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Condensing the work of any academic scientist into a one-dimensional measure of scientific quality is a diffi-
cult problem. Here, we employ Bayesian statistics to analyze several different measures of quality. Specifically,
we determine each measure’s ability to discriminate between scientific authors. Using scaling arguments, we
demonstrate that the best of these measures require approximately 50 papers to draw conclusions regarding long
term scientific performance with usefully small statistical uncertainties. Further, the approach described here
permits the value-free (i.e., statistical) comparison of scientists working in distinct areas of science.

PACS numbers: 89.65.-s,89.75.Da

I. INTRODUCTION

It appears obvious that a fair and reliable quantification
of the ‘level of excellence’ of individual scientists is a near-
impossible task [1, 2, 3, 4, 5]. Most scientists would agree on
two qualitative observations:(i) It is better to publish a large
number of articles than a small number.(ii) For any given pa-
per, its citation count—relative to citation habits in the field in
which the paper is published—provides a measure of its qual-
ity. It seems reasonable to assume that the quality of a scientist
is a function of his or her full citation record1. The question
is whether this function can be determined and whether quan-
titatively reliable rankings of individual scientists canbe con-
structed. A variety of ‘best’ measures based on citation data
have been proposed in the literature and adopted in practice
[6, 7]. The specific merits claimed for these various measures
rely largely on intuitive arguments and value judgments that
are not amenable to quantitative investigation. (Honest people
can disagree, for example, on the relative merits of publishing
a single paper with 1000 citations and publishing 10 papers
with 100 citations each.) The absence of quantitative support
for any given measure of quality based on citation data is of
concern since such data is now routinely considered in mat-
ters of appointment and promotion which affect every work-
ing scientist.

Citation patterns became the target of scientific scrutiny in
the 1960s as large citation databases became available through
the work of Eugene Garfield [8] and other pioneers in the
field of bibliometrics. A surprisingly, large body of work on
the statistical analysis of citation data has been performed by
physicists. Relevant papers in this tradition include the pio-
neering work of D. J. de Solla Price, e.g. [9], and, more re-
cently, [7, 10, 11, 12]. In addition, physicists are a driving
force in the emerging field of complex networks. Citation net-
works represent one popular network specimen in which pa-
pers correspond to nodes connected by references (out-links)

∗Electronic address: slj@imm.dtu.dk
1 Citation data is, in fact, publicly available for all academic scientists.

and citations (in-links). Citation networks have frequently
been used as an example of growing networks with preferen-
tial attachment [13]. For reviews on this extensive subject,
see [14, 15, 16]. The aim of the present paper is to take
such studies in a novel direction by addressing the question
of which one-dimensional measure of citation data is best in
a manner which is both quantitative and free of value judg-
ments. Given the remarks above, the ability to answer this
question depends on a careful definition of the word ‘best’.

The primary purpose of analyzing and comparing the cita-
tion records of individual scientists is to discriminate between
them, i.e., to assign some measure of quality and its associ-
ated uncertainty to each scientist considered. Whatever the
intrinsic and value-based merits of the measure,m, assigned
to every author, it will be of no practical value unless the corre-
sponding uncertainty,δm is sufficiently small. From this point
of view, the best choice of measure will be that which pro-
vides maximal discrimination between scientists and hence
the smallest value ofδm. We will demonstrate that the ques-
tion of deciding which of several proposed measures is most
discriminating, and therefore ‘best’, can be addressed quanti-
tatively using standard statistical methods.

Although the approach is straightforward, it is useful first
to describe it in general. We begin by binning all authors by
some tentative measure,m, of the quality of their full citation
record. The probability that an author will lie in binα is de-
notedp(α). Similarly, we bin each paper according to the total
number of citations2. The full citation record for an author is
simply the set{ni}, whereni is the number of his/her paper
in citation bin i. For each author bin,α, we then empirically
construct the conditional probability distribution,P(i|α), that
a single paper by an author in this bin will lie in citation bin
i. These conditional probabilities are the central ingredient in
our analysis. They can be used to calculate the probability,
P({ni}|α), that any full citation record was actually drawn at
random on the conditional distribution,P(i|α) appropriate for

2 We use the Greek alphabet when binning with respect to tom and the Ro-
man alphabet for binning citations.
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a fixed author bin,α. Bayes’ theorem allows us to invert this
probability to yield

P(α|{ni})∼ P({ni}|α) p(α) , (1)

whereP(α|{ni}) is the probability that the citation record{ni}
was drawn at random from author binα. By considering the
actual citation histories of authors in binβ, we can thus con-
struct the probabilityP(α|β), that the citation record of an au-
thor initially assigned to binβ was drawn on the the distribu-
tion appropriate for binα. In other words, we can determine
the probability that an author assigned to binβ on the basis
of the tentative quality measure should actually be placed in
bin α. This allows us to determine both the accuracy of the
initial author assignment its uncertainty in a purely statistical
fashion.

