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Abstract The journal impact factor (JIF) proposed by Garfield in the year 1955 is one

of the most commonly used and prominent citation-based indicators of the performance

and significance of a scientific journal. The JIF is simple, reasonable, clearly defined, and

comparable over time and, what is more, can be easily calculated from data provided by

Thomson Reuters, but at the expense of serious technical and methodological flaws. The

paper discusses one of the core problems: The JIF is affected by bias factors (e.g., doc-

ument type) that have nothing to do with the prestige or quality of a journal. For solving

this problem, we suggest using the generalized propensity score methodology based on the

Rubin Causal Model. Citation data for papers of all journals in the ISI subject category

‘‘Microscopy’’ (Journal Citation Report) are used to illustrate the proposal.

Keywords Journal impact factor � Causal inference � Generalized propensity score �
Rubin Causal Model

Introduction

One of the most commonly used and prominent citation-based indicators of the perfor-

mance and significance of a scientific journal is the journal impact factor (JIF), which was

introduced in 1955 by Garfield (1999):

A journal’s impact factor is based on 2 elements: the numerator, which is the number

of citations in the current year to any items published in a journal in the previous

2 years, and the denominator, which is the number of substantive articles (source

items) published in the same 2 years (p. 979).
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In the early days, the JIF provided for the selection of large and highly cited journals

for the Science Citation Index (Garfield 1955, 2006). Nowadays, the JIF is used to find

important journals with excellent in the sense of highly cited contributions (Todorov and

Glänzel 1988). The JIF is simple, reasonable, clearly defined, and comparable over time

and, what is more, can be easily calculated from data provided by Thomson Reuters

(Glänzel and Moed 2002). However, the JIF reveals some substantial flaws, which have

provoked severe discussions about the use of JIF to evaluate and compare journals (e.g.,

Moed et al. 1999; Leydesdorff and Bornmann 2011; Neuhaus et al. 2009). Glänzel and

Moed (2002) gave a comprehensive overview of the several flaws of the JIF (e.g., nor-

malization for reference practices in different disciplines, the two-year interval) in a state-

of-the-art report. Recently, Vanclay (2012) stresses some technical limitations of the JIF

such as the fallacy of overprecision (display with three decimals), missing confidence

intervals, and the lack of matches between citing and cited papers.

In this contribution we focus on the following core problem with the JIF. ‘‘There is a

wide spread belief that the ISI Impact Factor is affected or ‘disturbed’ by factors that have

nothing to do with (journal) impact’’ (Glänzel and Moed 2002, p. 173). Glänzel and Moed

(2002, p. 178) mentioned five core factors that may influence the JIF: document type, the

paper’s age, the author’s social status (due to the author’s institution, for instance), subject

matter, and the time interval of observation (i.e., the citation window). In a previous

publication (Mutz and Daniel 2012) we recommended stratification on a single covariate

based on Rubin Causal Model (Rubin 1974, 2004) as a statistical tool to correct the JIF

for bias factors. However, this approach is restricted to a small set of bias factors (1–2

covariates). In this contribution we propose a more general approach to correct and adjust

the JIF for an arbitrary number of bias factors, the so-called ‘‘generalized propensity score’’

methodology (Imai and van Dyk 2004; Imbens 2000; Zanutto et al. 2005).

In the following, the statistical background of generalized propensity scores are out-

lined. Next, the proposal will be illustrated using citation data for the subject category

‘‘Microscopy’’ of the ISI Journal Citation Report (JCR).

The generalized propensity score methodology

The JIF is strongly affected by factors that have nothing to do with the significance and

performance of a scientific journal (Glänzel and Moed 2002, p. 173). One of the most

important factors influencing the JIF is the document type of citable information (e.g.,

articles, reviews, letters). There is much empirical evidence that the JIF is positively biased

in favor of reviews, because on average reviews are more cited than, for example, articles

(Braun et al. 1989; Glänzel and Moed 2002; Moed and van Leeuwen 1995). However, if

scientific journals in a certain journal set vary in their proportions of reviews in an certain

observational interval, then any comparisons of journals based on JIF rankings are strongly

biased and, therefore, unfair.

