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Abstract Through academic publications, the authors of these publications
form a social network. Instead of sharing casual thoughts and photos (as in
Facebook), authors pick co-authors and reference papers written by other au-
thors. Thanks to various efforts (such as Microsoft Libra and DBLP), the data
necessary for analyzing the academic social network is becoming more avail-
able on the Internet. What type of information and queries would be useful
for users to find out, beyond the search queries already available from services
such as Google Scholar? In this paper, we explore this question by defining a
variety of ranking metrics on different entities - authors, publication venues
and institutions. We go beyond traditional metrics such as paper counts, cita-
tions and h-index. Specifically, we define metrics such as influence, connections
and exposure for authors. An author gains influence by receiving more cita-
tions, but also citations from influential authors. An author increases his/her
connections by co-authoring with other authors, and specially from other au-
thors with high connections. An author receives exposure by publishing in
selective venues where publications received high citations in the past, and
the selectivity of these venues also depends on the influence of the authors
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who publish there. We discuss the computation aspects of these metrics, and
similarity between different metrics. With additional information of author-
institution relationships, we are able to study institution rankings based on
the corresponding authors’ rankings for each type of metric as well as dif-
ferent domains. We are prepared to demonstrate these ideas with a web site
(http://pubstat.org) built from millions of publications and authors.

Keywords Academic Social Network · Influence · Ranking

1 Introduction

In the academic community, it is customary to get a quick impression of an
author’s research from simple statistics about his/her publications. Such statis-
tics include paper count, citations of papers, h-index and various other indices
for counting papers and citations. Several services, such as ISI, Scopus, Google
Scholar, CiteSeerX Giles et al (1998), DBLP Ley (2009) and Microsoft Libra
(2013), facilitate the retrieval of these statistics by maintaining databases in-
dexing the metadata of academic publications. These databases are usually
proprietary and the information users can retrieve, sometimes on a paid basis,
is limited to what these services choose to provide.

In recent years, some of these service providers Ley (2009); Libra (2013)
are making the database more publically accessible and are starting to provide
additional information users can query (this is specially the case with Libra).
This allows us to study the author community as a social network, analyzing
not only the statistics about papers published by an author, individually at a
time, but also an author’s choice and extent in connecting to other authors (co-
authoring) and an author’s influence on other authors. Since citation is a slow

indicator for evaluating an author’s standing, we can also design metrics to
measure an author’s exposure in her research community, to estimate his/her
future influence and connections in research.

Our approach is to design various social network types of metrics to mea-
sure the traits defined above. Since there is no ground-truth for validation,
we justify our designs by the following methods: (1) Compare top ranked au-
thors to those receiving awards for qualities similar to what we try to measure,
e.g. influence; (2) Use similarity study to ensure any new metric can measure
something different from that is indicated by other well-established metrics
already; (3) Undertake case-studies of those authors scoring very differently
under different metrics, in domains we are familiar with; (4) Let colleagues
use our experimental website (http://pubstat.org) and get their feedback
on its usefulness.

Our conclusion is that several of the metrics we designed, namely Influ-

ence, Connections and Exposure, can provide different rankings of authors,
and together with Citation Count can give a fuller picture about authors.

According to the author ranking results, combined with additional infor-
mation on author-institution relationships, we further studied and designed
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Fig. 1 The number of papers in the Libra CS domain changing with time.

approaches for conducting author-based institution ranking for each of the
various metrics as well as the subject domains.

In the rest of the paper, we first describe briefly the available dataset. We
then describe the metrics we studied and the ranking services we built. Next
we evaluate our metrics and ranking methods using the approach described
above. We finish by discussing related works and our conclusions.

2 Data

Our data is collected from the Microsoft Libra public API. The Libra data has
an object-level organization Nie et al (2007), which is very helpful. The object
type includes: author, paper, conference venue, institution and so on. Each
type of object possess general properties such as a unique identifier, name and
relationship to other objects. For example, if the object is a paper, then its
properties include publication year, authorship and citations. In fact, Libra
has maintained a huge amount of data in a very wide range of research fields
(15) and, for each field, it further categorizes the papers to belong to domains
in that field. The data set we obtained for experimental purposes was for the
Computer Science field, which included 24 domains. Table 1 lists the name,
the number of authors and the number of papers in the domains. Since each
author may publish papers in different domains, the sum of authors in all do-
mains is significantly greater than the number of unique authors (941733). The
number of papers in the database (3347795) is actually significantly greater
than the sum from all domains (2449673). This is because many papers were
not classified or had missing information. Another fact we needed to consider
was that an increasing proportion of these papers were published in more re-
cent years, as shown in Fig. 1. This has some ramifications for our analysis, as
we discuss in the latter part of this paper. Despite the misgivings about the
dataset we make many interesting observations.
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Table 1 The basic information of the Libra dataset we use: domain name, the number of
authors and the number of papers in each of the 24 domains of the Computer Science Area.

Domain Name #Authors #Papers
Algorithms and Theory 96748 270601
Security and Privacy 33910 61957
Hardware and Architecture 81021 150151
Software Engineering 85938 174893
Artificial Intelligence 186976 325109
Machine Learning and Pattern Recognition 66839 108234
Data Mining 50958 67485
Information Retrieval 30038 51075
Natural Language and Speech 86670 220227
Graphics 36548 59880
Computer Vision 44969 60806
Human-Computer Interaction 51548 79909
Multimedia 59277 80618
Network and Communications 138096 235297
World Wide Web 25098 35861
Distributed and Parallel Computing 69592 117836
Operating System 18167 25395
Databases 74125 142421
Real-Time and Embedded System 21965 33098
Simulation 18083 27678
Bioinformatics and Computational Biology 48729 55491
Scientific Computing 103982 183878
Computer Education 29420 49125
Programming Languages 33229 70561
Computer Science Overall (24 domains) 941733 2449673
Computer Science Total Involved 1175052 3347795

3 Metrics and Ranking Methods

3.1 Metrics

All the metrics we studied can be defined by considering three types of object:
(a) papers, (b) authors and (c) venues. The relationships between these objects
are captured by the following networks (graphs):

a) paper citation network, denoted by GP = (VP , EP ), where VP is the set of
papers and EP is the set of citations from one paper to another.

b) authorship bipartite network, denoted by GAP = (VA ∪ VP , EAP ), where
VA is the set of authors and edges in the set EAP link each paper to its au-
thors (authorship) and symmetrically each author to his/her publications
(ownership).

c) venueship bipartite network, denoted by GV P = (VV ∪VP , EV P ), where VV

is the set of venues and the edges in EV P connect each paper to its pub-
lishing venue. Topologically, GV P is similar to GAP . The main difference is
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that each paper can have multiple authors while it can only be published
in one venue.

Fig. 2 shows the super-graph G = (V,E) combining all three networks to-
gether. In this case, V = (VP ∪VA ∪VV ) and E = (EP ∪EAP ∪EV P ). We also
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Fig. 2 Underlay network topology of authors, venues and papers.

denote nA = |VA|, nV = |VV | and nP = |VP | as the number of authors, venues
and papers, respectively.

