(t)
∣

∣ = d sup
0∈[0,T ]

d
∑

j=1

∣

∣wj(t)−e(t)
∣

∣ = d‖w−e‖.

Similarly, ‖w̌ − e‖ ≤ d‖w − e‖. Therefore, due to Result 2.3 and the Lipschitz continuity of ψ

w.r.t. ‖ · ‖,

ψ
(

ξ1 ◦ w1, . . . , ξd ◦ wd

)

≤ ψ
(

ξ1 ◦ ŵ − ‖β‖∞(w1 − ŵ), . . . , ξd ◦ ŵ − ‖β‖∞(wd − ŵ)
)

= ψ
(

ξ ◦ ŵ − ‖β‖∞(w − ŵ)
)

≤ ψ(ξ ◦ ŵ) +K‖β‖∞ · ‖w − ŵ‖ · ι

≤ ψ(ξ) ◦ ŵ +K‖β‖∞ · (‖w − e‖ + ‖e − ŵ‖) · ι

≤ ψ(ξ) ◦ ŵ + (d+ 1)K‖β‖∞ · ‖w − e‖ · ι.
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For ii), observe that ξi(w̌(s)) ≥ ξi(wi(s))−‖β‖∞(w̌(s)−wi(s)) for each i = 1, . . . , d and s ∈ [0, T ],

since ξ ∈
∏d

i=1
D

βi [0, T ], and w̌(s) ≥ wi(s) for each i = 1, . . . , d. Therefore, due to Result 2.3

and the Lipschitz continuity of ψ w.r.t. ‖ · ‖,

ψ(ξ) ◦ w̌ = ψ
(

ξ1 ◦ w̌, . . . , ξd ◦ w̌
)

≤ ψ
(

ξ1 ◦ w1 − ‖β‖∞(w̌ − w1), . . . , ξd ◦ wd − ‖β‖∞(w̌ − wd)
)

= ψ
(

(ξ1 ◦ w1, . . . , ξd ◦ wd) − ‖β‖∞(w̌ − w)
)

≤ ψ(ξ1 ◦ w1, . . . , ξd ◦ wd) +K‖β‖∞ · ‖w̌ − w‖ · ι

≤ ψ(ξ1 ◦ w1, . . . , ξd ◦ wd) +K‖β‖∞ · (‖w̌ − e‖ + ‖e − w‖) · ι

= ψ(ξ1 ◦ w1, . . . , ξd ◦ wd) + (d+ 1)K‖β‖∞ · ‖w − e‖ · ι.

Lemma 6.7. For any ξ ∈
∏d

i=1
D

βi [0, T ] and w = (w1, . . . , wd) ∈
∏d

i=1
Λ[0, T ],

‖ψ(ξ1 ◦ w1, . . . , ξd ◦ wd) − ψ(ξ)‖ ≤ d(2d+ 1)K‖β‖1 · ‖w − e‖.

Proof. Due to Lemma 6.5, Lemma 6.6, and ‖ŵ − e‖ ≤ ‖w − e‖,

ψ(ξ1 ◦ w1, . . . , ξd ◦ wd) − ψ(ξ) ≤ ψ(ξ) ◦ ŵ − ψ(ξ) + (d+ 1)K‖β‖∞ · ‖w − e‖ · ι

≤ dK‖β‖1 · ‖ŵ − e‖ · ι + (d+ 1)K‖β‖∞ · ‖w − e‖ · ι

≤ (2d+ 1)K‖β‖1 · ‖w − e‖ · ι.

Similarly,

ψ(ξ) − ψ(ξ1 ◦ w1, . . . , ξd ◦ wd) ≤ ψ(ξ) − ψ(ξ)(w̌) + (d+ 1)K‖β‖∞ · ‖w − e‖ · ι

≤ dK‖β‖1 · ‖w̌ − e‖ · ι + (d+ 1)K‖β‖∞ · ‖w − e‖ · ι

≤ (2d+ 1)K‖β‖1 · ‖w − e‖ · ι.

