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Abstract

Collaborations and citations within scientific research grow simultaneously and interact dynamically.

Modelling the coevolution between them helps to study many phenomena that can be approached only

through combining citation and coauthorship data. A geometric graph for the coevolution is proposed,

the mechanism of which synthetically expresses the interactive impacts of authors and papers in a geo-

metrical way. The model is validated against a dataset of papers published on PNAS during 2007-2015.

The validation shows the ability to reproduce a range of features observed with citation and coauthorship

data combined and separately. Particularly, in the empirical distribution of citations per author there

exist two limits, in which the distribution appears as a generalized Poisson and a power-law respectively.

Our model successfully reproduces the shape of the distribution, and provides an explanation for how the

shape emerges via the decisions of authors. The model also captures the empirically positive correlations

between the numbers of authors’ papers, citations and collaborators.

1 Introduction

Coauthorship and citations are typical relationships in scientific activities, which can be observed from

datasets of scientific papers, and expressed as graphs called coauthorship and citation networks respec-

tively. Coauthorship networks, in essential, are hypergraphs, in which nodes represent authors, and the

authors of a paper forms a hyperedge. Citation networks are acyclic directed graphs, in which papers

are directly linked via citation relations. Those networks provide big pictures of the topological connec-

tions between authors and papers respectively. Modelling the mechanisms and temporal dynamics of
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those networks (especially, with consideration of the papers’ publication time) sheds light on modes of

collaborations within science, and helps to discover trends of academic research [1–4].

Matthew effect describes the phenomenon that success breeds success, which is also called preferential

attachment or cumulative advantage [5]. The effect has been observed in the behaviors of scientific

collaborations and citations in specific disciplines and countries [6–9]. As early as 1965, Price explained

the emergence of fat-tails in the distributions of citation networks as a consequence of Matthew effect.

His explanation is modelled by a rule, namely the probability of a paper’s receiving a new citation is

proportional to the citations it has received. The rule successfully predicts the scale-free property [10,

11]. Price’s model has been generalized to illustrate other properties of citation networks in various

contexts [12–16]. Meanwhile, although coauthorship networks receive far less attention than citation

networks [17], there are still a range of models working on the elementary mechanism for the emergences

of scale-free, small-world and degree-assortativity [18–25]. Each of those models has addressed Matthew

effect.

The behaviors of collaboration and citation are coupled and coevolutionary. Modelling the coevo-

lution has its own meaning, because some phenomena can be studied only by combining citation and

coauthorship data, such as the distribution of citations per author, self-/coauthor-/feedback-citation (a

researcher cites others, who have previously cited them) [26,27].

There has been relatively little work on modelling the coevolution of citation and coauthorship net-

works so as to simulate their simultaneous growth and dynamic interactions. The first model (perhaps

the only one according to our present knowledge) is named TARL (topics, aging, and recursive linking),

which successfully reproduces a power law distribution of citations per paper [28]. The model novelly

introduces “topics”, which enables the simulated citation networks to obtain positive and tunable clus-

tering coefficients. The model concentrates on the citation patterns, and has validated the properties of

the citation network against a dataset of papers published on the Proceedings of the National Academy

of Sciences (PNAS) 1982-2001.

To the ground, the behaviors of collaborations and citations are due to the self-organization decisions

made by authors: “yes” or “no”. For example, the event that whether a paper cites another paper

can be treated as a “yes/no” decision. Meanwhile, Matthew effect “is at the heart of self-organization

across social and natural sciences” [5]. A geometric graph is proposed to model those decisions and their

Matthew effect. The present model is built on a cluster of concentric circles, where each circle has a
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time stamp. The modelled decisions synthetically consider two factors of generating collaborations and

citations, namely the homophily (in sense of research interests, topics, etc.) and the academic impacts

(with Matthew effect) of authors and papers. The model codes are available upon requests of readers.

The model is validated against a dataset of papers published on PNAS 2007-2015. The reasonability

of the model is verified by the respectable model-data matching in a range of topological and statistical

features of the empirical citation and coauthorship networks simultaneously, such as the distribution

of collaborators/citations per author, and that of citations per paper. Those distributions emerge two

limits, namely a generalized Poisson and a power-law in small and large variable regions respectively.

There exists a cross-over between the two limits. Our model successfully reproduces the shapes of those

distributions, and reveals how the decisions of nodes in networks generate the emerged limits. In addition,

the data PNAS 2007-2015 evidences the positive correlation between each two of the three author-indexes,

namely numbers of papers, citations and collaborators, which are also captured by our model.

This paper is organized as follows: the model and data are described in Sections 2 and 3 respectively;

the distributions of specific indexes per author, the correlation between each two of the three author-

indexes are analyzed in Sections 4 and 5 respectively; and the conclusion is drawn in Section 6.

2 The model

The presented model adopts the viewpoint from research-teams in focusing on the roles of research-

teams performing in the production and dissemination of knowledge. Each author is assigned research-

teams, each paper is written by a group of authors called paper-team (which is called article team in

Reference [24]), and the members of a paper-team usually come from the same research-team. The model

simultaneously generates two graphs interacting to each other, namely a hypergraph and a directed acyclic

graph, to simulate the coevolution process of coauthorship and citation networks.

The model is built on a cluster of concentric circles S1
t , t = 1, ..., T . For the sake of simplicity, the

number of modelled “authors” is supposed to linearly grow over time t. The parameter t can be regarded

as the t-th unit of time. Denote the i−th author-node by a(θi, ti), the i−th paper-node by p(θi, ti), where

(θi, ti) is its spatio-temporal coordinate.