We grouped the metrics we defined into three categories. A metric may be
a simple count, such as citation count, or a value derived iteratively using a
PageRank-like algorithm.

1. Paper based - In this case, each paper has a value defined by a metric.
The value is distributed to the paper’s authors in a way also determined
by the metric. For this category, we studied three metrics: Citation count
(CC), Balanced citation count (BCC) and Citation value (CV). For CC
and BCC, the paper’s value was simply the citation count, which is well-
defined. In CC’s case, each co-author received the citation count whereas in
BCC’s case, each co-author only received an equal fraction of the citation
count. For CV, it was computed iteratively based on the citation graph GP

and distributed to the co-authors in equal fractions.

2. Author based - These metrics were computed based on author-to-author
relationships directly. In this category, we studied three metrics: Influ-
ence, Followers and Connections. All three were computed iteratively.
For Influence, the author-to-author relationship was derived from the ci-
tation graph GP and authorship graph GAP . Every time author i cites
author j’s paper, author i’s Influence was distributed to author j, split



6 Fu et al

among the co-authors of j. For Followers, the author-to-author relation-
ship was also derived from the citation graph, but depended on whether
author i cited author j instead of how many times. If author i cited author
j, author i’s Follower value was distributed to author j without splitting
among author j’s co-authors (which could be different for different papers).
The author-to-author relationship for Connections was defined only based
on the authorship graph GAP . If author i had co-authored a paper with
author j, then author i’s Connections value was distributed to author j and
vice versa. Note, another variation of Connections could also be defined so
that every time author i co-authored with author j, they exchanged their
Connections value.

3. Author and venue based - In this category, we defined only one metric:
Exposure. This metric was computed by iterating on authors and venues
together. It is easiest to think of venues also as a kind of author, thus we
had an enlarged author set VA∪VV . The author-to-author relationship was
defined in the same way as Influence; so was the relationship for venue-to-
venue. The author-to-venue and venue-to-author relationships were defined
intuitively as follows: each time an author i wrote a paper published in
venue k, author i distributed his/her influence to venue k; similarly, each
time a venue k published a paper co-authored by i, author i shared a
fraction of venue k’s influence with i’s co-authors for that paper.

Note, all these (7) metrics were defined so as to assign a value to each
author, to indicate some characteristics of that author. Since citation count
(CC) could be inflated by a large number of co-authored papers, BCC and CV
were alternative computations to assign citation credits to authors. The met-
rics Influence and Followers are intended to characterize an author’s influence
and impact on other authors. The metric Connections is used to measure an
author’s reach in the co-authorship network. Finally, Exposure is intended to
bring in the impact of the venues to help characterize an author’s potential
influence that may not be reflected by citations if the author’s papers were
relatively recent.

For a precise definition of the above metrics, it is necessary to explain the
PageRank algorithm. A brief treatment of PageRank and the metrics definition
by equations are included in the Appendix.

3.2 Ranking

Given the metrics we defined, we computed for each author his/her ranking
for each metric. An example of an author ”J Smith” (with the actual name
anonymized) returned by our web service is listed in Table 2:

Actually, this ranking is for a specific domain (“Network and Communi-
cations”) which has close to 138K authors in our database. So this author is
ranked well within the top ten percentile of this domain he/she works in. In
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Table 2 An example of the different metric results returned by our web service in the
“Network and Communications” domain with actual author name anonymized.

Value Type Author CC BCC CV Inf Fol Con Exp
Rank J Smith 4786 2483 2996 4100 7647 2820 1805

RankPer J Smith 3.47% 1.8% 2.17% 2.97% 5.54% 2.04% 1.31%
CumValue J Smith 72.25% 63.66% 58.45% 56.49% 59.51% 18.15% 26.91%

order to give this information, we also allow the user to view the ranking in
terms of percentile (denoted by RankPer, the 3rd row in Table 2).

A third choice is to view the ranking information in terms of the cumulative
value of contribution by authors ranked ahead of the target author (denoted
by CumValue, the 4th row in Table 2).

Finally, we considered it more appropriate to use a coarse granularity for
such ranking information (especially applied in the case study in a later sec-
tion). There were two possible ways: (1) based on cumulative value of contri-
bution; (2) based on rank percentile.

Contribution based letter grading: for this purpose, we decided to divide the
cumulative value range into five fixed intervals, and assign letter grade ABCDE
as ranks. Lacking any better way to calibrate the partitioning, we simply used
20%, 40%, 60% and 80% as the thresholds. In this view, the above example
becomes (Table 3):

Table 3 Example of the contribution based letter grades for each metric, where A:(0−20%),
B:(20%− 40%), C:(40%− 60%), D:(60%− 80%) and E:(80%− 100%)

.
Value Type Author CC BCC CV Inf Fol Con Exp
CumValue J Smith 72.25% 63.66% 58.45% 56.49% 59.51% 18.15% 26.91%

Contri. Letter J Smith D D C C D A B

For most metrics, the distribution of contribution by authors ordered ac-
cording to ranking follows Pareto-like distribution. For example, Fig. 3 shows
the relationship between the rank order to the cumulative value of three met-
rics, Influence, Connections and Exposure, using a loglog plot.

So out of over 138K authors, the distribution of ABCDE for the different
metrics are listed in Table 4.

Table 4 The distribution of contribution based letter assignment for different metrics of
around 138k authors in “Network and Communications” domain of Libra dataset.

CC BCC CV Inf Fol Con Exp
A 156 148 179 214 485 3386 940
B 558 513 752 994 1764 11516 3978
C 1629 1469 2366 4134 5646 32653 12251
D 5550 5059 9012 25916 26705 20866 31962
E 130203 130907 125787 106838 103496 69675 88965
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Fig. 3 The loglog results of rank orders versus cumulative values of three metrics: Influence,
Connections and Exposure.

Rank Percentile based letter grading: An alternative way of letter assignment
was based on rank percentile. Since the cumulative curves of the metrics
show the power-law property, we thus proposed the power-based thresholds
(α4, α3, α2, α) to assign letters according to the rank percentile, where pa-
rameter α ∈ (0, 1) controled the skewness of the assignment results. Table 5
illustrates the letter assignment results when we set α = 0.25 for the experi-
mental web site.

Table 5 The illustration of power-based letter assignment according to the rank percentile
with parameter α ∈ (0, 1).

Rank Percentile α = 0.25
A (0− α4) (0 − 0.39%)
B (α4 − α3) (0.39%− 1.56%)
C (α3 − α2) (1.56%− 6.25%)
D (α2 − α) (6.25% − 25%)
E (α − 1) (25% − 100%)

The letter grades according to the rank percentile on the “J Smith” exam-
ple are listed in Table 6.

Table 6 Letter grades for each metric by power-based assignment according to the rank
percentile on the example “J Smith”, where α = 0.25.

