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1. Introduction

Algorithms computing with discretized random variables have been presented
in a number of publications (Williamson and Downs, 1990; Berleant and
Goodman-Strauss, 1998; Berleant et al., 2003; Berleant and Zhang, 2004b;
Berleant and Zhang, 2004a; Regan et al., 2004). However, the algebra of
imprecise numbers in its various senses often is a poor model for geom-
etry with imprecisely defined objects. A vector of imprecise numbers, for
instance, usually defines an interval-like geometric object (a bounding box,
a set of bounding boxes with probability measures assigned etc.), which is not
invariant with respect to geometric transformations. Furthermore accurate
representation of a geometric shape may require a large number of intervals.

Using the idea of tolerance zone (Requicha, 1983) and replacing intervals
by spheres, ellipsoids or general convex sets when dealing with geometric
constructions (Pottmann et al., 2000; Wallner et al., 2000) provides more
flexibility and at the same times allows a relatively simple geometric treat-
ment. The computational complexity of convex sets in general is, of course,
higher than that of intervals. In the 2D case it is still reasonably low.

In this article we extend the DEnv method to higher-dimensional set-
tings with convex sets as fundamental objects. DEnv stands for “distribution
envelope determination” and is a method for bounding the results of arith-
metic operations on discretized random variables. It has been introduced in
(Berleant and Goodman-Strauss, 1998), an implementation is described in
(Berleant et al., 2003); its relation to other methods for dealing with proba-
bilistic errors in algebraic computations is the topic of (Regan et al., 2004).
It is shown that these methods are equivalent to a great extent.
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In univariate DEnv, a family of random variables is represented either
by a set of intervals with associated probability masses (a thicket) or by a
pair of upper and lower bounds on the random variables’ cumulative distribu-
tion function (CDF). Both representations can be converted into each other.
The result of an arithmetic operation on random variables is bounded by
pointwise optimal distribution bounds that are found by linear programming
techniques. In the original version, no assumption on the mutual dependence
of the random variables is made, of course at the cost of wider distribution
bounds. But it is possible to incorporate knowledge of dependence, for example
independence or correlation (Berleant and Zhang, 2004a; Berleant and Zhang,
2004b).

A generalization of DEnv to multivariate settings is more or less straight-
forward. We do this in Section 3, after a short introduction to the univariate
DEnv algorithm in Section 2. The resulting multivariate DEnv method, how-
ever, is inherently information losing because multivariate thickets and their
distribution bounds are no longer equivalent. In addition, the algorithm’s
outcome depends on the chosen coordinate system or, equivalently, on the
position and orientation of the input data: Denote the output of multivariate
DEnv applied to a certain set of input data by T and consider the output
T ′ of multivariate DEnv applied to a rotated copy of the same input data.
In general, T ′ is not a rotated copy of T , which is undesirable in geometric
applications.

In order to minimize the loss of information and to weaken the influence
of the coordinate system, we introduce the concept of nested thickets and
an intersection algorithm for them in Section 4. Not all problems related to
multivariate thickets can be solved by these methods, but we argue that they
are good enough to make thickets a valuable tool in geometric constructions.
The comprehensive example of Section 5 illustrates our ideas.

2. Univariate thickets

This section is meant as a short introduction to univariate thickets. For more
details see (Berleant and Goodman-Strauss, 1998; Regan et al., 2004; Berleant
and Zhang, 2004a).

DEFINITION 1. A univariate thicket is a finite set T = {(Ci, pi)} whose
elements are pairs of nonempty open intervals Ci = (ai, bi) ⊂ R and associated
probability values pi such that

∑
pi = 1. Upper and lower distribution bounds

of the thicket T are the cumulative distribution functions

U(t) :=
∑
ai≤t

pi, L(t) :=
∑
bi≤t

pi. (1)

A thicket can be thought of as a representation of a family X of random
variables. We say that a random variable x, defined over the Borel sigma
algebra B of R, is represented by the thicket T if the cumulative distribution
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Figure 1. Construction of distribution bounds.

function F of x has the lower bound L and the upper bound U . We denote
this relation by x C T ; the family X may be written as {x | x C T}.

Since a univariate random variable is determined by its cumulative dis-
tribution function, it seems appropriate to use the CDF for defining the
‘C’-relation. The reader however should be aware of the fact that this notion
might not always conform with the intuition behind the concept of thickets.
The following example was pointed out by the anonymous reviewer: Consider
the random variable x concentrated on the points 1 and 4, with probability 0.5
each. Even if no probability is assigned to the interval (2, 3), x is represented
by the thicket {((1, 4), 0.5), ((2, 3), 0.5)}.

2.1. Construction and deconstruction of distribution envelopes

The graphs of the distribution envelopes U and L of a thicket T can be
constructed geometrically (Figure 1). In order to find the upper envelope
U we assume that the intervals Ci are numbered so that ai ≤ ai+1. We
visualize the pairs (Ci, pi) by rectangles of height pi, erected over the interval
Ci. Beginning with C1, we translate the rectangles Ci in y-direction so that
its bottom edge is at the height of the top edge of Ci−1. The left hand vertices
of these rectangles define the graph of U . The lower distribution envelope L is
found by piling up the same rectangles after sorting them in ascending order
by right hand interval borders bi.