While a good choice of measure will assign each author to
the correct bin with high probability this will not always bethe
case. Consider extreme cases in where we elect to bin authors
on the basis of measures unrelated to scientific quality, e.g.,
by hair/eye color or alphabetically. For such measuresP(i|α)
andP({ni}|α) will be independent ofα, andP(α|{ni}) will
become proportional to prior distributionp(α). As a conse-
quence, the proposed measure will have no predictive power
whatsoever. It is obvious, for example, that a citation record
provides no information of its author’s hair/eye color. The
utility of a given measure (as indicated by the statistical ac-
curacy with which a value can be assigned to any given au-
thor) will obviously be enhanced when the basic distributions
P(i|α) depend strongly onα. These differences can be for-
malized using the standard Kullback-Leibler divergence. As
we shall see, there are significant variations in the predictive
power of various familiar measures of quality.

The organization of the paper is as follows. Section II is
devoted to a description of the data used in the analysis, Sec-
tion III introduces the various measures of quality that we will
consider. In Sections IV and V, we provide a more detailed
discussion of the Bayesian methods adopted for the analysis
of these measures and a discussion of which of these measures
is best in the sense described above of providing the maximum
discriminatory power. This will allow us in Section VI to ad-
dress to the question of how many papers are required in order
to make reliable estimates of a given author’s scientific qual-
ity; finally, Section A discusses the origin of asymmetries in
some the measures. A discussion of the results and various
conclusions will be presented in Section VII.

II. DATA

The analysis in this paper is based on data from the
SPIRES3 database of papers in high energy physics. Our data

3 SPIRES is an acronym for Stanford Physics Information RE-
trieval System. The database is open and can be found at
http://www.slac.stanford.edu/spires/. Citations in SPIRES are gath-
ered only from the papers in the database that have references entered

FIG. 1: Logarithmically binned histogram of the citations counts of
all papers by authors with more than 25 publications in the theory
subsection of SPIRES. The data is normalized and the axes areloga-
rithmic.

set consists of all citable papers written by academic scien-
tists from the theory subfield, ultimo 2003. All citations to
papers outside of SPIRES were removed. In the context of
this paper, we define an academic scientist as someone who
has published 25 papers or more. This definition is intended
to include almost everyone with a permanent academic po-
sition and exclude those who leave academia early in their
careers (and generally cease active journal publication) in the
interests of maintaining the homogeneity of the data sample.
For more see [17], Chapters 3 and 4. The resulting data set
includes 6737 authors and a total of 274470 papers. The ac-
tual number of papers is smaller than this since each multiple
author paper is counted once per co-author. The theory sub-
field is, however, that part of high energy physics where this
effect is least pronounced. This is due to the relatively small
number of co-authors (typically 1−3) per theoretical paper.
In the case of the theory subfield, this weighting of papers by
the number of co-authors has been shown to have negligible
effects [11].

The theory subsection of the SPIRES data has a power-law
structure. Specifically the probability that a paper will re-
cieve k citations is approximately proportional to(k+ 1)−γ

with γ = 1.11 for k ≤ 50 andγ = 2.78 for k > 50. The
transition between these two power laws is found to be sur-
prisingly sharp [11]. These features of the global distribu-
tion are also present in the conditional probabilities for sub-
groups of authors binned according to most measures of qual-
ity. In virtually all cases, these conditional probabilities can
also be described accurately by separate power laws in each
of two regions with a relatively sharp transition between the
regions. As one might expect, authors with more citations
are described by flatter distributions (i.e., smaller values of
γ) and a somewhat higher transition point. Figure 1 displays
the total distribution of citations as a binned and normalized

electronically via eprints or journal articles, publications such as mono-
graphs or conference proceedings are treated inconsistently and therefore
not included in this study.

http://www.slac.stanford.edu/spires/
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FIG. 2: Logarithmically binned histogram of the citations in bin 6
of the median measure. The△ points show the citation distribution
of the first 25 papers by all authors. The points marked by⋆ show
the distribution of citations from the first 50 papers by authors who
have written more than 50 papers. Finally, the� data points show
the distribution of all papers by all authors. The axes are logarithmic.

histogram4.
Studies performed on the first 25, first 50 and all papers for

a given value ofmshow the absence of temporal correlations.
It is of interest to see this explicitly. Consider the following
example. In Figure 2, we have plotted the distribution for bin
6 of the median measure5. There are 674 authors in this bin.
Two thirds of these authors have written 50 papers or more.
Only this subset is used when calculating the first 50 papers
results. In this bin, the means for the total, first 25 and first
50 papers are 11.3, 12.8, and 12.9 citations per paper, respec-
tively. The median of the distributions are 4, 6, and 6. The
plot in Figure 2 confirms these observations. The remaining
bins and the other measures yield similar results.

Note that Figure 2 confirms the general observations on the
shapes of the conditional distributions made above. Figure2
also shows two distinct power-laws. Both of the power-laws in
this bin are flatter than the ones found in the total distribution
and the transition point is lower than in the total distribution
from Figure 1.