Value Type Author CC BCC CV Inf Fol Con Exp
RankPer J Smith 3.47% 1.8% 2.17% 2.97% 5.54% 2.04% 1.31%

RankPer Letter J Smith C C C C C C B

It remains an open problem of how to find the best way of letter grades
assignment, which we consider to be future work. We briefly discuss the pros
and cons of the two letter assignment methods proposed by us, contribution
based vs. rank percentile based.
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One notable difference was the metric-dependency of the letter count dis-
tribution. By definition, rank percentile based letter grading results in a con-
sistent letter count distribution among different metrics (hence independent
of metrics). However, it varies a lot among different metrics for letter count
distribution generated by contribution based letter grading. For example, as
shown in Table 4, there were 156 “A”s for the Citation Count (CC) metric
when 3386 “A”s for the Connection (Con) metric. This was caused by the
different skewness in the value distribution of authors’ contribution for vari-
ous metrics, which could also be inferred from the cumulative curves shown in
Fig. 3.

On the other hand, any change in the total number of authors in a research
domain (e.g. community expansion or rapid development) unavoidably affects
the letter count distribution generated by rank percentile based letter grading,
but it has very limited effects on the contribution based letter assignment
results when the value distribution is very skewed (e.g. Influence etc.).

Later on, unless otherwise noted, we only show the letter assignment results
by percentile based grading for space saving and fair comparison among various
metrics.

3.3 Domain-specific vs Overall Ranking

As mentioned, the above example is the ranking for an author in a specific do-
main. Usually, an author works in several domains. Our web service shows the
author’s rankings in all the domains, as well as an overall score for his/her sub-
ject field (in this case “Computer Science”). The letter grades of the example
“J Smith” are listed in Table 7).

Table 7 Letter grades of each metric in several involved domains of the example “J Smith”.

Domain CC BCC CV Inf Fol Con Exp
Net&Comm C C C C C C B
Sec&Priv D D D D E E D
Overall C C C C C C B

This allows the person to be compared to others in his/her domain, as well
as comparing him/her to a bigger set of people in a subject field.

The way to compute the overall score is difficult. We used the straight-
forward way of merging all the domains into one big domain and compared
the results. This was more computationally demanding. Another possible way
would be to add up the authors ranking in each domain normalized by the
size of each domain. The trade-off of different ways for computing the overall
is something still under study.
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3.4 Comparing Rankings

In our experimental web site, we have implemented different ways for authors
to be compared. First of all, authors in the same domain can be looked up in
ranking order, according to any metric. So it would be easy to look up top-
ranked people according to one’s favourite metric, whether it was Influence,
Connections, or Exposure. This is often helpful.

Second, we allow authors in the same institution to be looked up in ranking
order, for a specific domain, or according to overall ranking. This would be
useful in getting a feel as to how strong a particular institute was in a particular
domain. It is also the rough way we justify our assignment of ABCDE to
authors in different cumulative value percentiles or rank percentiles.

We also allow users to search for individual authors and keep them in
a list for head-to-head comparison. This could be helpful for many different
purposes. For example, we could use this method to collect a list of authors
for a case study (see next section).

We have also implemented various other features. For example, it would
be possible to look at all rankings if we excluded self-citations. Basically, for
each common query users find useful, we could implement it as an additional
feature.

3.5 Author-based Institution Rankings

With the additional information of author-institution relationships, we can
further provide institution rankings based on authors’ ranking results. When
ranking institutions, we used two granularities:

(1) We only count the number of authors assigned with “A”;
(2) We compute a total score, counting “A”=1, “B”=0.5, “C”=0.25, and “D”=“E”=0.

For ranking authors, there are a number of various metrics (e.g., Influ-
ence, Connections, Exposure, etc.), two types of letter assignment (contri-
bution based vs. rank percentile based) and the domain-specificity (e.g., 24
domains listed in Table 1), therefore the institution ranking automatically
inherits these features.

4 Evaluation and Validation

4.1 Ranking Award Recipients

One way to justify our new metrics is to look at award recipients. In the
computer science domain, the most prestigious award is the Turing Award.
Since we are more familiar with the Network and Communications domain,
we also looked at the ACM Sigcomm Award recipients. The results are shown
in the following two tables (Table 8 and Table 9).
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Table 8 Rankings received by Turing Award Recipients

Year Awardee In/All h CC BCC CV Inf Fol Con Exp Aff
1966 Alan J. Perlis 31/47 9 B B B A A C B Yale
1967 Maurice V. Wilkes 50/100 11 B B A A A D A Cambridge
1968 Richard W. Hamming 9/29 8 B A A A A E B Naval Postgraduate Sch.
1969 Marvin Minsky 50/79 20 A A A A A D A MIT
1970 James H. Wilkinson 23/48 9 B A A A A D A Nat. Physical Lab, UK
1971 John McCarthy 117/209 29 A A A A A B A Princeton
1972 Edsger W. Dijkstra 84/121 28 A A A A A C A UT Austin
1973 Charles W. Bachman 18/25 7 C B B A B C B Bachman Info Systems
1974 Donald E. Knuth 179/241 40 A A A A A B A Stanford
1975 Allen Newell 139/192 33 A A A A A A A Carnegie Mellon Univ

Herbert Simon 140/398 33 A A A A A B A Illinois Institute of Tech
1976 Michael O. Rabin 68/81 28 A A A A A C A Columbia

Dana Stewart Scott 48/71 21 A A A A A C A Carnegie Mellon Univ.
1977 John W. Backus 32/73 11 A A A A A C A IBM
1978 Robert W. Floyd 36/46 16 A A A A A D A Illinois Institute of Tech
1979 Kenneth E. Iverson 43/70 10 C B B A A C A IBM
1980 C. A. R. Hoare 198/249 41 A A A A A B A Microsoft Research
1981 Edgar Frank Codd 27/32 15 A A A A A D A IBM
1982 Stephen A. Cook 127/138 32 A A A A A B A Univ of Michigan
1983 Ken Thompson 26/51 13 A A A A A C A Google

Dennis M. Ritchie 29/37 15 A A A A A D A Bell Labs
1984 Niklaus Emil Wirth 110/144 30 A A A A A D A Xerox PARC
1985 Richard Manning Karp 277/325 61 A A A A A A A IBM
1986 John Edward Hopcroft 147/176 39 A A A A A B A Stanford

Robert Endre Tarjan 338/362 72 A A A A A A A Hewlett-Packard
1987 John Cocke 45/52 20 A A A A A C A IBM
1988 Ivan E. Sutherland 57/63 21 A A A A A B A Portland State Univ
1989 William Morton Kahan 32/39 11 C C B B B B C UC Berkeley
1990 Fernando Jose Corbato 7/13 5 C C B B A D C MIT
1991 Robin Milner 143/172 47 A A A A A B A Cambridge
1992 Butler W. Lampson 116/140 36 A A A A A B A MIT
1993 Juris Hartmanis 115/140 25 A A A A A B A Cornell

Richard Edwin Stearns 77/89 20 A A A A A B A NY Univ at Albany
1994 Edward A. Feigenbaum 37/58 14 B B A A A C A Stanford