In the following, statistical concepts for the analysis of experimental designs (e.g.,

randomized controlled experiments, observational studies) are adopted to solve this

problem. Experimental designs are very common in medicine and social sciences to test

a causal hypothesis of certain treatments (e.g., impact of drugs) in comparison to an

untreated control. As matter of fact, journals might be like treatments in an experimental

design that vary in their impact (i.e. amount of citations) on the papers (treatment units)

that are published in them. One prominent statistical methodology to analyze experimental

design is the so-called Rubin Causal Model (Rubin 1974, 2004) and its ‘‘potential
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outcome’’ concept, respectively. Causal effects are defined as the differences between

potential outcomes that where measured under different exposures of the same units (i.e.

articles) to treatments (i.e. journals). For instance, the causal effect of publishing a single

paper i in Science involves comparison of the outcome (e.g., number of citations) two years

later with the outcome a paper would have received, had it been published in a journal

other than Science. If Yi(1) is defined as the outcome with publishing in Science (t = 1) and

Yi(2) is defined as outcome publishing in another journal (t = 2), then the difference

ICEi = Yi(1) - Yi(2) is the individual causal effect of publication in Science on the

respective outcome as, for instance, number of citations. Let Si the indicator (random

variable) of publishing a paper i in the journal t (Imbens 2000, p. 707):

SiðtÞ ¼
1 if Ti ¼ 1

0 otherwise

�
ð1Þ

However, for a single paper only one potential outcome (Yi(1) or Yi(2)) can be observed at

the same time, one potential outcome is always missing. This is the fundamental problem

of causal inference (Holland 1986). For paper i, the realized outcome Yi in contrast to the

potential outcome Yi(t) can be expressed as

Yi ¼
Xm

t¼1

YiðtÞ � SðTi ¼ tÞ; ð2Þ

where m = 2 treatments. Note, that for a paper i only one potential outcome is observed

(either for journal 1 or for journal 2).

Instead, we can estimate the average causal effect (PFE) for journal 1 versus journal 2 in

a population of papers, which is defined as ACEi = E(Yi(1)) - E(Yi(2)) with E(Yi(1)) is

nothing but the observed JIF of Science and E(Yi(2)) is the observed JIF of the comparison

journal. However, the observed mean differences or prima facie effect between the two

journals equals the average causal effect ACE only, if the papers are fully randomly

assigned to the journals. In this case each paper has the same probability to be assigned to

Science. Through randomization the journals no longer differ in any factors (e.g., pro-

portions of document types). As a consequence, first, the prima facie effects are the true

estimates of the average causal effect. Second, the JIF as the expected value across the

observed potential outcomes is an unbiased estimate of the true impact of a journal.

However, in bibliometrics it is illusory to assume a random assignment mechanism for

papers to journals. The idea of the RCM is to introduce pre-submission covariates X (e.g.,

number of references, type of document, number of pages), in order to identify the

assignment mechanism. The ideal covariate concurrently correlates with the journal

assignment and influences the mean citations, but is not itself affected by the respective

journal. For example, journals vary with respect to the proportion of various document

types. Various document types, differ with respect to mean citations. Reviews attract on

average more citations than articles or letters do. The findings of the study of Neuhaus et al.

(2009) regarding the journal ‘‘Angewandte Chemie’’ and ‘‘The Journal of the American

Chemical Society’’ showed that information available in the Science Citation Index is a

rather unreliable indication of the document type and is, therefore, inadequate for com-

parative analysis. Therefore, the number of references should be used as covariate or proxy

of the real document type.