The inverse procedure can be used for deconstructing a pair of suitable
distribution bounds into a thicket. Since we come back to this task in a more
general context in Section 3, we will not go into details here. The interested
reader can find a formal description of the deconstruction algorithm for uni-
variate thickets in (Regan et al., 2004, Section 4). We only mention that
the deconstruction of distribution bounds into a thicket is not necessarily
unique (see Example 1), but always information preserving (i.e. is an invertible
operation).

2.2. Univariate DEnv

Distribution envelope determination (Berleant and Goodman-Strauss, 1998) is
a method for bounding the result of a binary arithmetic operation “?” on ran-
dom variables without making assumptions on their mutual dependence. As
a prerequisite, the operation has to be extended to nonempty intervals. Then,
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the input random variables are discretized as thickets and DEnv computes
distribution bounds on the resulting random variable, which is subsequently
deconstructed into a thicket.

ALGORITHM 1. (Univariate DEnv).
Input: Two thickets T ′ = {(C ′

i, p
′
i)}, T ′′ = {(C ′′

j , p′′j )} and a binary opera-
tion “?”, defined on R and extended to the case of nonempty open
intervals as arguments.

Output: A thicket representing all random variables x′ ?x′′ where x′ C T ′ and
x′′ C T ′′. No assumption on the dependence of x′ and x′′ is made.

Step 1: Compute the intervals Cij = (aij , bij) := C ′
i ? C ′′

j . The intervals
Cij will be the thicket intervals, but their probability masses are still
unknown.

Step 2: Compute the upper distribution bound U by solving the optimization
problem

U(t) = max
∑

(i,j): aij≤t

pij , (2)

for all t ∈ R, where the unknowns pij are subject to the constraints∑
i

pij = p′i,
∑

j

pij = p′′j and 0 ≤ pij . (3)

Step 3: Compute the lower distribution bound L of T by solving the opti-
mization problem

L(t) = min
∑

(i,j): bij≤t

pij , (4)

for all t ∈ R; where the unknowns pij are subject to the constraints
(3).

Step 4: Deconstruct U and L into the resulting thicket T .

Remark 1. The optimization problem in Steps 2 and 3 can be solved effi-
ciently by linear programming, even for a large number of variables (Karloff,
1991). Since U and L are simple functions (piecewise constant with finite
range), it is sufficient to compute the values of L(t) and U(t) at a finite number
of suitably chosen arguments t ∈ R. Hence the algorithm’s implementation is
straightforward once libraries for linear programming and interval arithmetic
are available.

For the computation of U one assumes a concentration of the probability
mass pij at aij ; for the computation of L one assumes a concentration at bij .
This and the chosen optimization targets (minimum or maximum) ensure the
correctness and pointwise optimality of the algorithm.

Dependence information formulated in terms of linear equalities or inequal-
ities is easily incorporated in the univariate DEnv algorithm. An example
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of this is the Pearson correlation coefficient (Berleant and Zhang, 2004b).
Furthermore, it is obvious how to extend the algorithm to operations with
more than two operands.

3. Multivariate thickets

In this section we introduce multivariate thickets. Even if this concept is in
some sense a straightforward generalization of the univariate case, there are
also essential differences.

DEFINITION 2. A multivariate thicket is a finite set T = {(Ci, pi)} whose
elements are pairs of nonempty open convex sets Ci ⊂ Rd and associated
probability values pi such that

∑
pi = 1.

DEFINITION 3. The lower and upper probability p, p of a thicket T =
{(Ci, pi)} are the functions p and p defined on the sigma algebra Bd of Borel
sets of Rd:

p:X ∈ Bd 7→
∑

Ci⊂X

pi, p:X ∈ Bd 7→
∑

Ci∩X 6=∅
pi, (5)

Remark 2. The functions p and p satisfy the axioms of interval probability
(Walley, 1996):

1. ∀X ∈ Bd: 0 ≤ p(X) ≤ p(X) ≤ 1;

2. p(Rd) = p(Rd) = 1, p(∅) = p(∅) = 0;

3. p(X) + p(Rd \X) = 1;

4. ∀X, Y ∈ Bd: X ∩ Y = ∅ =⇒
p(X) + p(Y ) ≤ p(X ∪ Y ) ≤ p(X) + p(Y ) ≤ p(X ∪ Y ) ≤ p(X) + p(Y ).

DEFINITION 4. A random variable x defined over Bd is represented by a
thicket T , if p(X) ≤ P (x ∈ X) ≤ p(X) holds for all X ∈ Bd. We denote this
relation by x C T . Two thickets T1, T2 are called equivalent if they represent
the same set of random variables. If every random variable represented by T1

is also represented by T2, we call T1 a subthicket of T2.

Remark 3. In the univariate case, the C-relation between random variables
and thickets is defined via the thicket’s distribution envelopes. There exists
a multivariate generalization of distribution envelopes (see Section 3) but it
cannot be used for an analogous definition. The reason for this will become
clear in Example 2.
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Figure 2. Definition of S+ and S−.

Example 1. There is a trivial method for constructing a thicket equivalent
to a given thicket T = {(Ci, pi)}. We replace one thicket element (Ci, pi) by
the two new elements (Ci, ε), (Ci, pi − ε) where 0 < ε < pi. We call every
thicket obtained from T by a series of these operations a partition thicket of
T . Clearly two thickets are equivalent if they have a common partition thicket.
In this case we call them essentially identical. The converse is not true, i.e.,
the same family of random variables can be represented by essentially different
thickets. An example of this is given by two equivalent thickets

T1 = {
(
(0, 2), 0.3

)
,
(
(1, 3), 0.7

)
}, T2 = {

(
(0, 3), 0.3

)
,
(
(1, 3), 0.4

)
,
(
(1, 2), 0.3

)
}.