From these, the conclusion of the lemma follows.

6.3.2 Lipschitz continuity of the reflection map

Now, we are ready to conclude Section 6.3 with the proofs of Proposition 2.1 and Theorem 2.1,

which are the Lipschitz continuity of the regulator map and the buffer content component map,

respectively, in the product J1 topology. We start with the Lipschitz continuity of the regulator

map ψ.

Proof of Proposition 2.1. Given ξ, ζ ∈
∏d

i=1
D

βi [0, T ], consider an arbitrary δ such that dp(ξ, ζ) <

δ. Then, there exists λi ∈ Λ[0, T ] such that ‖ξi ◦ λi − ζi‖ ∨ ‖λi − e‖ < δ for each i = 1, . . . , d.
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Notice that

dp(ψ(ξ), ψ(ζ)) ≤
d
∑

i=1

inf
wi∈Λ[0,T ]

∥

∥ψi(ξ) ◦ wi − ψi(ζ)
∥

∥ ∨
∥

∥wi − e
∥

∥

≤
d
∑

i=1

∥

∥ψi(ξ) ◦ λi − ψi(ζ)
∥

∥ ∨
∥

∥λi − e
∥

∥

≤
d
∑

i=1

∥

∥ψi(ξ) ◦ λi − ψi(ξ1 ◦ λ1, . . . , ξd ◦ λd)
∥

∥ ∨
∥

∥λi − e
∥

∥

+

d
∑

i=1

∥

∥ψi(ξ1 ◦ λ1, . . . , ξd ◦ λd) − ψi(ζ1, . . . , ζd)
∥

∥ ∨
∥

∥λi − e
∥

∥

Note that from Lemma 6.7,

∥

∥ψi(ξ) ◦ λi − ψi(ξ1 ◦ λ1, . . . , ξd ◦ λd)
∥

∥

=
∥

∥ψi(ξ) − ψi(ξ1 ◦ λ1, . . . , ξd ◦ λd) ◦ (λi)
−1
∥

∥

=
∥

∥ψi(ξ) − ψi(ξ1 ◦ λ1 ◦ (λi)
−1, . . . , ξd ◦ λd ◦ (λi)

−1)
∥

∥

≤ d(2d+ 1)K‖β‖1 ·
∥

∥e −
(

λ1 ◦ (λi)
−1, . . . , λd ◦ (λi)

−1
)∥

∥

≤ d(2d+ 1)K‖β‖1 ·
d
∑

j=1

∥

∥e− λj ◦ (λi)
−1
∥

∥

≤ d(2d+ 1)K‖β‖1 ·
d
∑

j=1

(∥

∥e− λj

∥

∥+
∥

∥e− (λi)
−1
∥

∥

)

= d(2d+ 1)K‖β‖1 ·
d
∑

j=1

(∥

∥e− λj

∥

∥+
∥

∥e− λi

∥

∥

)

≤ 2d2(2d+ 1)K‖β‖1 · δ,

where the third inequality is due to Lemma 6.3. On the other hand,

∥

∥ψi(ξ1 ◦ λ1, . . . , ξd ◦ λd) − ψi(ζ1, . . . , ζd)
∥

∥ ≤
∥

∥ψ(ξ1 ◦ λ1, . . . , ξd ◦ λd) − ψ(ζ1, . . . , ζd)
∥

∥

≤ K
∥

∥(ξ1 ◦ λ1, . . . , ξd ◦ λd) − (ζ1, . . . , ζd)
∥

∥

= K

d
∑

i=1

∥

∥ξi ◦ λi − ζi

∥

∥ ≤ Kdδ.

Therefore,

dp(ψ(ξ), ψ(ζ)) ≤ d(2d2(2d+ 1)K‖β‖1 +Kd ∨ 1) · δ (6.5)

Letting δ ↓ dp(ξ, ζ) we obtain Lipschitz continuity of ψ w.r.t. dp.