III. MEASURES OF SCIENTIFIC EXCELLENCE

Despite differing citation habits in different fields of sci-
ence, most scientists agree that the number of citations of a
given paper is the best objective measure of the quality of that
paper. The belief underlying the use of citations as a measure
of quality is that the number of citations to a paper provides

4 Due to matters of visual presentation, the binning used in this and the fol-
lowing figure here is different from the binning used when constructing
theP(i|α) used later in the paper. The correct binning is described in Ap-
pendixB

5 Since this plot is constructed from authors assigned to bin 6, each paper is
weighted by the number of its authors present in this bin. Weighing papers
by the number of co-authors, however, does not significantlychange the
distribution of citations [11].

an indication of how often the content of that paper has been
used in the work of others6. Note, however, the obvious fact
that citations can only be interpreted as a meaningful proxy
of quality relative to the citation habits of one’s peers or,put
slightly differently, in the context of the citation habitsof the
field in which the paper is published. In [11], we have shown
that the theory subsection of SPIRES is indeed a very homo-
geneous data set. In this sense, we will assume that the cita-
tion count of a paper is a proxy of the intrinsic quality of that
paper.

The questions remain, however, of how to extract a measure
of the quality of an individual scientist from his citation record
and how fairly to project this record onto a scalar measure.
This question is non-trivial because the probability,p(k) of
finding a scientific paper withk citations roughly follows an
asymptotic power-law distribution, see Figs. 1 and 2. This fact
was documented for the SPIRES data in Ref. [11] and holds
true in many other scientific fields [9, 10, 16]. Thus, it is
useful to consider some of the properties of the distribution of
citations for all authors before discussing the various specific
measures of quality to be considered here.

Empirical evidence indicates that most citation distributions
are largely power-law distributed withp(k) ∼ k−γ. For small
values ofk, γ ≈ 1; for larger values, 2< γ < 3. Although
the average number of citations per paper is well-defined, the
asymptotic power-law tails of these distributions cause their
variance to be infinite7. When the variance is not defined (or
very large), the mean values of a finite sample fluctuate sig-
nificantly as a function of sample size. As a consequence,
the average number of citations,〈k〉, in the citation record
of a given author (which is precisely a finite sample drawn
from a power-law probability distribution) is a potentially un-
reliable measure of the quality of an author’s citation record
since the addition or removal of a single highly cited paper can
materially alter an author’s mean. Nevertheless, the mean of
an author’s citations is commonly used as an intensive scalar
measure of author quality.

The reservations just expressed about the use of mean cita-
tions per paper apply with even greater force if one chooses
to measure author quality by the number of citations of each
author’s single most highly cited paper,kmax. Virtually all
of the stabilizing statistical power of the full citation record
has been discarded, and even greater fluctuations can be ex-
pected in this measure as the sample size changes. In spite of
such statistical arguments, there are reasons for considering
the maximum cited paper as a measure of quality. It is per-
fectly tenable to claim that the author of a single paper with

6 We realize that there are a number of problems related to the use of cita-
tions as a proxy for quality. Papers may be cited or not for reasons other
than their high quality. Geo- and/or socio-political circumstances can keep
works of high quality out of the mainstream. Credit for an important idea
can be attributed incorrectly. Papers can be cited for historical rather than
scientific reasons. Indeed, the very question of whether authors actually
read the papers they cite is not a simple one [18]. Nevertheless, we assume
that correct citation usage dominates the statistics.

7 Diverging higher moments of power-law distributions are discussed in the
literature. E.g. [19].
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1000 citations is of greater value to science than the authorof
10 papers with 100 citations each (even though the latter is far
less probable than the former). In this sense, the maximally
cited paper might provide better discrimination between au-
thors of ‘high’ and ‘highest’ quality, and this measure merits
consideration.

Another simple and widely used measure of scientific ex-
cellence is the average number of papers published by an au-
thor per year. This would be a good measure if all papers
were cited equally. As we have just indicated, scientific pa-
pers are emphatically not cited equally, and few scientistshold
the view that all published papers are created equal in quality
and importance. Indeed, roughly 50% of all papers in SPIRES
are cited≤ 2 times (including self-citation). This fact alone is
sufficient to invalidate publication rate as a measure of sci-
entific excellence. If all papers were of equal merit, citation
analysis would provide a measure of industry rather than one
of intrinsic quality.

In an attempt order to remedy this problem,Thomson Sci-
entific(ISI) introduced theImpact Factor8 which is designed
to be a “measure of the frequency with which the ‘average
article’ in a journal has been cited in a particular year or pe-
riod”9. The Impact Factor can be used to weight individual
papers. Unfortunately, citations to articles in a given journal
also obey power-law distributions [12]. This has two conse-
quences. First, the determination of the Impact Factor is sub-
ject to the large fluctuations which are characteristic of power-
law distributions. Second, the tail of power-law distributions
displaces the mean citation to higher values ofk so that the
majority of papers have citation counts that are much smaller
than the mean. This fact is for example expressed in the large
difference between mean and median citations per paper. For
the total SPIRES data base, the median is 2 citations per pa-
per; the mean is approximately 15. Indeed, only 22% of the
papers in SPIRES have a number of citations in excess of the
mean, cf. [11]. Thus, the dominant role played by a relatively
small number of highly cited papers in determining the Impact
Factor implies that it is subject to relatively large fluctuations
and that it tends overestimate the level of scientific excellence
of high impact journals. This fact was directly verified by
Seglen [20], who showed explicitly that the citation rate for
individual papers is uncorrelated to the impact factor of the
journal in which it was published.

