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Abstract

Most maps of science use a network layout; few use a landscape metaphor. Human users are 

trained in reading geospatial maps, yet most have a hard time reading even simple networks. Prior 

work using general networks has shown that map-based visualizations increase recall accuracy of 

data. This paper reports the result of a comparison of two comparable renderings of the UCSD 

map of science that are: the original network layout and a novel hexmap that uses a landscape 

metaphor to layout the 554 subdisciplines grouped into 13 color-coded disciplines of science. 

Overlaid are HITS metrics that show the impact and transformativeness of different scientific 

subdisciplines. Both maps support the same interactivity, including search, filter, zoom, panning, 

and details on demand. Users performed memorization, search, and retrieval tasks using both 

maps. Results did not show any significant differences in how the two maps were remembered or 

used by participants. We conclude with a discussion of results and planned future work.
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Introduction

For centuries, cartographic maps have guided human exploration. Recent advances in data, 

algorithms, and computing infrastructures make it possible to map humankind’s collective 

scholarly knowledge and technology expertise in science maps. Science maps render 

different scientific disciplines as “continents”. Zooming into a discipline (e.g., mathematics, 

physics, or medicine) makes subdisciplines visible. Basemaps of science are commonly 

generated by analyzing citation links between millions of publications. Data overlays (e.g., 

showing all publications by one scholar, institution, or country) are computed by positioning 

records based on topical similarity.
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Science maps are widely used to compare expertise profiles of different scholars, 

institutions, or countries; to understand career trajectories; to communicate emerging areas; 

or to visualize the diffusion of ideas or technologies. Prior work on the validity, utility, and 

legibility of science maps has compared different data sources for basemap generation, 

different data analysis and clustering methods, and different layout algorithms. Previous 

research has also compared the legibility of network versus map-based layout of general 

networks (see details in “Prior work” section). This paper documents the first comparison of 

two comparable maps of science reference systems plus interactive data overlays. User 

studies with 47 participants were run to evaluate how naïve users read, memorize, and use 

these maps.

The paper is organized as follows: “Prior work” section reviews prior work. “Science 

basemap construction, data overlays, interactivity” section details the construction of both 

basemaps, the generation of data overlays, and interactive functionality. “Science map 

comparison” section describes the experimental setup, data analysis, and results of the user 

study. “Discussion and outlook” section discusses the implications of the results and planned 

work.

Prior work

Just like early maps of the world were incomplete and partially erroneous, current maps of 

science are imperfect. The reasons are manifold: data is richer and more complete for certain 

disciplines of science (e.g., physics and medicine) and less complete for other areas of 

scholarly pursuit (e.g., arts and humanities that advance via books, physical artifacts, or 

performances); the properties of algorithms used to preprocess data (e.g., to unify author, 

geolocation, or journal names), extract networks (via citations or topical similarity), cluster 

data (partition or hierarchy), and lay out data (as a network or using a map metaphor) may 

only be partially understood. However, the increasing demand for and usage of science maps 

necessitates a detailed examination of what data, algorithms, workflows, visual metaphors 

and interactivity is best for a specific user group and task.

Early, pioneering work by Garfield (1955) focused on the compilation of citation indexes in 

support of the large-scale mining and mapping of science in support of students choosing a 

career in science (1974), mapping biochemistry and molecular biology for the years 1979–

1980 (1981), mapping nutrition research (1987), epidemiology (1988), and biotechnology as 

well as molecular genetics (1984).

Hundreds of maps now exist, generated for different purposes, see review by Börner et al. 

(2003), the special PNAS issue on Mapping Knowledge Domains edited by Shiffrin and 

Börner (2004), and examples and detailed descriptions in Chaomei (2003), Börner’s Atlas 
series (2010, 2015), and the Places & Spaces: Mapping Science exhibit (2005–2017) 

featuring more than a hundred printed and several interactive large-scale maps (http://

scimaps.org).

However, the large and diverse number of different methods applied to generate basemaps of 

science, to compute data overlays, and to support interactive exploration is rather confusing 
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to the many users of science maps. Scientific studies that compare methods, algorithms, and 

visual metaphors are needed to identify what basemap, data overlay and interactivity are best 

for what user group and insight need.