Raj Reddy 70/99 14 B B A A A B A Cargegie Mellon Univ
1995 Manuel Blum 100/112 33 A A A A A B A Carnegie Mellon Univ
1996 Amir Pnueli 331/371 62 A A A A A A A New York Univ
1997 Douglas C. Engelbart 23/31 14 B A A A A C A Doug Engelbart Institute
1998 Jim Gray 217/293 46 A A A A A A A Microsoft Research
1999 Fred Brooks 77/112 21 A A A A A A A UNC
2000 Andrew Chi-chih Yao 159/183 35 A A A A A B A Tsinghua Univ
2001 Ole-johan Dahl 32/39 13 B B A A A C B Univ of Oslo

Kristen Nygaard 35/43 14 B B A A A C B Univ of Oslo
2002 Ronald L. Rivest 226/267 52 A A A A A A A MIT

Adi Shamir 186/206 46 A A A A A A A Weizmann Institute
Leonard Max Adleman 72/86 27 A A A A A B A MIT

2003 Alan Curtis Kay 22/33 7 B B B B B C B Hewlett-Packard Labs
2004 Vinton Gray Cerf 39/56 10 B B B A A B B Google

Robert Elliot Kahn 15/23 9 C C A A A C B CNRI
2005 Peter Naur 40/137 7 C B A A A D A Univ of Copenhagen
2006 Frances E. Allen 26/37 14 B B A A A C B IBM
2007 Edmund Clarke 333/370 63 A A A A A A A Carnegie Mellon Univ

E. Allen Emerson 132/150 41 A A A A A B A UT Austin
Joseph Sifakis 139/164 36 A A A A A A A CNRS

2008 Barbara Liskov 195/233 48 A A A A A A A MIT
2009 Charles P. Thacker 12/15 7 B B B A A C C Microsoft
2010 Leslie Valiant 113/124 37 A A A A A C A Harvard Univ
2011 Judea Pearl 193/258 39 A A A A A B A UCLA
2012 Shafi Goldwasser 138/152 43 A A A A A B A Weizmann Institute

Silvio Micali 165/173 46 A A A A A B A MIT
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Table 9 Rankings received by Sigcomm Award recipients

Year Awardee In/All h CC BCC CV Inf Fol Con Exp Aff.
1989 Paul Baran 1/7 1 D D C C C E D RAND Corporation
1990 Leonard Kleinrock 173/233 31 A A A A A A A UCLA

David D. Clark 43/80 13 B B B A A B B MIT
1991 Hubert Zimmermann 10/17 4 C B B B B E B Sun Microsystems
1992 A. G. Fraser 16/24 6 C C B A B E B Fraser Research
1993 Robert Elliot Kahn 15/23 9 C C A A A C B CNRI
1994 Paul E. Green 20/54 7 C B B B B C B Tellabs
1995 David J. Farber 43/55 13 B B B B A B B Carnegie Mellon Univ
1996 Vinton Gray Cerf 39/56 10 B B B A A B B Google
1997 Jonathan B. Postel 73/92 24 A A A A A B A Univ of Southern California

Louis Pouzin 7/23 3 D C B B B E C ITU
1998 Lawrence G. Roberts 14/16 8 B A A A A D A Anagran Inc.
1999 Peter T. Kirstein 45/67 7 C C B B B C B Univ College London
2000 Andre A. S. Danthine 31/44 7 C C C C C C C Université de Liége
2001 Van Jacobson 113/126 41 A A A A A B A Palo Alto Research Center
2002 Scott J. Shenker 413/481 88 A A A A A A A UC Berkeley
2003 David Cheriton 156/186 36 A A A A A B A Stanford
2004 Simon Lam 148/181 30 A A A A A B A UT Austin
2005 Paul V. Mockapetris 17/21 8 B A A A A E A Nominum
2006 Domenico Ferrari 101/128 30 A A A A A B A UC Berkeley
2007 Sally Floyd 186/206 59 A A A A A A A ICSI
2008 Donald F. Towsley 618/725 65 A A A A A A A Univ of Massachusetts
2009 Jon Crowcroft 284/375 42 A A A A A A A Cambridge
2010 Radia J. Perlman 22/25 11 B B A A B D B Intel
2011 Vern Paxson 182/212 54 A A A A A A A UC Berkeley
2012 Nick W. Mckeown 140/179 34 A A A A A A A Stanford

In these tables, the two numbers in the third column (In/All) are the num-
ber of papers we considered “In Domain” and used for computing the ranking,
and the total number of papers authored by the author. In both these cases,
it is clear that citation count is not always a good measure, for these people
obviously had tremendous contribution and impact in their fields. The Cita-
tion Value metric (CV) improved over CC and BCC. But Influence did much
better - all the Turing Award winners scored at least B. For these top people
in their fields, the Followers metric was even more predictive. Though, as we
will discuss later, we find Influence and Followers quite similar. Aside from try-
ing to justify the Influence and Followers metrics, we can also appreciate the
additional information provided by the Connections metric, in distinguishing
those who tend to collaborate more from those who tend to work alone.

Since Sigcomm is a more applied community, the CC and BCC metrics
performed even worse in comparison to Influence and Followers. This is per-
haps because the Sigcomm community publication venues are more selective
(hence have more influence). We will discuss the differences between Influence,
Followers and Exposure later.
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4.2 Similarity between proposed Metrics

For our similarity study, we chose to plot the cumulative value (essentially
according to letter grades) of each author, for the two comparable metrics.
For example, we first compared Citation Count (CC) with Influence as met-
rics. The former was the common metric used in practice, and the latter was
something we proposed. The result is shown in Fig. 4. The two vertical and

Fig. 4 Comparison between Influence and Citation Count using cumulative value.

horizontal lines give the boundaries separating A and B from the rest of the
ranks. Any author on the diagonal line received exactly the same ranking from
both metrics. As we can see, there is correlation between Influence and CC -
those with high CC ranking all have high Influence ranking as well. But the
converse is not true - those with high Influence ranking may not have high
CC ranking. This means we could use CC as a sufficient condition when esti-
mating someone’s influence, but not a necessary condition. For this reason, we
consider Influence is sufficiently different than CC, and should be considered
as a complementary metric.

The Citation Value (CV) metric was designed to be an alternative to CC.
From our experience, an author’s CV rank seems to be always between its CC
rank and Influence rank. Fig. 5 compares CV against Influence. It is indeed
similar to the comparison to CC, namely high CV implies high Influence but
not vice versa. Thus, once we have CC and Influence, there is no strong reason
to keep CV as an additional metric.

Now let us consider the Followers metric. As we observed in considering
the Followers and Influence ranks for the Award recipients, those with a high
influence rank tend to have even higher Followers ranks. But for the majority of
the authors, these two ranks are very strongly correlated, and hence Followers
seem to add little additional value to the Influence metric (as shown in Fig. 6).
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Fig. 5 Comparison between Influence and Citation Value using cumulative value.

Fig. 6 Comparison between Influence and Follower using cumulative value.

As expected, the Connections metric had little correlation to any of the
other metrics. This is quite intuitive, so we have not included any similarity
plots to save space.

