

[Title] A fast and integrative algorithm for clustering performance evaluation in author name

disambiguation

[Authors] Jinseok Kim

[Author Information]

Jinseok Kim

Institute for Research on Innovation & Science, Survey Research Center, Institute for Social Research,

University of Michigan

330 Packard Street, Ann Arbor, MI U.S.A. 48104-2910

734-763-4994|jinseokk@umich.edu

Abstract

Author name disambiguation results are often evaluated by measures such as Cluster-F, K-metric,

Pairwise-F, Splitting & Lumping Error, and B-cubed. Although these measures have distinctive

evaluation schemes, this paper shows that they can be calculated in a single framework by a set of

common steps that compare truth and predicted clusters through two hash tables recording information

about name instances with their predicted cluster indices and frequencies of those indices per truth cluster.

This integrative calculation reduces greatly calculation runtime, which is scalable to a clustering task

involving millions of name instances within a few seconds. During the integration process, B-cubed and

K-metric are shown to produce the same precision and recall scores. In this framework, especially, name

instance pairs for Pairwise-F are counted using a heuristic, surpassing a state-of-the-art algorithm in

speedy calculation. Details of the integrative calculation are described with examples and pseudo-code to

assist scholars to implement each measure easily and validate the correctness of implementation. The

integrative calculation will help scholars compare similarities and differences of multiple measures before

they select ones that characterize best the clustering performances of their disambiguation methods.

Keywords: author name disambiguation; entity resolution; clustering; evaluation measure; pairwise-F

This is a pre-print of a paper published in the journal Scientometrics.

Kim, J. (2019). A fast and integrative algorithm for clustering performance evaluation in author name

disambiguation. Scientometrics, 120(2), 661-681. doi:10.1007/s11192-019-03143-7

Introduction

Author name disambiguation is an entity resolution task to generate clusters of name instances to refer to

distinct authors in bibliographic data. It is crucial to research that mines authorship data because

ambiguous names can lead to merging and/or splitting of author identities and thus flawed knowledge

about research production and collaboration (Fegley & Torvik, 2013; Kim & Diesner, 2015, 2016;

Strotmann & Zhao, 2012). As publications and ambiguous author names such as East Asian names

increase in digital libraries (Bornmann & Mutz, 2015; Torvik & Smalheiser, 2009), various methods for

disambiguating author names (Hussain & Asghar, 2017; Smalheiser & Torvik, 2009) have been proposed.

After a disambiguation method is implemented, its clustering result is evaluated by a variety of measures.

As there is no consensus on a definitive measure for author name disambiguation (Ferreira, Gonçalves, &

Laender, 2012), one or two measures are chosen at the researcher’s discretion. The selection of a measure

is, sometimes, justified by the argument that it is frequently used or enables the comparison of a study

with prior work. In many studies, however, a measure is selected without such clarification.

The clustering measure selection should be understood in the context of each study. It can, however,

change our impression about a disambiguation method if its performance is evaluated high by one

measure but low or mediocre by another. Applying diverse measures to a disambiguation study can be a

non-trivial task because clustering measures have distinct evaluation schemes which are not easy to

compare their similarities and differences. In addition, the straightforward implementation of a measure

such as Pairwise-F can consume too much runtime depending on data size because the number of instance

pairs for comparison can increase quadratically in a worst-case scenario (Menestrina, Whang, & Garcia-

Molina, 2010).

To aid scholars to select measures that characterize best their disambiguation results, this study shows that

five commonly used measures for evaluating clustering results in author name disambiguation can be

calculated all-in-one by implementing a common code. This integrative calculation shows intuitively

where those measures are similar and different in evaluating clustering performance. Especially, the

proposed approach reduces computation runtime, dramatically for Pairwise-F in particular. In the

following sections, the usage patterns of clustering measures in author name disambiguation research are

reviewed. Then, the integration process is explained step-by-step with pseudo-code and examples.

Literature Review

Table 1 shows the list of selected author name disambiguation studies and their measures for evaluating

clustering performance. Note that detailed explanation of each measure will be provided in the Results

section later in this paper.

Table 1: Clustering performance measures in selected author name disambiguation studies

Studies Cluster-F K-metric SE & LE Pairwise-F 𝐵3

Cota et al. (2010) √ √

Fan et al. (2011) √

Ferreira et al. (2014) √ √

Han et al. (2017) √

Huang et al. (2006) √ √

Hussain and Asghar (2018) √ √ √

Kim and Diesner (2016) √ √

Kim and Kim (2018) √

Lerchenmueller and

Sorenson (2016)
 √

Levin et al. (2012) √ √

Liu et al. (2014) √ √

Liu et al. (2015) √

Louppe et al. (2016) √ √

Momeni and Mayr (2016) √

Müller et al. (2017) √

Pereira et al. (2009) √ √ √

Santana et al. (2017) √ √

Shin et al. (2014) √ √ √

Qian et al. (2015) √

Torvik and Smalheiser

(2009)
 √

Wu et al. (2014) √ √

Zhang et al. (2018) √

Zhu et al. (2018) √

According to the table, Pairwise-F is the most popular. It appears in 15 out of 23 studies. This confirms

that it is the most frequently used in entity resolution in general (Menestrina et al., 2010) as well as in

author name disambiguation (Levin, Krawczyk, Bethard, & Jurafsky, 2012)1. K-metric is found in 8

studies, followed by B-cubed (B3, 7) and Cluster-F (5). Three studies use the Splitting & Lumping Errors

(SE & LE) measure.

In Table 1, 11 out of 23 studies rely on a single measure while others on two or three measures. In

addition, the combinations of co-used measures vary. Figure 1 shows the pairs of co-used measures in the

Table 1 studies and their co-usage frequencies. For example, Pairwise-F is paired with K-metric 7 times.

Interestingly, some possible pairs have never been calculated together. For example, B3 is paired with

Pairwise-F twice but not with K-metric, Cluster-F, and SE & LE.

Figure 1: Co-Usage frequency of pairs of disambiguation measures used together in selected studies in Table 1

1 Note that B-Cubed is more frequently used than other measures in person name disambiguation on the Web (e.g.,

Delgado, Martínez, Montalvo, & Fresno, (2017)) because the metric has formal properties that can handle evaluation

scenarios specific to the task. For details, see Amigó, Gonzalo, Artiles, and Verdejo (2009).