(6)

3.1. Distribution envelopes

DEFINITION 5. For an arbitrary subset S of Rd we define S+ as the set of all
points (y1, . . . , yd) ∈ Rd such that xi ≤ yi holds for all points (x1, . . . , xd) ∈ S
and all indices i ∈ {1, . . . , d}. The set S− is defined as

⋃
x∈S {x}

+. When
using coordinates with respect to a basis A of Rd, we write S+(A) and S−(A).

Examples of S+ and S− are depicted in Figure 2. In 2D, S+ = b+ where
b is the upper right corner of the bounding box.

DEFINITION 6. The upper and lower distribution envelope of a thicket T =
{(Ci, pi)} are the functions

UT : Rd → [0, 1], t 7→
∑

t∈C−
i

pi, LT : Rd → [0, 1], t 7→
∑

t∈C+
i

pi. (7)

When using coordinates with respect to the basis A of Rd, we write LT (A, t)
and UT (A, t).

With the definitions (u1, . . . , ud) ≤ (t1, . . . , td) ⇐⇒ u1 ≤ t1, . . . , ud ≤ td
and t≤ := {u ∈ Rd | u ≤ t}, the MDF of x is defined as F : Rd → R,
F (t) := P (x ≤ t), i.e., the probability assigned to the set t≤. Definition 6
is the multivariate analogue to Definition 1. The definition of LT and UT

thicket-rc.tex; 7/07/2005; 10:56; p.6



Geometric Constructions with Discretized Random Variables 7

C C′
C′′

Figure 3. One-element thickets with identical distribution bounds.

ensures that they enclose the multivariate distribution function (MDF) of
every random variable x C T , regardless of the distribution of probability mass
inside the convex sets Ci. For the definition of UT , we assume a concentration
of probability mass at points of the “lower left” border of Ci; for the definition
of LT we assume a concentration at points with maximal coordinate values.

PROPOSITION 1. The multivariate distribution function F of a random
variable x C T has the property that LT (t) ≤ F (t) ≤ UT (t) for all t ∈ Rd.

Proof. The proof is a matter of combining the notions defined above (Def-
initions 3, 4 and 6): x C T implies that for all t:

F (t) = P (x ≤ t) ≤ p(t≤) =
∑

i: (Ci ∩ t≤) 6=∅

pi =
∑

i: ∃u∈Ci:u≤t

pi =
∑

i: t∈C−
i

pi = UT (t).

(8)
The inequality F (t) ≥ LT (t) is shown in an analogous way. 2

The converse is not true, as demonstrated by the next example. Thus repre-
senting a thicket by distribution bounds loses information.

Example 2. Consider the one-element thickets T = {(C, 1)}, T ′ = {(C ′, 1)},
and T ′′ = {(C ′′, 1)}, where C, C ′ and C ′′ are bounded by arcs and straight
lines as illustrated in Figure 3. Each thicket represents the random variables
concentrated in the corresponding convex set, but the upper and lower distri-
bution bounds L and U are the same for all three. T ′ represents precisely the
random variables whose MDF lies between L and U , and C ′′ is the smallest
convex set such that the corresponding one-element thicket has these lower
and upper distribution bounds. If the loss of information is measured in terms
of the area, then C ′ is 20% larger than C and 65% larger than C ′′.

3.2. Deconstruction of distribution envelopes

The deconstruction of a pair U , L of distribution envelopes into a thicket is a
fundamental step of DEnv. The basic ideas are the same in both the univariate
and the multivariate settings. We give a formal definition of the corresponding
algorithm.
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Figure 4. Definition of ∂C in 2D (left) and 3D (right).

DEFINITION 7. Assume that F : Rd → [0, 1] is a simple function with
range(F ) = {f0, . . . , fn} such that 0 = f0 < f1 < . . . < fn = 1. We consider
the level sets [F = fi] (i = 0, . . . , n), and for z ∈ R we define the level-type
sets [F ≈ z] := [F ≥ z] ∩ [F < z] (here X denotes topological closure of X).

DEFINITION 8. The bounding box of a subset S ⊂ Rd is the set BB(S) :=
π1(S) × · · · × πd(S) where πj(x1, . . . , xd) := xj is the projection onto the j-
th coordinate. If C is a convex set with boundary ∂C, then ∂C is the set of
all points x ∈ ∂C which have a supporting hyperplane with exterior normal
vector n = (n1, . . . , nd) such that n1, . . . , nd ≤ 0. Further we define η C :=
C− ∩ BB(C). The convex hull of M ⊆ Rd is denoted by the symbol CH(M).

The definition of ∂C is illustrated in Figure 4. Examples of η C are found
in Figure 3, where we have C ′ = η C = η C ′′. Note that

C open and convex =⇒ BB(η C) = BB(C), (η C)+ = C+, (η C)− = C−.
(9)

These properties are used in the following algorithm, which is similar to the
deconstruction algorithm for univariate thickets (Regan et al., 2004).

