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Abstract 

Link prediction in collaboration networks is often solved by identifying structural properties of existing 

nodes that are disconnected at one point in time, and that share a link later on. The maximally possible 

recall rate or upper bound of this approach’s success is capped by the proportion of links that are formed 

among existing nodes embedded in these properties. Consequentially, sustained ties as well as links that 

involve one or two new network participants are typically not predicted. The purpose of this study is to 

highlight formational constraints that need to be considered to increase the practical value of link 

prediction methods for collaboration networks. In this study, we identify the distribution of basic link 

formation types based on four large-scale, over-time collaboration networks, showing that current link 

predictors can maximally anticipate around 25% of links that involve at least one prior network member. 

This implies that for collaboration networks, increasing the accuracy of computational link prediction 

solutions may not be a reasonable goal when the ratio of collaboration ties that are eligible to the classic 

link prediction process is low.  

Keywords—collaboration network; link prediction; network evolution; link formation primitives, 

preferential attachment 
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Introduction & Background 

To what extent can we predict which pair of nodes will form a link in a social network? Being able to 

answer this question helps with a wide range of practical applications such as recommender systems 

(Resnick & Varian, 1997) and collaborative filtering (Yan & Guns, 2014), or the planning of 

interventions to prevent the spreading of diseases and rumors (D.-B. Chen, Xiao, & Zeng, 2014). Network 

scientists refer to this task as link prediction.  

Computational approaches to this problem usually focus on finding strong predictors for links in a future 

network based on structural properties of the same network at an earlier point in time (Lü & Zhou, 2011; 

Taskar, Wong, Abbeel, & Koller, 2003). Many solutions to this task have been presented, especially for 

collaboration networks (e.g., H. Chen, Li, & Huang, 2005; Guns & Rousseau, 2014; Liben-Nowell & 

Kleinberg, 2007; Yan & Guns, 2014). Features considered in these studies are based on theories, 

empirical observations, and assumptions. For example, a main feature considered by the widely used 

Common Neighbors predictor is the number of common alters of two nodes, which is supported by the 

observation that people who have friends or coauthors in common are more likely to connect with each 

other in the future (Kim & Diesner, 2017; Liben-Nowell & Kleinberg, 2007; Mollenhorst, Volker, & 

Flap, 2011). 

Most link predictors are trained on data where two nodes are present but not linked at time tn (past 

network), and share a link at time tn+1 (present network). The recall rate (coverage) or upper bound of the 

potential successfulness of this approach is capped or defined by the proportion of links in networks that 

are formed according to this principle. This common practice does typically account for (a) sustained 

links, and also not for (b) links in which at least one of the two nodes is a new network participant at tn+1. 

Correctly anticipating case (b) would be extremely hard for the outlined link prediction techniques as new 

nodes do not yet have a structural history and hence no prior information about them that can be 

leveraged for prediction. This division of link formation processes into basic types leads to the following 

question. How many links in a network are formed between previously disconnected members, how many 

links sustain over time, and how many links involve one or even two new nodes? This chain of thought 

leads to another question about the applicability of link predictors: To what extent can high-performing 

predictors provide comprehensive (recall) and reliable (precision) knowledge about link formation in a 

network? Answers to these questions can help us to identify limitations of current link predictors and 

suggest how to overcome these limitations. To answer these questions, the number of links of each 

aforesaid type first needs to be counted. For the domain of coauthor networks, scholars have categorized 

coauthors into several types. For example, according to a series of coauthorship studies (Braun, Glanzel, 

& Schubert, 2001; Price & Gürsey, 1976; Schubert & Glanzel, 1991), such networks are composed of a 

group of core authors who continue to publish, and their coauthors who are categorized as one of 

“newcomers,” “terminators,” and “transients.” Among these coauthor types, a recent study of the life-long 

careers of 3,860 computer scientists found that 72.7% of coauthors are transient, i.e., collaborating once 

but never again with the same scientists (Cabanac, Hubert, & Milard, 2015). However, such observations 

have rarely been connected to the constraints and applicability of link prediction in coauthor networks. 

In this paper, we present answers the questions raised above. This work complements prior link prediction 

studies by measuring the distribution of the types of link formation in collaboration networks, and tests 

how many of those links can be explained or predicted with high-performing link predictors. For this 

purpose, we analyze four large-scale, over-time collaboration networks from the fields of biomedicine, 

computer and information science, physics, and a nation. We next introduce our datasets and describe 

how we prepared them for analysis. We then describe our methodology, present our findings, and discuss 

implications and limitations of our work.   