Recent studies have examined the utility of different data sources for basemap generation 

(Boyack et al. 2011) and the consensus layout of different map making approaches (Boyack 

and Klavans 2009). Studies have also compared clustering algorithms for identifying fields 

in science (Boyack et al. 2005, 2009), some also using text-based similarity approaches 

(Boyack et al. 2011) to understand if citation linkages are needed to compute locally and 

globally accurate maps. Other work examined the scalability of different clustering 

algorithms when generating comprehensive maps of science (Emmons et al. 2016). Work by 

Skupin et al. (2013) evaluated the utility and legibility of self-organizing maps for mapping 

and understanding the structure of science. Prior work on the general legibility of network 

versus map-based visualizations of data showed that map-based visualizations do increase 

recall accuracy of data (Saket et al. 2014, 2015). Other work compared animations with 

static visualizations of temporal graph layouts (Farrugia and Quigley 2011). Work by Ghani 

and Elmqvist (2011) shows that adding static spatial features (e.g., background features, 

node size and color) to network visualizations helps with navigation and memorization.

To our knowledge, our work is the first to report the results of a comparison of two 

comparable interactive maps of science. This is partially due to the fact that the design of 

any interactive online visualization is rather time consuming and expensive. However, in 

order to truly understand the impact of visual metaphors on the utility and legibility of 

science maps, complete implementations are necessary.

Science basemap construction, data overlays, interactivity

The work we present here was conducted in close collaboration with economists within an 

NIH-funded project that aims to define, validate, and communicate existing and novel 

measures of scientific impact and transformativeness. Two interactive science map interfaces 

were implemented for the project to support the exploration and comparison of different 

metrics that aim at identifying high-impact and transformative science (HITS) (Staudt et al. 

2016). The interfaces support the interactive visual display and comparison of up to four 

HITS metrics (normalized to values between 0 and 1) applied to any consecutive number of 

years between 1959 and 2016.

This section details the design of the two science basemaps, the data overlays and 

interactivity common to both maps, and the administrative interface that supports the upload 

and management of metrics.

UCSD basemap

The design of the UCSD map and classification system is detailed in (Börner et al. 2012). 

The map organizes publications in journals indexed by Thomson Reuters’ Web of Science 

and Elsevier’s Scopus into 554 subdisciplines. The subdisciplines are aggregated into 13 

disciplines which are color-coded and labeled—e.g., Surgery and Intensive Care are 

aggregated into Medical Specialties while Semiotics and Linguistics are aggregated into 
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Humanities. Each of the 554 sub-disciplines has a set of journals and keywords associated 

with it. Links in the original ‘network’ rendering of the map (see Fig. 1) indicate journal co-

citations (Fig. 2).

Hexmap basemap

Using the spatial positions of the 554 subdisciplines and 13 disciplines of science from the 

UCSD map and classification system discussed in the previous subsection, a hexmap was 

implemented as an alternative basemap for the comparison of HITS metrics. The hexmap 

layout started with the original node positions shown in Fig. 1; then, node positions were 

altered to give each node the same space. That is, areas with many nodes expanded in size; 

those with few nodes condensed. Nodes were rendered as hexagons and the layout was 

further modified to arrive at the regular honeycomb pattern shown in Fig. 3.

Data overlays and map interactivity

Both visual interfaces employ the widely used UCSD Map of Science (Börner et al. 2012) as 

a basemap and both support almost identical data overlays and interactivity.1

The basemap can be explored by hovering over a discipline name, which highlights all of its 

subdisciplines (this only works for the hexmap); hovering over a subdiscipline highlights all 

the other subdisciplines linked to it. Use ?- in top-left or the scroll wheel on the mouse to 

zoom, centered on the mouse pointer.

Data overlays use bar graphs per subdiscipline to support the visual exploration and 

comparison of HITS metrics, see Figs. 2 and 4. Up to four HITS metrics can be selected and 

compared via these bar graphs. A time slider supports focusing on a specific window of 

time, such as a period of transformation in a field of interest.