The use of Pairwise-F is sometimes justified by its frequent usage in entity resolution studies. Other

measures are selected to follow the practice of referenced studies to be compared or without any

clarification. Although such choices should be understood in each study’s unique context, they can

change our impression about the clustering performance of a disambiguation method. To illustrate this,

the disambiguation performance of a digital library, DBLP (Ley, 2009; Reitz & Hoffmann, 2013), was

evaluated on a labeled dataset, KISTI (Kang, Kim, Lee, Jung, & You, 2011). KISTI consists of a set of

ambiguous name instances filtered from publication records in DBLP and disambiguated semi-manually

by researchers at the Korean Institute for Science and Technology Information. Among 41,673 name

instances in the original KISTI, a total of 41,358 name instances are matched to DBLP records2. Figure 2

shows the DBLP’s clustering performance evaluated on KISTI by five measures.

Figure 2: Performance of DBLP’s author name disambiguation evaluated by five measures on KISTI

Figure 2 shows that DBLP’s disambiguation is highly accurate: precision, recall, and F scores of three

measures – Pairwise-F, B3, and K-metric – are all above 0.95, corroborating Kim (2018). Cluster-F and

SE & LE scores are, however, not so much encouraging. Especially, Cluster-F shows that DBLP performs

a little worse in recall than in precision, which contrasts other three measures reporting that DBLP

performs better in recall than in precision. According to SE & LE, DBLP disambiguates better regarding

recall than precision but the recall-precision performance gap (|recall – precision| = 0.1794) is much

pronounced than those by Pairwise-F, K-metric, and B3 (|recall – precision| = 0.0346 ~ 0.0487).

This illustrates why we need to consider various measures for evaluating a disambiguation method.

Depending on the choices of measures, the same clustering results can be evaluated as encouraging or less

so. As shown in Table 1, however, the selection of measures do not seem to be guided by any common

practice. But this does not imply that scholars need to report evaluation results obtained from all available

measures, which is undesirable for efficient scientific communication.

Instead, it should be emphasized that the use of diverse measures can illuminate where a proposed

disambiguation method performs well and worse. For example, the low Cluster-F coupled with high B3 in

Figure 2 indicates that misidentified name instances by DBLP are not many (high B3 scores) but appear

across several truth clusters because a single misidentified instance in a truth cluster decides the DBLP’s

performance for the cluster as a failure. In addition, diverse measures can enable scholars to compare

2 For details on the matching procedure, see Kim (2018).

performances of their proposed methods with other studies evaluated by different measures and thus to

find room for improvement or synthesize strengths of each study.

Applying different measures to a disambiguation study can, however, be a non-trivial task. Although each

measure is well defined in equations, its implementation requires a careful validation of evaluation

accuracy. In addition, each measure can be implemented by different code snippets which are not often

shared. So, scholars who want to implement a clustering measure often need to write code from scratch.

Sometimes, the calculation of a measure such as Pairwise-F may not be easily implementable for a large

dataset: it can consume much computing time and RAM because the number of instance pairs can

increase quadratically “in the worst case” (Menestrina et al., 2010)3.

To facilitate the efficient use of diverse clustering measures for author name disambiguation, this study

proposes algorithms to calculate the five commonly used measures all-in-one in an integrative framework.

Specifically, although the five measures have different evaluation schemes, they can be calculated by

implementing a common code, which will help us understand better the similarities and differences of

those measures. This integrative calculation is the first attempt of this sort and a novel contribution to the

measurement of clustering performance in author name disambiguation. Moreover, during the integration

process, B3 and K-metric are shown to produce the same precision and recall scores. Within this

framework, especially, Pairwise-F is calculated by a heuristic rather than a brute-force comparison of

instance pairs, reducing greatly computation time from quadratic (at worst) to linear one. This solution is

motivated by Menestrina et al. (2010) where Pairwise-F is calculated linearly through a ‘Slice’ algorithm

combined with a cost function. This study combines the ‘Slice’ algorithm with a heuristic to calculate

Pairwise-F faster than the ‘Slice’ algorithm + cost function approach. In following sections, the details of

integrative calculation are described with examples and pseudo-code.

Methods

To evaluate the clustering performance in author name disambiguation, scholars usually measure the

similarity between clustering results produced by a disambiguation method and those by human coders in

two ways: recall and precision. Here, a cluster consists of name instances that are decided to represent the

same authors by an algorithm (a predicted cluster) or manual labeling (a truth cluster). Recall considers

how many truth clusters are not compromised by merged or split name instances in predicted clusters,

while precision evaluates how many predicted clusters group correctly name instances that belong to the

same truth clusters.

Incorporating the aforesaid five measures into the same framework is possible because all of them

evaluate performance by both recall and precision. What makes them different is that each measure is

designed to assess precision and recall at one of three levels: cluster, instance, or pair of instances, as

summarized in Table 2.

Table 2: Summary of Calculation Level and Recall-Precision Types per Performance Measure

Measure Cluster-F K-metric SE & LE Pairwise-F B3

Calculation

Level
Cluster Cluster Cluster Pair Instance

3 For example, a set of 3,964 author name instances can generate over 7.8M instance pairs (Kim, Sefid, & Giles,

2017). To address this challenge in the context of author name disambiguation, a few studies have proposed

advanced blocking algorithms. For details, see Kim et al. (2017).

Recall
Cluster

Recall
AAP

Splitting

Error

Pairwise

Recall
B3 Recall

Precision
Cluster

Precision
ACP

Lumping

Error

Pairwise

Precision
B3 Precision

F Score
Harmonic

Mean

Geometric

Mean

Harmonic

Mean

Harmonic

Mean

Harmonic

Mean

Despite such different calculation levels, the measures can be implemented by embedding the instance-

and pair-level calculations into the cluster level calculation through a set of common code (“skeleton

code” hereafter). Algorithm 1 shows the skeleton code.