An alternate way to measure excellence is to categorize
each author by the median number of citations of his papers,
k1/2. Clearly, the median is far less sensitive to statistical fluc-
tuations since all papers play an equal role in determining its
value. To demonstrate the robustness of the median, it is use-
ful to note that the median ofN = 2N+1 random draws on
anynormalized probability distribution,q(x), is normally dis-
tributed in the limitN → ∞. To this end we define the integral

8 For a full definition see http://scientific.thomson.com/.
9 Ibid.

of q(x) as

Q(x) =
Z x

q(x′)dx′ (2)

Evidently,Q(x) grows monotonically from 0 to 1 independent
of q(x). The ‘median’ of this sample is defined as that value
of x such that(i) one draw has the valuex, (ii) N draws have
a value less than or equal tox, and(iii) N draws have a value
greater than or equal tox. The probability that the median is
atx is now given as

Px1/2
(x) =

(2N+1)!
1!N!N!

q(x)Q(x)N[1−Q(x)]N . (3)

For largeN, the maximum ofPx1/2
(x) occurs atx= x1/2 where

Q(x1/2) = 1/2. ExpandingPx1/2
(x) about its maximum value,

we see that

Px1/2
(x)=

1√
2πσ2

exp[−
(x− x1/2)

2

2σ2 ] , σ2 =
1

4q(x1/2)2N
.

(4)
A similar argument applies for every percentile. The statis-
tical stability of percentiles suggests that they are well-suited
for dealing with the power laws which characterize citation
distributions.

Recently, Hirsch [7] proposed a different measure,h, in-
tended to quantify scientific excellence. Hirsch’s definition is
as follows: “A scientist has indexh if h of his/herNp papers
have at leasth citations each, and the other(Np − h) papers
have fewer thanh citations each”[7]. Unlike the mean and the
median, which are intensive measures largely constant in time,
h is an extensive measure which grows throughout a scientific
career. Hirsch assumes thath grows approximately linearly
with an author’s professional age, defined as the time between
the publication dates of the first and last paper. Unfortunately,
this does not lead to an intensive measure. Consider, for exam-
ple, the case of authors with large time gaps between publica-
tions, or the case of authors whose citation data are recorded
in disjoint databases. A properly intensive measure can be
obtained by dividing an author’sh-index by the number of
his/her total publications. We will consider both approaches
below.

The h-index represents an attempt to strike a balance be-
tween productivity and quality and to escape the tyranny of
power law distributions which place strong weight on a rel-
atively small number of highly cited papers. The problem
is that Hirsch assumes an equality between incommensurable
quantities. An author’s papers are listed in order of decreasing
citations with paperi havingC(i) citations. Hirsch’s measure
is determined by the equality,h=C(h), which posits an equal-
ity between two quantities with no evident logical connection.
While it might be reasonable to assume thathγ ∼C(h), there is
no reason to assume thatγ and the constant of proportionality
are both 1.

We will also include one intentionally nonsensical choice
in the following analysis of the various proposed measures of
author quality. Specifically, we will consider what happens
when authors are binned alphabetically. In the absence of his-
torical information, it is clear that an author’s citation record

http://scientific.thomson.com/
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should provide us with no information regarding the author’s
name. Binning authors in alphabetic order should thus fail any
statistical test of utility and will provide a useful calibration
of the methods adopted. The measures of quality described in
this section are the ones we will consider in the remainder of
this paper.

IV. A BAYESIAN ANALYSIS OF CITATION DATA

The rationale behind all citation analyses lies in the fact
that citation data is strongly correlated such that a ‘good’
scientist has a far higher probability of writing a good (i.e.,
highly cited) paper than a ‘poor’ scientist. Such correlations
are clearly present in SPIRES [11, 21]. We thus categorize
each author by some tentative quality index based on their to-
tal citation record. Once assigned, we can empirically con-
struct the prior distribution,p(α), that an author is in author
bin α and the probabilityP(N|α) that an author in binα has
a total ofN publications. We also construct the conditional
probabilityP(i|α) that a paper written by an author in binα
will lie in citation bin i. As we have seen earlier, studies per-
formed on the first 25, first 50 and all papers of authors in a
given bin reveal no signs of additional temporal correlations
in the lifetime citation distributions of individual authors. In
performing this construction, we have elected to bin authors in
deciles. We bin papers intoL bins according to the number of
citations. The binning of papers is approximately logarithmic
(see Appendix A). We have confirmed that the results stated
below are largely independent of the bin-sizes chosen.

We now wish to calculate the probability,P({ni}|α), that
an author in binα will have the full (binned) citation record
{ni}. In order to perform this calculation, we assume that the
various countsni are obtained fromN independentrandom
draws on the appropriate distribution,P(i|α). Thus,

P({ni}|α) = P(N|α)N!
L

∏
i=1

P(i|α)ni

(ni)!
. (5)

Although large scale temporal correlations are known to be
absent, transient correlations are possible. For example,one
particularly well-cited paper could lead to an increased prob-
ability of high citations for its immediate successor(s). It is
difficult to demonstrate their presence or absence, but the re-
sults of following section will provide a posteriori evidence
that such correlations, if present, are not important.