Proof of Theorem 2.1. The Lipschitz continuity of the regulator map has been proven in Proposi-
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tion 2.1. We only need to verify the Lipschitz continuity of the buffer content component map φ.

Let δ be such that dp(ξ, ζ) < δ. Then, there exists λi ∈ Λ[0, T ] such that ‖ξi ◦λi −ζi‖∨‖λi −e‖ ≤ δ

for each i = 1, . . . , d. Note that φi(ξ) = ξi + ψi(ξ) −
∑

j∈{1,...,d}\{i}
qjiψj(ξ). Hence,

dJ1(φi(ξ), φi(ζ))

= dJ1

(

ξi + ψi(ξ) −
∑

j∈{1,...,d}\{i}
qjiψj(ξ), ζi + ψi(ζ) −

∑

j∈{1,...,d}\{i}
qjiψj(ξ)

)

≤
∥

∥ξi ◦ λi + ψi(ξ) ◦ λi −
∑

j∈{1,...,d}\{i}
qjiψj(ξ) ◦ λi − ζi − ψi(ζ) +

∑

j∈{1,...,d}\{i}
qjiψj(ξ)

∥

∥ ∨
∥

∥λi − e
∥

∥

≤
∥

∥ξi ◦ λi − ζi

∥

∥ ∨ δ +
∥

∥ψi(ξ) ◦ λi − ψi(ζ)
∥

∥ ∨ δ +
∑

j∈{1,...,d}\{i}
‖ψj(ξ) ◦ λi − ψj(ξ)

∥

∥ ∨ δ

Note that
∥

∥ξi ◦ λi − ζi

∥

∥ ≤ δ and ‖ψj(ξ) ◦ λi − ψj(ξ)
∥

∥ can be bounded by 2d2(2d + 1)K‖β‖1 · δ
the say way as in the proof of Proposition 2.1. Since dp(φ(ξ), φ(ζ)) ≤

∑d

i=1
dJ1(φi(ξ), φi(ζ)), we

have that φ is Lipschitz continuous in
∏d

i=1
D

βi [0, T ] by letting δ ↓ dp(ξ, ζ).

A Continuity of some useful functions

In this appendix, we include the proofs of continuity of some functions in the product J1 topology.

Recall the function Υβ :
∏d

i=1
D[0, T ] →

∏d

i=1
D[0, T ] where Υβ(ξ)(t) = ξ(t) +β · t for t ∈ [0, T ].

Proof of Lemma 2.2. For i), suppose that ξ and ζ are given. For each i ∈ {1, . . . , d}, let λi be a

homeomorphism such that ‖ξi − ζi ◦ λi‖ ∨ ‖λi − e‖ < 2 · dJ1(ξi, ζi). Then,

dJ1

(

Υβ
i (ξ),Υβ

i (ζ)
)

≤ ‖Υβ
i (ξ) − Υβ

i (ζ) ◦ λi‖ ∨ ‖λi − e‖ (A.1)

= ‖ξi − ζi ◦ λi − βi(λi − e)‖ ∨ ‖λi − e‖

≤ ‖ξi − ζi ◦ λi‖ ∨ ‖λi − e‖ + ‖βi(λi − e)‖ ∨ ‖λi − e‖

≤ 2(1 + 1 ∨ |βi|) · dJ1 (ξi, ζi). (A.2)

Consequently,

dp(Υβ(ζ),Υβ(ξ)) =

d
∑

i=1

dJ1(Υβ
i (ζ),Υβ

i (ξ)) ≤
d
∑

i=1

2(1 + 1 ∨ |βi|) · dJ1 (ξi, ζi)

≤ 2(1 + 1 ∨ ‖β‖1) · dp(ξ, ζ).

For ii), note that (Υβ)−1(ζ) = ζ − β · e = Υ−β(ζ), and hence, Υβ is injective and surjective.

From this, the continuity of (Υβ)−1 is also an immediate result of i).

Finally, we prove that the projection map is Lipschitz continuous in the product J1 topology.

