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Abstract Here we show a novel technique for comparing subject categories, where the prestige of 

academic journals in each category is represented statistically by an impact-factor histogram. For 

each subject category we compute the probability of occurrence of scholarly journals with impact 

factor in different intervals. Here impact factor is measured with Thomson Reuters Impact Factor, 

Eigenfactor Score, and Immediacy Index. Assuming the probabilities associated with a pair of 

subject categories our objective is to measure the degree of dissimilarity between them. To do so, 

we use an axiomatic characterization for predicting dissimilarity between subject categories. The 

scientific subject categories of Web of Science in 2010 were used to test the proposed approach for 

benchmarking Cell Biology and Computer Science Information Systems with the rest as two case 

studies. The former is best-in-class benchmarking that involves studying the leading competitor 

category; the latter is strategic benchmarking that involves observing how other scientific subject 

categories compete. 
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Introduction 

During the last decades the evaluation of research activity by means of 

bibliometric methodologies has widely expanded. Researchers are more than ever 

immersed in a demanding “publish or perish” culture, fueled not just by 

researchers' competitiveness, but also by national research assessment agencies 

which have become more and more frequent (Jiménez-Contreras et al., 2003; 

Abramo et al., 2011) as a means to favor countries and universities' improvement 

in terms of research performance. 

Although these exercises are conceived for enhancing research excellence, they 

seemed to prompt quantity rather than quality at a first stage (Moed, 2008). 

However, over the last decade a shift in researchers' publication behavior can be 

observed. In this sense, many studies suggest a greater demand on publishing in 

high-ranked journals as the means to reaching academic excellence and success 

rather than just focusing on quantity (Leahey, 2007). But researchers' efforts to 

publish in reputed journals are not only the consequence of the introduction of 

bibliometric indicators, but also their historical need for acknowledgment and 

prestige through their works (Luukkonen, 1992). 

Although some malpractices have been found due to this obsessive need to 

publish in highly ranked journals (Fanelli, 2010), researchers ambition to gain the 

greatest visibility and hence, a greater chance to have more impact, seems to be 

completely legitimate. In this sense, the Journal Impact Factor (hereafter IF) has 

played a key role as judge, not only of journals' prestige through Thomson 

Reuters' Journal Citation Reports (hereafter JCR), but also of national research 

assessment exercises focused on distributing research funding (Jiménez-Contreras 

et al., 2003; Adam, 2002). Although IF was not originally intended for this use, it 

is considered a proxy for research competitiveness along with other indicators 

related to research impact and visibility, and it has become the main criterion 

when ranking journals. However, many critical voices have emphasized many of 

its shortcomings and limitations when using IF for such purposes. 

In this line of thought, Leydesdorff & Bornmann (2011) discuss that the IF may 

be misleading when measuring impact as citation curves are highly skewed. Moed 
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(2008) also points out a well discussed limitation related to the different citation 

patterns each research field has which would benefit journals from certain areas in 

which the citation rate is higher from those in which the citation rate shows lower 

figures. In this sense, the JCR tries to solve this latter limitation by dividing 

journal rankings according to subject categories which are used as proxy for 

research fields. 

However, such approach also shows some shortcomings which may be taken into 

account. Because these journal rankings are usually divided into quartiles (Garcia 

et al, 2012a) considering as highly ranked those journals belonging to the first 

quartile, it is easy to assume that different journals positioned in the first quartile 

for different subject categories should have similar impact. But this assumption 

may be questionable as, on the first hand, the division between subject categories 

is not always clear, in fact it is common to find many journals categorized in more 

than one, and secondly, research is becoming more interdisciplinary in certain 

areas (Buter et al., 2011). Therefore, in some cases, researchers may be interested 

on publishing in journals belonging to a similar subject category to that which 

would encompass their line of work, but which may contain journals with a higher 

impact, consequently gaining more visibility. 