Finally, we compared the Influence metric to the Exposure metric in Fig. 7.
In this case,many authors with low Influence values may have much higher
ranks in Exposure. We suspect this is because this metric successfully identifies
authors who are very active in publishing in high impact venues but have not
had the time to build up their influence. It is difficult to tell how true this
is - so we selected some real world examples for our case studies in a later
subsection.

4.3 Similarity study with h-index

Next we investigated the similarity between the newly proposed metrics to the
well known h-index Ball (2005); Hirsch (2005).

We first compared the Influence metric to the h-index in Fig. 8. It is similar
to the correlation between CC and Influence, i.e., those with high h-indices
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Fig. 7 Comparison between Influence and Exposure using cumulative value.

Fig. 8 Comparison between cumulative Influence value and h-index.

all have high Influence rankings as well. But the converse is not true - those
with high Influence rankings may not have high h-indices. This reinforces the
belief that influence is a better metric to differentiate those authors with high
h-indices.

Next we compared the Exposure metric to the h-index in Fig. 9. It shows
again that high h-indices implies high Exposure rankings while the converse
is not true. A clear difference that more points are located at the bottom left
area, when comparing to Fig. 8. This is consistent with our suspicion that
there exist many authors who are very active in publishing in high impact
venues but their h-index values have not had enough time to accumulate. A
similar argument was also raised by Harzing (2008).

At last, we looked into the total citation count versus the h-index of each
author in Fig. 10. As expected, the correlation between total citation counts
and h-indices generally follows the square root law. This comes from the defi-
nition of the h-index Hirsch (2005).
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Fig. 9 Comparison between cumulative Exposure value and h-index.

Fig. 10 Comparison between total citation count and h-index.

4.4 Case Studies

From the above similarity study, we concluded that, out of the five metrics
based on iterative computation, i.e. CV, Influence, Followers, Connections and
Exposure, the first three are sufficiently similar: we therefore chose to keep only
Influence. Influence, Connections and Exposure are sufficiently different from
each other, and from CC.

For case studies, we considered two cases: (a) authors with high Influence
but low Citation Count; and (b) authors with high Exposure but low Influence.
(a) was the reason for keeping Influence, and (b) was the reason for keeping
Exposure. We selected some such cases in the Network and Communications
domain and show them in Table 10 and Table 11.

4.5 Relation of Ranking to Publication Years

Finally, we were curious to find out the relationship between how an author
ranked and his/her first (or last) year of publication. Fig. 11 plots the authors’
Influence ranks against their first year of publication.
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Table 10 Examples for High Influence and Low CC

Author Influence #Citation
Robert Elliot Kahn A C
J. M. Wozencraft A C
Jean-Jacques Werner A C
David G. Messerschmitt A C
Nathaniel S. Borenstein A C
James L. Massey A C
W. T. Webb A C
Takashi Fujio A D
Martin L. Shooman A D
Sedat Olcer A D
Massimo Marchiori A D
Roger A. Scantlebury A D

Table 11 Examples for High Exposure and Low Influence

Author Influence Exposure
Achille Pattavina C A
Herwig Bruneel C A
Yigal Bejerano C A
Torsten Braun C A
Kenneth J. Turner C A
Ioannis Stavrakakis C A
Emilio Leonardi C A
Luciano Lenzini C A
Dmitri Loguinov C A
Romano Fantacci C A
Hossam S. Hassanein C A
Azzedine Boukerche C A

Fig. 11 Comparison between Influence and the year of first publication.

It is worth noting that it takes time to build up Influence. Authors ranked
as A in Influence started publishing in the 1990s or earlier; B authors started
publishing in the early 2000s or earlier, and so on (here is the contribution
based letter assignment).



18 Fu et al

Next, we plotted an author’s last year of publication against Influence
(Fig. 12), Citation Count (Fig. 13), and then against h-index (Fig. 14), for
comparison. Note, for Citation Count and h-index, the high ranking people are
mostly still active, because we have been seeing paper and citation inflation
over years. For Influence, however, there is more memory, in the sense that
more people who are no longer active also enjoy high Influence. This is because
an author’s influence propagates, by definition of the Influence metric.

Fig. 12 Comparison between Influence and the year of last publication.

Fig. 13 Comparison between Citation Count and the year of last publication.

4.6 Author-based Institution Rankings

In Table 12, we illustrate the possibility of institutional ranking according
to authors’ rankings in various metrics. We selected 30 well-known universi-
ties and applied two counting granularities on authors’ letter grades of overall
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Fig. 14 Comparison between h-index and the year of last publication.

“Computer Science” rankings of three metrics, Citation Counts (CC), Influ-
ence (Inf) and Exposure (Exp).

We found that the ranking results by different metrics were similar at
the institution level. The noise at the author ranking results were cancelled
out to a certain extent after they were aggregated for scores. When we used
the two granularities: (1) count the number of authors assigned with “A”
and (2) compute the total score, counting “A”=1, “B”=0.5, “C”=0.25 and
“D”=“E”=0, for method (2), the size of an institution was influential; whereas
for method (1), smaller schools also had a chance to rank very high. For
example, in Table 12, Princeton University was ranked 28th by method (2),
but 13th by only counting the number of “A” authors, i.e. by method (1).

Next we show three sets of similarity study between different institution
ranking results, mainly focused on three selected metrics: Citation Count (CC),
Influence (Inf) and Exposure (Exp). In the first set, we compared the ranking
results at two different granularities, count number of “A” authors vs. compute
total score, based on the rank percentile based letter grades, as shown in
Fig. 15(b). In the second set (Fig. 16), we investigated how the authors’ letter
grading methods (rank percentile based vs. contribution based) affect the total
scores (granularity method (2)) as well as the institution rankings. In the
last set, we compared three metrics (Inf vs. CC in Fig. 17(a), Inf vs. Exp
in Fig. 17(b)) while the rank percentile based letter grading scheme and the
granularity method (2) of computing total score are used.

According to the above comparison results (Figures 15, 16 and 17), we
made several observations:

i. As shown in Fig. 15, for those highly ranked institutions (e.g. above 100th),
the ranking results of the two granularities are very close. In addition, as
mentioned before, when the total scores (by counting “A”=1, “B”=0.5,
“C”=0.25) were same, granularity method (1) can indicate the ratio of au-
thors earning letter “A” (e.g. Princeton University in Table 12).

On the other hand, counting the number of “A” authors only was ineffec-
tive in distinguishing institutions ranked below 100th (note the number of
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Table 12 Illustration of Institution Rankings on 30 selected top universities of three metrics
(#Citations, Influence and Exposure) at two counting granularities based on authors’ overall
ranking in “Computer Science” domain.