We can now invert the probabilityP({n j}|α) using Bayes’
theorem to obtain

P(α|{ni}) =
P({ni}|α) p(α)

P({ni})

=
p(α)P(N|α)∏ j P( j|α)n j

∑β p(β)P(N|β) ∏k P(k|β)nk
, (6)

where we have inserted Eq. (5) and used marginalization to
obtain the normalization. The combinatoric factors cancel.
The quantityP(α|{ni}), which represents the probability that
an author with binned citation record{ni} is in author binα.
It can be used in two ways—each of which is interesting.

For any measure chosen Eq. (6) provides us with the prob-
ability that an author lies in author binα. While the value of
any measure (such as the mean number of citations per paper)
can be calculated directly, the calculated values ofP(α|{ni})
provide far more detailed and more reliable information using
all statistical information contained in the data. The large fluc-
tuations which can be encountered in identifying authors by
their mean citation rate or by their maximally cited paper are
reduced. Further, by providing us with values ofP(α|{ni}) for
all α, we obtain a statistically trustworthy gauge of whether
the resulting uncertainties inα are sufficiently small for the
measure under consideration to be a reliable indicator of au-
thor quality. In short, Eq. (6) provides us with a measure of
an author’s ranking independent of the total number papers
currently published, and with information which allows us to
assess the reliability of this determination. The accuracyof
the resulting value ofα increases dramatically with the total
number of published papers. We will return to this point in
Section V.

Fig. 3 shows the probabilitiesP(α|{ni}) that A will lie in
each of the decile bins using the measures discussed in section
II. These measures include:(a) the first initial of the author’s
name,(b) the average yearly output of papers,(c) Hirsch’sh
normalized by the author’s professional ageT, (d) theh-index
normalized by the number of published papers,(e) the citation
count of the single most cited paper,(f) the mean number of
citations per paper,(g) the median number (50th percentile)
of citations per paper, and(h) a 65th percentile measure. It is
clear from the figure that there are significant differences,both
in the accuracy of of the initial assignments and, more impor-
tantly, in the corresponding uncertainties. Large uncertainties
are due to the fact that the conditional probabilities,P(i|α)
are largely independent ofα. Such independence is to be ex-
pected in the case of the alphabetic binning of authors, where
the inability of the citation record to identify the first initial of
authorA’s name is hardly surprising. The figure also suggests
that the number of papers published per year is not reliable.
Initial assignments of authorA based on mean, median, 65th
percentile, and maximum citations all appear to provide an
accurate reflection of his full citation record with a satisfac-
torily small uncertainty. Hirsch’s measures falls somewhere
between the best and worst choice of measures.

Given the large variations in the accuracy and confidence
of decile assignments as a function of the measure selected,
it is of interest to investigate in greater detail the question of
which of these measures is best. We address this question in
the next section.

V. WEIGHING THE MEASURES

In order to obtain a more graphic representation of the qual-
ity of a given measure, we calculate the probability,P(β|α),
that an author initially assigned to binα is predicted to lie
in bin β. In practice, we determineP(β|α) as the average of
the probability distributionsP(β|{ni}) for each author in bin
α. The results are shown ‘stacked’ in Fig. 4 for the various
measures considered. Here, rowα shows the (average) prob-
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FIG. 3: A single author example. We analyze the citation record of authorA with respect to the eight different measures defined in the text.
Author A has written a total of 88 papers. The mean of this citation record is 26 citations per paper, the median is 13 citations, theh-index is
29, the maximally cited paper has 187 citations, and papers have been published at the average rate of 2.5 papers per year. The various panels
show the probability that authorA belongs to each of the ten deciles given on the correspondingmeasure; the vertical arrow displays the initial
assignment. Panel(a) displaysP(first initial|A) (b) showsP(papers per year|A), (c) showsP(h/T |A), (d) showsP(h/N|A), panel(e) shows
P(kmax|A), panel(f) displaysP(〈k〉|A), (g) showsP(k1/2|A) , and finally(h) showsP(k.65|A).

abilities that an author initially assigned to binα belongs in
decile binβ. This probability is proportional to the area of the
corresponding squares. Obviously, a perfect measure would
place all of the weight in the diagonal entries of these plots.
Weights should be centered about the diagonal for an accurate
identification of author quality and the certainty of this iden-
tification grows as weight accumulates in the diagonal boxes.
Note that an assignment of a decile based on Eq. (6) is likely
to be more reliable than the value of the initial assignment
since the former is based on all information contained in the
citation record.