The average causal effects are unbiased or unconfounded, if the following so-called

strong ignorability condition can be held (Rubin 2007):
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YðtÞ?SðtÞjX ð3Þ

The potential outcomes Y(t) are independent of the journal assignment S(t) given the

covariates X. In the case of one covariate the strong ignorability condition can be easily

satisfied by comparing the JIFs for each subclass of the covariate (e.g., document types) or

by summing these JIFs across the subclasses weighted by the marginal frequencies (e.g.,

frequencies of the document types across the two journals) to yield an overall uncon-

founded JIF for each journal (Cochran 1968; Mutz and Daniel 2012; Rubin 1977, 2006).

In a fictitious example (see Table 1) journal 1 is positively biased in favor for reviews

(N = 80 reviews, N = 20 articles). The overall prima facie effect (PFA) between the two

journals amounts to 62-38 = 24 citations. However, the mean differences between the

two journals with respect to the different document types, as well as the overall mean

difference (i.e. ACE) weighted by the marginal frequency 0.50, are zero (0.50 9 [70 -

70] ? 0.50 9 [30 - 30] = 0). In sum, the unconfounded average causal effect is zero and

the unconfounded, i.e. unbiased JIFs amount both to 50.

In the case of a set of covariates propensity scores are more appealing (e.g., Guo and

Fraser 2010). The propensity r(t = 1, X) is the probability that a paper is assigned to

journal t = 1 given a set of covariates. The propensity scores can be estimated by an

ordinary logistic regression (log(r/(1 - r) = Xb), and are not only obtained for papers

published in journal t = 1, but also for papers published in journal t = 2. Identical pro-

pensity scores in both journals reflect a balance in the distribution of the corresponding set

of covariates X in journal 1 and journal 2. Thus, the strong ignorability condition (Eq. 3)

can be transformed to

YðtÞ?SðtÞj rðt; XÞ

0\rðt; XÞ\1;

ð4Þ

in the sense, that the potential outcomes Y(t) are independent from the journal assignment

S(t) given the propensity scores r(t, X). Please note, that the propensity scores vary within

the interval [0, 1]. Therefore, covariates must be excluded from data analysis, which

definitely predict the assignment to a journal (r(t, X) = 1) or not (r(t, X) = 0). For

instance, a covariate ‘‘document type—review or not’’ must be excluded, if there are any

journals in the journal set, which only publish reviews.

To satisfy the strong ignorability condition, the stratification is on the propensity scores

instead of stratification on a single covariate as shown in Table 1. 5 strata (quintiles) might

be sufficient to remove about 90% of initial biases in the journals (Rosenbaum and Rubin

1984, p. 521). In order to apply the propensity scores for balancing the two groups, it must

Table 1 Number of papers and mean number of citations for two journals and two document types
(fictitious data)

Document type Journal 1 Journal 2 Total Npap

Npap Meancit Npap Meancit

Review 80 70 20 70 100 (50%)

Research article 20 30 80 30 100 (50%)

Total 100 62 100 38 200 (100%)

Npap number of papers, Meancit mean number of citations
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be guaranteed that there is an overlapping between the distributions of propensity of the

two journals. A further assumption is the Stable Unit Treatment Value Assumption
(SUTVA), which claims, that the potential outcomes of one paper are not affected by the

journal assignment of any other paper (Rubin 2005, p. 323). This assumption is violated,

for example, if similar papers are published in two journals. Then it might be the case, that

the publication of the paper in journal B has an impact on the citations of the similar paper

in journal A. However, such rare cases can be neglected.

The classical propensity score methodology is restricted to binary cases (e.g., treatment

versus control, journal A versus journal B). However, there are several attempts to embed

this concept in a larger class of a so-called generalized propensity score methodology for

multi-valued treatments (Imai and van Dyk 2004; Imbens 2000; Feng et al. 2011; Kluve

et al. 2012; Lu et al. 2011; Rosenbaum 2010; Spreeuwenberg et al. 2010; Wang et al. 2001;

Zanutto et al. 2005). The treatments may be categorical with more than two groups, ordinal

with ranked treatments (e.g., dose–response relationships), or continuous. If the strong

ignorability assumption (Eq. 2) is held, then the entire set of m potential outcomes of a

paper must be independent from the m journals in a SCR journal set given the covariates.