Algorithm 1: Skeleton Code

1

P: a set of predicted clusters

p: an instance of a cluster 𝑃𝑖

pIndex: a hash of an instance p and its cluster index i

T: a set of truth clusters

t: an instance of a cluster 𝑇𝑗

tMap: a hash of an instance t and its cluster index i mapped in pIndex

2 pIndex ← {}

3 for each 𝑃𝑖 ∈ 𝑃 do

4 for each 𝑝 ∈ 𝑃𝑖 do

5 pIndex[p] ← i

6 end for

7 end for

8 for each 𝑇𝑗 ∈ 𝑇 do

9 tMap ← {}

10 for each 𝑡 ∈ 𝑇𝑗 do

11 if 𝑝𝐼𝑛𝑑𝑒𝑥[𝑡] ∉ 𝑘𝑒𝑦𝑠(𝑡𝑀𝑎𝑝) then

12 𝑡𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] ← 0

13 end if

14 t𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] ← 𝑡𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] + 1
15 end for

16 for each (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) ∈ 𝑡𝑀𝑎𝑝 do

17 # do calculation

18 end if

19 end for

20 end for

The key idea of Algorithm 1 is that truth clusters are not compared cluster by cluster to predicted ones.

Instead, a name instance (p) in a predicted cluster (Pi) is recorded into a hash table (pIndex) where the

instance p (key) is mapped to its cluster membership (= i: value) (code line #2~#7). Next, a name instance

(t) in a truth cluster (Tj) is checked for its index (i) in predicted clusters (P) by referencing pIndex. Then,

the count of the index (i) are recorded into another hash table (tMap) where an index i (key) is mapped to

its frequency (value) (code line #10~#15). In other words, this code snippet counts the number of name

instances in a truth cluster that appear together in predicted clusters (= sharing the same i), which

corresponds to detecting the intersection of a truth cluster (Tj) and predicted clusters (P). Note that this

procedure adopts part of the Slice algorithm in Menestrina et al. (2010).

Within this cluster-level calculation framework, pair- and instance-level measures can be calculated with

some modification of their evaluation schemes. To demonstrate this, each measure is explained in detail

below starting from cluster-level to pair- and instance-level.

Results

Cluster Level: Cluster-F

Cluster-F (cF) is a harmonic mean of cluster recall (cR) and cluster precision (cP) (Menestrina et al.,

2010).

𝑐𝑅 =
|𝑃 ∩ 𝑇|

|𝑇|
 (1)

𝑐𝑃 =
|𝑃 ∩ 𝑇|

|𝑃|
 (2)

𝑐𝐹 =
2 × 𝑐𝑅 × 𝑐𝑃

(𝑐𝑅 + 𝑐𝑃)
 (3)

Here, P is a set of predicted clusters, while T is a set of truth clusters. The numerator |𝑃 ∩ 𝑇| counts the

number of predicted clusters that contain all and the only instances belonging to the same truth clusters.

Cluster recall (cR) is the ratio of the numerator over the number of all truth clusters (|𝑇|). Cluster

precision (cP) is the ratio of this numerator over the number of all predicted clusters (|𝑃|).

Table 3 shows an example for calculating Cluster-F. In the first column, there are three truth clusters (T1,

T2, and T3) in which eight name instances with numeric ids (1, 2, 3…8) are assigned. The second column

shows predicted results: eight instances in the first column are assigned to two clusters (P1 and P2). After

instances are compared across predicted and truth clusters, only one case of |𝑃 ∩ 𝑇| (P1 = T1) is detected.

So, the numerator for cR is 1, while the denominator is 3 (the number of truth clusters), resulting in cR =

1/3. The numerator for cP is also 1 but its denominator is 2 (the number of predicted clusters), resulting in

cP = 1/2. Their harmonic mean is 0.4.

Table 3: An Illustration of Cluster-F Calculation

Truth Clusters (T) Predicted Clusters (P) Calculation

T1 = (1, 2, 3)

T2 = (4, 5)

T3 = (6, 7, 8)

P1 = (1, 2, 3)

P2 = (4, 5, 6, 7, 8)

cR = 1/3 = 0.3333

cP = 1/2 = 0.5

cF = (2×1/3×1/2)/(1/3+1/2) = 0.4

The calculation of cR and cP can be implemented as follows.

Algorithm 2: Cluster-F

1

P, p, pIndex, T, t, tMap # same as in Algorithm 1 hereafter

cSize: a hash of a cluster 𝑷𝒊 and its size

cMatch: the count of 𝑷𝒊 that contains all and the only instances in 𝑻𝒋

2 pIndex ← {}

3 for each 𝑃𝑖 ∈ 𝑃 do

4 for each 𝑝 ∈ 𝑃𝑖 do

5 pIndex[p] ← i

6 end for

7 cSize[i] ← |𝑷𝒊|
8 end for

9 cMatch ← 0

10 for each 𝑇𝑗 ∈ 𝑇 do

11 tMap ← {}

12 for each 𝑡 ∈ 𝑇𝑗 do

13 if 𝑝𝐼𝑛𝑑𝑒𝑥[𝑡] ∉ 𝑘𝑒𝑦𝑠(𝑡𝑀𝑎𝑝) then

14 𝑡𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] ← 0

15 end if

16 t𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] ← 𝑡𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] + 1
17 end for

18 for each (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) ∈ 𝑡𝑀𝑎𝑝 do

19 if 𝒗𝒂𝒍𝒖𝒆 = |𝑻𝒋| and cSize[key] = |𝑻𝒋| then

20 cMatch ← cMatch + 1

21 end if

22 end for

23 end for

24 cR ← 𝑐𝑀𝑎𝑡𝑐ℎ |𝑇|⁄

25 cP ← 𝑐𝑀𝑎𝑡𝑐ℎ |𝑃|⁄

26 return cR, cP

In Algorithm 2, the code lines added to Algorithm 1 are highlighted in bold. As a result of running the

skeleton code, the hash table tMap records every cluster index i associated with name instances in T and

the frequency of each index. If (1) an index i (key)’s frequency in tMap is the same as the size of a truth

cluster Tj (value = |𝑇𝑗|) and (2) the size of the cluster Pi is the same (cSize[key] = |𝑇𝑗|), this means that all

and only name instances in the truth cluster appear together in the same predicted cluster. This is a case of

the intersection (|𝑃 ∩ 𝑇|) and increments cMatch, the numerator for cR and cP.

Cluster Level: K-metric

K-metric consists of Average Author Purity (AAP), Average Cluster Purity (ACP), and their geometric

mean (K) (Santana et al., 2017).