Figure 4 emphasizes that ‘first initial’ and ‘publications per
year’ are not reliable measures. Theh-index normalized by
professional age performs poorly; when normalized by num-
ber of papers, the trend towards the diagonal is enhanced. We
note the appearance of vertical bars in each figure in the top
row. This feature is explained in Appendix A. All four mea-
sures in the bottom row perform fairly well. The initial as-
signment of thekmax measure always underestimates an au-
thor’s correct bin. This is not an accident and merits comment.
Specifically, if an authorhasproduced a single paper with ci-
tations in excess of the values contained in binα, the prob-
ability that he will lie in this bin, as calculated with Eq. (6),
is strictly 0. Non-zero probabilities can be obtained only for
bins including maximum citations greater than or equal to the
maximum value already obtained by this author. (The fact that
the probabilities for these bins shown in Fig. 4 are not strictly
0 is a consequence of the use of finite bin sizes.) Thus, binning
authors on the basis of their maximally cited papernecessarily
underestimates their quality. The mean, median and 65th per-
centile appear to be the most balanced measures with roughly
equal predictive value.

It is clear from Eq. (6) that the ability of a given measure to
discriminate is greatest when the differences between the con-

ditional probability distributions,P(i|α), for different author
bins are largest. These differences can quantified by measur-
ing the ‘distance’ between two such conditional distributions
with the aid of the Kullback-Leibler (KL) divergence (also
know as the relative entropy). The KL divergence between
two discrete probability distributions,p andp′ is defined10 as

KL [p, p′] =∑
i

pi ln

(

pi

p′i

)

. (7)

The Kullback-Leibler divergence is positive and has desirable
convexity properties. It is, however, not a metric due to the
fact that KL[p′, p] 6= KL [p, p′]. While this asymmetry is of lit-
tle concern when the differences betweenp andp′ are small,
some care is required when such differences are large. This
can occur when the data set is so small that some citation
bins are empty or when we bin authors bykmax, in which case
empty bins are inevitable as noted above. We consider the KL
distance between adjacent distributions, Fig. 5 shows the dis-
tances KL[P(i|α),P(i|α+1)] for various measures. The prob-
ability P(β = α+ 1|α) is exponentially sensitive to the KL
divergence. Measures with large KL divergences between ad-
jacent bins provide the most certain assignments of authors.
The KL divergences for the measures not shown are signifi-
cantly smaller than those displayed. The results of Fig. 5 pro-
vide quantitative support for the roughly equal performance
of mean, median, and 65th percentile measures11 seen in Fig-
ure 4. Theh-index normalized by number of publications is

10 The non-standard choice of the natural logarithm rather than the logarithm
base two in the definition of the KL divergence, will be justified below.

11 Figure 5 gives a misleading picture of thekmax measure, since the KL di-
vergences KL[P(i|α+1),P(i|α)] are infinite as discussed above.
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FIG. 4: Eight different measures. Each horizontal row showsthe average probabilities (proportional to the areas of thesquares) that authors
initially assigned to decile binα are predicted to belong in binβ. Panels as in Fig. 3.
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FIG. 5: The Kullback-Leibler divergences KL[P(i|α),P(i|α+ 1)].
Results are shown for the following distributions:h-index normal-
ized by number of publications, maximum number of citations,
mean, median, and 65th percentile.

dramatically smaller than the other measures shown except for
the extreme deciles.

The reduced ability of all measures to discriminate in the
middle deciles is immediately apparent from Fig. 5. This is a
direct consequence any percentile binning given that the dis-
tribution of author quality has a maximum at some non-zero
value, the bin size of a percentile distribution near the maxi-
mum will necessarily be small. The accuracy with which au-
thors can be assigned to a given bin in the region around the
maximum is reduced since one is attempting to distinguish

FIG. 6: Binning according to deciles. This plot displays a normal
distribution (solid black line) as an example of a probability distri-
bution peaked around a non-zero maximum. The grey vertical lines
mark the boundaries of the 10 deciles.

between authors with very similar citation distributions.As
a result, the statistical accuracy of percentile assignments is
high at the extremes and relatively low in the middle of the
distribution where we are attempting to make fine distinctions
between scientists of similar ability. This effect is illustrated
in Fig. 6.
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FIG. 7: The probability that a typical (i.e., most probable)author
with 50 published papers will be assigned to the correct decile as a
function of actual author decile. The median number of citations is
used as a measure.

VI. SCALING

In this section, we consider the question of how many pub-
lished papers are required in order to make a reliable predic-
tion of the percentile ranking of a given author. (We consider
results only using the 65th percentile measure.) If this num-
ber is sufficiently small, analysis along the lines presented
here can provide a practical tool of potential value in predict-
ing long-term scientific performance. In order to address this
question, we will consider howP(α|{ni}) scales as a function
of the total number of publications for an average author in
each bin. Assume that an average author belonging to binα
drawsN papers at random from the distribution ofP(i|α). The
most probable number of papers in each citation bin will thus
be given asni = NP(i|α). Inserting this result into Eq. (6) and
discarding all fixed factors, we find that

P(α|{ni})∼ p(α)

(

∏
i

P(i|α)P(i|α)
)N

. (8)

For the same citation record,{ni}, a similar expression per-
mits determination of the probability that this average author
will be assigned to any bin,β. We see that

lim
N→∞

1
N

ln

(

P(β|{ni})
P(α|{ni})

)

=−KL [P(•|α),P(•|β)] . (9)

This equation illustrates the utility of the KL divergence and
explains the origin of its lack of symmetry. It is clear from
Eqs. (8) and (9) that the probability of assigning this average
author to the wrong bin will ultimately vanish exponentially
with N. Given enough papers, the largest bin will ultimately
dominate.