ALGORITHM 2. (Thicket deconstruction).
Input: Two simple functions L, U with the properties L(t) ≤ U(t) for all

t ∈ Rd, 0, 1 ∈ range(L) ∩ range(U), u ≤ t =⇒ L(u) ≤ L(t), U(u) ≤
U(t) (i.e., both L and U are multivariate distribution functions).

Output: Thicket T representing all random variables whose MDF F fulfills
L ≤ F ≤ U .

Step 1: Let Z := range(L)∪range(U) and sort the members of Z in ascending
order: 0 = z0 < · · · < zn = 1.

Step 2: For i = 1, . . . , n let

Ci = η CH
(
∂CH [U ≈ zi] ∪ ∂CH [L ≈ zi]

)
(10)

(see Figure 5) and define pi := zi − zi−1.
Step 3: Let T = {(Ci, pi) | i = 1, . . . , n}.
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Figure 5. Constructing a thicket element Ci (shaded area) from level sets of U and L.

Proof (of correctness of Algorithm 2). We claim that for a random variable
x whose distribution function F fulfills L(t) ≤ F (t) ≤ U(t) for all t ∈ Rd, we
have x C T . First we observe that

C ⊆ C ′ =⇒ C+ ⊇ (C ′)+, η C ⊆ η C ′; Ci ⊆ Ci,L := η CH(∂ CH [L ≈ zi]).
(11)

The “lower left corners” of [L ≈ z] and [U ≈ z] determine the shape of these
sets:

(CH ∂ CH [U ≈ z])
−

= CH [U ≈ z] , t ∈ (CH ∂ CH [L ≈ z])
+

=⇒ L(t) ≥ z
(12)

(cf. Figures 2 and 4). We aim at the inequality LT (t) ≤ L(t) and use (11) to
compute

LT (t) =
∑

i: t∈C+
i

pi ≤
∑

i: t∈C+
i,L

pi =
∑

i: t∈C+
i,L

pi. (13)

By (9) and (12), t ∈ C+
i,L implies that L(t) ≥ zi. Thus

LT (t) ≤
∑

i: L(t)≥zi
(zi − zi−1) = max{zj | L(t) ≥ zj} ≤ L(t). (14)

As to UT , we define Ci,U analogous to (11) and observe L ≤ U =⇒ C−
i,L ⊆

C−
i,U :

UT (t) =
∑

i: t∈C−
i

pi =
∑

i: t∈C−
i,U

pi =
∑

i: t∈CH[U≈zi]
pi

≥
∑

i: t∈[U≈zi]
pi = max{zi | t ∈ [U ≥ zi]} = U(t).

(15)

With LT ≤ L and U ≤ UT as shown above and the assumption L ≤ F ≤ U
as required, we have shown LT ≤ F ≤ UT , i.e., x C T . 2

In general a thicket T0 is only a subthicket (c.f. Definition 4) of the thicket
T constructed by Algorithm 2 from UT0 and LT0 , i.e., x C T does not imply
x C T0. This is in contrast to the univariate case.

DEFINITION 9. If finite sets Z ⊆ Z ′ ⊂ R have the property that minZ =
minZ ′ and max Z = maxZ ′, then Z ′ is called a partition of Z.
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If the set Z in Step 1 of Algorithm 2 is replaced by a partition Z ′, the output
thicket will be a partition thicket of the original one. Now we have provided
all tools to formulate the multivariate version of the DEnv algorithm.

ALGORITHM 3. (Multivariate DEnv).
Input: Two thickets T ′ = {(C ′

i, p
′
j)}, T ′′ = {(C ′′

i , p′′i )} and a binary opera-
tion “?”, defined on Rd and extended to convex sets in the sense that
t ∈ C, t′ ∈ C ′ =⇒ t ? t′ ∈ C ? C ′ and C ? C ′ is convex.

Output: A thicket representing all random variables x′ ?x′′ where x′ C T ′ and
x′′ C T ′′. No assumption on the dependence of x′ and x′′ is made.

Step 1: Compute Cij = C ′
i ? C ′′

j .
Step 2: Compute the upper distribution bound U by solving the optimization

problem
U(t) := max

∑
t∈C−

ij
pij , (16)

for each t ∈ R, where the unknowns pij are subject to the constraints
(3).

Step 3: Compute the lower distribution bound L of T by solving the opti-
mization problem

L(t) := min
∑

t∈C+
ij

pij . (17)

for each x ∈ R, where the unknowns pij are subject to the constraints
(3).

Step 4: Deconstruct U and L into the resulting thicket T .

Proof (of correctness of Algorithm 3). The function U in (16) is an upper
bound of the MDF of all random variables x = x′ ? x′′ because the level-type
sets [U ≈ zi] enclose the corresponding level sets of the MDF of x and the
corresponding function values are maximal, subject to the necessary constraint
(3). Analogously it follows that L is a lower bound of the MDF of x. 2

The basic steps of this algorithm are similar to the univariate DEnv algo-
rithm (Algorithm 1). However, the result needs a different interpretation:

− The multivariate DEnv algorithm is information losing. This is due to
the information losing intermediate representation of a thicket by its
distribution bounds.

− The output of multivariate DEnv depends on the coordinate frame.