In order to avoid this rather strong assumption, Imbens (2000, p. 707) introduced the

concept of weak unconfoundedness. The assignment of a journal (treatment) T is weakly

unconfounded given pre-submission (pre-treatment) covariates X (or the generalized

propensity scores r), if Eq. 3 (or Eq. 4) is held, where Si(t) equals 1, if paper i is published

in journal t, and 0, if paper i is published in any other journal of the journal set. In other

words, the binary comparison of two journals is replaced by the binary comparison of a

special journal with the entire journal set with the respective journal removed from the set.

Let T be multinomially distributed, then the generalized propensity scores could be

estimated by a multinomial logistic regression (Imai and van Dyk 2004, p. 856). For m
journals, there are m sets of generalized propensity scores for paper i (Feng et al. 2011):

r 1;Xið Þ ¼ p T ¼ 1jXið Þ
r 2;Xið Þ ¼ p T ¼ 2jXið Þ
. . .

r m;Xið Þ ¼ p T ¼ mjXið Þ
where r 1;Xið Þ þ r 2;Xið Þ þ � � � þ r m;Xið Þ ¼ 1:0

Let b(t, r) denote the expected outcome (mean citation) of a paper in journal t given

generalized propensity score r(t, X) = r. If the journal assignment is weakly unconfounded

given the covariates X, for all journals (t = 1 to T) the following results are obtained (Feng

et al. 2011; Imbens 2000, p. 708):

bðt; rÞ ¼ EfYðtÞjrðt; XÞ ¼ rg ¼ EfY jT ¼ t; rðT ; XÞ ¼ rg ð5Þ

The expected value of a paper in journal t with respect to the distribution of r(t, X) is

(Imbens 2000, p. 708)

EfYðtÞg ¼ Efbðt; rðt; XÞÞg; ð6Þ

where E{Y(t)} is the unconfounded JIF of a journal.

Following Imbens (2000, p. 708), Feng et al. (2011) offer a propensity score weighting
formula to finally estimate the unconfounded expected value for a journal, and the

unconfounded JIFs, respectively:
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JIFt ¼ Ê Y tð Þf g ¼
Xn

i¼1

Yi � SðTi ¼ tÞ
rðt; XiÞ

" #
�
Xn

i¼1

SðTi ¼ tÞ
rðt; XiÞ

" #�1

ð7Þ

where the generalized propensity scores r(t, X) are normalized (summed to 1.0 in each

journal t). Alternatively, the stratification method, mentioned above, can be applied using

the m propensity scores for each paper.

Materials and methods

According to Garfield’s (1955, 2006) definition, we retrieve the JIF data for the year 2010

of all journals of the SCI section ‘‘Microscopy’’. The data encompass the total number of

citations in the year 2010 of all citable papers (articles, letter, reviews, etc.) that were

published in the years 2008 and 2009 in the 9 scientific journals of the Thomson ISI SCR

section, as mentioned above (N = 2,138 papers). There are no special reasons for choosing

this journal set, except that the process of data generation for the chosen SCR subject

category should not be too costly.

Regretfully, as Glänzel and Moed (2002) point out, the JIFs included in the Science

Citation Index or the Social Sciences Citation Index is inaccurate:

In particular, ISI classifies papers into types. In calculating the numerator of the IF,

ISI counts citations to all types of papers, whereas as citable papers in the denom-

inator ISI includes as a standard only research articles, notes, and reviews (p. 181).

Editorials, letters to the editor, and other types of papers, when they are cited, are not

included in the denominator of the ISI JIFs. Thus, the JIFs published in JCR may not fully

agree with the JIFs calculated in our study.