To obtain a quantitative sense of how many papers are re-
quired in practice, we pose the following question: What is
the probability that a typical author from each author decile
with N = 50 published papers will be assigned to the correct
decile? The answer is plotted as a histogram in Fig. 7 using the

65th percentile citation rate as a measure (Similar resultsare
obtained when using the mean or median citation rates). The
figure indicates thatN = 50 papers is more than sufficient to
identify authors in the first and tenth deciles. In fact, approxi-
mately 25 and 20 papers respectively are sufficient to place au-
thors in these deciles at the 90% confidence level. Fig. 7 also
indicates that≈ 50 published papers are sufficient to make
meaningful assignments of authors to the second, third, and
ninth deciles. All measures have difficulty in assigning au-
thors to deciles 5−8. As indicated by the small values of the
KL divergence in these bins for all measures considered, the
citation distributions of these authors are simply too similar
to permit accurate discrimination (see arguments in the previ-
ous section). On the other hand, the probability that an author
can be correctly assigned to one of these middle bins on the
basis of 50 publication is high. This difficulty is due to the
relatively small range of citations ranges which cover these
bins: the 65th percentile-bins 5 though 8 contain authors with
a 65th percentile between 5 and 13 citations (cf. the narrow
ranges of the middle bins in the case of the mean, displayed
in Table II).

VII. CONCLUSIONS

There are two distinct questions which must be addressed
in any attempt to use citation data as an indication of author
quality. The first is whether the measure chosen to character-
ize a given citation distribution or even the citation distribu-
tion itself reflects the qualities that we would like to probe.
The second question is whether a given measure is capable of
discriminating between authors in a statistically reliable way
and, by extension, which of several measures is best. We have
shown that the use of Bayesian statistics and the Kullback-
Leibler divergence can answer this question in a value-neutral
and statistically compelling manner. It is possible to draw
reliable conclusions regarding an author’s citation record on
the basis of approximately 50 papers, and it is possible to as-
sign meaningful statistical uncertainties to the results.The
high level of discrimination obtained in the highest and low-
est deciles provides indirect support for our assumption that
an author’s citation record is drawn at random from an appro-
priate conditional distribution and suggests that possible addi-
tional correlations in citation data are not important. Further,
the difficulty in discriminating between authors in the middle
deciles suggests that intrinsic author ability is peaked atsome
non-zero value.

The probabilistic methods adopted here permit meaningful
comparison of scientists working in distinct areas with only
minimal value judgments. It seems fair, for example, to de-
clare equality between scientists in the same percentile oftheir
peer groups. It is similarly possible to combine probabilities
in order to assign a meaningful ranking to authors with publi-
cations in several disjoint areas. All that is required is knowl-
edge of the conditional probabilities appropriate for eachho-
mogeneous subgroup.

We note, however, that the number of publications required
to make meaningful author assignments is large enough to
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limit the utility of such analyses in the academic appointment
process. This raises the question of whether there are more ef-
ficient measures of an author’s full citation record than those
considered here. Our object has been to find that measure
which is best able to assign the most similar authors together.
Straightforward iterative schemes can be constructed to this
end and are found to converge rapidly (i.e., exponentially)
to an optimal binning of authors. (The result is optimal in
the sense that it maximizes the sum of the KL divergences,
KL[P(•|α),P(•|β)], over all α andβ.) The results are only
marginally better than those obtained here with the mean, me-
dian or 65th percentile measures.

Finally, it is also important to recognize that it takes timefor
a paper to accumulate its full complement of citations. While
their are indications that an author’s early and late publications
are drawn (at random) on the same conditional distribution
[11], many highly cited papers accumulate citations at a con-
stant rate for many years after their publication. This effect,
which has not been addressed in the present analysis, repre-
sents a serious limitation on the value of citation analysesfor
younger authors. The presence of this effect also poses the ad-
ditional question of whether there are other kinds of statistical
publication data that can deal with this problem. Co-author
linkages may provide a powerful supplement or alternative to
citation data. (Preliminary studies of the probability that au-
thors in binsα and β will co-author a publication reveal a
striking concentration along the diagonalα = β.) Since each
paper is created with its full set of co-authors, such informa-
tion could be useful in evaluating younger authors. This work
will be reported elsewhere.

APPENDIX A: VERTICAL STRIPES

The most striking feature of the calculatedP(β|α) shown in
Fig. 4 is presence of vertical ‘stripes’. These stripes are most
pronounced for the poorest measures and disappear as the re-
liability of the measure improves. Here, we offer a schematic
but qualitatively reliable explanation of this phenomenon. To
this end, imagine that each author’s citation record is actually
drawn at random on the true distributionsQ(i|A). For sim-
plicity, assume that every author has preciselyN publications,
that each author in true classA has the same distribution of
citations withnA

i = NQ(i|A), and that there are equal num-
bers of authors in each true author class. These authors are
then distributed into author bins,α, according to some cho-
sen quality measure. The methods of Sections IV and V can

then be used to determineP(i|α), P({n(A)i }|β), P(β|{n(A)i })
andP(β|α). Given the form of then(A)i and assuming thatN
is large, we find that

P(β|{n(A)i })≈ exp(−NKL [Q(•|A),P(•|β)]) (A1)

and

P̃(β|α)∼ ∑
A

P(A|α)exp(−NKL [Q(•|A),P(•|β)]) , (A2)

whereP(A|α) is the probability that the citation record of an
author assigned to classα was actually drawn onQ(i|A). The
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FIG. 8: A comparison of the approximatẽP(β|α) from Eq. (A2) and
the exactP(β|α) for the papers published per year measure.

results of this approximate evaluation are shown in Fig. 8 and
compared with the exact values ofP(β|α) for the papers per
year measure. The approximations do not affect the qualita-
tive features of interest.