𝐴𝐴𝑃 =
1

𝑁
∑ ∑

𝑛𝑖𝑗
2

𝑛𝑗

|𝑃|

𝑖=1

|𝑇|

𝑗=1

 (4)

𝐴𝐶𝑃 =
1

𝑁
∑ ∑

𝑛𝑖𝑗
2

𝑛𝑖

|𝑇|

𝑗=1

|𝑃|

𝑖=1

 (5)

𝐾 = √𝐴𝐶𝑃 × 𝐴𝐴𝑃 (6)

Here, T and P represent sets of truth and predicted clusters each. N is the total of name instances to be

disambiguated. Assume that every name instance in truth clusters is assigned to one of predicted clusters

throughout this paper. 𝑛𝑖𝑗 is the number of Pi name instances that also appear in Tj; 𝑛𝑖 and 𝑛𝑗 represent

the numbers of name instances in Pi and Tj, respectively. AAP measures the fragmentation of truth

clusters. In other words, its value is low when many instances of an author (= a truth cluster) are split into

separate predicted clusters (≈ recall). In contrast, ACP measures the purity of the predicted clusters. The

ACP value decreases if predicted clusters contain name instances that should belong to other predicted

clusters (≈ precision).

Table 4 illustrates the K-metric calculation. AAP starts by counting the number of name instances in the

truth cluster that appear in each predicted cluster. For example, all instances in T1 appear together in P1,

thus 𝑛11
2 = 32 (= 9) and 𝑛1 = 3. This repeats over other truth clusters (T2 = 22/2 and T3 = 32/3). The same

procedure is applied for ACP but this time staring from P1 being compared to each truth cluster.

Table 4: An Illustration of K-metric Calculation

Truth Clusters (T) Predicted Clusters (P) Calculation

T1 = (1, 2, 3)

T2 = (4, 5)

T3 = (6, 7, 8)

P1 = (1, 2, 3)

P2 = (4, 5, 6, 7, 8)

AAP = (32/3+22/2+32/3)/8= 1.0

ACP = (32/3+22/5+32/5)/8 = 0.7

K = √1.0 × 0.7 = 0.8367

Equations 4 and 5 can be re-written using a set notation as follows. The order of cluster comparison (truth

→ predicted or predicted → truth) does not affect the calculation outcome because the final set of

intersection (𝑃𝑖 ∩ 𝑇𝑗) are the same. So, the summation can be ordered as truth clusters being compared to

predicted clusters (i.e., truth → predicted) for both AAP and ACP.

𝐴𝐴𝑃 =
1

𝑁
∑ ∑

𝑛𝑖𝑗
2

𝑛𝑗

|𝑃|

𝑖=1

|𝑇|

𝑗=1

=
1

𝑁
∑ ∑

|𝑃𝑖 ∩ 𝑇𝑗|
2

|𝑇𝑗|
𝑖∈𝑃𝑗∈𝑇

 (7)

𝐴𝐶𝑃 =
1

𝑁
∑ ∑

𝑛𝑖𝑗
2

𝑛𝑖

|𝑇|

𝑗=1

|𝑃|

𝑖=1

=
1

𝑁
∑ ∑

|𝑃𝑖 ∩ 𝑇𝑗|
2

|𝑃𝑖|
𝑖∈𝑃𝑗∈𝑇

 (8)

The revised equations can be implemented expanding Algorithm 1.

Algorithm 3: K-metric

1

P, p, pIndex, T, t, tMap

cSize: a hash of a cluster 𝑷𝒊 and its size

instSum: the total of name instances to be disambiguated

aapSum, acpSum: totals of aap and acp values per cluster
2 pIndex ← {}

3 for each 𝑃𝑖 ∈ 𝑃 do

4 for each 𝑝 ∈ 𝑃𝑖 do

5 pIndex[p] ← i

6 end for

7 cSize[i] ← |𝑷𝒊|
8 end for

9 instSum ← 0

10 for each 𝑇𝑗 ∈ 𝑇 do

11 instSum ← instSum + |𝑻𝒋|

12 tMap ← {}

13 for each 𝑡 ∈ 𝑇𝑗 do

14 if 𝑝𝐼𝑛𝑑𝑒𝑥[𝑡] ∉ 𝑘𝑒𝑦𝑠(𝑡𝑀𝑎𝑝) then

15 𝑡𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] ← 0

16 end if

17 t𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] ← 𝑡𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] + 1

18 end for

19 for each (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) ∈ 𝑡𝑀𝑎𝑝 do

20 aapSum ← aapSum + 𝒗𝒂𝒍𝒖𝒆𝟐 |𝑻𝒋|⁄

21 acpSum ← acpSum + 𝒗𝒂𝒍𝒖𝒆𝟐 |𝒄𝑺𝒊𝒛𝒆[𝒌𝒆𝒚]|⁄

22 end for

23 end for

24 AAP ← 𝑎𝑎𝑝𝑆𝑢𝑚 𝑖𝑛𝑠𝑡𝑆𝑢𝑚⁄

25 ACP ← 𝑎𝑐𝑝𝑆𝑢𝑚 𝑖𝑛𝑠𝑡𝑆𝑢𝑚⁄

26 return AAP, ACP

Algorithm 3 recycles the skeleton code. The added lines to Algorithm 1 are shown in bold. The re-use is

possible because in Equation 7 and 8, K-metric is calculated in a single procedure in which truth clusters

are compared to predicted clusters for both AAP and ACP. In contrast, Equation 4 and Equation 5

formulate that truth clusters are compared to predicted clusters for AAP and then predicted clusters to

truth clusters for ACP.

As all name instances in truth clusters are assigned to one of predicted clusters, the value of N can be

obtained by counting instances in either truth (instSum, code line #11) or predicted clusters. In code lines

#20~21, |𝑃𝑖 ∩ 𝑇𝑗|
2

|𝑇𝑗|⁄ in Equation 7 and |𝑃𝑖 ∩ 𝑇𝑗|
2

|𝑃𝑖|⁄ in Equation 8 are calculated and summed into

aapSum and acpSum, respectively, using the hash values in tMap. Especially, |𝑃𝑖| is obtained by

referencing a predicted cluster index i (key) to cSize generated in code line #7.

Cluster Level: Splitting & Lumping Error

Several studies have adopted the concept of Lumping (= merging) and Splitting Error (Kim & Diesner,

2016; Lerchenmueller & Sorenson, 2016; Li et al., 2014; Liu et al., 2014; Torvik & Smalheiser, 2009).