Select a small fraction of author-nodes as “leaders” of research-teams to attach zones to express their

academic impacts (called influential zones). For each leader node, its research team is formed by the nodes
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within the influential zone of the leader. All paper-nodes are attached influential zones. The influential

zones are designed to express the ability of capturing academic communities’ response to authors and

papers. This design is built on the perception that counting citations can offer a quantitative proxy of

eye-catching ability. Note that counting citations is not a measure of the novelty and importance, which

are impossible to be measured objectively. The detail of zones is given as follows.

Let constants αl > 0 and βl ∈ [0.5, 1] (l = 1, 2, 3). The zone of a leader a(θi, ti) is defined as an interval

of angular coordinate with center θi and arc-length α1t
−β1

i tβ1−1. The definitions of paper-node-zones are

the same as those of leaders except parameters (α2, β2 for the papers written by leaders as “the first

authors” and α3, β3 for the papers written by non-leaders as “the first authors”). The zonal sizes are all

required to be less than 2π. The reason of choosing boundless circles is that we do not need to consider

spacial boundary effects on influential zones.

The power-law factors t−βli (l = 1, 2, 3) in influential zones induce the scale-free property of synthetic

networks (see Appendix Eq. 2). The parameters of zones are used to tune synthetic data to fit the

empirical distributions of collaborators per author and those of citations per paper. The formula of zones

is dependent on t. If running the model with different initial time (which is equal to choose different αl),

the result will be different.

In the empirical data, the distributions of paper-team-sizes and references per paper appear two

common features, namely hook heads and fat tails, which can be sufficiently fitted by generalized Poisson

and power-law distributions respectively (which can be seen in following Fig. 2a, Fig. 4i). For such kind

of distributions, we denote their probability density function (PDF) by f(x), x ∈ Z+.

After above preparations, we introduce the model as follows, where the constants N1, N2, N3, T ∈ Z+,

p ∈ [0, 1], and the paper-team-sizes and reference-lengths of paper-nodes are drawn from specific PDFs

with form f(x).

1. Generate a coauthorship network

For time t = 1, 2, ..., T do:

1.a. Sprinkle N1 author-nodes as potential authors uniformly and randomly on a circle S1
t ,

and select N2 nodes randomly from the new nodes as leaders.

1.b. For each new node i, search the existing leaders whose zones cover i, and join those leaders’

research team. For each such leader j, under probability p (p = 1 if i also is a leader), generate a
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Time
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Figure 1. Illustration of the model. Leaders and papers have influential zones, the sizes of which
are all required to be less than 2π. The rules of modelled authors publishing and citing papers are
outlined in the model. Those behaviors happen with in zones locally in most cases, and across zones in
few cases. The coordinates of papers are the same as those of their first authors.

paper-team with size m by grouping together i, j and m − 2 research-team-members of j nearest

to i, where m is a random variable of a given f(x) or the research team size of j plus one if the

former is larger than the latter.

1.c. Select N3 nodes with non-zero degree randomly from all existing nodes, and generate a

paper-team with size m for each selected node l by grouping together l and m−1 randomly selected

nodes with the same degree of l, where m is a random variable of a given f(x) or the number of

nodes with the degree of l if the former is larger than the latter.

2. Generate a citation network

For time t = 1, 2, ..., T do:

2.a. Each paper-team publishes a paper, where “the first author” is the new author-node in

Step 1.b or the author-node selected in Step 1.c. The spatio-temporal coordinates of paper-nodes

are those of their first authors.

2.b. Each new paper cites the existing papers that have zones covering it, and then cites

other existing papers uniformly at random (with no replacement) until the length of its references

(out-degrees) equals a random variable of a given f(x).

Note that in the publication version of this work (Scientometrics, 2017, 112: 483-507), there is expression

error in Step 1.b, where “neighbor” should be replaced as “research-team-member”.

The homophily of citations and coauthorship based on topics and research interests is a reason for the

clear community structures in empirical data. In fact, with the development of sciences, researchers cannot
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understand all of the sciences, but focus on their special fields, collaborate with some of the researchers in

the same research-team, and cite some of the papers in their fields. This part of connections is imitated

by Step 1.b and the first half of Step 2.b, which contributes to the main part of connections in our model.

The parameters of f(k) in Steps 1.b, 1.c and 2.b are not required to be the same. The f(k) in Steps

1.b and 1.c tunes the distribution of paper-team sizes. The f(k) in Step 2.b tunes the distribution of

references per paper. Parameters α1 and β1 tune the distribution of collaborators per author. Parameters

αl and βl (l = 2, 3) tune the distribution of citations per paper. There is no parameter directly tunes

the distribution of citations per author. By far, we tune those parameters manually to fit empirical

data. Firstly, we tune the parameters in Step 1 to fit the features of coauthorship data, then tune the

parameters in Step 2 to fit the features of citation data. Lastly, we fine tune the chosen parameters with

an optimal trade-off between model-date fits for the features of citation and coauthorship data separately

and combined (e. g. distribution of citations per author, self-citation rate). In the future, we will try to

find an effective way to automatically learn parameters from empirical data.

If the authors only collaborate with the authors with the same research interests, and papers only

cite the papers with the same topics, the networks of citations and coauthorship are highly clustered,

but would not have giant components and the small-world property. However, it is against the empirical

data, a possible reason of which is the existence of a small fraction of cross-disciplinary studies [29].

Authors collaborating across research-teams would result in the connections of papers from different

topics even disciplines via citations. Step 1.c and the second half of Step 2.b are designed to imitate

the cross-disciplines phenomenon, which make the modeled networks have the small-world property and

giant components. In addition, researchers can belong to different research-teams at different time, which

is also equivalently imitated by Step 1.c to some extents.