Data 

In coauthor networks, two authors (nodes) are connected by links if they publish papers together. Here, 

we ignore the direction of links (undirected graphs) and only care about the existence of links between 

nodes (unweighted or binary graphs). Coauthor networks have been frequently used for link prediction 

studies. This might be partially because they can be easily constructed, even at a large scale, from 

publicly available bibliographic data. Another reason might be that bibliographic records include 

temporal information on publications, which is essential for some link prediction techniques. In the 

following section, the datasets used in this study are described in detail. 

We analyze four over-time, large-scale publication datasets, which were derived from MEDLINE 

(domain of biomedicine), DBLP (computer science and informatics), APS (Physics), and KISTI (country-

level data for Korea). Table I summarizes key features of these datasets.  

One critical feature of scholarly publication data is the accuracy of entity resolution in terms of splitting 

up author names that are shared by multiple people into as many nodes and merging variations in 

referring to individuals (Fegley & Torvik, 2013; Kim & Diesner, 2016). Our original DBLP and KISTI 

are already disambiguated (for details on KISTI, see Kim, Tao, Lee, & Diesner, 2016; for details on 

DBLP, see Reitz & Hoffmann, 2011). For MEDLINE and APS, we obtained algorithmically 

disambiguated data as outlined below. 

 

Table 1: Overview of Datasets 

Scope Dataset Time Frame No. of Papers 

Biomedicine MEDLINE 1991-2009 342,158 

Computer Science DBLP 1991-2009 231,161 

Physics APS 1991-2009 241,329 

Articles published 

in Korea 
KISTI 1991-2009 273,869 

 

MEDLINE 

MEDLINE is the bibliographic database of the National Library of Medicine1. This digital library is 

composed of journal papers from the fields of biology and medicine from the year of 1950 forward. For 

each paper, the following information is indexed (if available): unique identifier (PMID), name and 

affiliation per author, paper title, journal, and a selection of predefined keywords, which are referred to as 

medical subject headings (MeSH). The Author-ity 2009 dataset (Torvik & Smalheiser, 2009) contains 

algorithmically disambiguated author names in MEDLINE up to the year of 2009 (Author-ity 2009). In 

Author-ity 2009, author name ambiguity is resolved with up to 98~99% accuracy through a similarity 

calculation based on the names of authors and coauthors, paper title, journal name, and MeSH terms 

(Lerchenmueller & Sorenson, 2016; Torvik & Smalheiser, 2009). To create a subset of the MEDLINE 

data that is similar in size to the other datasets considered in this study, we extracted the articles with the 

MeSH term ‘brain’, which is one of the most frequently occurring MeSH terms (Newman, Karimi, & 

Cavedon, 2009). 

                                                           
1 https://www.nlm.nih.gov/bsd/licensee/medpmmenu.html 



DBLP 

DBLP (Digital Bibliography & Library Project)2 contains records of more than four million papers from 

journals and conferences in computer science and information science starting from the 1950s onwards. 

In this database, author names have been disambiguated by computing similarity scores based on author 

names, coauthorship information, and manual post-processing of incorrect data points reported by end-

users (Reitz & Hoffmann, 2011). Author name disambiguation in DBLP is reported to be highly accurate 

(around pairwise F1 = 0.90 and above), even beating many advanced algorithms when tested on multiple 

labeled datasets (Kim, 2018; Kim & Diesner, 2015). For this study, we selected a subset of papers 

published in 392 computer science journals3. 

APS 

The American Physical Society (APS) provides publication information on the papers that appeared in the 

Physical Review series4, which entails prime journals in physics, from 1893 onward. In the original data, 

author names are not disambiguated. We disambiguated the data by implementing the same algorithm 

described in Martin, Ball, Karrer, and Newman (2013)5, which considers the name of authors and 

coauthors, affiliation, and venue. The following error rates are reported for this algorithm: incorrect 

merging of 3%, and erroneous splitting of 12% of a sampled set of authors (Martin et al., 2013). 

KISTI 

This dataset was collected, disambiguated, and provided by the Korea Institute of Science and 

Technology Information (KISTI)6. KISTI indexes conference proceedings and journal papers that have 

been published in Korea from the late 1940s to today. Author names in these data were distinguished by 

using a clustering algorithm considering features including surface form of names, affiliation, coauthor, 

paper title, and name of the journal or conference (Kim et al., 2016). The accuracy of this automated 

solution is reported to be 0.94 (pairwise F1). Further inspections and corrections were performed by 

KISTI’s human experts. For this study, we only consider journal papers in order to be consistent with 

prior link prediction studies. 