We now assume that the measure defining the author bins,
α, provides a poor approximation to the true bins,A. In this
case, authors will be roughly uniformly distributed, and the
factorP(A|α) appearing in Eq. (A2) will not show large vari-
ations. Significant structure will arise from the exponential
terms, where the presence of the factorN (assumed to be
large), will amplify the differences in the KL divergences.The
KL divergence will have a minimum value for some value of
A= A0(β), and this single term will dominate the sum. Thus,
P̃(β|α) reduces to

P̃(β|α)∼ P(A0|α)exp(−NKL [Q(•|A0),P(•|β)]) . (A3)

The vertical stripes prominent in Figs. 4(a) and (b) emerge as
a consequence of the dominantβ-dependent exponential fac-
tor. The present arguments also apply to the worst possible
measure, i.e., a completely random assignment of authors to
the binsα. In the limit of a large number of authors,Naut,
all P(i|β) will be equal except for statistical fluctuations. The
resulting KL divergences will respond linearly to these fluc-
tuations.12 These fluctuations will be amplified as before pro-
vided only thatNaut grows less rapidly thanN2. The argument
here doesnot apply to good measures where there is signif-
icant structure in the termP(A|α). (For a perfect measure,
P(A|α) = δAα.) In the case of good measures, the expected
dominance of diagonal terms (seen in the lower row of Fig. 4)
remains unchallenged.

APPENDIX B: EXPLICIT DISTRIBUTIONS

For convenience we present all data to determine the prob-
abilitiesP(α|{ni}) for authors who publish in the theory sub-
section of SPIRES. Data is presented only for case of the mean

12 This is true because there will be no choice ofA such thatQ(i|A) = P(i|α).
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P(i|α) P(N|α)
Bin number Citation range Bin Number Total paper range

i = 1 k= 1 m= 1 N= 25

i = 2 k= 2 m= 2 N= 26

i = 3 2< k≤ 4 m= 3 26<N≤ 28

i = 4 4< k≤ 8 m= 4 28<N≤ 32

i = 5 8< k≤ 16 m= 5 32<N≤ 40

i = 6 16< k≤ 32 m= 6 40<N≤ 56

i = 7 32< k≤ 64 m= 7 56<N≤ 88

i = 8 64< k≤ 128 m= 8 88<N≤ 152

i = 9 128< k≤ 256 m= 9 152<N≤ Nmax

i = 10 256< k≤ 512

i = 11 512< k≤ kmax

TABLE I: The binning of citations and total number of papers.The
first and second column show the bin number and bin ranges for the
citation bins used to determine the conditional citation probabilities
P(i|α) for eachα, shown in Table III. The third and fourth column
display the bin number and total number of paper ranges used in the
creation of the conditional probabilitiesP(m|α) for eachα, displayed
in Table IV.

α 〈k〉-range # authorsp(α) n̄(α)
1 0 – 1.69 673 0.1 37.0

2 1.69 – 3.08 673 0.1 41.8

3 3.08 – 4.88 675 0.1 44.0

4 4.88 – 6.94 673 0.1 46.8

5 6.94 – 9.40 674 0.1 52.2

6 9.40 – 12.56 674 0.1 54.3

7 12.56– 16.63 673 0.1 59.5

8 16.63– 22.19 674 0.1 59.0

9 22.19– 33.99 674 0.1 65.4

10 33.99–285.88 674 0.1 72.2

TABLE II: The author bins. This table shows the mean numbers of
citations that define the limits of the 10 author bins.

number of citations. All citations are binned logarithmically
according to the citation bins listed in column one and two
of Table I. The author bins are determined on the basis of
deciles of the total distribution of mean citations,p(〈k〉). Ta-
ble II shows the relevant quantities for these bins. Given the
definitions of both the author- and citation bins, we can deter-
mine the conditional citation distributionsP(i|α) empirically.
These are given in Table III.

We also need the probabilitiesP(N|α) describing that an
author in binα hasN publications. Because of the low num-
ber of authors in each bin, we need to bin the total number of
publications when calculating this probability; we use thelet-
ter m to enumerate theN-bins. BecauseP(N|α) is described
by a power-law distribution13 and since we only consider au-
thors with more than 25 publications, we choose to binN log-
arithmically as displayed in the third and fourth column of
Table I. The conditional probabilities,P(m|α) are displayed
in Table IV.

13 This fact is known asLotka’s Law[22].
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