The model is partly based on our previous results. The first part of the model is a generalization of

the coauthorship model in Reference [30]. The parameter p in Step 1.b is newly introduced to tune the

average number of papers per author. The second part of the model comes from the citation models in

References [31,32], but with modifications, such as the increment of nodes, the connection rules, etc.

The innovation of the model here is mapping the coordinates of paper-nodes to those of their first

authors, which connects papers to authors and makes the networks of them grow simultaneously and

interactively (Fig. 1). The combination makes the new provided model not only reproduce a range of

statistical features of empirical coauthorship and citation networks (which have captured by our previous
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models [30, 32]), but also predict some features generated by the interactions between coauthorship and

citations, e.g. the distribution of citations per author, self-citation, etc.

There are some oversimple assumptions in our model. (a) The linear growth of authors does not hold

in reality. If changing it, the formula of zone sizes should be changed to capture features of empirical

data. (b) To express degree assortativity (authors prefer to collaborate with other authors with similar

degrees), nodes with the same degree (the number of collaborators) are grouped in Step 1.c. Actually, no

author does that surely when choosing coauthors. (c) The authorship order in Step 2.a does not consider

heterogeneous conventions on different scientific fields.

3 The data

The information of citations and collaborations in 36,732 papers published on PNAS during 2007–2015

is utilized to validate the model in terms of major statistical properties. The empirical data are gathered

from the Web of Science (http://www.webofscience.com). Authors are identified by their names on their

papers. For example, the author named “Michael R. Strand” on his paper is represented by the name

per se. Another way of identifying authors is using surnames and all initials of authors (e. g. represent

“Michael R. Strand” by “Strand, MR”). Compared with using surnames and all initials, using names

on papers is a reliable way to distinguish authors from one another in most cases. However, it mistakes

one author as two if the author changes his/her name in different papers, and two authors as one if they

have the same name. Those deficiencies will cause the inaccurate of expressing real situations, such as

the number of authors, the number of components, clustering coefficient, etc.

Several references say that the inaccurate (caused by using surnames and all initials) does not much

affect certain research findings, such as the distribution type of collaborators per author, and that type of

papers per author [17,27,36–38]. Reference [39] analyzes the papers in PNAS 2012, and shows the differ-

ence between the distribution of collaborators per the author identified by using surnames together with

all initials and that by a proxy of ground-truth. Those distributions have the same type approximately.

Here we mainly focus on those distributions per se and some properties based on them. We use names

on papers to identify authors, because it seems more reliable (Table 1). In elsewhere, we will show the

same mathematical laws (i.e. types) underlying the considered distributions for the authors identified by

both methods respectively, and analyze why this happens.

http://www.webofscience.com
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Table 1. Top ten authors (identified by using surnames together with all initials and by
using names on papers respectively) according to the number of papers/collaborators.

Papers Zhang Y 137, Wang J 122, Wang Y 117, Liu Y 112, Li Y 104, Liu J 95, Zhang J 90,
Kim J 89, Chen J 80, Li J 80

Collaborators Wang Y 1313, Zhang Y 1297, Wang J 1165, Liu Y 984, Liu J 856, Li Y 816,
Zhang J 762, Chen Y 720, Li J 695, Kim J 688.

Papers Nair Prashant 62, Croce Carlo M 61, Wang Wei 52, Mak Tak W 49, Onuchic Jose N 45,
Schultz Peter G 44, Ayala Francisco J 41, Langer Robert 41, Weissman Irving L 41,
Flavell Richard A 40

Collaborators Wang Jun 527, Croce Carlo M 482, Wang Wei 383, Langer Robert 355, Schultz Peter G 352,
Henrissat Bernard 350, Wang Tao 331, Wang Ying 329, Mak Tak W 328, Zhang Yan 323

Those data come from PNAS 2007-2015.
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Figure 2. The distributions of sizes per paper-team, and those per component. Panels (a, b) show
those distributions for the empirical data PNAS 2007-2015 (red circles) and the synthetic data
generated by our model with the parameters in Table 2 (blue squares). The fitting is a mixture of
generalized Poisson and power-law distributions, the parameters of which are listed in Table 5.

Synthetic data are generated by the model to compare with the empirical data. The model pa-

rameters are listed in Table 2. Denote the PDFs of generalized Poisson and power-law by f1(x) =

a(a+ bx)x−1e−a−bx/x! and f2(x) = cx−d respectively, where a, b, c, d ∈ R+ and x ∈ Z+. Generate ran-

dom variables of a distribution f(x) with head f1(x) and tail f2(x) by sampling random variables of

f1(x) and f2(x) with probability q and 1 − q respectively. In order to make f(x) smooth and capture

the empirical features at certain levels (Fig. 2a), we have tried many times to find proper q and fi(x)’s

domain Ii, i = 1, 2 for each step.

In PNAS 2007-2015, the maximum collaborators per author and maximum citations per paper are

not very large. So the values of αlN1 (l = 1, 2, 3) should be also not very large (Table 2), which leads

the probability of zone-overlapping is small. The paper-teams within and between research-teams are
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modelled by Steps 2.b and 2.c respectively. In reality, the number of paper-teams within a research-team

is far more than that between research-teams. So N1 is set to be far larger than N3.

Table 2. The parameters of the synthetic data.