In line with a previous study in which subject categories where ranked according 

to their multidimensional prestige (Garcia et al, 2012b), in this paper our target is 

to apply a novel methodology for benchmarking subject categories. This 

methodology is based on information gain or Kullback-Leibler divergence 

(Kullback & Leibler, 1951), in which distributions of a given indicator are 

compared meaning that the more similar they are, the lesser information gain 

there is between them. This methodology has already been successfully tested for 

comparing academic institutions (García et al., 2012c) and citation patterns of 

book chapters (Torres-Salinas et al., 2013). In this approach, the prestige of 

academic journals in each category is represented statistically by an impact-factor 

histogram, and thus, we compute the probability of occurrence of scholarly 

journals with impact factor in different intervals. Here impact factor is measured 

with Thomson Reuters Impact Factor, Eigenfactor Score, and Immediacy Index. 
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Specifically we aim at studying if the information gain measure could be a valid 

indicator to compare categories according to their impact distributions and which 

impact indicators should be used. Assuming the probabilities associated with a 

pair of subject categories our objective is to measure the degree of dissimilarity 

between them using a formal tool. We address the following research questions 

(RQ): 

RQ1 – Can the information gain methodology be applied to compare subject 

categories in terms of impact similarity? 

RQ2 – How do impact indicators reflect the similarity between subject categories? 

RQ3 – Is this methodology affected by the interdisciplinarity of subject 

categories? 

The paper is structured as follows. In section 2 we present the data source and the 

basic methodology for benchmarking scientific subject categories. Next, in 

section 3 we test our methodology through two case studies. For this, we used the 

174 scientific subject categories of Web of Science in 2010 and we selected as 

case studies Cell Biology as a category highly focused on an enclosed field, and 

Computer Science Information Systems as a more interdisciplinary field. These 

two fields were selected as the offer two viewpoints from which one can compare 

categories. The former case study is best-in-class benchmarking, involving the 

study of a leading competitor category; the latter is strategic benchmarking, which 

involves observing how other scientific subject categories compete with 

Computer Science Information Systems. In section 4 we end with some 

concluding remarks. Finally, in the Appendix we refer the reader to the axiomatic 

characterization for predicting dissimilarity between subject categories proposed. 

 

Data and methods 

In order to analyze the degree of dissimilarity between scientific subject 

categories based on the prestige of their respective journals, the Thomson-Reuters 

Web of Science database was selected as data source. This decision is based on 

the great regard this database has for research policy makers, as it is considered to 
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store the most relevant scientific literature in the world. This database publishes 

every year the Journal Citation Reports (henceforth JCR), which are lists of 

journals classified by subject categories and which provide 8 different 

bibliometric indicators (Total cites, IF, 5-year IF, Immediacy Index, Articles, 

Cited half-life, Eigenfactor Score and Article Influence Score). Next, we explain 

in detail the retrieval process and briefly describe the motives behind the selection 

of the two study cases (Cell Biology and Computer Science Information Systems). 

Then, we give the key points for interpreting the methodology employed, which 

will be represented by heliocentric clockwise maps. For further information on 

such methodology, the reader is referred to the Appendix. 

Data source 

We retrieved the data from the 2010 edition of the JCR which is structured into 

174 scientific subject categories. For this we downloaded manually the IF, 

Eigenfactor Scores and Immediacy Index of all journals. The most relevant impact 

indicator is the JIF, which is often used to rank journals. This indicator is 

commonly used to measure journals’ impact and would be the natural choice in 

order to estimate the impact-factor histograms over which we calculate the degree 

of dissimilarity. However, we did not limit our study to this indicator and we also 

selected the Eigenfactor Scores and the Immediacy Index in order to study 

differences among each other. Once data was processed, we selected two 

scientific subject categories (Cell Biology, and Computer Science Information 

Systems) in order to estimate their information gain values when comparing with 

the rest of the subject categories. 

Garcia et al. (2012b) observed that Cell Biology is the top subject category of a 

ranking of the 174 scientific subject categories of Web of Science in 2010, based 

on the measurement of multidimensional prestige of influential journals. The 

multidimensional prestige of influential journals takes into account the fact that 

several prestige indicators should be used for a distinct analysis of the impact of 

scholarly journals in a subject category. After having identified the 

multidimensionally influential journals, their prestige scores can be aggregated to 

produce a summary measure of multidimensional prestige for a subject category. 
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In Garcia et al. (2012b) unsupervised statistical classification was used in order to 

identify groups of scientific subject categories from the Web of Science in 2010, 

sharing similar characteristics in the corresponding values of multidimensional 

prestige. That is, subject categories having the highest, medium, and lowest 

multidimensional prestige of influential journals. In Table 4 of Garcia et al. 