Splitting Error (SE) and Lumping Error (LE) are defined as follows (Li et al., 2014):

𝑆𝐸 =
∑ |{𝑥|𝑥 ∈ 𝑇𝑎, 𝑥 ∉ 𝑃𝑎}|𝑎

∑ |𝑇𝑎|𝑎
 (9)

𝐿𝐸 =
∑ |{𝑥|𝑥 ∈ 𝑃𝑎, 𝑥 ∉ 𝑇𝑎}|𝑎

∑ |𝑃𝑎|𝑎
 (10)

Here, 𝑥 means an author name instance. 𝑇𝑎 represents the truth cluster of a unique author a, while 𝑃𝑎

means the predicted cluster that contains the largest number of name instances of the unique author a. SE

evaluates how many name instances of a unique author (= a truth cluster) fail to appear in the predicted

cluster that contains the largest number of name instances associated with the unique author (≈ recall). LE

measures how many name instances in a predicted cluster belong to other distinct authors, i.e., truth

clusters (≈ precision). Note that SE and LE consider only a predicted cluster that contains the largest

number of name instances of a truth cluster. In contrast, Cluster-F considers only the perfect match of all

name instances between a predicted cluster and a truth cluster. Others (K-metric, Pairwise-F, and B3)

consider all intersection sets of instances between a truth cluster and predicted clusters.

Table 5 illustrates how to calculate SE and LE. The SE calculation starts by comparing name instances in

T1 with P1 and P2. P1 contains the largest number of T1 name instances. As there is no name instance in T1

that does not belong to P1, the value for |{𝑥|𝑥 ∈ 𝑇𝑎 , 𝑥 ∉ 𝑃𝑎}| in Equation 9 is zero. Likewise, no splitting

error case is detected for T2 and T3 because all name instances in T2 and T3 are found in P2, the predicted

cluster that contains all name instances of both T2 and T3. Thus, the numerator for SE is 0, while its

denominator, sum of all truth cluster sizes, is 8. For LE, name instances in T1 are all found in P1. But

name instances in T2 and T3 are lumped with those from T3 and T2, respectively, in the same predicted

cluster P2. Regarding the error for T2, three name instances from T3 are wrongly assigned to P2 (thus,

lumping error = 3), while for T3, two instances from T2 are wrongly assigned to P2 (thus, lumping error =

2). As both T2 and T3 share the largest predicted cluster, P2, their |𝑃𝑎| value is 5 (=|P2|).

Table 5: An Illustration of Splitting & Lumping Errors Calculation

Truth Clusters (T) Predicted Clusters (P) Calculation

T1 = (1, 2, 3)

T2 = (4, 5)

T3 = (6, 7, 8)

P1 = (1, 2, 3)

P2 = (4, 5, 6, 7, 8)

SE = (0+0+0)/(3+2+3) = 0.0

LE = (0+3+2)/(3+5+5) = 0.3846

A key difference between SE & LE and other four measures is that SE & LE counts errors (split or lumped

name instances), while others count correctly predicted name instances. For the comparison across five

measures, these error-based measures can be converted into recall (eR), precision (eP), and F (eF)

measures as follows (Lerchenmueller & Sorenson, 2016; Liu et al., 2014; Torvik & Smalheiser, 2009):

𝑒𝑅 = 1 − 𝑆𝐸 (11)

𝑒𝑃 = 1 − 𝐿𝐸 (12)

𝑒𝐹 =
2 × 𝑒𝑅 × 𝑒𝑃

𝑒𝑅 + 𝑒𝑃
 (13)

This conversion scales eR between 0 (all split) and 1 (no splitting), and eP between 0 (all lumped) and 1

(no lumping). In Table 5, for example, eR = 1 – SE = 1 – 0 = 1 and eP = 1 – LE = 1 – 0.3846 = 0.6154.

Their harmonic mean (= 0.7619) is eF.

Equation 9 and 10 can be re-written using a set notation as follows.

𝑆𝐸 =
∑ |{𝑥|𝑥 ∈ 𝑇𝑎, 𝑥 ∉ 𝑃𝑎}|𝑎

∑ |𝑇𝑎|𝑎
 =

∑ (|𝑇𝑎|𝑎 − |𝑇𝑎 ∩ 𝑃𝑎|)

∑ |𝑇𝑎|𝑎
 (14)

𝐿𝐸 =
∑ |{𝑥|𝑥 ∈ 𝑃𝑎, 𝑥 ∉ 𝑇𝑎}|𝑎

∑ |𝑃𝑎|𝑎
 =

∑ (|𝑃𝑎|𝑎 − |𝑇𝑎 ∩ 𝑃𝑎|)

∑ |𝑃𝑎|𝑎
 (15)

The calculation of SE and LE can be implemented by adding lines to the skeleton code as follows.

Algorithm 4: SE & LE

1

P, p, pIndex, T, t, tMap

cSize: a hash of a cluster 𝑷𝒊 and its size

spSum: sum of split instances

lmSum: sum of lumped instances

instTrSum: sum of instances in the truth clusters for a unique author

instPrSum; sum of instances in the largest predicted clusters for a unique author
2 pIndex ← {}

3 for each 𝑃𝑖 ∈ 𝑃 do

4 for each 𝑝 ∈ 𝑃𝑖 do

5 pIndex[p] ← i

6 end for

7 cSize[i] ← |𝑷𝒊|
8 end for

9 for each 𝑇𝑗 ∈ 𝑇 do

10 tMap ← {}

11 for each 𝑡 ∈ 𝑇𝑗 do

12 if 𝑝𝐼𝑛𝑑𝑒𝑥[𝑡] ∉ 𝑘𝑒𝑦𝑠(𝑡𝑀𝑎𝑝) then

13 𝑡𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] ← 0

14 end if

15 t𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] ← 𝑡𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] + 1
16 end for

17 maxKey ← 0, maxValue ← 0

18 for each (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) ∈ 𝑖𝑛𝑑𝑒𝑥𝑀𝑎𝑝 do

19 if value > maxValue then

20 maxValue ← value

21 maxKey ← key

22 end if

23 end for

24 spSum ← 𝒔𝒑𝑺𝒖𝒎 + (|𝑻𝒋| − 𝒎𝒂𝒙𝑽𝒂𝒍𝒖𝒆)

25 lmSum ← 𝒍𝒎𝑺𝒖𝒎 + (𝒄𝑺𝒊𝒛𝒆[𝒎𝒂𝒙𝑲𝒆𝒚] − 𝒎𝒂𝒙𝑽𝒂𝒍𝒖𝒆)