Finally, for each of the four datasets, we counted the number of authors per paper, and excluded papers 

with an exceedingly large number of coauthors as they could have an un-proportionally large impact on t 

results. The following thresholds were defined for each dataset, and papers with more authors than the 

thresholds were excluded from analysis: DBLP (7), APS (14), MEDLINE (14), and KISTI (8). The 

resulting datasets still contain 98%~99% of all papers from our original datasets. 

Method 

Time-Sliced Network Construction 

Link prediction typically involves the following steps: First, the network data are divided into two 

networks: one portion for predicting links (e.g., a network for 2000-2004 period, hereafter past network), 

                                                           
2 http://dblp.org/xml/release/; for this study, we downloaded the April 2015 release. 
3 A list of 392 journal was obtained from Thomson Reuters Journal Citation Report 2012 for the category 

“Computer Science”. We retrieved records on these papers published in these journals from DBLP. 
4 http://journals.aps.org/datasets; for this study, we obtained the APS 2014 release version under the permission of 

the American Physical Society. 
5 Mark E. J. Newman at the University of Michigan Department of Physics kindly provided the disambiguation code 
6 http://scholar.ndsl.kr/index.do; for this study, we obtained the KISTI 2016 version under a research agreement with 

the Korea Institute for Science and Technology Information. 



and another portion for evaluating the accuracy of the prediction (e.g., a network for the year 2005, 

hereafter present network). Then, the set of nodes that appear in both networks (hereafter, existing nodes) 

is identified (typically based on matching node identities). For the existing nodes, linkage in the present 

network is often predicted based on network properties in the past network. For example, a disconnected 

pair of nodes in the past network that is connected to the same N alters (where N is a threshold value) is 

assumed to form a link in the present network. The outcomes of this process are then evaluated by 

checking whether the predicted links actually appear in the present network.  

Following this common procedure, we also divided our network data into past and present networks, and 

retrieved the nodes that appear in both networks. For papers with more than two authors, every entailed 

author pair is considered as a separate link. For example, a paper written by three authors A, B, and C 

generates three collaboration links of A-B, A-C, and B-C. We sliced each of the four datasets – 

MEDLINE, DBLP, APS, and KISTI - into past and present networks. To see how different time frames 

affect results, we varied time frames of past and present networks, following the practice of previous 

studies on this topic (e.g., Choudhury & Uddin, 2017, 2018; Liben-Nowell & Kleinberg, 2007). For 

example, papers in each dataset were divided into two subsets containing papers published during past 

(e.g., 1991~1995; 5 years) and present (e.g., 1996; 1 year) periods, respectively, for network construction. 

This slicing was repeated over different combinations of past and present periods using 1, 3, and 5 years 

as units; resulting in a total of 9 past-present time frames for a dataset: [past 1 year | present 1 year], [past 

1 year | present 3 years], [past 1 year | present 5 years], [past 3 years | present 1 year], [past 3 years | 

present 3 years], [past 3 years | present 5 years], [past 5 years | present 1 year], [past 5 years | present 3 

year], and [past 5 years | present 5 years]. In addition, we repeated our measurements with sliding 

windows. For example, for the [past 5 years | present 3 years] time frame, we applied the same 

measurements for the past 1991~1995 period (5 years) and the present 1996~1998 period (3 years), the 

past 1992~1996 period (5 years) and the present 1997~1999 period (3 years), and so on. This was done to 

see if our measurement results and any particular patterns depend on specific windows.  

Link Types for Analysis 

Unlike prior studies, we do not estimate but measure (i.e., count) the rate of suggested links based on the 

past network that actually occur in the present network. More specifically, we identify all links in the 

present networks that involve at least one of the existing nodes. Theoretically, four types of links are 

possible in an evolving collaboration network, which are illustrated in Table II. In that table, X and Y 

represent nodes that appear both in the past and present networks, and Z and W denote “newcomers” in 

the present network. A dash between nodes represents a link, while a comma indicates the absence of a 

link. 