Both issues are drawbacks for the use of DEnv in geometric constructions.
The loss of information in the DEnv algorithm can be reduced by a certain
amount if we choose an appropriate basis of Rd. In higher dimensions it ap-
parently is not easy to minimize

∫
(U −L)2 or a similar target functional over

all possible orthonormal bases of Rd (in case we work in Euclidean geometry).
Therefore we present an improved version of multivariate DEnv in the next
section. The main idea is to combine DEnv results that were obtained with
respect to different coordinate frames of Rd.
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4. Nested thickets and thicket intersection

In this section we introduce nested thickets and thicket intersection in order
to reduce the shortcomings of the multivariate DEnv algorithm.

DEFINITION 10. A thicket T = {(Ci, pi) | i = 0, . . . , n} is called nested if
there exists a permutation π of {0, . . . , n} such that Cπ(i+1) ⊂ Cπ(i).

We tacitly assume that for a nested thicket {(Ci, pi)} the sets Ci are
numbered such that Ci+1 ⊆ Ci. The lower and upper probability of a nested
thicket are of simple shape. If X ∈ Bd, we have

p(X) =
∑n

i=m
pi, p(X) =

∑m

i=0
pi (18)

where m := min{i | X ⊂ Ci} and m := max{i | X ∩ Ci 6= ∅}. In particular
this implies

P (x ∈ Ci) ≥
∑n

j=i
pj and P (x ∈ Rd \ Ci) ≤

∑i−1

j=0
pj . (19)

DEFINITION 11. The thicket T is the intersection of the thickets T1 and T2

if
x C T ⇐⇒ (x C T1) and (x C T2). (20)

The intersection of T1 and T2 is denoted by T1 ∩ T2.

Note that the intersection of two thickets does not always exist but univari-
ate thickets T1, T2 can always be intersected: If Ui and Li are the distribution
envelopes of Ti, we can deconstruct T = T1∩T2 from its distribution envelopes

U := min{U1, U2}, L := max{L1, L2}. (21)

In the same way it is possible to intersect multivariate thickets but the re-
sult will usually be only a superset of intersection. Note further that the
distribution bounds Ui and Li have to refer to the same basis of Rd.

In contrast to general multivariate thickets, the intersection of nested thick-
ets exists. The intersection algorithm is based on the representation of nested
thickets via nested stacks:

DEFINITION 12. For i = 0, . . . , n assume that Bi ⊂ Rd+1 is the cylinder
Ci × (0, hi) with a nonempty convex domain Ci as basis. If Ci+1 ⊆ Ci and
hi+1 ≥ hi, the union

⋃n
i=0 Ci is called a nested stack.

For a nested thicket T = {(Ci, pi) | i = 0, . . . , n} we may construct the
nested stack defined by cylinders Bi = Ci × (0, hi) with hi =

∑i
j=0 pj . Con-

versely a nested stack defined by cylinders Ci × (0, hi) can be deconstructed
into a nested thicket {(Ci, pi) | i = 0, . . . , n} by recursively defining p0 = h0

and pi = hi − hi−1 for i > 0. The deconstruction of the nested stack into
a thicket does not necessarily reproduce the original thicket, but at least an
essentially identical thicket (cf. Example 1). Therefore we can represent nested
thickets by nested stacks and vice versa.
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12 H.-P. Schröcker, J. Wallner

LEMMA 1. The intersection of the two thickets T1 = {(C1, 1)} and T2 =
{(C2, 1)} is the thicket T3 = {(C3, 1)} with C3 = C1 ∩ C2.

Proof. The case C1 = C2 being trivial, we assume C1 6= C2. Since T3 is
a subthicket of T1 and T2, every random variable represented by T3 is also
represented by T1 and T2. We have to show the converse. Assume that x C T1,
x C T2, but x 6 T3. We denote the lower and upper probabilities of Ti by p

i
and pi. There exists X ∈ Bd such that p

i
(X) ≤ P (x ∈ X) ≤ pi(X) for i = 1, 2

and either p
3
(X) > P (x ∈ X) (case 1) or p3(X) < P (x ∈ X) (case 2), where

P (x ∈ X) is the probability of x being contained in X.
In case 1, x C T2 and p

2
(C1\C2) = p2(C1\C2) = 0 imply P (x ∈ C1\C2) =

0, and x C T1, p
1
(C1) = 1 imply P (x ∈ C1) = 1. Thus

P (x ∈ C3) = P (x ∈ C1 \ C2) + P (x ∈ C3) = P (x ∈ C1) = 1 (22)

which leads to the contradiction 1 ≥ p
3
(X) > P (x ∈ X) ≥ P (x ∈ C3) = 1.

Case 2 is possible only if X ∩ C3 = ∅ but X ∩ C1 6= ∅ and X ∩ C2 6= ∅.
This implies the contradiction

0 = p3(X) < P (x ∈ X) = P (x ∈ X∩C1)+P (x ∈ X\C1) ≤ P (x ∈ C1\C2) = 0
(23)

and finishes the proof. 2

LEMMA 2. The intersection of the thickets Ti = {(Rd, p), (Ci, 1 − p)} (i =
1, 2) with 0 < p < 1 is the thicket T3 = {(Rd, p), (C3, 1 − p)}, where C3 =
C1 ∩ C2.