(2012b) we observe that Computer Science Information Systems belongs to the 

class of scientific subject categories having medium multidimensional prestige of 

influential journals. In conclusion, the selected subject categories (Cell Biology, 

and Computer Science Information Systems) are very different between each 

other, making them interesting cases to analyze. 

Methodology for benchmarking scientific subject categories 

In this study we benchmark two subject categories from the JCR in 2010. Here, 

the prestige of academic journals in different subject categories is characterized 

statistically by impact-factor histograms. Here we will refer as impact factor to the 

different prestige indicators analyzed, that is, IF, Eigenfactor Score (ES) and 

Immediacy Index (II). 

For instance, we can compute the probability of occurrence of journals with IF 

values in different intervals. Figure 1 shows the corresponding histograms of IF 

values which were computed to both Cell Biology and Computer Science 

Information Systems. 

Fig. 2 illustrates the Eigenfactor-Score histograms for representing Cell Biology 

and Computer Science Information Systems in 2010. In this case we calculate the 

probability of occurrence of academic journals having different ES values, for 

each category under analysis. 

And Fig. 3 shows the corresponding Immediacy-Index histograms based on the 

probability of occurrence of academic journals with II values in different 

intervals, for both Cell Biology and Computer Science Information Systems in 

2010. 

Fig. 1 Thomson Reuters Impact-Factor histograms representing Cell Biology and Computer 

Science Information Systems in 2010 
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Let us assume the discrete probabilities (histogram) associated with a reference 

subject category R  (e.g., Computer Science Information Systems) and another 

category of input I  as those given by P  and Q , respectively. In the Appendix 

we present a basic axiomatic characterization for a measure of information gain 

between an input subject category I  and another of reference R , where the 

information gain measures the degree of dissimilarity between these two subject 

categories R  and I , based on the respective histograms P  and Q . 

Fig. 2 Eigenfactor-Score histograms representing Cell Biology and Computer Science 

Information Systems in 2010 

In this paper, following the results presented in the Appendix, the degree of 

dissimilarity between two discrete probability distributions P  and Q  is to be 

measured using the Kullback-Leibler information function (Kullback, 1978). 

Information gain or Kullback-Leibler information function is a measure that 

allows us to select the subject categories more alike to a given category of 

reference. It compares two distributions; a true probability distribution  xP  and 

an arbitrary probability distribution  xQ , and indicates the difference between 

the probability of X  if  xQ  is followed, and the probability of X  if  xP  is 

followed. 

Fig. 3 Immediacy-Index histograms representing Cell Biology and Computer Science Information 

Systems in 2010 

If we predict the dissimilarity between two subject categories (a given reference 

category R  and another category of input I ) based on their information gain, 

then the minimum value of information gain between R  and any other category 

of input I  leads to the most alike category I  to the journal impact distribution of 

the reference category R . 

In order to illustrate the information gain values, we have developed what we 

have called the 'Heliocentric Clockwise Maps' (see Fig. 4). These maps are 

interpreted as follows. The center of the circle would be the subject category to 

which the other categories are compared; in our case it would represent the 

reference subject category (e.g., Cell Biology). The dots surrounding the centre of 
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the circle would represent the input subject categories. Therefore, the ones closer 

to the center (lower information gain values) would show a more similar journal 

impact profile (impact factor histogram) to that of the reference subject category 

and the ones further way (higher information gain values) would perform more 

differently. The maps are named clockwise because the order of the subject 

categories represents their multidimensional prestige values starting on the top of 

the map (see Table 4 in Garcia et al. (2012b)). Therefore, the subject category at 

the top of the circle has the highest multidimensional prestige and so on, until the 

one on its left side which shows the lowest multidimensional prestige. This allows 

the reader to better interpret the meaning of more or lesser information gain 

(higher multidimensional prestige or lower multidimensional prestige) and the 

relation between information gain and multidimensional prestige. Only 30 subject 

categories were considered in the construction of the heliocentric clockwise maps. 

These are the most similar ones to the one used as case study. 

Fig. 4 Methodology for benchmarking scientific subject categories 

Study Case: Benchmarking Scientific Subject 

Categories of Web of Science in 2010 

In this section we designed an ad hoc heliocentric map, allowing the reader to 

easily analyze the similarity of the study case scientific subject categories with the 

rest of scientific subject categories of Web of Science. 