Network sizes T = 4, 500 N1 = 100 N2 = 20 N3 = 1 p = 0.13
Influential zones α1 = 0.133 α2 = 0.082 α3 = 0.02 β1 = 0.42 β2 = 0.44 β3 = 0.44
f(k) in Step 1.b a = 6 b = 0 c = 15, 507 d = −3.70 q = 0.968 I1 = [2, 250] I2 = [11, 150]
f(k) in Step 1.c a = 6 b = 0 q = 1 I1 = [2, 250]
f(k) in Step 2.b a = 1.35 b = 0.45 c = 19, 424 d = −3.95 q = 0.9999 I1 = [0, 65] I2 = [20, 65]

In order to make the synthetic data capture the empirical indicators listed in Table 3 at certain levels,

we have attempted many times to find above parameters. Since the model is stochastic, we run 20 times

with the same parameters, and find that the model is robust on those indicators (Table 4).

Table 3. Typical statistic indicators of the analyzed data.

Network NN NE GCC AP MO PG NG AC SC SC2
PNAS-Citation 36,732 42,932 0.263 12.586 0.922 0.651 9,145 0.287 0.312 0.399
Synthetic-Citation 95,993 133,318 0.136 8.034 0.713 0.807 16,128 0.280 0.231 0.388
PNAS-Coauthorship 162,531 1,074,836 0.896 6.662 0.909 0.844 5,013 0.554
Synthetic-Coauthorship 175,699 886,140 0.825 6.808 0.948 0.864 3,578 0.164

The indicators are the numbers of nodes (NN) and edges (NE), global clustering coefficient (GCC), average shortest path
length (AP), modularity (MO), the node proportion of the giant component (PG), the number of components (NG), the
assortativity coefficient of degrees for coauthorship networks and that of in-degrees for citation networks (AC), the
proportion of self-citations (SC) and that of citations by collaborators (SC2). The AP of the last two networks is
calculated by sampling 15, 000 pairs of nodes respectively.

Table 4. Specific indicators’ mean and standard deviation (SD).

Synthetic NN NE AC GCC PG NG MO AP SC SC2
Citation
Mean 9.6E+04 1.3E+05 2.7E−01 1.3E−01 8.1E−01 6.8E+00 7.1E−01 8.2E+00 2.3E−01 3.9E−01
SD 3.4E+02 5.3E+02 8.9E−03 1.1E−03 1.8E−03 1.8E+02 1.4E−03 1.2E−01 1.2E−03 2.7E−03
Coauthorship
Mean 1.8E+05 8.7E+05 1.7E−01 8.2E−01 8.6E−01 3.5E+03 9.5E−01 6.8E+00
SD 8.0E+02 8.7E+03 2.7E−02 8.1E−04 2.7E−03 4.5E+01 6.5E−04 2.1E−01

The meanings of headers are shown in the notes of Table 3.

Besides the statistical features in next sections, our model captures three topological features of the

empirical data (Table 3), namely giant component (Fig. 2b), clear community structure (high modularity)

and small world (average shortest path length ∼ log(the number of nodes), positive global clustering

coefficient). In the model, the nodes in the same research-team probably belong to the same community.

Setting N1 � N3 makes edges within research-teams are significantly more than those between research-

teams, and consequently makes the synthetic networks have a clear community structure. The positive
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Figure 3. The distributions of collaborators per author and those of authors per
paper-team. The data in Panels (a, b) are extracted from the papers published on Science and Nature
during 2007-2015 respectively, which are gathered from Web of Science. The authors are identified by
their names on papers.

global clustering coefficient due to the homophily in the sense of geometric distances. The small average

shortest path length is caused by the random connections generated in Step 1.c and in the second half of

Step 2.b.

More than 80% papers of PNAS 2007-2015 belong to biological sciences. In Appendix, in order to

show the model’s flexibility, we fit another dataset in physical sciences. The model is unsuitable for the

datasets having very large paper-team-sizes, e. g. the papers of Nature and Science published during

2002-2015. The papers with very many authors cause that many authors have many collaborators, and

consequently the distributions of collaborators per author have no power-law tail (Fig. 3).

4 Modeling the distributions of specific indexes per author

The distribution of collaborators per author PAA(k), and the distribution of citations per author P−
PA(k)/

per paper P−
PP (k) (k > 0) share a common characteristic: a generalized Poisson head, a power-law

tail and a cross-over between them (the purple lines in Fig. 4). Note that the cases of k = 0 are

not considered, because solitary nodes do not affect network topology. The presented geometric model

provides a respectable model-data fit (the blue squares in Fig. 4). With some modifications, the analysis

and calculations in References [25, 30–33] can be employed to show how the model works, which are

described in Appendix. Here an intuitionistic explanation is given as follows.
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Figure 4. The empirical and synthetic distributions of collaborators/citation/papers/
references per author, and those of citations/references per paper. The citations coming from
or citing the papers (which are not contained in the empirical data) are not counted. In Panels (a-c,
g-i), the regions “G-P”, “C-O”, “P-L” stand for generalized Poisson, cross-over and power-law
respectively. The parameters and goodness of fittings are listed in Table 5. In Panels (d-f, j-l), the data
are binned on abscissa axes to extract the trends hiding in noise tails.
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Table 5. The parameters and goodness of fitting functions.

Distribution a b c d s B E G P p-value Sum
Citations per author 0.810 0.465 27.88 3.337 1.747 7 19 6 30 0.548 0.998
References per author 0.960 0.384 12.29 3.245 1.584 6 11 10 15 0.395 1.003
Collaborators per author 4.916 0.463 294.1 3.213 0.858 11 34 12 45 0.082 1.004
Papers per author 0.703 0.387 21.79 3.821 1.968 2 8 10 25 0.038 0.995
Citations per paper 0.703 0.387 31.89 3.942 1.968 4 20 10 20 0.994 0.999
References per paper 0.768 0.276 23.48 4.131 1.856 2 23 12 15 0.873 1.005
Sizes per paper-team 3.657 0.402 532.4 3.989 1.194 15 16 10 20 0.188 1.000

The ranges of generalized Poisson f1(x), cross-over, and power-law f2(x) are [1, E], [B,E], and
[B,max(x)] respectively. The fitting function is f(x) = q(x)sf1(x) + (1− q(x))f2(x), where
q(x) = e−(x−B)/(E−x). The fitting processes are: Obverse proper G and P ; Calculate parameters of
sf1(x) (i.e. a, b, s) and f2(x) (i.e. c, d) through regressing the empirical distribution in [1, G] and
[P,max(x)] respectively; Find B and E through exhaustion to make f(x) pass Kolmogorov-Smirnov
test (p-value> 0.01). The p-value measures the goodness-of-fit. The sum of f(x) over [1,max(x)]
near-unity shows that f(x) can be regarded as a probability density function.