Proof. The random variable x′ = max{0, (x− p)/(1− p)} is represented by
the thicket T ′i = {(Ci, 1)} if and only if x C Ti. Therefore, the result follows
from Lemma 1. 2

THEOREM 1. Assume that the nested thicket Ti = {(Cij , pij) | j = 0, . . . , ni}
( i = 1, 2 ) is represented by the nested stack Bi. Then the intersection of T1

and T2 is represented by the nested stack B1 ∩B2.
Proof. Without loss of generality we assume n1 = n2 =: n and p1j = p2j =:

pj . This condition can always be fulfilled if we replace T1 and T2 by suitable
partition thickets. The set B3 := B1 ∩ B2 is a nested stack and corresponds
to a thicket T3 = {(C3j , pj) | j = 0, . . . , n}, where C3j = C1j ∩ C2j . T3 is a
subthicket of T1 and T2, i.e., every random variable represented by T3 is also
represented by T1 and T2. We have to show the converse.

We assume that this is not the case: There exists a random variable with
x C T1 and x C T2 but x 6 T3. If p

i
and pi denote the lower and upper

probability of Ti, there exists a set X ∈ Bd such that p
3
(X) > P (x ∈ X) or

p3(X) < P (x ∈ X). We consider the case p
3
(X) > P (x ∈ X) first. Nestedness

of the thickets Ti implies

p
i
(X) =

∑
Cij⊂X pj =

∑n
j=mi

pj (24)

where
mi := min{j | Cij ⊂ X}, i = 1, 2, 3. (25)

thicket-rc.tex; 7/07/2005; 10:56; p.12



Geometric Constructions with Discretized Random Variables 13

Hence m3 < min{m1,m2}, i.e., C3m3
⊂ X but neither C1m3

⊂ X nor C2m3
⊂

X. We let T ′i = {(C ′
i0, p

′
0), (C

′
i1, p

′
1)} where

C ′
i0 = Rd, C ′

i1 = Cim3
, p′0 =

∑m3−1
i=0 pi, p′1 = 1− p′0. (26)

and denote the corresponding lower and upper probabilities by p′
i

and p′i.
Because Ti is a subthicket of T ′i , x is also represented by T ′1 and T ′2. Because of
p′
3
(X) = p(X) > P (x ∈ X), x is not represented by T ′3. This is a contradiction

to Lemma 2. Now we consider the case p(X) < P (x ∈ X). The proof is similar
to the previous case. We have

pi(X) =
∑

Cij∩X 6=∅ pj =
∑mi

j=0, (27)

where
mi := max{j | Cij ∩X 6= ∅}, i = 1, 2, 3. (28)

Hence m3 > max{m1,m2}, i.e., C3m3 ∩ X 6= ∅ but C1m3 ∩ X = ∅ and
C2m3 ∩X = ∅. We let T ′′i = {(C ′′

i0, p
′′
0), (C ′′

i1, p
′′
1)}, where

C ′′
i0 = Rd, C ′′

i1 = Cim3 , p′′0 =
∑m3−1

i=0 pi, p′′1 = 1− p′′0 . (29)

and denote the corresponding lower and upper probabilities by p′′
i

and p′′i .
Because Ti is a subthicket of T ′′i , x is also represented by T ′′1 and T ′′2 . Because
of p′′3(X) = p(X) > P (x ∈ X), x is not represented by T ′′3 . Again, this is a
contradiction to Lemma 2. 2

Example 3. (Nested thicket intersection) The intersection of the nested thick-
ets

T1 = {
(
(1, 6), 0.5

)
,

(
(3, 4), 0.5

)
}, T2 = {

(
(0, 7), 0.3

)
,

(
(2, 5), 0.7

)
} (30)

is the nested thicket T1 ∩ T2 = {
(
(1, 6), 0.3

)
,

(
(2, 5), 0.2

)
,

(
(3, 4), 0.5

)
}.

In order to intersect arbitrary thickets, we have to transform them to nested
thickets. We cannot expect that to be possible without losing information:

ALGORITHM 4. (Nested thicket conversion).
Input: Thicket T = {(Ci, pi)}.
Output: Nested thicket T ′ of which T is a subthicket.
Step 1: Denote by UT and LT the distribution envelopes of T . Let Z be

the union of range(UT ) and range(1 − LT ) and sort its elements
in ascending order: 0 = z0 < · · · < zn = 1. If desired, Z can be
replaced by a partition of Z.

Step 2: For k = 0, . . . , n− 1 let uk be the largest value in range(UT ) that is
not larger than zk and let lk be the smallest value in range(1− LT )
that is not larger than zk.

Step 3: Let
C ′

k = η CH
(
∂[UT ≈ uk] ∩ ∂[LT ≈ 1− lk]

)
. (31)

If k = n−1 or if C ′
k is empty, let k0 := k and continue with the next

step.
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Figure 6. Nested thicket representation.

Step 4: For k = 0, . . . , k0−2 let p′k = zk+1−zk and let p′k0−1 = 1−
∑k0−2

l=0 p′l.
Step 5: The output of the algorithm is the thicket T ′ = {(C ′

i, p
′
i) | i =

0, . . . , k0 − 1}.

Proof (of correctness of Algorithm 4). The thicket T ′ is well defined because
C ′

0 is never empty. It is no loss of generality to assume range(UT ) = range(1−
LT ). If this condition is not fulfilled, we can replace T by a suitable partition
thicket. By construction, the thicket T ′ is nested and there exists an injection
ι1: {0, . . . , k0−1} → {0, . . . , n} such that C ′+

i = C+
ι1(i)

and, for i 6= k0−1, p′i =
pι1(i). Furthermore, p′k0−1 is the sum over all values pi where i 6∈ range(ι1).
This implies LT ′ ≤ LT .