Table 2: Summary of Link Types for Analysis 

Type 
Past 

Network 

Present  

Network 

Considered 

for Analysis 
Interpretation Predictability 

A X−Y X−Y Yes 
Sustained collaboration  

b/w existing authors 

Possible 

Typically NOT target of prediction 

B X, Y X−Y Yes 
New collaboration  

b/w existing authors 
Typically target of prediction 

C 
X, Y or 

X−Y 

X−Z or 

Y−W 
Yes 

New collaboration 

b/w existing and new authors 

Difficult 

Typically NOT target of prediction 

D None Z−W No 
New collaboration 

b/w new authors 

Even more difficult 

Typically NOT target of prediction 

 



First, a link between nodes X and Y that occurs in both the past and the present network represents an 

instance of sustained or continued collaboration (hereafter Type A). Second, nodes X and Y being present 

but disconnected in the past network and forming a link in the present network represent a new 

collaboration between existing scholars (hereafter Type B). Third, a link from a node in the past network 

(X or Y) with a new node Z in the present network represents a new collaboration between partially old 

(X or Y) and partially new (Z) scholars (hereafter Type C). Last, two new network participants (appearing 

in the present network, but not in the past network) could form a link (hereafter Type D). As we focus on 

links that involve at least one existing nodes, and new links between new members (Type D) are 

extremely difficult to anticipate, we only consider links of types A, B, and C for the results section. 

Results 

Bounds for Predictable Link Types 

The ratios of types A, B, and C in each of four datasets are reported in Figure 1~4. Each figure has 9 

subfigures reporting results for each type measured over 9 different time frames with a yearly sliding 

window. For example, the upper-left subfigure in Figure 1, titled ‘MEDLINE: Type A (Past 1 Year),’ 

shows the ratio changes (y-axis) of Type A over Type A + B + C that were measured for the ‘past 1 year’ 

(1) with three different present year ranges: 1 year (circles), 3 years (triangles), and 5 years (x-crosses), 

and (2) with each starting present year moving at a yearly resolution (x-axis). Note that triangle-shaped 

data points for the ‘present 3 years’ stopped at 2007 (in other words, 2008 and 2009 results are not 

reported). This is because the ‘present 3 years’ for 2008- and 2009-year windows could not be extended 

to 2010 and 2011 as our datasets contain records of publications published from 1991 up to 2009. This 

also explains why the data points for the ‘present 5 years’ stopped at 2005: the 2005~2009 period is 

covered in our data, but its subsequent periods (2006~2010, 2007~2011, and so on) are incomplete due to 

missing information after 2009.  

Results in Figure 1~4 show that the ratios of links of Type A (sustained collaboration) are around 

10~30% of the sum of Type A + B + C (see left subfigures in Figure 1~4). Two observations are worth 

noting. First, this ratio do not fluctuate much over time windows within each past-present network period 

across all four datasets. This means that the tendency of authors to work with previous collaborators has 

not changed much. Another notable observation is that the x-crosses plots appear below the triangles 

plots, which in turn appear below the circles plots. In other words, if a past network period is shorter and 

its paired present network period is longer, the ratio of Type A links in the past-present network pair is 

lower than the longer past and shorter present network pairs. This observation implies that as we extend 

the present network periods in our analysis, we find more collaboration instances categorized as other 

than Type A, thus decreasing the reported ratios of Type A. What this means is that continued 

collaborations among existing authors tend to be captured disproportionally more often in shorter present 

networks. A possible explanation for this observation might be that prior coauthoring experience 

improves communication and resource allocations among continued coauthors, leading to subsequent 

research papers being produced faster than those resulting from new collaborations between existing 

authors or existing authors and newcomers7.  

 

 

                                                           
7 This demonstrates why varying past-present network time frames matters for this study. The idea of using different 

past-present network periods was suggested by one of the reviewers of this paper. 



 

Figure 1: Over-Time Ratio of Link Types in MEDLINE (Type A: sustained collaborations between existing nodes, Type B: new 

links between existing nodes, Type C: links between existing nodes and new nodes) 

 

Figure 2: Over-Time Ratio of Link Types in DBLP (Type A: sustained collaborations between existing nodes, Type B: new links 

between existing nodes, Type C: links between existing nodes and new nodes) 



 

Figure 3: Over-Time Ratio of Link Types in APS (Type A: sustained collaborations between existing nodes, Type B: new links 

between existing nodes, Type C: links between existing nodes and new nodes) 

 

Figure 4: Over-Time Ratio of Link Types in KISTI (Type A: sustained collaborations between existing nodes, Type B: new links 

between existing nodes, Type C: links between existing nodes and new nodes) 



With regard to Type B links, which are the focus of many link prediction studies, the results in Figure 1~4 

reveal that these links constitute 10~25% (MEDLINE, DBLP, and KISTI) or 20~30% (APS) of the sum 

of Type A + B + C links, and that their ratios slightly increase regardless of the past-present network 

periods in each dataset. This is shown by the x-crosses, triangles, and circles plots that overlap and move 

towards the upper-right in very low slopes (see middle subfigures in Figure 1~4). This implies the caveat 

that, even if links can be predicted with high recall and precision, the prediction will account for less than 

25% (MEDLINE, DBLP, and KISTI) or 30% (APS) of coauthorship relations involving at least on 

existing node (i.e., against Type A + B + C). 