While we tried to make both maps informationally equivalent, there are differences in the 

features of both visualizations that likely result in slightly different experiences for users. 

Interactivity tools such as zoom, filters, and details on demand are identical for both. The 

same goes for the hover functionality that reveals connected nodes. However, when a user 

hovers over a node in the network-based map, both the text label of the hovered-over node as 

well as the labels of the connected nodes are displayed while in the hexagon-based 

visualization, only the text label of the hovered-over hexagon is displayed, see Fig. 5.

This difference is due to the fact that in the hexagon map, unconnected hexagons are 

dimmed, while in the network map, unconnected nodes are also dimmed, which, however, 

does not allow the connected nodes to truly stand out. The hexmap leverages the interactive 

1The original UCSD network map was designed for print. The hexmap leverages the interactive functionality of the web. For print 
uses, the UCSD network map excels because all data is present at a single glance. The hexmap is more exploratory, inviting the users 
to interact with the initially visible data to explore details. A good example are the few Health Professional nodes that intrude on the 
Medical Specialties continent. On the hexmap, we can hover over the Medical Specialties nodes to see their names, see what 
connections to Medical Specialties and Health Professionals exists, and even click to find publications to determine why it is spatially 
similar to Medical Specialties. While the UCSD network map doesn’t prevent this, the hexmap was designed to promote this 
functionality.
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functionality of the web. The UCSD map excels in print usage because all data is present at 

a single glance.

The visualization of individual metrics differs slightly as well. When a user chooses only 

one metric to be displayed, in the hexagon-based map, one bar graph appears in each 

hexagon to indicate the value of the metric. If two or more are selected, additional bars are 

added. In the network-based map, with one metric selected, its value is encoded by the area 

size of the node. With two or more metrics selected, the same bar graph visualization is 

added like in the hexagon-based map, and all nodes are of equal size. In the experimental 

setup, two or more metrics are selected to make the two visualizations more comparable.

Clicking on a node brings up a lower-left window with the discipline and subdiscipline 

name, a listing of key papers published in that subdiscipline, and a bar graph visualization of 

the metrics, reading from left to right in the top-down order of the selected metrics in the 

right-hand bar. Clicking on a paper title allows the user to read the paper from MEDLINE.

To facilitate searching specific subdisciplines in this rather complex visualization, we 

implemented a Ping functionality. In the upper-right corner of the visualization, users can 

type in disciplines and subdisciplines for which they are looking. For example, if one were 

to type in “drug”, the users would be presented with 2 suggestions: “Drug Safety” and 

“Drug Discovery” (see Fig. 6, left). Selecting either, and then clicking the Ping button (see 

Fig. 6, right), will cause the node or hexagon to start blinking (see Fig. 7). This functionality 

is not compared in the user study.

Administrative interface for metrics management

An administrative interface supports the upload of revised or new metrics and the 

recomputing of science map visualizations. It is intended for use by researchers and metrics 

developers and a snapshot of the interface is given in Fig. 8. Existing metrics can be enabled 

or disabled in the UCSD network and hexmap visualization interfaces. New metrics can be 

added by entering a metric identifier (ID), a metric name, and brief description and 

uploading a file that lists the new metric’s value for each publication (PubMed ID). All 

metrics for which Display is “yes” show in both visualization interfaces.

Science map comparison

This section details the comparison of the UCSD network and hexmap interactive interfaces 

introduced in the previous section. We present our research hypotheses first, then describe 

the experimental and data logging setup, and last but not least detail the user data analysis 

and results.

Research hypotheses

Ultimately, we are interested in comparing the two science map interfaces—network versus 

hexmap—in terms of four basic features:

• Legibility Is the map readable (e.g., can users find certain disciplines, 

subdisciplines, links, paths, clusters?) using timed tasks (e.g., finding a certain 
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discipline, identifying the subdiscipline with the highest impact), exploratory 

tasks (e.g., understanding spatial relationships between disciplines), and targeted 

tasks (e.g., identifying specific subdisciplines that interlink disciplines).

• Memorability Can participants remember node and link attributes (e.g., the 

placement of disciplines and their interconnectivity) and network attributes (e.g., 

names and number of paths and clusters, overall structure and shape) in the short 

term (e.g., minutes) and in the long term (e.g., days and weeks).