Analogously, there exists an injection ι2: {0, . . . , k0− 1} → {0, . . . , n} such
that C ′−

i = C−
ι2(i)

and, for i 6= k0 − 1, p′i = pι2(i). Again p′k0−1 is the sum over
all values pi where i 6∈ range(ι2). This implies UT ≤ UT ′ and T is a subthicket
of T ′. 2

Example 4. We convert the univariate thicket T represented by the distri-
bution envelopes U , L of Figure 6, left, into a nested thicket. First we unite
the ranges of U and 1−L and obtain the set Z = {0.0, 0.3, 0.4, 0.8, 1.0}. Now
we construct the sets C ′

0, C ′
1 and C ′

2 according to Step 2 of the nested thicket
conversion algorithm. Since C ′

3 is empty, we leave Step 3 with k0 = 2 and
assign the complete remaining probability mass 0.2 to C ′

2.

Nested thicket conversion with Algorithm 4 works for all thickets. The
procedure however is information losing and depends on the coordinate frame.
In fact, there are two information leaks. One is due to the intermediate repre-
sentation of a thicket by distribution envelopes. The second potential loss of
information occurs if we leave Step 3 with k0 < n−1. In this case, we have to
assign the remaining probability mass to the set C ′

k0
which means extending

both distribution bounds.
The thicket of Example 4 cannot be converted into an equivalent nested

thicket while the thicket T1 of Equation (6) can. The equivalent nested thicket
is the thicket T2 of (6).

The main reason for using nested thickets in multivariate DEnv is the
possibility to combine the results DEnv with respect to different coordinate
frames by nested thicket intersection.
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ALGORITHM 5. (Multivariate DEnv with intersection).
Input: Two thickets T ′ = {(C ′

i, p
′
j)}, T ′′ = {(C ′′

i , p′′i )} and a binary op-
eration “?”, defined on Rd and extended to nonempty open convex
sets.

Output: A thicket representing all random variables x′ ?x′′ where x′ C T ′ and
x′′ C T ′′. No assumption on the dependence of x′ and x′′ is made.

Step 1: Choose a certain number of bases Ai of Rd. For each of them perform
the multivariate DEnv algorithm (Algorithm 3). Denote the resulting
thickets by Ti.

Step 2: Use nested thicket conversion (Algorithm 4) to transform the thicket
Ti to a nested thicket T ′i . Use the basis Ai for this transformation.

Step 3: Return the thicket T =
⋂

T ′i .

Proof (of correctness of Algorithm 5). The algorithm is correct because the
thickets Ti represent every random variable x′ ? x′′ if x′ C T ′ and x′′ C T ′′,
and the nested thicket transformation produces thickets T ′i with the same
property. According to Theorem 1 this is also true for the output thicket T . 2

Remark 4. In an actual implementation of the algorithm it is not necessary
to deconstruct the distribution bounds Ui, Li into thickets Ti in Step 1, since
we need precisely these distribution bounds (and not the thickets themselves)
for the nested thicket conversion in Step 2.

Remark 5. The applications one has in mind should determine which bases
to choose in Step 1 of the above algorithm. Probably it is often sufficient to
choose 2d bases Ai so that

⋃
0+(Ai) = Rd. In 2D, these could be for example

A0 =
(

1 0
0 1

)
, A1 =

(
0 1

−1 0

)
, A2 =

(
−1 0

0 −1

)
, A3 =

(
0 −1
1 0

)
. (32)

We use the bases (32) in the example of Section 5.

The multivariate DEnv with intersection reduces the loss of information
due to intermediate thicket representation by distribution envelopes. It in-
duces, however, a loss of information in conversion to nested thickets. What
is worse depends on the particular examples. Certain families of random vari-
ables can be represented very well by nested thickets while others cannot.
Some arguments in favor of the refined second version of multivariate DEnv
are:

− The loss of information due to thicket representation by distribution
envelopes might be considerable (Example 2) while the nested thicket
conversion is often information preserving or nearly information preserv-
ing.

− In geometric constructions with imprecise input data (as well as in in-
terval arithmetic) the excessive growth of tolerance regions is a problem.
The multivariate DEnv algorithm with intersection allows better control
of the size of the convex sets Ci.
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Figure 7. Reflection of a point in a line.

− The refined multivariate DEnv algorithm at least approaches geometric
invariance.

5. An Example

This section provides a comprehensive example illustrating the algorithms of
this article.

5.1. Definition of a binary operation

In the Euclidean plane we are given a straight line L and a point s 6∈ L.
The straight line L is identified with R; every point r ∈ L corresponds to
a real number and vice versa. We use s and L to define a binary operation
?: R2×R → R2. The point a ? r is defined as the reflection image of the point
a in the straight line through s and r ∈ L.

In Figure 7 this situation is visualized. We anticipatorily assume that both
a and r are random variables, represented by thickets T ′ and T ′′, respectively.