When compared with the ratios of Type A links, Type B links are slightly more or less frequent than Type 

A links across most time-windows in MEDLINE, DBLP, and KISTI. In APS, Type B is quite similar to 

or slightly more frequent than Type A. This means that roughly speaking, more or less than 50% of the 

links among existing nodes (i.e., Type A + B) represented continued connections. In other words, authors 

are slightly more or less likely to write papers with their previous coauthors than with unfamiliar existing 

authors. While the Type A ratios vary depending on the past-present time slicing choices (left subfigures), 

the Type B ratios are not much affected by those choices (middle subfigures).   

Finally, the plots in Figure 1~4 suggest that new collaborations between an existing and a new author 

(Type C) are the most common link type. Overall, Type C links account for 30% ~ 80% of all links per 

past-present network period and, like Type A, those ratios do not change much across all considered time 

windows. This observation indicates that authors commonly publish papers with new coauthoring 

partners. For example, new graduate students might write papers with their advisor, other graduate 

students, and later on with their post-doc advisor, then with their advisees or colleagues, and so on. 

Another notable observation is that contrary to Type A, the x-crosses plots appear above triangles and 

circles plots in the right subfigures in Figure 1~4. These trends imply that if a past network period is 

shorter and its paired present network period is longer, its ratio of Type C links is higher than the longer 

past and shorter present network pairs in each subfigure for Type C across all four datasets. What this 

tells us is that by extending the present network periods, new collaborations between existing and new 

authors are better detected than relying on shorter ones, which aligns well with the abovementioned 

interpretation that continued collaborations are more prominent in shorter present network periods. 

Despite such variations of Type C ratios are dependent on the past-present network periods, however, 

Type C links are found to be dominant in all datasets. Interestingly, the upper bounds of the Type C 

ratios, i.e., 68~80% in DBLP (see right subfigures in Figure 1), are comparable to the ratio of coauthors 

(72.7%) who have worked together only once for a sample of computer scientists across their publication 

careers as reported in Cabanac et al. (2015).  

Bounds for Link Predictor Performance 

Focusing only on Type B, we tested a commonly used, high-performing predictor, called Adamic-Adar, 

against datasets as sliced above into varied past-present network periods and sliding windows. This 

predictor is based on a similarity measure from Adamic and Adar (2003), which identifies two webpages 

to be more similar if they share features that are rarely shared by others than if they share features 

frequently observed for others as well.  

In the following equation for the predictor, S(x, y) is the prediction score for a pair of node x and y, and 

Γ(x) is the set of nodes connected to x. According to the equation (1), two nodes in a past network are 

more likely to form a link in a present network if they share neighboring nodes that are rarely connected 

to other nodes (i.e., low-degree nodes) than if they share neighboring nodes that are frequently connected 

to other nodes (i.e., high-degree nodes).  



𝑆(𝑥, 𝑦) =  ∑
1

𝑙𝑜𝑔|Γ(𝑧)|
           (1)

𝑧 ∈ Γ(𝑥)∩Γ(𝑦)
 

 

This concept was adopted by Liben-Nowell and Kleinberg (2007) and in following studies as a major link 

predictor. The Adamic-Adar predictor showed the highest accuracy among 9 predictors in Liben-Nowell 

and Kleinberg (2007). It has been also used as a baseline predictor in several studies for evaluating the 

performances of various predictors (e.g., Choudhury & Uddin, 2017, 2018; Guns & Rousseau, 2014). We 

used a Python package, Linkpred (Guns, 2014), to implement the Adamic-Adar predictor.  

In Figures 5~8, the prediction results by the Adamic-Adar predictor are shown in recall-precision charts. 