Proof of Lemma 2.3. Let ξ, ζ ∈
∏d

i=1
D[0, T ] be given. Note first that

|ξi(T ) − ζi(T )| = |ξi(T ) − ζi(λ(T ))| ≤ ‖ξi − ζi ◦ λ‖
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for any λ ∈ Λ[0, T ] since λ(T ) = T . Taking infimum over all λ ∈ Λ[0, T ], we see that |ξi(T ) −
ζi(T )| ≤ dJ1 (ξi, ζi). Therefore,

|b⊺ξ(T ) − b
⊺
ζ(T )| ≤

d
∑

i=1

|bi| · |ξi(T ) − ζi(T )| ≤
d
∑

i=1

|bi| · dJ1(ξi, ζi) ≤ ‖b‖1 · dp(ξ, ζ).

B Some useful tools on large deviations

In this appendix, we include results that facilitate the use of the extended LDP. Given that the

probability measures of (Xn) satisfy the extended LDP in a metric space (X , d), our results include

the derivation of the extended LDP in closed subspaces of X , and a variation of the contraction

principle for Lipschitz continuous maps. Let DI , {x ∈ X : I(x) < ∞} denote the effective

domain of I .

Lemma B.1. Let E be a closed subset of X and let Xn be such that P(Xn ∈ E) = 1 for all n ≥ 1.

Suppose that E is equipped with the topology induced by X . Then, if the probability measures of

(Xn) satisfy the extended LDP in (X , d) with speed an, and with rate function I so that DI ⊆ E,

then the same extended LDP holds in E.

Proof. Suppose that an extended LDP holds in X . For the upper bound, let F be a closed subset

of E so that F = F ′ ∩ E for some F ′ that is a closed subset of X . Then, F is a closed subset

of X . Hence, lim supn→∞
1

an
log P (Xn ∈ F ) ≤ − infx∈F ǫ I(x) = − infx∈F ǫ∩E I(x). Next, for the

lower bound, let G be an open subset of E. That is, G = G′ ∩ E, where G′ is an open subset of

X . Then,

lim inf
n→∞

1

an
log P (Xn ∈ G) = lim inf

n→∞

1

an
log P

(

Xn ∈ G′
)

≥ − inf
x∈G′

I(x) = − inf
x∈G

I(x).

The level sets ΨI(α) ⊆ X are closed, so I restricted to E remains lower semicontinuous.

We continue with a useful lemma on pre-images of Lipschitz continuous maps on metric spaces.

Lemma B.2. Let (S, σ) and (X, d) be metric spaces. Suppose that Φ : (X, d) → (S, σ) is a

Lipschitz continuous mapping with Lipschitz constant ‖Φ‖Lip. Then, for any set F ⊂ S, it holds

that
(

Φ−1(F )
)ǫ ⊆ Φ−1

(

F ǫ·‖Φ‖Lip
)

.

Proof. Let ζ ∈
(

Φ−1(F )
)ǫ

. For each n, there exists ξn such that ξn ∈ Φ−1(F ) and d(ζ, ξn) ≤
ǫ + 1/n. Note that σ(Φ(ζ), F ) ≤ σ(Φ(ζ),Φ(ξn)) ≤ ‖Φ‖Lip · d(ζ, ξn) ≤ ‖Φ‖Lip · (ǫ + 1/n). Taking

n → ∞, we have that σ(Φ(ζ), F ) ≤ ǫ · ‖Φ‖Lip. That is, Φ(ζ) ∈ F ‖Φ‖Lipǫ, or ζ ∈ Φ−1
(

F ‖Φ‖Lipǫ
)

.

Since ζ was chosen arbitrarily from
(

Φ−1(F )
)ǫ

, we arrive at the desired inclusion.
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The following lemma is a version of the contraction principle adapted to the setting of extended

LDP’s.