• Engagement How much time do users spend with each visualization? How much 

do they like each visualization?

• Utility Which science map provides the most actionable insights and/or prompts 

more meaningful questions, or is otherwise useful for human understanding and 

decision-making?

In this paper, we focus on four hypotheses:

H1: Spatial Ability Impact Performance Users that score higher on a spatial ability 

test will be able to (a) better memorize the position of the text labels in a screenshot 

of the visualization and (b) to compare metrics more easily.

H2: Classification Due to the great prevalence of network visualization, we predict 

that more users will be able to correctly classify their assigned visualization in the 

network than hexmap condition.

H3: Memorization of Discipline Positions We postulate that the hexmap makes it 

easier for users to memorize the position of scientific disciplines when compared to 

the network map. That is, after examining a static version of the map, users will be 

able to place discipline labels with higher accuracy.

H4: Utility for Metrics Comparison The hexmap will make it easier than the network 

visualization to retrieve metrics and compare them between subdisciplines.

The experimental setup aims to test each of the four hypotheses and is discussed next.

Experimental setup

Qualtrics (http://cns.iu.edu/docs/data/2018-ECON-SciMaps/econ-qualtrics-survey.pdf) was 

used in combination with a jspsych site (http://www.jspsych.org/plugins/jspsych-free-sort/) 

(de Leeuw 2015) to collect data on the spatial layout of discipline labels. The setup of this 

study conforms to standard human subject study procedures. After obtaining informed 

consent, participants completed five steps:

1. Pre-test questionnaire that captured information on job title, department, student 

status, age, gender, and native language. Subsequently, subjects were asked about 

their familiarity with data visualizations (e.g., “How comfortable are you reading 

tables, charts, and graphs?”), and whether or not they ever took an information 

visualization class.

2. Spatial ability test where each participant had to solve a set of five problems, 

including folded cube and stacked cubes, see examples in Fig. 9. The tests were 
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taken from http://www.psychometric-success.com/aptitude-tests/spatial-ability-

tests-cubes.htm and https://www.wikijob.co.uk/content/aptitude-tests/test-types/

spatial-awareness-test. The data collected here was used to test H1(a) and H1(b).

3. Memorization task Next, subjects were randomly assigned to two cohorts, 

‘hexmap’ and ‘network’, depending on which visualization they were presented 

with. Each cohort was asked to explore a static picture of their respective 

visualization for up to 3 min. A static screenshot was used to ensure that each 

subject saw the very same visualization without zoom/pan, filter, or details on 

demand interactivity. To increase legibility in the Qualtrics setup, two 

modifications were made: white outlines were added to text labels, and the 

positions of the text labels were slightly altered for better readability (see page 

11 in Qualtrics survey (http://cns.iu.edu/docs/data/2018-ECON-SciMaps/econ-

qualtrics-survey.pdf)). After subjects spent up to 3 minutes memorizing the 

positions of the text labels, the screen changed into an interactive jspsych-

supported site with the 13 discipline labels in random placement, see Fig. 10. 

Subjects were asked to move the discipline labels to their positions in the original 

map. The final placement of fields was captured and automatically sent to a 

MySQL database for data logging in order to test H3.

4. Classification and retrieval tasks Subsequently, subjects were asked to explore 

the interactive visualizations introduced in “Science basemap construction, data 

overlays, interactivity” section. The ‘hexmap’ cohort got the hexmap 

visualization, the ‘network’ cohort got the network visualization. The 

participants were asked to classify the visualization as network or a map, identify 

subdisciplines with specific metric values, and access details on demand. We 

used this part of the experiment to test H2 and H4.

5. Post-questionnaire After the main experiment, an on-line questionnaire was 

given that contained open-ended questions such as “What did you like about the 

visualization?” to gather additional quantitative data using Likert scales and 

qualitative feedback. The primary goal of these questions was to improve the 

visualization for future users.