Recall (x-axis) measures the retrieval rate of relevant items, and precision (y-axis) the accuracy within the 

set of retrieved items8. In the figures we show recall-precision plots for three selected frames in each past 

and present network period. For example, for the past 1 year & present 1 year frame (left-upper subfigure 

in Figure 5), results are reported for 1996 (blue solid line: past year = 1995, present year = 1996), 2002 

(green dashed line: past year = 2001, present year = 2002), and 2009 (red dotted line: past year = 2008, 

present year = 2009). Those tree frames were selected by choosing the lower and upper bound years of 

present networks and the (approximately) middle year between them. The hyphened number (in grey 

color) in the center of each subfigure represents a pair of past (number before a hyphen) and present 

(number after a hyphen) network periods. 

 

 

 

                                                           
8 In some fields, such as natural language processing, recall and precision are often inversely related and therefore an 

average score such as the F metric (e.g., harmonic mean of precision and recall) is calculated. 



 

Figure 5: Recall-Precision Curves for Link Prediction Performance by the Adamic-Adar Predictor on MEDLINE  

 

 

 

 

 

 

 



 

Figure 6: Recall-Precision Curves for Link Prediction Performance by the Adamic-Adar Predictor on DBLP  

 



 

Figure 7: Recall-Precision Curves for Link Prediction Performance by the Adamic-Adar Predictor on APS  

 

 



 

Figure 8: Recall-Precision Curves for Link Prediction Performance by the Adamic-Adar Predictor on KISTI 

Figure 5~8 show Adamic-Adar-based recall rates of around 0.04~0.15 for MEDLINE, 0.015~0.1 for 

DBLP, 0.05~0.20 for APS, and 0.025~0.15 for KISTI. Precision rates increased up to 1.0 in all datasets 

but with extremely low recall rates. The tails of recall-precision plots that stretch towards the lower-right 

directions became shorter for the time-frames with longer present years. This means that as present years 

were extended longer, recall rates decreased across all past years. Although precision rates became 

slightly higher with longer present years, such increases were offset by the decreases of recall rates. This 

implies that as present network periods are extended, more Type B links between existing authors become 

identifiable, but the Adamic-Adar predictor fails to predict many of them. The low recall rates in Figures 

5~8 mean that even one of the best performing link predictors for collaboration networks can detect only 

a small portion of new links between existing nodes in our datasets. These observations imply that classic 

link prediction methods can lead to incomplete knowledge about link formation mechanisms in large-

scale collaboration networks. This is mainly due to the facts that (1) the common practice of link 

prediction studies only considers a particular type of links, i.e. links between existing nodes that were not 

connected in the past but are linked in the present network (Type B), (2) links of Type B account for only 



about a quarter of all links (Type A + B + C), and (3) imperfect prediction accuracy of technical solutions 

relying only on network structures further reduces link predictability.  

An exception to this methodological practice in link prediction studies for collaboration networks is 

Mohdeb, Boubetra, and Charikhi (2016), who attempted to predict Type A links (sustained 

collaborations) using link strengths between two authors and their attributes, such as professorial ranks. 

Their study reported about 40% of accuracy in predicting whether existing collaboration links continue to 

persist, but did not consider links of types other than A in collaboration networks.   

Bounds for Topological Prediction 

Another notable exception is an extension that leverages the preferential attachment model and its 

variations (Barabási et al., 2002; Milojević, 2010; Newman, 2001a). According to this model, the 

probability for a node to form a link to node x is proportional to the number of nodes that are already 

linked to x. Several studies have used this model to predict Type B links (e.g., Degree Product in Liben-

Nowell & Kleinberg, 2007)9. Unlike other predictors, however, the preferential attachment model is also 

used to predict link formation according to Types A and C.  

When applied to all link types (A, B, and C), the prediction model’s performance is not evaluated by 

recall and precision at a dyadic link level. This is because the preferential attachment model is stochastic 

(Perc, 2014). In other words, sets of linked nodes can be different even when the model is run repeatedly 

on the same data. Instead, previous preferential attachment studies tend to first detect the node degree 

distribution in a empirical target network, model the mechanism generating such a distribution, and then 

evaluate their proposed model by checking whether the node degree distribution of the model-generated 

network follows a pattern similar to that of the target network (e.g., Barabási et al., 2002; Pennock, Flake, 

Lawrence, Glover, & Giles, 2002). Especially, the model often aims to generate a network characterized 

by a specific network topology in which its node degree distribution follows a power-law pattern of 𝑥−𝛼 

(x is a node degree and 𝛼 is a scaling parameter). This implies that the model’s prediction holds true for 

the x range that exhibits the power-law distribution pattern. 

To see whether link formation in our coauthor networks fits the preferential attachment model, we tested 

how many nodes in a network can be attributed to producing a power-law degree distribution. 