Behaviors of collaborations and citations are dependent on the choices of authors, the attractiveness

of authors and papers. The choices can be simplified by “yes/no” decisions. Take citation behavior as

an example. Treat the event that whether a paper cites another paper as a “yes/no” decision. Then

the number of a paper’s citations is the number of successes in a sequence of n decisions, where n is

the number of the papers having willing to cite that paper. Approximate the probability p of “yes” by

its expected value p̂, and suppose those “yes/no” experiments are independent. Then, the number of a

paper’s citations will follow a binomial distribution B(n, p̂). When n is large and p̂ is small, B(n, p̂) can

be approximated by a Poisson distribution with mean np̂. An author could publish several papers. So

the number of an author’s citations is the sum of several random variables drawn from Poisson, which is

still drawn from Poisson. Note that the result holds under above simplifying assumptions.

The “yes/no” experiments could be affected by previous occurrences, e. g. two papers written by the

same authors highly probably share some references. Meanwhile, the values of p and n are not constant

due to the diversity of attractive abilities of papers and authors. Hence it is reasonable to think the number

of citations received by lowly cited authors and papers are drawn from generalized Poisson distributions,

which relax the restrictions of Poisson distribution by allowing the probability of occurrence of a single

event to affect by previous occurrences [35]. For highly cited papers (with large np) and authors, the

numbers of citations are large enough to suppose the “yes/no” decisions are independent. So the number

of citations could be considered as random variables drawn from a range of Poisson distributions with
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sufficiently large expected values.

The diversity of attractive abilities of papers gives the possibility of existing papers with highly attrac-

tive abilities, and then guarantees the relative commonness for the existence of papers getting citations

that greatly exceed the average. The commonness appears as the emergence of citation distributions’ fat

tails. The diversity of attractive abilities induces various probabilities of “yes” p and various numbers

of potential citations n. In the model, those are generated by the power-law factor in the formula of

influential zones’ size, namely t−βli , where l = 1, 2, 3, and i refers to specific node. The factor gives a

sufficient diversity for the attractive abilities of nodes, and consequently derives the scale-free property of

modelled networks. Eq. 4 in Appendix shows how it works, which illustrates the derivation of power-law

by averaging a range of Poisson distributions with expected values proportional to s−β (s = 1, ..., T ,

T ∈ Z+). Actually, in systems science, diversity is often regarded to be a reason for complexity, and

scale-free is one of the symbols of complexity [34].

Note that there exists a difference between BA model [18] and our model. In BA model, nodes make

decisions to link previous nodes based on understanding of all nodes’ degrees. In our model, most decisions

made by nodes are local behaviors, which are restricted by geometric locations (Fig. 1). Meanwhile, a

few decisions are made randomly, which are modelled by Step 1.c and the second half of Step 2.b. In

reality, authors make decisions based on their knowledge. So the decisions are affected by the locality of

authors’ knowledge. Uncertainty is also in authors’ decisions. In our model, the connection mechanism

addresses the locality as well as the uncertainty.

In statistics, mixture distributions, e. g. P−
PA(k), mean samples come from different populations.

In reality, the main part of the authors in scientific papers is composed of the teachers and students

in institutes or universities, which can be treated as two populations. Research modes of students and

teachers are different. Many students only write a few papers, and do not write after graduations, but

their teachers could continuously write papers collaborating with new students or researchers, and so

persistently receive citations. Meanwhile, due to the aging of papers, the citations received by students

cannot persistently increase on average.

In our model, the leaders are designed to play the role as teachers, and other team members as

students. Note that the distribution P−
PA(k) of the empirical data is not perfectly fitted by that of the

synthetic data. However, the respectable model-data fit after data binning is still impressive to us because

the model involves no true free parameters to tune P−
PA(k). It also confirms the reasonability of the above



14

analysis. In addition, a similar analysis has been applied to PAA(k) [30].

The smoothness of P−
PP (k) and P−

PA(k) does not appear in PAA(k). In reality, the papers of an author

and the citations of a paper increase smoothly over time. However, a paper with very many authors can

make those authors’ collaborators increase rapidly.

5 Modeling the Matthew effect in academic societies

From the social viewpoint, Matthew effect (the rich get richer) naturally exists in academic fields. Au-

thors with many citations and papers can improve their chances of attracting collaborators, especially

outstanding students. Consequently, those authors may write more high-quality papers and increase

their chances of receiving citations. So the indexes of authors, namely numbers of collaborators, citations

and papers, improve mutually and form a positive feedback loop, which is evidenced partially by the

positive correlations between those indexes (Fig. 5). Funding plays a part as an activator in promoting

the feedback loop and Matthew effect [28]. The authors with voluminous papers and citations easily

obtain funding, which in return enables those authors to obtain more collaborators (especially postdocs

and visiting scholars), citations, papers and hence more funding.

Matthew effect is often regarded as an explanation for the scale-free properties of many real networks.