We use the Information Gain (i.e., Kullback-Leibler information function) based 

on three different types of histograms that characterize probabilistically the 

subject categories according to their impact. In this case, we will compare them in 

the two scenarios above mentioned with the measurement of multidimensional 

prestige of influential journals in each subject category proposed by (Garcia et al, 

2012b) and where the prestige scores of multidimensionally influential journals 

are aggregated to produce a summary measure of multidimensional prestige for 

each category. 

Fig. 5 Heliocentric map representing the Information Gain for Cell Biology in 2010. Subject 

categories are characterized by Thomson Reuters Impact-Factor histograms. 
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In Figures 5-10 we show the results obtained for our case studies. In these figures, 

the reference subject category is positioned in the middle of the heliocentric map 

(either, Cell Biology or Computer Science Information Systems) and other 30 

scientific subject categories are placed around it considering their similarity. 

These 30 categories are the ones with the lowest values of information gain with 

respect to the reference subject category. That is, they are the 30 categories most 

alike to the reference one in each case study. Scientific subject categories are 

ordered clockwise in the heliocentric map according their multidimensional 

prestige values starting on the top of the figure (see Table 4 in Garcia et al., 

2012b). 

Fig. 6 Heliocentric map representing the Information Gain for Cell Biology in 2010. Subject 

categories are characterized by Eigenfactor Score histograms. 

In Figs. 5 and 8, scientific subject categories of Web of Science are characterized 

IF histograms; whereas in Figs. 6 and 9, subject categories are represented by ES 

histograms. Finally, to produce the results illustrated in Figs. 7 and 10, categories 

of Web of Science were represented using II histograms. 

In Figures 5-7, we observe that the most similar scientific subject categories to 

Cell Biology are life or medical sciences categories with just a few exceptions 

(e.g., Nanoscience and Nanotechnology; Chemistry Physical). This is best-in-class 

benchmarking that involves studying the leading competitor, i.e., Cell Biology. It 

identifies scientific subject categories that are leaders in the JCR for the 2010 

edition, using a specific statistical characterization (i.e., the IF, ES, or II 

histograms). 

Fig. 7 Heliocentric map representing the Information Gain for Cell Biology in 2010. Subject 

categories are characterized by Immediacy Index histograms. 

In these figures, we observe that the configuration has the form of a spiral, where 

the most alike categories are often in the class with the highest multidimensional 

prestige of influential journals (see Table 4 in Garcia et al (2012b)) and as we go 

down in the ranking based on the measurement of multidimensional prestige, 

subject categories are more dissimilar. 
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The most similar scientific subject categories to Cell Biology (Biochemistry & 

Molecular Biology, Neuroscience, Endocrinology & Metabolism, Immunology, 

Genetics & Heredity, Oncology, Biophpysics, Microbiology, Hematology, 

Cardiac & Cardiovascular Systems, Biochemical Research Methods) have several 

characteristics in common; they are life or medical sciences categories, and they 

are in the class of highest multidimensional prestige. They therefore perform very 

similarly not just considering their multidimensional prestige of influential 

journals but also their journal impact profile (histograms), as it is shown by their 

respective information gain values which are illustrated in the Heliocentric maps. 

On the other side, we find that those ranked in the lowest positions of the ranking 

based on the measurement of multidimensional prestige are the ones with higher 

information gain, and consequently, more dissimilar with respect to the journal 

impact profile of the reference subject category. 

In Figures 8-10 we show the case of Computer Science Information Systems. 

Recall that Information Systems belongs to the class of scientific subject 

categories having medium multidimensional prestige of influential journals (see 

Table 4 in Garcia et al (2012b)). Therefore this is strategic benchmarking that 

involves observing how other scientific subject categories compete using a 

specific statistical characterization. 

In this case, due to the medium impact of its journals, there are many categories 

similar to the journal impact profile (histogram) of Computer Science Information 

Systems. Considering their information gain values, several Computer Science 

categories have very similar journal impact profile to Computer Science 

Information Systems. These are Artificial Intelligence, Interdisciplinary 

Applications, Theory & Methods, and Software Engineering. However, we also 

identify other categories that have similar journal impact profile to Computer 

Science Information Systems but are thematically different (i.e., Statistics & 

Probability, Zoology, Food Science & Technology, or Mathematics 

Interdisciplinary Applications). 