All study instruments are available online:

Visualization 1 (hexmap) (http://cns.iu.edu/econ-p/hexmap)

Visualization 2 (network) (http://cns.iu.edu/econ-p/ucsdmap)

jspsych spatial arrangement test (https://www.indiana.edu/*pcl/robsexperiments/

tests&examples/fieldArrange.html)

PDF of full Qualtrics survey: (http://cns.iu.edu/docs/data/2018-ECON-SciMaps/econ-

qualtrics-survey.pdf)

p. 1–3: Study information sheet

p. 3–5: Pre-questionnaire

p. 6–10: Spatial ability test
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p. 10–12: Instructions for spatial placement part

p. 12–17: Questionnaire with tasks

p. 18–21: Post-questionnaire

In order to match data from the spatial placement task with data from Qualtrics, each 

participant’s unique ResponseID was passed from Qualtrics to the jspsych site through a 

query string in an auto-generated URL given to each participant to uniquely identify each 

user and facilitate matching of both datasets. The position of the final (x, y) position for each 

discipline string was logged using a JSON object array (recording the (x, y) positions of all 

13 disciplines for each participant).

Participants from the Psychological and Brain Sciences’ (PBS) Course Credit Subject Pool 

at Indiana University (https://iub-pbs-credit.sona-systems.com) were invited to participate in 

the experiment. Note that this restricts the survey to students enrolled in approved, 

introductory-level PBS courses. Students did receive Participation Course Credit for starting 

the experiment.

Data processing and analysis

Exactly 76 participants (all but 4 were students) took the study. Data from 29 participants 

had to be discarded as they did not complete all parts of the experiment, leaving a sample of 

47 subjects—26 for the hexmap layout and 21 for network layout. Qualtrics and jspsych 

data for all participants were retrieved as *.csv tables, and ResponseIDs were matched to 

create 47 full datasets.

From the pre-questionnaire, we gathered that all 47 participants were students (30 

freshmen, 8 sophomores, 5 juniors, 3 seniors, 1 unknown). Ages ranged from 18–20 (41), 

21–30 (5), to 31–40 (1). Study subjects included business (8), social work (1), nursing (1), 

finance (3), fundraising (1), university diversity (1), human biology (4), contemporary dance 

(1), computer science (2), golf (1), media or media advertising (5), arts and sciences (1), 

sociology (1), economics (1), psychology (1), and others or unknown (15). 28 participants 

identified as female, 18 as male, and 1 participant preferred not to reveal their gender. 36 

participants were primarily English native speakers, 9 grew up speaking Asian languages, 

and 2 have Portuguese as their first language. Only 3 of the participants had ever taken data 

visualization training. When asked how comfortable they were reading tables, charts, and 

graphs, 5 said they were “very uncomfortable”, 10 were “somewhat uncomfortable”, 7 were 

neither of the two, 19 were somewhat comfortable, and 6 were very comfortable.

The spatial ability test asked each participant to complete five tasks. Only 1 participant was 

able to answer all questions correctly, 9 provided 4 correct answers, 18 provided 3 correct 

answers, 12 provided 2 correct answers, 6 gave 1 correct answer, and 1 subject got all 

questions wrong.

Using Processing (https://processing.org/) and R (https://www.r-project.org/), we extracted 

matrices of the relative positions of the labels as placed by participants from their memory, 

as well as the matrices for the positions of the labels in the screenshot of the visualization 
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they used for the memorization task. The relative distance matrix for the hexmap 

visualization is shown in Table 1. With Processing and R, we computed a correlation 

coefficient for each participant to tell us how similar the relative distances of the labels as 

placed by the participant are to the original distances. Comparing these matrices yielded a 

list of correlation coefficients we could use for further data analysis.