26 instTrSum ← 𝒊𝒏𝒔𝒕𝑻𝒓𝑺𝒖𝒎 + |𝑻𝒋|

27 instPrSum ← 𝒊𝒏𝒔𝒕𝑷𝒓𝑺𝒖𝒎 + 𝒄𝑺𝒊𝒛𝒆[𝒎𝒂𝒙𝑲𝒆𝒚]
28 end for

29 SE ← 𝑠𝑝𝑆𝑢𝑚 𝑖𝑛𝑠𝑡𝑇𝑟𝑆𝑢𝑚⁄

30 LE ← 𝑙𝑚𝑆𝑢𝑚 𝑖𝑛𝑠𝑡𝑃𝑟𝑆𝑢𝑚⁄

31 return SE, LE

In Algorithm 4, code lines #17 and #19~#22 find the predicted cluster index i (key) with the largest

frequency (value) from tMap. For an author a (= a truth cluster |𝑇𝑎|), the maxValue in tMap is used for

counting |𝑇𝑎 ∩ 𝑃𝑎| in Equation 14 and 15. In addition, the key for the maxValue is used to obtain the value

for cSize[maxKey] = |𝑃𝑎|, which is the size of the predicted cluster that contains the largest number of

name instances in the truth cluster |𝑇𝑎|.

Pairwise Level: Pairwise-F

This measures disambiguation performance at a pair-level via pairwise Precision (pP), pairwise Recall

(pR), and Pairwise-F1 (pF) as defined below (Menestrina et al., 2010):

𝑝𝑅 =
|𝑝𝑎𝑖𝑟𝑠(𝑃) ∩ 𝑝𝑎𝑖𝑟𝑠(𝑇)|

|𝑝𝑎𝑖𝑟𝑠(𝑇)|
 (16)

𝑝𝑃 =
|𝑝𝑎𝑖𝑟𝑠(𝑃) ∩ 𝑝𝑎𝑖𝑟𝑠(𝑇)|

|𝑝𝑎𝑖𝑟𝑠(𝑃)|
 (17)

𝑝𝐹 =
2 × 𝑝𝑅 × 𝑝𝑃

𝑝𝑅 + 𝑝𝑃
 (18)

Here, pairs(P) and pairs(T) mean name instance pairs generated from the same cluster in predicted

clusters P and truth clusters T. The numerator |𝑝𝑎𝑖𝑟𝑠(𝑃) ∩ 𝑝𝑎𝑖𝑟𝑠(𝑇)| is the number of instance pairs that

appear both in P and T.

The calculation of pR and pP is illustrated in Table 6. Here, a pair of name instances is represented by two

instance ids separated by a vertical bar. In T1, for example, three name instances (1, 2, and 3) are paired

into three pairs (1|2, 1|3, and 2|3). The list of name pairs of truth clusters is compared with that of

predicted clusters to generate a list of pairs found in both lists. The count of these intersection pairs

constitutes the numerator (1|2, 1|3, 2|3, 4|5, 6|7, 6|8, 7|8; 7 pairs), which is divided by the total of pairs in

truth clusters (= 7) for pR and by the total of pairs in predicted clusters (=13) for pP.

Table 6: An Illustration of Pairwise-F Calculation

Truth Clusters (T) Predicted Clusters (P) Calculation

T1 = (1, 2, 3) → (1|2, 1|3,

2|3)

T2 = (4, 5) → (4|5)

T3 = (6, 7, 8) → (6|7, 6|8,

7|8)

P1 = (1, 2, 3) → (1|2, 1|3,

2|3)

P2 = (4, 5, 6, 7, 8)

→ (4|5, 4|6, 4|7, 4|8, 5|6,

5|7, 5|8, 6|7, 6|8, 7|8)

pR = 7/7 = 1.0

pP = 7/13 = 0.5385

pF = 2×(1.0×0.5385)/(1.0+0.5385) = 0.7000

Calculating pR and pP can be memory- and time-consuming because the number of pairs in a cluster

increases in a quadratic way with the size of name instances (Levin et al., 2012; Louppe, Al-Natsheh,

Susik, & Maguire, 2016). For example, the number of pairs for a cluster with 10 instances is 45, while

that of a cluster with 1,000 instances is 499,500. To overcome this problem, the Pairwise-F measures can

be re-written as follows.

𝑝𝑅 =
|𝑝𝑎𝑖𝑟𝑠(𝑃) ∩ 𝑝𝑎𝑖𝑟𝑠(𝑇)|

|𝑝𝑎𝑖𝑟𝑠(𝑇)|
 =

∑ ∑ |𝑇𝑗 ∩ 𝑃𝑖| × (|𝑇𝑗 ∩ 𝑃𝑖| − 1) 2⁄𝑖∈𝑃𝑗∈𝑇

∑ |𝑇𝑗| × (|𝑇𝑗| − 1) 2⁄𝑗∈𝑇

 (19)

𝑝𝑃 =
|𝑝𝑎𝑖𝑟𝑠(𝑃) ∩ 𝑝𝑎𝑖𝑟𝑠(𝑇)|

|𝑝𝑎𝑖𝑟𝑠(𝑃)|
=

∑ ∑ |𝑇𝑗 ∩ 𝑃𝑖| × (|𝑇𝑗 ∩ 𝑃𝑖| − 1) 2⁄𝑖∈𝑃𝑗∈𝑇

∑ |𝑃𝑖| × (|𝑃𝑖| − 1) 2⁄𝑖∈𝑃
 (20)

Here, the number of pairs in a cluster is counted not by generating all possible pairs in the cluster but by a

heuristic that the number of pairs in a cluster can be calculated from the number of instances in a cluster

via cluster size × (cluster size – 1)/2. Likewise, the number of pairs in an intersection can be obtained

from the number of instances in it. Algorithm 4 implements this heuristic.