Here we reverse the question: Does there exist any Matthew effect in the developments of the authors with

a kind of the aforementioned indexes following power-laws? With the information of papers’ publication

time, such Matthew effect can be observed directly as follows.

For each kind of indexes, split authors into two non-overlapped parts by the algorithm in Refer-

ence [30] (Table 6 in Appendix), namely a generalized Poisson part and a power-law part. The indexes’

cumulative values (over time) of the authors in the two parts follow generalized Poisson and power-law

distributions respectively, which are proved by the Kolmogorov-Smirnov tests for the fittings in Fig. 4 (a-

c). The indexes of the authors in the generalized Poisson part grow quite slowly on average, meanwhile,

those in the power-law part grow fast, even in accelerated ways for citations (Fig. 6). It evidences that

the phenomena “the rich getting richer” has existed in academic societies.

The Matthew effects about the aforementioned indexes are coupled due to the positive feedback loop

and positive correlations between those indexes. Our model gives a geometrical expression of those cou-

pling Matthew effects. Older leaders have a larger influential zone, so more easily capture collaborators,



15

0 50 100 150
0

100

200

300

400

500

600

Papers

Co
lla

bo
rat

or
s

 

 

0 100 200 300 400 500 600
0

100

200

300

400

500

600

Citations

Co
lla

bo
rat

or
s

 

 

(c)
0 50 100 150

0

100

200

300

400

500

600

Papers

Co
lla

bo
rat

or
s

 

 

PNAS
Synthetic

0 100 200 300 400 500
0

100

200

300

400

500

600

Citations

Co
lla

bo
rat

or
s

(c)
 

 

PNAS
Synthetic

(a)
0 100 200 300 400 500

0

20

40

60

80

100

120

140

160

180

200

Citations

Pa
pe

rs

(b)
 

 

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

160

180

200

Citations

Pa
pe

rs

(e)
 

 

(d) (f)

PNAS
Synthetic

PNAS
Synthetic

PNAS
Synthetic

PNAS
Synthetic

Figure 5. The positive correlations between three author-indexes: numbers of papers,
citations and collaborators. In Panels (a-c), each point (x, y) means an author published x papers
has y collaborators on average. In Panels (d-f), the data are binned on abscissa axes to improve
visibility for the positive slopes.

and then publish more papers to receive more citations. Therefore, our model successfully reproduces the

power-law tails in the distributions of those indexes (Fig. 4a-c), and positive correlations between those

indexes (the positive slops in Fig. 5). In essentially, the Matthew effect in our model is a cumulative

advantage on time.

Matthew effect will lead to “the strongest taking over” in academic societies, which has emerged in the

empirical data (Fig. 7). There exist 5.99% (9,742/162,532) authors (called hub-authors), whose numbers

of collaborators (more than 32) follow a power-law distribution, published 42.6% papers and received

49.3% citations. The hub-authors and their collaborators obtain nearly 80% papers and citations. In

addition, the topological relationships between hub-authors are very close. The proportion of a hub-

author having coauthored with another hub-author is 99.5% (9742/9697).

For each hub-author, we calculate the gap between the first appearance time of him/her and each

of his/her hub-author-collaborators, and record the maximum gap. The mean of those maximum gaps

is 4.180 years. Replace the condition that the number of collaborators is more than 32 by that the

number of citations is more than 28 (the number of papers is more than 14). Then the proportion of
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generalized Poisson and power-law distribution respectively. The points (33/29/15) splitting the
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algorithm in Table 6. The data in panels (a-c) and panels (e-f) are about the authors first appearing in
2007 and 2008 respectively. The fitting curves are quadratics.
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an author satisfying the condition having coauthored with another author also satisfying the condition

is 352/401 = 87.8% (243/285 = 85.3%), and the mean of the maximum time-gaps is 1.104 (1.203)

years. Those evidence that Matthew effect has been inherited, and works on research-teams not just on

individuals.

From the viewpoint of systems science, “the strongest taking over” will suppress system diversity,

and consequently harms system flexibility. Hence there exist two critical strategic problems for research

administrators: How to reform the existing academic evaluation methods and funding mechanisms, which

are mainly oriented by specific indexes with Matthew effect, e. g. the number of citations; How to design

a reasonable inspiriting mechanism of scientific research to protect academic diversity.

Some literatures discussed the reason and consequences of Matthew effects in academic society. Ref-

erence [40] says Matthew effects are expected if scientific community competes for the same attention

device, e. g. a top journal. However, Matthew effects could probably erode the competition, so have

negative implications on innovation [41]. For example, the most competitive journals of medical sci-

ences rejected some important articles. As Reference [41] says, “tolerating early failure and focusing on

long-term success could be a fine way to guarantee high level innovations”.

6 Conclusion

The presented model adopts a viewpoint in focusing on the coevolution of collaborations and citations

within scientific research, and particular in reproducing statistical and topological features generated by

the interactions between collaborations and citations. The good model-data fitting shows the reasonability

of the model. Especially, the model provides a respectable prediction of the empirical distribution of

citations per author. The model potentially paves a geometric way to figure out the interactional modes

of collaborations and citations. For example, it explains the emergence of generalized Poisson and Power

law in the distribution of citations per author by the different collaboration modes of teachers and

students.

Some shortcomings of the model are indicative of the need for further research: The increment of

new nodes should not be fixed; More reasonable expressions are needed for the academic communications

between research-teams. We are especially interested in the self-similarity emerged in the empirical data,

such as the distribution of citations per paper, and that of collaborators per author. We also should
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discuss the role of the coevolution in the formation and evolution of academic communities.
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18. Barabási AL, Jeong H, Néda Z, Ravasz E, Schubert A, Vicsek T. (2002) Evolution of the social

network of scientific collaborations. Physica A 311: 590-614.