For balancing purposes the following four characteristics of the papers are included in

the generalized propensity score estimation (Table 2): the publication year (0 = 2008,

1 = 2009), the number of authors, the number of pages, and the number of references. The

paper type was not included in the analysis for two reasons: First, one journal of the journal

set, ‘‘Micron—The International Research and Review Journal for Microscopy’’, publishes

only papers, which are coded as reviews in ISI Web of Science.

Second, the ISI-document type might not be an accurate indicator of the true document

type. For instance, the journal Micron does not only aim at publication of reviews

(www.journals.elsevier.com/micron/). Instead, we include the number of references as an

indicator of document type, which also might not be affected by the journal assignment.

The higher the number of references, the more the paper reviews literature. Rubin and

Thomas (1996) recommended to include in the propensity score estimation even unim-

portant covariates at the expense of efficiency loss. It is better to include unimportant

covariates than to enhance bias by leaving out important covariates.

In the first step, the generalized propensity scores were estimated using multinomial

logistic regression. In the second step the overlapping of the propensity distributions between

a journal and all other journals was inspected. In the third step, following Hirano and Imbens

(2004, p. 81) the balancing of the covariates are tested using t tests. In the last step, the

unconfounded or unbiased JIFs are estimated by the propensity score weighting method

(Imbens 2000, p. 708; Feng et al. 2011). To estimate standard errors of the JIFs a resampling

method (bootstrapping) was used (Fan et al. 2001). The covariates were mean centered.

All data analysis was performed with SAS (Allison 1999; SAS Institute Inc. 2009).
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Results

Generalized propensity score estimation

In the first step we were applying multinomial logistic regression with journal assignment

T as the dependent variable, in order to estimate the generalized propensity scores. For 9

journals overall 8 intercept parameters and 8 regression parameters for each covariate were

estimated. In order to save space, we only report the test statistics instead of the parameters

for two models, one model with the main effects (Model 1), and one model with the main

and two-way interaction effects (Model 2).

Overall, model 2 outperforms model 1 (Table 3): The Akaike’s Information Criterion

(AIC) decreases from 8151.25 (Model 1) to 8029.52 (Model 2), the Pseudo-R2 as a

measure of the amount of explained variance increases from 0.24 to 0.31, as well as the

overall Wald v2, which tests, whether all parameters are zero.

According to Feng et al. (2011) and Rubin and Thomas (1996) overparametrization is

not crucial. As mentioned above, it is better to include unimportant covariates to yield the

best estimates of generalized propensity scores than to enhance bias by leaving out

important covariates. In sum, number of references, number of pages and their interaction

are the most important predictors of the journal assignment with the highest Wald v2.

Check on overlapping of the propensity score distributions

As mentioned above, corresponding papers of a journal and any another journal with the

same propensity score values are balanced with respect to the distribution of covariates.

Therefore, it must be guaranteed that there is some overlapping between the generalized

propensity scores of the two groups.

Table 3 Test statistics for the multinomial logistic regression model used to estimate generalized pro-
pensity scores (N = 2,138 papers)

Covariate Model 1 Model 2
Wald v2 (df = 8) Wald v2 (df = 8)

Publication year 36.59* 40.86*

Number of authors 59.27* 22.35*

Number of pages 147.52* 88.57*

Number of references 156.17* 107.35*

Number of authors 9 number of pages 28.60*

Number of authors 9 number of references 25.20*

Number of pages 9 number of references 71.17*

Year 9 number of authors 17.60*

Year 9 number of pages 36.05*

Year 9 number of references 19.29*

Overall Wald Test (df = 80) 422.87* 549.46*

AIC 8151.25 8029.52

Pseudo-R2 0.24 0.31

df degrees of freedom, AIC Akaike’s Information Criterion

* p \ 0.05
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Figure 1 contains box plots of the estimated generalized propensity score for each

journal and each in comparison to all other journals (‘‘other’’). Box plots depict the

distribution of data (Bornmann et al. 2008). The lower boundary of the box marks the first

quartile (25th percentile), a line within the box indicates the median, and the upper

boundary of the box marks the third quartile (75th percentile). Error bars (whiskers) above

and below the box indicate the 90th and 10th percentiles.