Algorithm 5: Pairwise-F

1

P, p, pIndex, T, t, tMap

pairPrSum: the total of instance pairs in predicted clusters

pairTrSum: the total of instance pairs in truth clusters

pairIntSum: the total of instance pairs in the intersection of predicted and truth clusters
2 pIndex ← {}

3 for each 𝑃𝑖 ∈ 𝑃 do

4 for each 𝑝 ∈ 𝑃𝑖 do

5 pIndex[p] ← i

6 end for

7 pairPrSum ← pairPrSum + |𝑷𝒊| × (|𝑷𝒊| − 𝟏)/𝟐

8 end for

9 for each 𝑇𝑗 ∈ 𝑇 do

10 pairTrSum ← pairTrSum + |𝑻𝒋| × (|𝑻𝒋| − 𝟏)/𝟐

11 tMap ← {}

12 for each 𝑡 ∈ 𝑇𝑗 do

13 if 𝑝𝐼𝑛𝑑𝑒𝑥[𝑡] ∉ 𝑘𝑒𝑦𝑠(𝑡𝑀𝑎𝑝) then

14 𝑡𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] ← 0

15 end if

16 t𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] ← 𝑡𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] + 1
17 end for

18 for each (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) ∈ 𝑖𝑛𝑑𝑒𝑥𝑀𝑎𝑝 do

19 pairIntSum ← pairIntSum + |𝒗𝒂𝒍𝒖𝒆| × (|𝒗𝒂𝒍𝒖𝒆| − 𝟏)/𝟐

20 end for

21 end for

22 pR ← 𝑝𝑎𝑖𝑟𝐼𝑛𝑡𝑆𝑢𝑚 𝑝𝑎𝑖𝑟𝑇𝑟𝑆𝑢𝑚⁄

23 pP ← 𝑝𝑎𝑖𝑟𝐼𝑛𝑡𝑆𝑢𝑚 𝑝𝑎𝑖𝑟𝑃𝑟𝑆𝑢𝑚⁄

24 return pR, pP

Again, this implementation of pR and pP is based on the same skeleton code for K-metric and SE & LE

as well as Cluster-F. The added code to Algorithm 1 are highlighted in bold.

Instance Level: B-Cubed

This measures clustering performance at an instance-level. Three parts of this measure – B3 Recall (bR),

B3 Precision (bP), and B3 F (bF) – are defined as follows (Levin et al., 2012):

𝑏𝑅 =
1

𝑁
∑

|𝑃(𝑡) ∩ 𝑇(𝑡)|

|𝑇(𝑡)|
𝑡 ∈ 𝑇

 (21)

𝑏𝑃 =
1

𝑁
∑

|𝑃(𝑡) ∩ 𝑇(𝑡)|

|𝑃(𝑡)|
𝑡 ∈ 𝑇

 (22)

𝑏𝐹 =
2 × 𝑏𝑅 × 𝑏𝑃

𝑏𝑅 + 𝑏𝑃
 (23)

Here, t is a name instance in truth clusters T. N is the number of all name instances in truth clusters (T).

𝑇(𝑡) means a truth cluster that contains a name instance t, while 𝑃(𝑡) means a predicted cluster that

contains the name instance t.

Table 7 shows an illustration of B3 calculation. Starting with the instance 1 in T1 for bR, for example, a

predicted cluster containing it is detected: 𝑃(1) = 𝑃1 and (1) = 𝑇1 . Next, the intersection of the truth

cluster (T1) and the predicted cluster (P1) is filtered (1, 2, and 3). Then, |𝑃1 ∩ 𝑇1| |𝑇1|⁄ = 3/3 is obtained.

This is repeated for instances 2 and 3 in T1, resulting in an array of (3/3, 3/3, 3/3) for T1. After the same

procedure is applied to T2 and T3, the sum of |𝑃(𝑡) ∩ 𝑇(𝑡)| |𝑇(𝑡)|⁄ for all name instances is divided by

the total of those instances (= 8), producing bR = 1.0.

Table 7: An Illustration of B3 F Calculation

Truth Clusters (T) Predicted Clusters (P) Calculation

T1 = (1, 2, 3)

T2 = (4, 5)

T3 = (6, 7, 8)

P1 = (1, 2, 3)

P2 = (4, 5, 6, 7, 8)

bR = ((3/3+3/3+3/3)+(2/2+2/2)+(3/3+3/3+3/3))/8 = 1.0

bP = ((3/3+3/3+3/3)+(2/5+2/5+3/5+3/5+3/5))/8 = 0.7

bF = 2×(1.0×0.7)/(1.0+0.7) = 0.8235

Although B3 is an instance level metric, its calculation can be formulated as a cluster-level calculation.

This is possible because in Equation 21 and 22, the calculation results for each name instance in the same

intersection are the same. In Table 7, for example, instances 4 and 5 in T2 have the same calculation

outcome (= 2/2) as they appear together in the intersection of T2 and P2. So, we can re-write (2/2 + 2/2) as

(2/2)×2 = 22/2. Here, 2/2 (or 22) is the calculation outcome for an instance and 2 besides 2/2 is the number

of instances in the intersection (|T2 ∩ P2|). Drawing on this formulation, Equation 21 and 22 can be re-

written as follows.

𝑏𝑅 =
1

𝑁
∑

|𝑃(𝑡) ∩ 𝑇(𝑡)|

|𝑇(𝑡)|
𝑡 ∈ 𝑇

=
1

𝑁
∑ ∑

|𝑃(𝑡) ∩ 𝑇𝑗|

|𝑇𝑗|
𝑡∈𝑇𝑗𝑗∈𝑇

=
1

𝑁
∑ ∑ ∑

|𝑃𝑖 ∩ 𝑇𝑗|

|𝑇𝑗|
𝑖∈𝑃𝑡∈𝑇𝑗𝑗∈𝑇

=
1

𝑁
∑ ∑

|𝑃𝑖 ∩ 𝑇𝑗|

|𝑇𝑗|
× |𝑃𝑖 ∩ 𝑇𝑗|

𝑖∈𝑃

𝑗∈𝑇

=
1

𝑁
∑ ∑

|𝑃𝑖 ∩ 𝑇𝑗|
2

|𝑇𝑗|
𝑖∈𝑃𝑗∈𝑇

= 𝐴𝐴𝑃 (24)

𝑏𝑃 =
1

𝑁
∑

|𝑃(𝑡) ∩ 𝑇(𝑡)|

|𝑃(𝑡)|
𝑡 ∈ 𝑇

=
1

𝑁
∑ ∑

|𝑃(𝑡) ∩ 𝑇𝑗|

|𝑃(𝑡)|
𝑡∈𝑇𝑗𝑗∈𝑇

=
1

𝑁
∑ ∑ ∑

|𝑃𝑖 ∩ 𝑇𝑗|

|𝑃𝑖|
𝑖∈𝑃𝑡∈𝑇𝑗𝑗∈𝑇

=
1

𝑁
∑ ∑

|𝑃𝑖 ∩ 𝑇𝑗|

|𝑃𝑖|
× |𝑃𝑖 ∩ 𝑇𝑗|

𝑖∈𝑃

𝑗∈𝑇

=
1

𝑁
∑ ∑

|𝑃𝑖 ∩ 𝑇𝑗|
2

|𝑃𝑖|
𝑖∈𝑃𝑗∈𝑇

= 𝐴𝐶𝑃 (25)