Technically, this means that we counted the number of nodes that have a nodal degree x that falls within 

the x range associated with a power-law degree distribution. If many nodes in a network are linked to 

each other in a way that generates a power-law obeying distribution of nodal degree, we may conjecture 

that links in the network are likely to be formed according to a power-law generation mechanism like 

preferential attachment10. For this task, we used an R package, poweRlaw11, which implements the 

rigorous power-law fitting method proposed in Clauset, Shalizi, and Newman (2009). Figure 9 illustrates 

the process of deciding the ratios of nodes that generate the degree distributions following a power-law.  

                                                           
9 For a detailed explanation for the Degree Product predictor, see Appendix. 
10 This does not mean that all preferential attachment models are designed to explain power-law obeying networks. 

However, many studies on preferential attachment have attempted to model power-law obeying networks. 
11 https://cran.r-project.org/web/packages/poweRlaw/index.html 



 

Figure 9: An Illustration of Fitting a Power-Law Slope and Calculating the Ratio of Nodes with Minimum X or more 

   

In Figure 3, a degree distribution (blue circles) of an example network (MEDLINE: 2 Years 

(1995~1996)) is shown on a double logarithmic plot, where the value x on the horizontal axis is the node 

degree (i.e., number of coauthors per author), and its corresponding value on the vertical axis is the ratio 

(proportion) of the number of nodes (i.e., authors) that has x or more degrees over the total number of 

nodes. Using the fitting methods in Clauset et al. (2009), the distribution is fitted to a power-law 

distribution (red dotted line) with a slope of -3.6827 (parameter = 3.6827), but on a limited x range (𝑥 ≥

12). Here, we can obtain the ratio of nodes with x or more (Y = 0.08945991) using the minimum x (=12). 

We repeated this fitting and calculation procedure on our four datasets. Unlike a typical link prediction 

method where data are divided into training (past network) and test (present network) sets, the power-law 

fitting was conducted on each longitudinal dataset (one per dataset). To study the effects of time frames, 

we sliced each dataset into 2, 6, and 10 years with a yearly sliding window for the 1996~2009 period. 

Figure 10 reports scaling parameters (left subfigures), minimum x values (x-min, middle subfigures), and 

ratios of nodes with x-min or more (right subfigures). A year on an x-axis represent the upper year of 2, 6, 

and 10-year time frames. For example, for the 2-year time frame, 2009 means the 2008~2009 period. 

Note that reporting for 10-year time frames starts from the year of 2000 because that year is the minimum 

starting year covering prior 10 years (1991~2000) in our datasets (see Table 1). Also note that in the left 

subfigures, filled shapes represent that the power-law fitting results are statistically significant (p ≥ 0.1) as 

defined by Clauset et al. (2009).   

 

 

 



 

Figure 10: Changes of Scaling Parameter, Minimum X (x-min), and Ratio of Nodes with X ≥ x-min (Filled shapes in left 

subfigures indicate statistically significant fitting results) 

According to Figure 10, degree distributions in DBLP, APS, and KISTI were fitted to different power-law 

slopes on different ranges of x values: data points in left (parameter) and middle (x-min) subfigures 

fluctuate with no distinct patterns, and many fitting results are not statistically significant (empty shapes). 

In contrast to that, parameter and x-min trends were quite stable in MEDLINE, but, as indicated by all 

empty shapes, all power-law fitting results in MEDLINE are not statistically significant. Even if we 

assume that all the fitting results were statistically significant (i.e., ignore filled or unfilled shapes), nodes 

with degrees x-min or more constitute at best 30% of all nodes in several networks spanning 6 and 10 

years in MEDLINE and DBLP. In other networks, the ratios of nodes with x-min or more are very low: 



mostly less than 5% in APS and KISTI, and less than 10% in DBLP. This implies that link formation 

involving small portions of nodes in our collaboration networks can be explained by preferential 

attachment models customized to power-law obeying degree distributions in empirical networks12.   