19. Moody J (2004) The strucutre of a social science collaboration network: disciplinery cohesion form

1963 to 1999. Am Sociol Rev 69(2): 213-238.

20. Perc C (2010) Growth and structure of Slovenia’s scientific collaboration network. J Informetr 4:

475-482.

21. Wagner CS, Leydesdorff L (2005) Network structure, self-organization, and the growth of interna-

tional collaboration in science. Res Policy 34(10): 1608-1618.

22. Tomassini M, Luthi L (2007) Empirical analysis of the evolution of a scientific collaboration net-

work. Physica A 285: 750-764.



20

23. Zhou T, Wang BH, Jin YD, He DR, Zhang PP, He Y, et al. (2007) Modeling collaboration networks

based on nonlinear preferential attachment. Int J Mod Phys C 18: 297-314.
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Sci Rep 2: 793.

7 Appendix

7.1 Detecting boundary for probability density functions.

The boundary detection algorithm for probability density functions (PDF) is listed in Table 6, which

comes from Reference [30].

Table 6. A boundary detection algorithm for PDF

Input: Observations Ds, s = 1, ..., n, rescaling function g(·), fitting model h(·).
For k from 1 to max(D1, ..., Dn) do:

Fit h(·) to the PDF h0(·) of {Ds, s = 1, ..., n|Ds ≤ k} by maximum-likelihood
estimation;

Do Kolmogorov-Smirnov (KS) test for two data g(h(t)) and g(h0(t)), t = 1, ..., k
with the null hypothesis they coming from the same continuous distribution;

Break if the test rejects the null hypothesis at significance level 5%.
Output: The current k as the boundary point.
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Figure 8. The synthetic distribution of collaborators/citations/papers per author, and
that of citations per paper. The model parameters are listed in Table 7.

7.2 Simplifying the model

An obvious weakness of the provided model is that it has a lot of parameters. If ignoring the fitting of the

distribution of references per paper and that of paper-team sizes, we can reduce the model’s parameters

as those in Table 7. The reduction does not affect the synthetic distribution type of collaborators/papers

per author, and that of citations per paper/per author (Fig. 8).

Table 7. The parameters of the synthetic data.

Network sizes T = 4, 500 N1 = 100 N2 = 20 N3 = 1 p = 0.13
Influential zones α1 = 0.133 α2 = 0.082 α3 = 0.02 β1 = 0.42 β2 = 0.44 β3 = 0.44
f(k) in Step 1.b a = 5 b = 0
f(k) in Step 1.c a = 5 b = 0
f(k) in Step 2.b a = 1.35 b = 0.45

7.3 The underlying formula for the distribution of citations per paper

We only analyze the underlying formula for the distribution type of synthetic “citations per paper” (in-

degrees), which is similar to that in References [32, 33]. The analysis of the formula for the distribution

type of synthetic “collaborators per author” is the same as that in Reference [30]. As shown in Fig. 4c,

the synthetic in-degree distribution type is a mixture of generalized Poisson and power-law, hence the

formula is analyzed piecewise. The formula for the head and that for the tail of the type are deduced

respectively. The cross-over can be well fitted by the formula in the notes of Table 5.

The in-degrees contributed by the second half of Step 2.b are due to a random selection. Together

with the preset small domain of f(x) in this step, the effect of the second half on in-degree distribution
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is small enough to be ignored, when compared with that contributed by the first half.

The first half of Step 2.b makes the expected in-degree of a node generated at time t to be k−(t) ≈

αlδpT
βlt−βl/βl−1, where l = 2, 3 and δ = N1/2π. If t is large enough (suppose larger than a big number

T1), k−(t) is small enough, and changes slowly over t. Hence the formula for the head is

PS(k) =
1

T − T1 + 1

T∑
t=T1

k−(t)k

k!
e−k

−(t), (1)

which is a mixture Poisson distribution. A generalized Poisson distribution can be well fitted by a mixture

Poisson distribution, which can be verified numerically.

The formula for the tail is deduced as follows, where the calculations are inspired by some of the same

general ideas as explored in the cosmological networks [42]:

PL(k) =
1

T1

∫ T1+1

1

k−(t)k
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e−k

−(t)dt ∝ 1
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τ
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βl e−τdτ
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βl
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βl
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e
−

(τ−k+1+ 1
βl

)2

2(k−1− 1
βl

)
dτ

≈
Γ(k − 1

βl
)

Γ(k + 1)

∫ δαlpT
βl/βl

δαl(T1+1)−βlpTβl/βl

e
−

(τ−k+1+ 1
βl

)2

2(k−1− 1
βl

)√
2π(k − 1− 1

βl
)
dτ. (2)

Here Laplace approximation is used in the third step, and Stirling’s formula is used in the fourth step.

When k � 0, the integration part in Eq. 2 is free of k approximatively, which can be verified as follows:

d

dk

∫ L2

L1

e − (τ−k+ρ)2
2(k−ρ)√

2π(k − ρ)
dτ =

e−
(L1−k+ρ)2

2(k−ρ)

2
√

2π(k − ρ)

(
1 +

L1

k − ρ

)
− e−

(L2−k+ρ)2
2(k−s)

2
√

2π(k − ρ)

(
1 +

L2

k − ρ

)
, (3)

where L1 = δαl(T1 + 1)−βlpT βl/βl, L2 = δαlpT
βl/βl, and ρ = 1 + 1/βl. This derivative is approximately

equal to 0 for k � 0. Hence

PL(k) ∝
Γ(k − 1

βl
)

Γ(k + 1)
≈ 1

k
1+ 1

βl

√
k − 1

βl
− 1

k

(
1−

1
βl

+ 1

k

)k− 1
βl

−1

e
1
βl

+1 ≈ 1

k
1+ 1

βl

. (4)

Stirling’s formula is used in the first approximation. The second approximation holds for k � 0. Hence

PL(k) is approximately a power-law distribution with exponent 1 + 1/βl. So we obtain that the in-
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degree distribution tail of the network generated in Step 2.b is a mixture of power-law distributions with

exponents 1 + 1/β1 and 1 + 1/β2 respectively. Note that in Eq. 1, the condition k � 0 does not hold, so

the power-law does not emerge in the head of the distribution.