Institution Name
Total Score Rank #A Rank
CC Inf Exp CC Inf Exp

Massachusetts Institute of Technology 2 1 2 1 1 2
Carnegie Mellon University 1 2 1 2 2 1

Stanford University 3 3 3 4 4 4
University of California Berkeley 4 4 4 3 3 3

University of Illinois Urbana Champaign 5 5 5 6 6 5
University of Southern California 6 6 7 5 5 6
Georgia Institute of Technology 7 6 6 8 7 8

University of California San Diego 11 8 9 7 8 7
University of Washington 10 9 14 10 9 13
University of Maryland 8 9 8 9 11 8

University of California Los Angeles 12 11 11 12 10 12
University of Texas Austin 9 11 10 11 14 10
University of Michigan 13 13 11 14 14 16

Cornell University 15 14 15 13 11 15
University of Cambridge 16 15 21 17 17 22
Columbia University 17 16 19 21 20 17

University of Wisconsin Madison 20 17 28 18 18 22
University of Toronto 18 18 16 16 16 13

The French National Institute for 14 19 11 24 26 22
Research in Computer science and Control

University of Pennsylvania 22 20 27 21 21 22
Rutgers, The State University of New Jersey 23 21 22 29 18 22
Swiss Federal Institute of Technology Zurich 18 22 25 23 26 28

Harvard University 30 23 39 33 31 35
University of California Irvine 25 24 23 19 21 20

Purdue University 21 25 18 19 31 17
University of Minnesota 25 25 24 27 31 22

University of Massachusetts 24 25 26 31 36 30
Princeton University 27 28 29 14 13 17

Technion Israel Institute of Technology 31 29 19 24 23 10
University of Edinburgh 29 30 29 31 40 35

institutions with the same number of “A” authors located on horizontal
lines).

ii. As shown in Fig. 16, although the rank percentile based and contribution
based letter grading methods make pronounced differences on author rank-
ings, they produce very similar results on institution rankings.

iii. As shown in Fig. 17, institutions ranked above 100th have similar rank-
ing results for these three metrics (CC, Inf and Exp); however, the points
are spread out largely for those ranked below 100th under different met-
rics. This again validates the effectiveness of the definitions of the various
metrics with practical interpretations.

Finally, we compare our institution ranking approach to the three estab-
lished ranking systems. We show the top 30 universities in “Computer Science”
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Fig. 15 Comparison on institution ranking results between two granularity methods:
(counting number of As, y-axis) versus (counting “A”=1, “B”=0.5, “C”=0.25 for total
score, x-axis) for three metrics, Citation Count (CC), Influence (inf) and Exposure (Exp)
according to authors’ rank percentile based letter grades.
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Fig. 16 Comparison on institution ranking results between rank percentile based (x-axis)
versus contribution based (y-axis) letter grading methods, using granularity method (2) for
three metrics, Citation Count (CC), Influence (inf) and Exposure (Exp).
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Fig. 17 Comparison on institution ranking results among three metrics, Citation Count
(CC), Influence (inf) and Exposure (Exp) according to rank percentile based letter grading
results using granularity method (2).

domain ranked by each of these systems, together with the ranking results by
ours (based on total score of Influence metric):

a) US News Ranking - The Best Graduate Schools in Computer Science
ranked in 2010 US-News (2010). Results are shown in Table 13.

b) The QS World University Rankings By Subject 2013 - Computer Science
& Information Systems QS (2013). Results are shown in Table 14.
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c) The Academic Ranking of World Universities (ARWU by SJTU) 2012 in
Computer Science ARWU (2012). Results are shown in Table 15.

As in Tables 13-15, we find that the calculation of the overall score is
the key factor leading to the deviation of the ranking results among different
systems. In particular, the US New ranking system applied a subjective based
approach US-News (2010) to calculate the total scores for each university. The
QS ranking system calculated the overall score in the “Computer Science &
Information Systems” subject based on the four objective factors: “Academic
Reputation”, “Employer Reputation”, “Citations per Paper” and “H-index Ci-
tations” QS (2013). The ARWU ranking system, on the other hand, consider
the overall score in “Computer Science” domain as the weighted average of
the five metrics: “Alumni Turing Awards (10%)”, “Staff Turing Award (15%)”,
“Highly Cited Researchers (25%)”, “Papers indexed in SCI (25%)” and “Pa-
pers Published in Top Journals (25%)” ARWU (2012). Because of these factors
(considering more reputation and recent work), the results of the three rank-
ing systems tend to be quite volatile - the top universities change quite a bit
from year to year. In our case of using total score of Influence metric, we are
at least more stable and pure.

As Microsoft Libra also provides the institution ranking services Libra
(2013), we make another comparison and the results are shown in Table 16.
Since we are using the same dataset for calculation, it is not surprising that
the ranking results are very similar.
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Table 13 Top 30 Universities of “US News Ranking - The Best Graduate Schools in Com-
puter Science ranked in 2010”, compared to ours (total score of Influence metric, Inf TS)

University Name Score USNews Inf TS
Carnegie Mellon University 5.0 1 2

Massachusetts Institute of Technology 5.0 1 1
Stanford University 5.0 1 3

University of California Berkeley 5.0 1 4
Cornell University 4.6 5 14

University of Illinois Urbana Champaign 4.6 5 5
University of Washington 4.5 7 9

Princeton University 4.4 8 28
University of Texas Austin 4.4 8 11

Georgia Institute of Technology 4.3 10 6
California Institute of Technology 4.2 11 33
University of Wisconsin Madison 4.2 11 17

University of Michigan 4.1 13 13
University of California Los Angeles 4.0 14 11
University of California San Diego 4.0 14 8

University of Maryland 4.0 14 9
Columbia University 3.9 17 16
Harvard University 3.9 17 23

University of Pennsylvania 3.9 17 20
Brown University 3.7 20 42
Purdue University 3.7 20 25
Rice University 3.7 20 47

University of Massachusetts 3.7 20 25
University of North Carolina-Chapel Hill 3.7 20 42

University of Southern California 3.7 20 6
Yale University 3.7 20 53
Duke University 3.6 27 59

Johns Hopkins University 3.4 28 44
New York University 3.4 28 33
Ohio State University 3.4 28 40

Pennsylvania State University 3.4 28 46
Rutgers, The State University of New Jersey 3.4 28 21

University of California Irvine 3.4 28 24
University of Virginia 3.4 28 68
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Table 14 Top 30 Universities of “The QS World University Rankings By Subject 2013
- Computer Science & Information Systems”, compared to ours (total score of Influence
metric, Inf TS)

University Name Score QS Inf TS
Massachusetts Institute of Technology 96.7 1 1

Stanford University 92.1 2 3
University of Oxford 92.0 3 21

Carnegie Mellon University 90.5 4 2
University of Cambridge 89.8 5 15

Harvard University 88.4 6 23
University of California Berkeley 88.0 7 4
National University of Singapore 87.2 8 57

Swiss Federal Institute of Technology Zurich 87.1 9 22
University of Hong Kong 84.0 10 165
Princeton University 83.7 11 28

The Hong Kong University of Science & Technology 83.6 12 113
The University of Melbourne 83.4 13 82

University of California Los Angeles 82.1 14 11
University of Edinburgh 81.5 15 30
University of Toronto 81.0 16 18

École Polytechnique Fédérale de Lausanne 80.2 17 36
Imperial College London 79.7 18 35