From Figs. 8-10 we have that Computer Science, Management, Health/Medical 

Sciences, and Engineering, are similar to the Information Systems' journal impact 

profile. These results concur with those from Cronin & Meho (2008) which show 
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that Information Studies has become a much more successful exporter of ideas 

than in the recent past, and it is less introverted than before, drawing more heavily 

on the literature of such disciplines as Computer Science and Engineering on the 

one hand and Management on the other. 

Fig. 8 Heliocentric map representing the Information Gain for Computer Science Information 

Systems in 2010. Subject categories are characterized by Thomson Reuters Impact Factor 

histograms. 

Fig. 9 Heliocentric map representing the Information Gain for Computer Science Information 

Systems in 2010. Subject categories are characterized by Eigenfactor Score histograms. 

Fig. 10 Heliocentric map representing the Information Gain for Computer Science Information 

Systems in 2010. Subject categories are characterized by Immediacy Index histograms. 

Conclusions 

In this paper we present a theoretic information measure for benchmarking subject 

categories. We analyze its usefulness by applying it to the impact factor 

histograms in two case studies in which we compared a given reference subject 

category with the rest of scientific subject categories from the 2010 edition of the 

JCR. Three different types of histograms were used, according to the following 

indicators IF, ES and II. 

The chosen subject categories of reference were Cell Biology and Computer 

Science Information Systems which are very different between each other 

according to the multidimensional prestige, making them interesting cases to 

analyze. Cell Biology is in the top of a ranking of the 174 scientific subject 

categories of Web of Science in 2010. Computer Science Information Systems 

belongs to the class of scientific subject categories having medium 

multidimensional prestige of influential journals. Information Gain is a measure 

of dissimilarity between discrete probability distributions. It satisfies a number of 

properties for comparing two subject categories by means of the difference 

between their impact-factor histograms. 

The Information Gain closely relates to similarity between subject categories as 

perceived by using a different model: The multidimensional prestige of influential 

journals in each subject category. In conclusion, both theoretical and empirical 
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results imply that it can be used to benchmark subject categories using an 

information theoretic approach. However, it performs differently according to the 

level of interdisciplinarity of the subject category selected. In the best-in-class 

benchmarking of Cell Biology we have identified the scientific subject categories 

that were leaders in the 2010 edition of JCR: Biochemistry & Molecular Biology, 

Neurosciences, Endocrinology & Metabolism, Immunology, Genetics & Heredity, 

Oncology, Biophysics, Microbiology, and Cardiac & Cardiovascular Systems. As 

can be seen from benchmarking heliocentric maps illustrated in Figures 5-7, it 

follows that similar results are obtained using any of the three different statistical 

characterizations for a subject category: IF, ES and II histograms. The most alike 

categories are often in the class with the highest multidimensional prestige of 

influential journals in a subject category. Also they are all thematically related, 

showing a disciplinary coherence when comparing. 

In the strategic benchmarking of Computer Science Information Systems we 

identified several Computer Science categories having very similar journal impact 

profile to Computer Science Information Systems (in 2010) like Artificial 

Intelligence, Interdisciplinary Applications, Theory & Methods, and Software 

Engineering. But other categories have also a similar journal impact profile like 

Statistics & Probability, Zoology, Food Science & Technology, and Mathematics 

Interdisciplinary Applications. In this study case (Figures 8-10), we conclude that 

the use of distinct statistical characterizations (IF, ES, or II histograms) leads to 

similar results. However, as a more interdisciplinary subject category, there is no 

a disciplinary coherence within similar subject categories. 
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Apppendix A: Axiomatic characterization of a 

measure of information gain between categories 

Here we characterize the relative information between subject categories with a 

minimal number of properties which are natural and thus desirable. Next, it will 

be derived the form of all information functions satisfying these properties which 

we have stated to be desirable for predicting differences between subject 

categories. Thus, a first postulate states a property of how unexpected a single 

event of a subject category was. 

Axiom 1. A measure U  of how unexpected the single event “a category's journal 

with impact factor in the interval  lll ,  occurs" was, depends only upon its 

probability p . 