Except for the journal ‘‘Histochemistry/Cellbiology’’ there is always some overlapping

between the corresponding distributions (journal vs. ‘‘others’’). But even for the journal

‘‘Histochemistry/Cellbiology’’ in the first quartile (25%) there are still 28 papers in any

other journal (‘‘other’’) with the same generalized propensity scores. Therefore, the

assumption of overlapping propensity score distributions can be hold.

Fig. 1 Overlapping of the propensity score distribution between a journal and the other journals (‘‘other’’)
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Check on covariate balance

Once generalized propensity scores (GPS) are estimated, one must check on covariate

balance. The balance is satisfactory, if the papers published in a special journal does not

differ anymore on the average from the papers in other journals with respect to all

covariates. Following Hirano and Imbens (2004, p. 81) for each journal t, we use five

strata, defined by the quintiles of the propensity score for the respective journal t, i.e. r(t,
Xi). For each strata, the mean difference (and its standard deviation) between journal t, and

all other journals are calculated for each covariate and aggregated across the five strata

using the marginal frequencies as a weight (see Table 1), in order to generate the overall

mean difference and t test, respectively.

In Table 4 the t statistic for the mean differences between a journal and all other

journals, separated for data, which are either adjusted (‘‘Yes’’) or unadjusted (‘‘No’’) for

the generalized propensity score. As expected, in most cases the t statistic in the adjusted

case is lower than the t statistic in the unadjusted case.

However, not all t values adjusted for GPS fall short of the significance level, some

t value adjusted for GPS are even higher than the corresponding t value in the unadjusted

case: For the covariate ‘‘number of references’’, for instance, the t statistic of 2.27 for the

unadjusted data of the journal ‘‘Ultrastructural Pathology’’ is higher than the t statistic for

the adjusted one (t value = 3.87). Out of 180 t statistics 37.8% are statistically significant

before the generalized propensity score adjustment, but only 8.9% are statistically sig-

nificant after the adjustment. Kluve et al. (2012, p. 14) pointed out, that t statistic might be

prone to a ‘‘balance fallacy’’, i.e. for some covariates the t statistic drops which might be

driven by increased variances instead of decreased mean differences. In our study we did

not find any substantial differences in the standard errors between the unadjusted and the

adjusted group.

In conclusion, the generalized propensity score adjustment provokes a high, but not

perfect balance regarding all included covariates and their two-way interactions.

Estimation of the unconfounded JIFs

Finally, the unconfounded JIFs are calculated using the formula in Eq. 7 (Table 5). There

are considerable differences between the GPS adjusted and unadjusted JIFs. For example,

the raw JIF of the journal ‘‘Histochemistry/Cellbiology’’ shrinks about 26% from 4.68 to

3.44, the JIF of the journal ‘‘Micron’’ increases about 60% from 1.56 to 2.49.

Even the ranking of the journals changes slightly. The rank correlation amounts to 0.66

(Kendall’s tau). The standard errors were calculated using bootstrapping: 1,000 samples

with replacement were drawn from the original data for each journal with identical sample

size as the original data (N = 2,138). Then, for each sample the generalized propensity

scores were calculated and the GPS adjusted and unadjusted JIFs. The standard deviation

of the estimated JIFs for each sample was used as an estimate of the standard errors of the

JIF (SE) for a journal. The standard errors of the GPS adjusted JIFs are higher than the

corresponding unadjusted one.

Conclusions

Without any doubt, the JIF proposed by Garfield in the year 1955 (Garfield 1955, 2006) is

still one of the most commonly used and prominent citation-based indicators of the
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performance and significance of a scientific journal. The JIF may profit from its robustness,

simplicity and rapid availability but at the expense of serious technical and methodological

flaws, as Glänzel and Moed (2002) outlined in their state-of-the-art report or Vanclay

(2012) mentioned in his recent review to the JIF. Our contribution deliberately looked at

one core problem, the influence of factors that have nothing to do with the impact of a

journal (called bias factors). As solution to this problem, we discussed the Rubin Causal

Model (RCM) (Rubin 2004, 2006).