Using R, we found a correlation of 0.314 between spatial ability score and relative distance 

correlation coefficient for the hexmap cohort, and −0.002 for the network group. While these 

are not statistically significant per se, these numbers could indicate a weak positive 

correlation between the spatial ability score hexmap participants get and the fidelity of their 

relative placements in the spatial arrangement test. That is, the higher subjects scored, the 

more accurate they placed their labels. It is quite evident that there is no correlation between 

those two metrics for the network cohort, which indicates that spatial reasoning ability might 

have little influence on the ability to memorize and place text labels correctly. Given that we 

do not have a statistically significant correlation for the hexmap cohort, we fail to confirm 
H1(a), which stated that users who score higher on a spatial ability test will be able to better 

memorize the position of the text labels in a screenshot of the visualization. In H1(b), we 

postulated that subjects with a higher score in the spatial ability test would score higher on 

the questionnaire tasks where they had to identify disciplines with the highest metrics and 

explore the visualization to gather information about the total number of disciplines and 

subdisciplines. We arrived at a correlation of 0.087 for hexmap, and −0.16 for network, 

which does not allow us to reject the null hypothesis of no influence of spatial ability test 

scores and performance on metrics comparison and identification. One reason for this might 

be the limited content of the spatial ability test, and the unsatisfactory statistical strength that 

comes with it. We fail to confirm H1(b).

Memorization task

As explained above, we used Processing (https://processing.org) to visualize data from the 

spatial arrangement test and to calculate the relative distances between each participant’s 

discipline labels. This yielded a matrix as seen in Table 1, and comparing each participant’s 

matrix to the one with the relative distances of the original visualization screenshot the 

subjects used to memorize the positions, we calculated a correlation coefficient for each 

subject, with 0 being no similarity whatsoever, and 1 being a complete match. In order to 

visualize the placements of the subjects in relation to the original screenshots, we took the 

position of the text labels in the screenshots presented to the participants and calculated a 

stretch factor variable for each participant so all data could be displayed in one 1200 × 600 

pixels window, the same resolution used for the spatial arrangement test on the 

aforementioned jspsych website (see Fig. 10). For example, the screenshot of the network 

map had a resolution of 4468 × 2190 pixels (displayed smaller in Qualtrics but with the 

same aspect ratio). We measured the label positions on this screenshot, and then divided 

w(participant)/w(original) and h(participant)/h(original), where w and h are variables for 

width and height. This gave us stretch factors of 0.269 and 0.274 for width and height, 

respectively. We multiplied the measured label positions from the screen shots by these 

stretch factors and included them in our Processing visualizations (see the squares in Figs. 

11, 12) so that the participants’ label positions were comparable to the original label 
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positions they had to memorize. White lines were added to show the distance between 

participant-placed label (circles) and correct position (squares). As can be seen from the 

figures, the positions of labels on the outer side of the visualization were easier to memorize 

than the ones closer to the middle. For example, the Math & Physics, Electrical Engineering 
& Computer Science, and Chemical, Mechanical, & Civil Engineering labels, all positioned 

toward the outer edge of the actual map, are all closer to each other than the other ones, in 

both visualizations. A possible explanation could be that participants spent more time 

memorizing the outermost labels, or that memorizing these is simply easier. Alternatively, 

there is a well-known influence by which spatial judgments are anchored to salient 

categorical information, and the display edges very likely serve as such anchor points for 

participants’ spatial judgments, with participants using internal codes such as “Electrical 
Engineering was close to the upper-left hand corner of the display”. Also, on both the 

hexmap and the network visualization, the larger “landmasses” are on the right side, leading 

to clutter, potentially making it hard to memorize the exact location of labels. For a boxplot 

of the relative distance matrix coefficients of both cohorts, see Fig. 13, left.

Each participant was suggested to take 3 minutes to memorize the location of the labels in 

the screenshot of the visualization. We recorded how much time they actually spent on this, 

and then computed the correlation between time spent memorizing and the relative distance 

matrix correlation coefficient of each participant; the results are −0.002 for the network, and 

0.4 for the hexmap visualization. This finding is illuminating, because while there is a 

moderate positive correlation between time spent memorizing and the label placement for 

the hexmap, no such correlation seems to exist for the network visualization. In this 

experiment, a positive correlation might be expected under the assumption that spending 

longer to study the visualization would result in more accurate positioning (e.g. a more 

accurate matrix). What this could indicate is that the hexmap might actually make it easier 

for the participants to memorize the labels, while for the network map, it makes no 

difference how long the participants viewed it. For a depiction of how much time both 

cohorts spent memorizing, see Fig. 13, right.