This means that there exists a function h  defined in  1,0  such that  

U (“a category's journal with impact factor in the range  lll ,  occurs")  ph  

(A.1) 
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This is a natural property because we assume that subject categories can be 

characterized by impact-factor histograms (i.e., discrete probabilities) as shown in 

Figs. 1, 2, and 3. 

Next, a second postulate is formulated to obtain a reasonable estimate of how 

unexpected a subject category was from some impact factor histogram by means 

of the mathematical expectation of how unexpected its single events were from 

this same histogram. 

Let  Rlp   and  Ilp   be the probability of occurrence of a category's journal 

with impact factor in the interval  lll ,  for a reference category R and the 

input category I, respectively. Suppose that every possible observation from 

p(l=R) is also a possible observation from  Ilp  . 

As stated in Axiom 1, if the single events of the reference subject category R are 

characterized by an “estimated” distribution   niIlpQ i ,,1,0  , then the 

function   Ilph i , with ni ,,1,0  , returns a measure of how unexpected each 

single event “a category's journal with impact factor in the interval  lll ,  

occurs” was from Q . Recall that lll ii 1 . Thus, assuming that 

  niRlpP i ,,1,0   is the “true” probability distribution of the reference 

subject category R , we have that: 

Axiom 2. The mathematical expectation of the discrete random variable  Qh , 

which can assume the values 

        IlphIlphIlph n,,, 10   

with respective probabilities 

     RlpRlpRlp n,,, 10   

is an estimate  QUP  of how unexpected the reference subject category R  was 

from   IlpQ  , i.e., 
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         
l

PP IlphRlpQhEQU  

(A.2) 

with PE  denoting the mathematical expectation in P . 

The following postulate relates the estimate of how unexpected the reference 

subject category was from an “estimated” distribution and the estimate from the 

“true” distribution. 

Axiom 3. The reference subject category R  with “true” probability distribution 

P  is more unexpected from an “estimated” distribution Q  than from the \true" 

distribution P . 

The following inequality expresses how the reference category is more 

unexpected when it is characterized by Q  than when is characterized by P : 

   PUQU PP   

(A.3) 

with  QUP  and  PUP  being estimates of how unexpected the reference subject 

category was from the “estimated” distribution Q  and from the “true” distribution 

P , respectively. 

That is, here the true distribution Q  of the input subject category I can be 

interpreted as an estimated distribution of the reference category R  (with “true” 

distribution P ). Thus, we can define a measure of information gain of the 

reference subject category from the input category by the difference between the 

estimates of how unexpected the reference subject category was from Q  and from 

P . 

Definition: A measure of information gain between subject categories. Given 

the reference category R  with “true” probability distribution   RlpP  , a 

measure of the information gain of the reference subject category R  from the 

input category I  with “true” distribution   IlpQ  , is: 
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     PUQUQP PP ,  

(A.4) 

with  QUP  and  PUP  being estimates of how unexpected the reference subject 

category was from Q  and P , respectively.  QUP  and  PUP  are defined as 

given in Axiom 2, and such that satisfy the inequality (3) in Axiom 3. 

The following result serves to determine the form of the measure  QP,  given in 

Equation (A.4). It demonstrates that a measure of relative information between 

two discrete probability distributions, such that satisfies Axioms 1-3, has the form 

of the Kullback-Leibler information function (Kullback, 1978) as given in 

Equation (??) up to a nonnegative multiplicative constant: 

Theorem. Let  QP,  be a measure of information gain for the discrimination 

between two subject categories as given in equation (A.4) with   RlpP   and 

  IlpQ  . Then, the measure of relative information E is equal to the 

Kullback-Leibler's information function (Kullback, 1978) between P  and Q  up 

to a nonnegative multiplicative constant, i.e., 

  









Q

P
aEQP P log,  

(A.5) 

with 0a  and PE  denoting the mathematical expectation. 

Proof. It follows from Theorem 1 in (Garcia et al., 2001). 

In conclusion, any measure  QP,  of how unexpected a subject category was, 

that satisfies Axioms 1, 2, and 3, has to be of the form of the Kullback-Leibler 

information function up to a nonnegative multiplicative constant. Hence, the 

Kullback-Leibler information function is a measure of the information gain 

between two subject categories, with a minimal number of properties which are 

natural and thus desirable. It follows that the minimum value of this information 

gain between two subject categories leads to the most similar ones. 