Conclusion and Discussion 

Predicting links in collaboration networks is typically based on a process of identifying structural patterns 

of existing nodes that are present in a network but disconnected, and that form a link later on. Decent to 

high accuracy rates of link prediction based on this process have been achieved in prior studies (e.g., 

Guns & Rousseau, 2014; Liben-Nowell & Kleinberg, 2007; Yan & Guns, 2014) and a variety of 

computational solutions to this problem are available (e.g., Choudhury & Uddin, 2017, 2018; Guns, 

2014). In this paper, we empirically identified methodological constraints to the eligibility of this process: 

considering links that involve at least one existing node (Type A, B, and C), only about 25% of all links 

in coauthorship networks adhere to the evolutionary process of disjoint nodes being present first and 

forming a tie later (Type B). Based on averaged empirical results from four datasets that represent 

different disciplines and a region, our findings show that roughly speaking, 25% of links represent 

continued collaborations (Type A), 25% of links are new collaboration between existing authors (Type 

B), and 50% are collaborations between a former and a new network member (Type C). 

These observations do not imply that prior link prediction studies for collaboration networks are 

ineffective; rather, they show formational constraints that need to be overcome to increase the practical 

value of link prediction methods for collaboration networks. Specifically, the results of this study show 

that increasing the accuracy of computational solutions for link prediction may not be a reasonable goal 

when the underlying reality of link type distribution, i.e., the ratio of links that are eligible to the classic 

link prediction process, is the biggest roadblock to successful prediction. Even if a link predictor was 

100% accurate, only half of the future links between existing nodes can be predicted (Type B out of Type 

A + Type B). 

This roadblock cannot be easily removed with improved features, algorithms, or technology, but reflects 

the reality of link formation in scientific research collaboration. This indicates that link prediction 

solutions aiming at a high precision-recall rate for all links in networks would also need to account for a) 

sustained links (Type A), which is a computationally tractable task that can be solved with supervised 

machine learning techniques (Lü & Zhou, 2011; Mohdeb et al., 2016; Taskar et al., 2003), as well as links 

between (b) old and new network members (Type C), and (c) among new network members only (Type 

D). The latter two tasks (Type C and D) are difficult since the emergence of new members needs to be 

predicted first, which has insufficiently been addressed in link prediction research. 

In addition, about half of all the links that involve an existing node contain one new node (Type C), which 

suggests that we should investigate this link formation process in more detail to be able to model it. 

Solving the problem might require us to reconsider several basic principles of how link prediction is done. 

Rather than attempting to find high performing predictors that are based on inherent network properties, 

we might need to incorporate external (outside of the network) factors such as node affiliation or 

homophily (Cabanac et al., 2015). This approach combined with network-structure-based models may 

lead to formulating high-performing models, which account for link formation of Type A and C as well as 

                                                           
12 Many studies on power-law distribution in collaboration networks have fitted distribution tails (i.e., distribution of 

certain x values and above) to power-law slopes to assess the performance of proposed network generation models. 

Several studies have divided a degree distribution into two parts (below and above a certain x value) and fitted them 

separately to different power-law slopes (e.g., Wagner & Leydesdorff, 2005). A few others have tested power-law 

distributions with cut-offs (below certain x value) (e.g., Newman, 2001b). 



Type B. Our observations also provide a tangential insight into the social transaction costs of scientific 

co-authorship environments: many collaboration links involve two people who have not published 

together before (i.e., Type B and C). This means that for a large portion of collaboration relationships, 

coordination and trust need to be developed from scratch.  

This study has several limitations. First, we analyzed co-authorship networks by following the research 

design used in several prior link prediction studies. Other social network datasets and analysis techniques 

may lead to different results about the ratio of sustained, partially new, and totally new links (e.g., 

Choudhury & Uddin, 2017, 2018). Second, the time slicing in our study followed common procedures, 

but was limited in the frame size (extended up to 10 years = past 5 years + present 5 years). Extending the 

window size of past versus present networks beyond this limit might provide different findings. Finally, 

relying on aggregated snapshots of past and present networks might not be a proper technique to trace 

link formation processes in networks. We would expect more nuanced insights if link formation would be 

traced across a whole dataset, not based on structural patterns, but on node identity. These are tasks for 

future research. Overall, link prediction for collaboration networks is in its early stages. We do not 

attempt to refute or negate prior studies. Instead, we hope our study provides new ideas for improving 

link prediction models for collaboration networks, and thereby contributes to this evolving research area. 
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Appendix 

Degree Product: (Barabási et al., 2002) showed that if links in a network are formed based on preferential 

attachment, the probability of two nodes to form a link is proportional to the product of the degrees of 

those two nodes. This is frequently used to predict link formation among nodes present in both past and 

present networks. In the following equation, S(x, y) is the prediction score for a pair of node x and y, and 

Γ(x) is the set of nodes connected to x.   

 

𝑆(𝑥, 𝑦) =  |Γ(𝑥)| × |Γ(𝑦)|      (2) 
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