5.2. Extension to intervals

We have to extend “?” to convex subsets of R2 and R: All points of a convex
set A are to be reflected in all straight lines S that contain the point s and
intersect L in an interval R. The set M that is swept by this one-parameter
family of reflected copies of A is described in (Hu and Wallner, 2004). It
is bounded by parts of the boundary of the reflection of A in the two lines
through the boundary points of R and two circular arc segments with center s.
Since our algorithm requires convex sets as result of the operation “?”, we
replace M by its convex hull CH(M), i.e., the extension of “?” to convex sets
is defined by A ? R := CH(M).
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5.3. Representation by thickets

Now we meet the requirements for an extension of “?” to multivariate thickets.
We consider a concrete example. The position of the point a as well as the
intersection of the straight line S with L are random variables represented
by thickets T ′ and T ′′, respectively. We choose T ′ = {(C ′

1, 0.6), (C ′
2, 0.4)},

where C ′
1 and C ′

2 are the concentric disks shown by Figure 7. Further, we let
T ′′ = {(C ′′

1 , 0.8), (C ′′
2 , 0.2)}, where C ′′

1 and C ′′
2 are the two intervals indicated

in Figure 7.

5.4. Upper and lower distribution envelopes

The first step in multivariate DEnv with intersection consists of computing
the convex sets Cij = C ′

i ? C ′′
j . In our example, each Cij is bounded by three

circular arcs and one straight line segment (see Figure 7). We distinguish the
different C ′

ijs by line style.
The next step is the computation of distribution envelopes with respect

to different bases of R2. We choose the initial basis A0 of Equation (32) and
compute the corresponding distribution envelopes U0 = U0(A0) and L0 =
L0(A0):

Both upper and lower distribution envelope are simple functions of finite
range. The value U0(t) is defined as the solution of the optimization problem

U0(t) = max
∑

t∈C−
ij

pij . (33)

The variables to solve for are the unknown probability values pij of Cij ; the
necessary constraints are

p11+p12 = 0.6, p21+p22 = 0.4, p11+p21 = 0.8, p12+p22 = 0.2, pij ≥ 0.
(34)

Figure 8 shows that R2 can be divided into five regions such that the target
functional (33) is the same for all points of one region. Hence the range of U0

is found by solving five optimization problems, two of which are trivial: the
empty sum yields zero and the sum over all values pij yields one. The three
remaining target functionals and the corresponding solutions, found by linear
programming, are

0.6 = max{p11}, 0.8 = max{p11 +p12}, 1.0 = max{p11 +p12 +p21}. (35)

Hence the range of U0 is the set {0.0, 0.6, 0.8, 1.0}.
The range of L0 is computed in a similar way. We have to solve five

minimization problems. The three nontrivial solutions are

0.0 = min{p22}, 0.2 = min{p22 + p12}, 0.4 = min{p22 + p12 + p21} (36)

and the range of L0 is {0.0, 0.2, 0.4, 1.0}.
Both U0 and L0 are discontinuous on points of three curves shown in bold

by Figure 8. These lines of discontinuity are composed of parts of the convex
sets Cij and half lines parallel to the coordinate directions of A0.
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Figure 8. Distribution envelopes with respect to different coordinate frames.

We repeat the above steps for i = 1, 2, 3 in order to compute distribution
bounds Ui, Li with respect to the remaining bases Ai of (32). The target
functionals to be minimized are always those of (36). The minimal values are
the function values of the lower distribution bounds. The target functionals
to be maximized yield the function values of the upper distribution bounds.
These functionals are the same for U0 and U3. For U1 and U2 they are

0.6 = max{p11}, 0.8 = max{p11 + p12},
0.8 = max{p11 + p21}, 1.0 = max{p11 + p12 + p21}.

(37)

We don’t have to deconstruct the distribution bounds Li, Ui into a thicket
Ti because the distribution bounds and not the thickets themselves are needed
in the next step.
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Figure 9. Resulting thicket

5.5. Nested thicket conversion and intersection

We convert the distribution bounds Ui and Li into nested thickets and inter-
sect them. In the present example, nested thicket conversion turns out to be
information preserving for all four thickets. The resulting thickets consist of
two elements with probability mass 0.6, 0.2 and 0.2, respectively. The result
of the intersection according to Theorem 1 is depicted in Figure 9 as set of
nested thickets and as nested stack BT .

6. Conclusion

We extended the univariate DEnv algorithm for bounding the result of arith-
metic operations on thickets to the multivariate case. Most concepts turned
out to be straightforward generalizations. The multivariate DEnv algorithm
is, however, information losing. A further obstacle to the use of DEnv in
geometric constructions is its dependence on the coordinate frame.

In order to overcome these drawbacks, we introduced the concept of nested
thickets and an intersection algorithm for them, which allows to minimize the
effects mentioned above.

Incorporating dependence information as in typical geometric construc-
tions is a topic of future research.
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20 H.-P. Schröcker, J. Wallner

Berleant, D., L. Xie, and J. Zhang: 2003, ‘Stattool: A tool for Distribution Envelope De-
termination (DEnv), an interval-based algorithm for arithmetic operations on random
variables’. Reliab. Comput. 9(2), 91–108.

Berleant, D. and J. Zhang: 2004a, ‘Representation and problem solving with Distribution
Envelope Determination’. Reliability Engineering and System Safety 85(1–3), 153–168.

Berleant, D. and J. Zhang: 2004b, ‘Using Pearson correlation to improve envelopes around
the distributions of functions’. Reliab. Comput. 10(2), 139–161.

Hu, S.-M. and J. Wallner: 2004, ‘Error Propagation through Geometric Transformations’.
J. Geom. Graphics 8(2), 171–183.

Karloff, H.: 1991, Linear Programming. Boston: Birkhäuser.
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