The RCM offers a rigorous definition of bias factors in combination with methods

to correct the journal impact for these influences: A bias factor is defined as a covariate

that is, first, not influenced by the journal itself. Second, its frequency distribution

differs between the journals of the respective journal set, and, third, the various levels of

the covariate shows different effects on the total number of citations. This definition fully

applies, for instance, to the covariate ‘‘type of documents’’ (Braun et al. 1989). Scientific

journals differ in the frequencies of certain papers, especially reviews or research articles.

Additionally, different document types show different levels of total citations. For instance,

reviews attract on average more citations than articles or letters do. It must be noted that

the literature databases offer only a rather unreliable indicator of the document type

(Neuhaus et al. 2009). The method of stratification on core covariates, as recently proposed

by Mutz and Daniel (2012), is restricted to few covariates. However, the so-called

assignment mechanism to journals is more complex, and requires many covariates to give a

true picture of what is going on in journals. We suggest generalized propensity score as

methodology to adjust JIF for an arbitrary number of covariates. A generalized propensity

score is simply the probability, that a paper is published in a certain journal. Papers of

different journals with the same propensity score are balanced according to all covariates

included. As concluded in Mutz and Daniel (2012), we would even go so far as to say that

any kind of comparisons between journals or research groups or any comparison with

reference values in bibliometrics in general must be based on such a causal framework to

justify the fairness of the results.

The suggested proposal might be very promising; however, it cannot be denied that

there are some limitations:

Table 5 Generalized propensity score adjusted and unadjusted journal impact factors for the ISI SCR
subject category ‘‘Microscopy’’ for the year 2010

Journal ISI-JIF Unadjusted for GPS Adjusted for GPS ðJIFp�JIFrÞ
JIFr

%

JIFr SEr Rankr JIFp SEp Rankp

Histochemistry/Cell biology 4.72 4.68 0.31 1 3.44 0.31 1 -26.49

Ultramicroscopy 2.06 2.00 0.12 2 2.30 1.02 3 15.22

Journal of Microscopy Oxford 1.87 1.77 0.10 3 2.10 0.27 4 18.65

Journal of Electron Microscopy 1.77 1.62 0.24 4 1.69 0.36 6 3.89

Microscopy Research Technique 1.72 1.58 0.18 5 1.63 0.33 7 3.26

Micron 1.65 1.56 0.11 6 2.49 0.65 2 60.07

Microscopy–Microanalysis 3.26 1.34 0.17 7 1.79 0.72 5 33.43

Scanning 1.33 1.14 0.19 8 1.28 0.33 8 11.36

Ultrastructural Pathology 0.73 0.72 0.11 9 0.61 0.12 9 -13.78

JIF journal impact factor, ISI ISI journal impact factor, published in SCR, r raw, p generalized propensity
score (GPS) adjusted, SE boostraped standard error, rank rank of the journal according to the JIF
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– Sampling dependency: The empirical example presented can only illustrate the

proposal. The empirical results depend strongly on the chosen data (i.e., year, JCR

subject category).

– Assignment mechanism: To adjust the JIFs correctly, the true assignment mechanism of

the papers to the journals must be known. In bibliometrics we do not know exactly the

actual assignment mechanism. Additionally, it must be plausible, that journals do not

influence the included covariates.

– Covariates: The JIFs can only be corrected for covariates that differ in their frequencies

between journals. For discipline, for instance, which might not vary within a specific

journal set, the proposed adjustment procedure cannot be applied.

In spite of these limitations, we guess that the proposal offers some promising sub-

stantive improvements for the estimation of JIFs, as Vanclay (2012) calls for, but further

empirical studies and theoretical statistical work are needed.
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