Lemma B.3. Let (X, d) and (S, σ) be metric spaces. Suppose that the sequence of probability

measures of (Xn) satisfies the lower and upper bounds of extended LDP in (X, d) with speed an

and a function I (that is not necessarily a rate function). Moreover, let Φ : (X, d) → (S, σ) be a

Lipschitz continuous mapping and set I ′(y) , infΦ(x)=y I(x). Then,

i) Φ(Xn) satisfies the following lower and upper bounds: for any open set G ⊆ S,

lim inf
n→∞

1

an
log P (Φ(Xn) ∈ G) ≥ − inf

x∈G
I ′(x),

and for any closed set F ⊆ S,

lim sup
n→∞

1

an
log P (Φ(Xn) ∈ F ) ≤ − lim

ǫ→0
inf

x∈F ǫ
I ′(x).

ii) Suppose, in addition, that I is a rate function and Φ is a homeomorphism. Then, I ′ is a rate

function, and Φ(Xn) satisfies the extended LDP in (S, σ) with speed an and rate function

I ′.

iii) If I ′ is a good rate function—i.e., ΨI′(M) , {y ∈ S : I ′(y) ≤ M} is compact for each

M ∈ [0,∞)—then Φ(Xn) satisfies the LDP in (S, σ) with speed an and good rate function

I ′.

Proof. i) For the upper bound, let F be a closed subset of (S, σ). Thanks to Lemma B.2, for any

ǫ > 0, we have that
(

Φ−1(F )
)ǫ ⊆ Φ−1

(

F ǫ·‖Φ‖Lip
)

. Hence,

− inf
x∈(Φ−1(F ))ǫ

I(x) ≤ − inf
x∈Φ−1

(

F
ǫ·‖Φ‖Lip

)

I(x). (B.1)

Furthermore, by the upper bound of the extended LDP of Xn, for any δ > 0 there exists an n(δ)

such that for any n ≥ n(δ),

P(Φ(Xn) ∈ F ) = P(Xn ∈ Φ−1(F ))

≤ exp

(

an

(

− inf
x∈(Φ−1(F ))ǫ

I(x) + δ

))

≤ exp



an



− inf
x∈Φ−1

(

F
ǫ·‖Φ‖Lip

)

I(x) + δ







 , (B.2)

for any n ≥ n(δ) and ǫ > 0. Therefore,

lim sup
n→∞

1

an
log P (Φ(Xn) ∈ F ) ≤ − inf

x∈Φ−1
(

F
ǫ·‖Φ‖Lip

)

I(x) + δ = − inf
y∈F

ǫ·‖Φ‖Lip

I ′(y) + δ.
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Letting δ → 0 and then ǫ → 0, we arrive at the desired large deviation upper bound.

For the lower bound, consider an open set G. Since Φ−1(G) is open,

lim inf
n→∞

1

an
log P (Φ(Xn) ∈ G) = lim inf

n→∞

1

an
log P

(

Xn ∈ Φ−1(G)
)

≥ − inf
y∈Φ−1(G)

I(y) = − inf
x∈G

I ′(x).

ii) Since the upper and lower bounds for the extended large deviation principle have been proved

in i), we only have to prove that I ′ is lower semi-continuous. To see this, note first that I ′(y) =

I(Φ−1(y)), and hence, for any M > 0,

{y ∈ S : I ′(y) ≤ M} = {y ∈ S : I(Φ−1(y)) ≤ M} = {Φ(x) : I(x) ≤ M} = Φ(ΨI(M)).

Since Φ is a homeomorphism the r.h.s. is closed. Hence, Φ(Xn) satisfies the extended LDP.

iii) From the standard argument—see, for example, the proof of Theorem 4.2.1 of Dembo and Zeitouni

(2010)—I ′ is a good rate function. From Lemma 4.1.6 of Dembo and Zeitouni (2010), we obtain

limǫ→0 inf
y∈F

ǫ‖Φ‖Lip I
′(y) = infy∈F I

′(y). Consequently,

lim sup
n→∞

log P (Sn ∈ F )

an
≤ − lim

ǫ→0
inf

y∈F
ǫ‖Φ‖Lip

I ′(y) = − inf
y∈F

I ′(y).
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