Additionally, we performed a t-test to see if we can find statistically significant differences 

between the two groups with regards to relative distances. We obtained a p-value of 0.49, 

and consequently do not confirm H3, which stated that the hexmap makes it easier for users 

to memorize the positions of scientific disciplines when compared to the network map. Fig. 

13, left shows boxplots of the relative distance matrix correlation coefficients.

Classification and retrieval tasks

After having completed the spatial arrangement task outside of Qualtrics, the subjects 

returned to the survey and had to perform a set of tasks, retrieving information from the 

visualization. Having opened the actual, interactive visualization, they were asked to 

determine the type of the visualization they were shown. 14 out of 21 members of the 

network cohort answered correctly ‘network’, and 16 out of 26 hexmap subjects correctly 

answered ‘map’. We performed a X2 test between the two groups, and got a p-value of 0.953 
forcing us to fail to confirm H2, which stated that a higher number of network visualization 
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users will be able to classify their visualization as a network than the number of hexmap 

users that will be able to classify their visualization as a map.

Asked which subdiscipline had the highest number of new concepts (“Drug Discovery”), 

only 4 participants (2 from each cohort) figured out the solution. However, 7 members of 

network and 1 of hexmap answered not with the correct subdiscipline but the correct 

discipline, meaning they probably saw the size of the biggest node (network) or the little bar 

graph (hexmap) visualizing the metric. It was just a problem to click on or hover over the 

actual node to retrieve the subdiscipline name, or the question was only partly understood by 

the subject. Asked which subdiscipline out of 3 had the highest number of new concepts 

(“Endoscopic Surgery”), 24 participants (10 network, 14 hexmap) answered correctly.

When a node or hexagon is clicked, a legend appears at the bottom, containing bibliographic 

information about papers ranking highly on the metrics of the particular sub-discipline. 

When asked to explain what information the legend at the bottom of the screen showed, only 

20 participants provided a substantial answer. While participants did not know how to parse 

this bibliometric data, most of them seemed to be able to at least retrieve it. When asked for 

the first name of the first author on the paper with the highest “Number of Citations” metric 

in the “Thermal Analysis” subdiscipline, 18 participants (8 network, 10 hexmap) were able 

to provide a satisfactory answer.

Finally, participants were asked to estimate the number of disciplines and subdisciplines; 

they were encouraged to explore the visualization and its context rather than counting; the 

information was retrievable by clicking on the “?” sign in the top right corner that brings up 

information about the visualization, stating that there are 554 subdisciplines and 13 

disciplines. Only 9 participants correctly determined the count for disciplines and 

subdisciplines; 6 gave only the number of subdisciplines.

To find out more about how the two visualizations empowered subjects to retrieve metrics-

related information, we performed a X2 test for differences between the two cohorts, and got 

a p-value of 0.106, meaning that we fail to confirm H4, which stated that the hexmap will 

make it easier than the network visualization to retrieve metrics and compare them between 

subdisciplines. However, it seems desirable to continue testing for statistical significance of 

differences in performance of both cohorts with larger sample sizes.

Post-questionnaire

Data included open-ended and Likert-scale answers. Asked how much they liked the 

visualization, a total of 22 subjects answered “not at all” (7 from network, 15 from hexmap), 

15 participants said “somewhat” (10 network, 5 hexmap), 6 “neither liked it nor disliked it” 

(2 network, 4 hexmap), and 4 subjects did not answer this question. Furthermore, out of our 

47 subjects, 17 said the visualization was “not easy at all” (5 network, 12 hexmap), 17 said 

“not very easy” (10 network, 7 hexmap), 1 network subject said “neither easy nor hard”, 8 

said it was “somewhat easy (3 network, 5 hexmap), and 4 did not answer the question.

In terms of what participants specifically liked about their respective visualizations, colors 

were mentioned by members of both cohorts, as was their value for encoding complex data 
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(“easier for broader look”, “neat way to organize information”). What becomes clear from 

looking through this qualitative feedback is that most participants felt comfortable with the 

visualization as long as they did not have to retrieve information requiring them to dig 

deeper. The macro-view of the visualization allowed many of them to gain macro-scale 

insights (“It’s colorful and looks cool. It helps the audience see connections and 

relationships between fields”). On the down side, members of both cohorts found their 

visualization “confusing”, and hard to “navigate” and “search for stuff”. What this means is 

that most subjects were probably comfortable with using the visualizations in a static (or 

minimally interactive) manner, like zooming and panning a little bit, without manipulating 

the displayed data or retrieving node-specific information.