The Chinese University of Hong Kong 79.5 19 94
The University of Tokyo 79.4 20 50

Australian National University 78.9 21 107
Nanyang Technological University 78.5 22 91

University College London 78.0 23 47
The University of Sydney 77.9 24 146

The University of Queensland 77.8 25 107
Cornell University 77.6 26 14
Tsinghua University 77.5 27 107

University of Waterloo 77.5 27 32
The University of New South Wales 77.3 29 102

The University of Manchester 77.1 30 45
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Table 15 Top 30 Universities of “The Academic Ranking of World Universities (ARWU
by SJTU) 2012 in Computer Science, compared to ours (total score of Influence metric, Inf
TS)

University Name Score SJTU Inf TS
Stanford University 100 1 3

Massachusetts Institute of Technology 93.8 2 1
University of California Berkeley 85.3 3 4

Princeton University 78.7 4 28
Harvard University 77.7 5 23

Carnegie Mellon University 71.8 6 2
Cornell University 71.2 7 14

University of California Los Angeles 69.2 8 11
University of Texas Austin 68.3 9 11

University of Toronto 63.6 10 18
California Institute of Technology 63.5 11 33
Weizmann Institute of Science 63.3 12 89

University of Southern California 63.0 13 6
University of California San Diego 61.8 14 8

University of Illinois Urbana Champaign 61.7 15 5
University of Maryland 60.1 16 9
University of Michigan 58.9 17 13

Technion-Israel Institute of Technology 57.8 18 29
University of Oxford 56.7 19 31
Purdue University 54.5 20 25

University of Washington 54.2 21 9
Columbia University 53.8 22 16

Rutgers, The State University of New Jersey 53.5 23 21
Georgia Institute of Technology 53.0 24 6

Swiss Federal Institute of Technology Zurich 52.7 25 22
The Hong Kong University of Science & Technology 52.6 26 113

The Hebrew University of Jerusalem 52.5 27 77
Yale University 51.4 28 53

Tel Aviv University 50.9 29 36
The Chinese University of Hong Kong 50.7 30 94
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Table 16 Top 30 Universities ranked by Libra in “Computer Science” domain, compared
to ours (total score of Influence metric, Inf TS)

University Name Field Rate Libra Inf TS
Stanford University 418 1 3

Massachusetts Institute of Technology 408 2 1
University of California Berkeley 404 3 4

Carnegie Mellon University 325 4 2
University of Illinois Urbana Champaign 268 5 5

Cornell University 260 6 14
University of Southern California 256 7 6

University of Washington 256 7 9
University of California San Diego 253 9 8

Princeton University 252 10 28
University of Texas Austin 248 11 11

University of California Los Angeles 243 12 11
University of Maryland 238 13 9

Georgia Institute of Technology 229 14 6
University of Michigan 224 15 13
University of Toronto 222 16 18

University of Cambridge 214 17 15
Harvard University 214 17 23

University of Wisconsin Madison 209 19 17
Columbia University 202 20 16

University of Pennsylvania 201 21 20
University of California Irvine 199 22 24

Rutgers, The State University of New Jersey 197 23 21
University of Oxford 197 23 31

University of Minnesota 195 25 25
Swiss Federal Institute of Technology Zurich 190 26 22

The French National Institute for 189 27 19
Research in Computer science and Control

California Institute of Technology 189 27 33
Brown University 189 27 42

University of Massachusetts 189 27 25

5 Related Works

The study of academic publication statistics is by no means a new topic. Pre-
vious attention focused mostly in different areas of science, especially physics.
The most influential work was published in 1965 by Derek de Solla Price
(1965), in which he considered papers and citations as a network and no-
ticed the citation distribution (degree distribution) followed the power law.
A few years later, he tried to explain this phenomenon using a simple model
called the cumulative advantage process Derek de Solla Price (1976); Merton
(1968). The skewness of the citation count distribution has since been vali-
dated by other studies on large scale datasets Seglen (1992); Redner (1998).
In subsequent literature, later on, the model became better known as prefer-
ential attachment by Barabási and Albert (1999) (i.e. a paper is more likely
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to cite another paper with more existing citations) and with good empirical
evidence Jeong et al (2003).

To determine the quality or impact of a paper by its citation count, while
considered reasonable by many, has met with strong criticisms Walter et al
(2003). Instead of using citation count, it has been proposed that a ranking
factor, calculated using the eigenvector-based methods such as PageRank Brin
and Page (1998) or HITS Kleinberg (1999), be adopted. Subsequently, a num-
ber of proposals of different variations to measure paper importance appeared,
including eigenvector-based Sun and Giles (2007); Bergstrom (2007) or net-
work traffic-like schemes Walker et al (2007); Li et al (2011). Since it takes
time for a paper to accumulate its share of citations, it is common practice
to use the venue (journal) the paper is published in to predict the potential
impact/importance of a paper. Thus, Journal Impact Factor (JIF Garfield
(1972)) becomes an important indicator used in practice.

The use of citation count has become more popular due to Google Scholar.
More recently, some new indices, such as h-index Ball (2005); Hirsch (2005) and
g-index Egghe (2006) have been proposed to combine the use of citation count
and paper count to measure the achievements of an author. Some recent studies
have also proposed to apply PageRank-type iterative algorithms to evaluate
authors’ contribution and impact, notably a scheme called SARA (Scientific
Author Ranking Algorithm) to compute authors contributions Radicchi et al
(2009); and a model to rank both papers and authors Zhou et al (2007).

Besides the paper citations earned by authors, authors can also be ranked
based on their connections and popularity as a co-author. This way of evalu-
ating authors is used in a series of studies by Newman et al on author collab-
oration networks Newman (2001a,b, 2004a,b). This approach and viewpoint
is similar to that used in the study of social networks Easley and Kleinberg
(2010). A number of recent papers studied social influence and their correlation
to user actions Bakshy et al (2009); Anagnostopoulos et al (2008); Crandall
et al (2008); Budalakoti and Bekkerman (2012).

Finally, the publication database plays a critical role in such bibliometrics
and social network studies. The well-known databases are: Google Scholar, Sco-
pus, ISI, CiteSeer Giles et al (1998), Microsoft Libra Libra (2013), DBLP Ley
(2009), IEEE, ACM. These databases, however, tend to contain different pa-
persets Chiu and Fu (2010). For example, CiteSeer, DBLP, ACM focus mostly
on computer science and related literature, but each has its own rules of which
conferences/papers to include or not. Not all these databases have citation in-
formation (e.g. DBLP does not).

6 Discussions

6.1 The name disambiguation problem

Name ambiguity is a big problem with online systems dealing with people
names without explicit registration, especially true for bibliometric systems
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since the publication records come from many years of accumulation and from
many different publishers. It is a hard problem, the full solution of which is
beyond the scope of this paper. Below, we discuss some of the steps that have
been taken and our plans for dealing with this problem in the future.

Our current implementation of the Academic Influence Ranking system
makes full use of the objectized data from Microsoft Libra (2013). Each author
is an object with its own ID. Microsoft Libra has already applied some name
disambiguation algorithm to clean its raw data. We show two examples to
illustrate this in Fig. 18.