7.4 Flexibility of the model

The provided model has the flexibility of fitting empirical data from different sciences. We have shown

that the model can capture specific features of the empirical data PNAS 2007-2015, the papers of which

mainly belong to biological sciences. Here we consider the data from physical sciences: the papers of

Physical review E published during 2007-2016 (PRE 2007-2016). The data are gathered from the Web

of Science. Authors are identified by their names on papers.

Synthetic data are generated through the provided model to capture specific features of PRE 2007-

2016. The parameters of the synthetic data are listed in Table 8. Comparisons on statistic indicators

and distributions are shown in Table 9 and Fig. 10 respectively.

Table 8. The parameters of the synthetic data.

Network sizes T = 5, 000 N1 = 15 N2 = 3 N3 = 1 p = 0.3
Influential zones α1 = 0.2 α2 = 0.082 α3 = 0.02 β1 = 0.43 β2 = 0.44 β3 = 0.44
f(k) in Step 1.b a = 2 b = 0 c = 1, 855 d = −3.70 q = 0.995 I1 = [2, 250] I2 = [11, 150]
f(k) in Step 1.c a = 2 b = 0 q = 1 I1 = [2, 250]
f(k) in Step 2.b a = 1.45 b = 0.45 c = 19, 424 d = −3.95 q = 0.9999 I1 = [0, 65] I2 = [20, 65]

Table 9. Typical statistic indicators of the data.

Network NN NE GCC AP MO PG NG AC SC SC2
PRE-Citation 24,079 46,061 0.301 8.714 0.892 0.746 4,623 0.272 0.317 0.391
Synthetic-Citation 65,805 89,787 0.053 7.225 0.676 0.795 12,169 0.094 0.135 0.290
PRE-Coauthorship 37,528 90,711 0.838 6.060 0.950 0.583 4,209 0.394
Synthetic-Coauthorship 48,956 92,870 0.614 6.680 0.885 0.837 2,183 0.100

The meanings of headers are the same as those in Table 3.

7.5 TARL model

Constructively suggested by a reviewer, the result of TARL model is compared with that of the proposed

model. The pseudo code of TARL model in Reference [28] is repeated as follows.

Initialization
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Figure 9. The empirical (PRE 2007-2016) and synthetic distributions of
collaborators/citation/papers/ references per author, and those of citations/references
per paper. The data are binned on abscissa axes to show the trends hiding in noise tails.

Generate m “papers” and n “authors” with randomly assigned “topics”;

Randomly assign l “authors” to the “papers” within the same “topic”.

For time t = 1, 2, ..., T do:

Add s new “authors” with randomly assigned “topics”;

Deactivate the “authors” older than h;

For each “topic” do:

Randomly partition the “authors” within the “topic” into groups with size l;

For each group do:

Randomly read g “papers” from existing “papers” within the “topic”;

“Select a time-slice form (1 to t−1) with probability given in aging-function” [28];

Generate a new “paper” and randomly cite k papers (published or cited in this time-slice)

from the read “papers” and their references up to w-th level.
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Figure 10. Synthetic distribution of collaborators/citations/papers per author, and that of
citations per paper. Those distributions are generated through TARL model.

The generated connections are restricted to the “papers” and “authors” within the same “topic”.

If no aging-function is given, then all “papers” can be “read” equally. We set the number of “topics”

to be 4, and no aging-function (so no time-slice). We let T = 200, g = 1, h = T , k = 2, w = 2,

m = n = l = s = 4. The generated distribution of “collaborators”/“papers” per “author” and that of

“citations” per “paper”/per “author” are shown in Fig. 10.

TARL model can generate a “coauthorship” network and a “citation” network, which grow simulta-

neously. The “citation” network is scale-free (caused by recursive linking), and has a positive clustering

coefficient (caused by citing the “papers” within the same “topic”). Our model harmoniously express

the citation factors considered in TARL model (i. e. topics, aging and recursive follow-up of citation

references) by the connection mechanism induced through the influential zones of “papers”. The aging

of papers is expressed by decreasing the sizes of influential zones over t. In TARL model, “papers” and

“authors” are assigned specific “topics” directly. In our model, we use a continuous way: expressing

nodes’ “topic” by nodes’ spacial coordinate. So the circles could be regarded as “topic spaces”. Note

that it is not a real topic space, which is a high dimensional space representing textual contents of papers.

In our model, “papers” can incompletely “copy” the references of the “papers” it cited, which is induced

through the overlapping of influential zones.

TARL model neither consider the Matthew effect on the number of authors’ collaborators nor that

on papers. In addition, the above instantiation assumes that the number of “papers” per “author” is a

constant. Hence, the generated distribution of “papers” per “author” and that of “collaborators” per

“author” (Fig. 10) have no power-law tails, which emerge in the corresponding distributions from real

data (Fig. 4, Fig. 9). Our model expresses those Matthew effects geometrically: older leaders having a

larger influential zone to obtain more “collaborators” and “papers”. Therefore, our model can reproduce
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those power-law tails.
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