Discussion and outlook

Current results do not show significant differences in how the two maps were remembered 

or used by participants, except that hexmap users spent a lot more time looking at and 

memorizing the labels on the hexmap.

As a general takeaway from this experiment, it seems that the layout of the basemaps was 

generally more easily understood than the built-in functionalities such as subdiscipline 

search and metrics filters. The derivative functions add considerable complexity to the 

visualizations, adding to the general challenge of the visualizations which are largely 

unfamiliar to most audiences, especially undergraduate students who had no prior 

visualization training, and who can be assumed to have very limited exposure to science 

maps or impact metrics. Given the difficulties that our novice subjects had with using the 

visualizations to derive insights, we are planning to conduct a user study with expert users 

on domain specific maps, e.g., featuring Alzheimer research. For the future development of 

interactive online visualizations aimed at amateur audiences, we recommend to a) design the 

visualization in a way that allows for insights even if the user does not interact much with 

the visualization b) keep up the good practice of using color hue for encoding qualitative 

data c) limit the amount of information revealed in each step a user executes as too much 

new information can lead to confusion and frustration. We hope that the detailed discussion 

of the experiment setup will inspire other scholars to conduct well-controlled, larger-scale 

human subject experiments comparing not only static but also online interactive maps of 

science.
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Fig. 1. 
Network visualization of the UCSD basemap. The panel on the right supports the selection 

of a time frame (here 2006–2016) and different metrics (four are selected). Hovering over a 

metric, e.g., Disciplinary Diversity of References, brings up an explanation, here 

“Herfindahl index of an article based on the fields of its references”. Explore the interactive 

version at http://cns.iu.edu/econ-p/ucsdmap
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Fig. 2. 
UCSD basemap zoomed into the Health Professionals discipline. Hovering over the Public 
Health subdiscipline highlights and brings up labels for all subdisciplines linked to it. 

Clicking on it brings up a window at the lower left that lists publications with the highest 

combined metrics score of the four HITS metrics selected in the panel on right
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Fig. 3. 
Hexmap visualization of the UCSD basemap. The panel design and functionality are 

identical to the one shown in Fig. 1. Explore the interactive version at http://cns.iu.edu/econ-

p/hexmap
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Fig. 4. 
Hexmap zoomed into the Health Professionals discipline. Hovering over the Public Health 
subdiscipline highlights all of the subdisciplines linked to it and lists their names in the right 

panel. Clicking on it brings up a window at the lower left that lists publications with the 

highest combined metrics score of the four selected HITS metrics
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Fig. 5. 
“Proteonomics” node in a hovered state in the network-based map. Note the additional text 

labels of the connected nodes (left). When tiles in the hexmap are hovered over, linked 

subdisciplines are highlighted (right)
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Fig. 6. 
The search functionality with suggestions (left) and Ping and Stop buttons (right)
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Fig. 7. Drug Safety
node when pinged in network (left) and hexmap (right)
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Fig. 8. 
Administrative interface for metrics developers in support of metrics management
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Fig. 9. 
Folded cube spatial ability task (left) and stacked cube task (right)
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Fig. 10. 
Interface for the spatial arrangement of disciplines task. Notice the randomized position of 

non-color coded discipline labels
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Fig. 11. 
Map of original label positions (squares) and labels placed by human subjects (circles) for 

the network map, with white lines visualizing the distance and direction of each label 

towards its correct position
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Fig. 12. 
Map of original discipline label positions (squares) and labels placed by subjects (circles) for 

the hexmap, with white lines visualizing the distance and direction of each label towards its 

correct position

Börner et al. Page 26

Scientometrics. Author manuscript; available in PMC 2018 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 13. 
Boxplot of relative distance matrix correlation coefficient between reported labels for each 

cohort (left) and time spent memorizing original text label positions for each cohort (right)
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