Fig. 18 Examples of name disambiguation results.

As shown by the examples, multiple authors with the same name but dif-
ferent affiliations are included in Libra’s dataset, and we access the authors
by their IDs.

From examining specific cases, we know that there still exist many author
names (and their IDs) that are shared by many different real-world persons.
MS Libra is also aware of this problem, evidenced by the fact that they sub-
mitted this problem as a challenge for the KDDCup (2013). We expect MS
Libra will apply the algorithms proposed by the winning team of this compe-
tition in the near future. Since we plan to continue to update our system by
sourcing data from MS Libra, we need to be careful in doing our own name
disambiguation so that we can continue to leverage of the MS Libra data.

On the other hand, we are also using our tool and dataset for various
statistical analysis, and model validation. For such purposes, it is sometimes
adequate to disambiguate only the authors with significant publications. For
this we can apply some semi-automatic and semi-manual methods. For exam-
ple, we can automatically identify the author names worthy of disambiguation,
and do the disambiguation semi-manually. Here are some semi-manual meth-
ods we are trying:

1) We have developed a crawler-parser to extract online information (e.g.
author’s homepage) for given author names, and use that information to
disambiguate authors with the same name.

2) We have also found certain online services with author registration, that
can potentially help us disambiguate authors manually.
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This allows us to be more confident with our statistical inferences.
In the long run, we believe the ultimate solution requires us to based ev-

erything on an (single) author registration system, so that all authors are
guaranteed unique. This is clearly not a technical issue any more.

6.2 User feedbacks

We have demonstrated our system to many colleagues and friends, including
some experts from the industry (Elsevier). Overall, we received very positive
feedback. Here are some things people liked a lot:

1) By checking out the scores for authors familiar, the reviewers told us that
the use of influence and connections seem to sort out the stronger re-
searchers from those socially active researchers.

2) By checking the university ranking for domains familiar to them, the re-
viewers told us that the ranking is quite accurate, and the top universities
are exactly the ones with strong groups in that domain.

3) Many told us that our website can be very useful for: (i) students searching
for finding supervisors and graduate programs to apply; (ii) TPC chairs
or journal editors finding people to review papers; (iii) hiring search; (iv)
occasionally checking out someone to get their relative position roughly.

We also received many good suggestions that we will follow up in our future
works. Here are some example ones:

1) It would be good to do controlled survey of (systematically selected) people
in the different field, to see their opinions.

2) It would be good to introduce the concept of peer group for each person,
and do comparison in that context. For example, a person’s peer group
should include people of similar years of research experience.

3) It would be important to develop the user feedback component into the
current website.

7 Conclusion

In this paper, we present the design and experimental study of an Academic
Social Network website (http://pubstat.org) that we have built. It consists
of several different non-conventional, social-network-like metrics we can use to
rank authors and compare authors. In addition, it also provides author-based
institution rankings by utilizing the author-institution relationship informa-
tion. It has been demonstrated to many colleagues and friends, including some
experts from industry (Elsevier). Overall, we received very positive feedback
and many good suggestions that we will follow up in our future works.

Although we have had a working system for some time now, there are
still many challenges to making it widely used. The publications database we
have is not as complete as we would like; and we want to work out a way
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to continuously update it. The data is also far from clean. We are starting
new projects to apply machine learning techniques to clean the data (some
preliminary results in estimating missing years on papers have been submitted
for publication).

We continue to discover new query types that users are interested in, and
even new metrics. If the reviewers of this paper are interested in examining
our website, we would be glad to open it for inspection in some fashion (http:
//pubstat.org).
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A The PageRank Algorithm

Given a graph G = (V, E), the PageRank Algorithm can be considered as a random walk
starting from any node along the edges. After an infinite number of steps, the probability
that a node is visited is the PageRank value of that node.

More formally, the probability distribution of visiting each node can be derived by
solving a Markov Chain. The transition matrix C’s entries cij (i, j = 1, 2, . . . , n) represent
the transition probability that the random walk will visit node j next given that it is
currently at node i. Thus, cij can be expressed as

cij = Prob(j|i) =
eij∑
k
eik

(1)

where eij is from the adjacency matrix for the graph G. If G is the citation graph, for
example, then eij = 1 if paper i cites paper j; else eij = 0.

In general, C is a substochastic matrix with rows summing to either 0 (dangling nodes Brin
and Page (1998), for example, representing papers with citing no other papers) or 1 (normal
nodes, or papers). For each dangling node, the corresponding row is replaced by 1

n
e, so that

C becomes a stochastic matrix.
In order to ensure the Markov Chain C is irreducible, hence a solution is guaranteed to

exist, C is further transformed as follows:

C̃ = αC + (1− α)evT , α ∈ (0, 1). (2)

Here, e is a special column vector with all 1s, and of dimension n.
In Eq. (2), v ∈ Rn is a probability vector (i.e. its values are between 0 and 1, and sum

to 1). It is referred to as the teleportation vector, which can be used to configure some bias
into the random walk. For our purposes, we let v = 1/ne as the default setting.

Now, according to the Perron-Frobenius Theorem Langville and Meyer (2009); Meyer

(2000), matrix C̃ is stochastic, irreducible and aperiodic, and the equation

πT = απTC + (1 − α)
1

n
eT , α ∈ (0, 1) (3)

which can be solved by iteration methods in practice.
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B Definition of Metrics in Matrix Form

We list the matrix form for the 5 metrics discussed in the previous sections in the following
table:

Table 17 Notations and derivations of the ranking metrics.

Notations Description
nP total number of papers
nA total number of authors
nV total number of venues

(X)∗ row normalization operation on any X, i.e.,

(X)∗ij =
Xij∑
k
Xik

, for non-zero rows

R nP × nP paper-citation adjacent matrix,
Rij = 1, if paper i has cited paper j
0, otherwise.

A nP × nA paper-author adjacent matrix,
Aij = 1, if paper i is written by author j
0, otherwise.

V nP × nV paper-venue adjacent matrix,
Vij = 1, if paper i has published in venue j
0, otherwise.

H nA × nA author influencing matrix,
H = (AT )∗(R)∗(A)∗

Y nV × nV venue influencing matrix,
Y = (V T )∗(R)∗(V )∗

F nA × nA author following indicating matrix,
Fij = 1 if author i has cited author j’s paper
at least once, else 0.

N nA × nA author collaboration matrix,
N = ATA

TV A nV × nA matrix, TV A = (V T )∗(A)∗

TAV nA × nV matrix, TAV = (AT )∗(V )∗

P (nA + nV )× (nA + nV ) matrix,

P =

(
α(H)∗ (1− α)TAV

(1 − α)TV A α(Y )∗

)

Metrics Description
CV apply PageRank on (R)∗ to get papers CV,

assign papers CV equally to authors,
through, πT (A)∗

Influence apply PageRank on (H)∗

Follower apply PageRank on (F )∗

Connection apply PageRank on (N)∗

Exposure apply PageRank on P , exposure of
both authors and venues are obtained