In Equation 24, a cluster 𝑇𝑗 is set first as a calculation unit (∑ ∑ ()𝑡∈𝑇𝑗𝑗∈𝑇). This follows the

transformation of 𝑇(𝑡) to 𝑇𝑗 because all name instances in 𝑇𝑗 have the same set elements (themselves) and

thus the same value for |𝑇(𝑡)| (= |𝑇𝑗|). Next, an instance t needs to be checked cluster by cluster to

decide where it appears in predicted clusters 𝑃𝑖(𝑡) as in ∑ ∑ ∑ |𝑃𝑖(𝑡) ∩ 𝑇𝑗| |𝑇𝑗|⁄𝑖∈𝑃𝑡∈𝑇𝑗𝑗∈𝑇 . Evidently,

𝑃𝑖(𝑡) is the same as 𝑃𝑖. Finally, the calculation process can be simplified as ∑ ∑ |𝑃𝑖 ∩ 𝑇𝑗| |𝑇𝑗|⁄ ×𝑖∈𝑃𝑗∈𝑇

|𝑃𝑖 ∩ 𝑇𝑗|. This is because the calculation results of |𝑃𝑖 ∩ 𝑇𝑗| |𝑇𝑗|⁄ for name instances in the same cluster

are the same if the instances appear in the same intersection (𝑃𝑖 ∩ 𝑇𝑗). That is why |𝑃𝑖 ∩ 𝑇𝑗| |𝑇𝑗|⁄ is

multiplied by the number of instances belonging to the intersection (|𝑃𝑖 ∩ 𝑇𝑗|), omitting the part of

instance referencing in the nested summation (∑ ()𝑡∈𝑇𝑗
). The final re-writing is the same as the

calculation of AAP in Equation 7. Likewise, bP can be re-written to match ACP (Equation 25). This

transformation can be illustrated by the example in Table 8, where the calculation for B3 and K-metric is

juxtaposed to show their similarity.

Table 8: An Illustration of B3 F Calculation in comparison with K-metric Calculation

Truth Clusters (T) Predicted Clusters (P) Calculation

T1 = (1, 2, 3)

T2 = (4, 5)

T3 = (6, 7, 8)

P1 = (1, 2, 3)

P2 = (4, 5, 6, 7, 8)

bR = ((3/3+3/3+3/3)+(2/2+2/2)+(3/3+3/3+3/3))/8 = 1.0

AAP = ((32/3)+(22/2)+(32/3))/8 = 1.0

bP = ((3/3+3/3+3/3)+(2/5+2/5+3/5+3/5+3/5))/8 = 0.7

ACP = ((32/3)+(22/5+32/5))/8 = 0.7

bF = 2×(1.0×0.7)/(1.0+0.7) = 0.8235

K = √1.0 × 0.7 = 0.8367

As such, Equations 24 and 25 indicate that bR and bP can be calculated by Algorithm 3 for calculating

AAP and ACP. A difference is that B3 F is a harmonic mean of AAP (= bR) and ACP (= bP), while K is a

geometric mean of AAP and ACP.

All-in-one Calculation and Runtime Test

In Algorithm 2 ~ 5, the five clustering measures have been shown to be calculable using the same

skeleton code in Algorithm 1. This commonality enables us to integrate those five measures in a single set

of code, as in Algorithm 6 below. Note that B3 precision and recall are not calculated because they are the

same as ACP and AAP in K-metric.

Algorithm 6: All-In-One

1

P, p, pIndex, T, t, tMap #common to all measures

cSize #Cluster-F, K-metric, B3, SE&LE

cMatch #Cluster-F

instSum: #K-metric, B3

aapSum, acpSum #K-metric, B3

spSum, lmSum, instTrSum, instPrSum # SE&LE

pairPrSum, parSumTr, pairIntSum #Pairwise-F

2 pIndex ← {}

3 for each 𝑃𝑖 ∈ 𝑃 do

4 for each 𝑝 ∈ 𝑃𝑖 do

5 pIndex[p] ← i

6 end for

7 cSize[i] ← |𝑃𝑖|
8 pairPrSum ← pairPrSum + |𝑃𝑖| × (|𝑃𝑖| − 1)/2

9 end for

10 instSum ← 0

11 for each 𝑇𝑗 ∈ 𝑇 do

12 instSum ← instSum + |𝑇𝑗|

13 pairTrSum ← pairTrSum + |𝑇𝑗| × (|𝑇𝑗| − 1)/2

14 tMap ← {}

15 for each 𝑡 ∈ 𝑇𝑗 do

16 if 𝑝𝐼𝑛𝑑𝑒𝑥[𝑡] ∉ 𝑘𝑒𝑦𝑠(𝑡𝑀𝑎𝑝) then

17 𝑡𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] ← 0

18 end if

19 t𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] ← 𝑡𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] + 1
20 end for

21 maxKey ← 0, maxValue ← 0

22 for each (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) ∈ 𝑖𝑛𝑑𝑒𝑥𝑀𝑎𝑝 do

23 if 𝑣𝑎𝑙𝑢𝑒 = |𝑇𝑗| and cSize[key] = |𝑇𝑗| then

24 cMatch ← cMatch + 1

25 end if

26 aapSum ← aapSum + 𝑣𝑎𝑙𝑢𝑒2 |𝑇𝑗|⁄

27 acpSum ← acpSum + 𝑣𝑎𝑙𝑢𝑒2 |𝑐𝑆𝑖𝑧𝑒[𝑘𝑒𝑦]|⁄

28 if value > maxValue then

29 maxValue ← value

30 maxKey ← key

31 end if

32 pairIntSum ← pairIntSum + |𝑣𝑎𝑙𝑢𝑒| × (|𝑣𝑎𝑙𝑢𝑒| − 1)/2

33 end for

34 spSum ← 𝑠𝑝𝑆𝑢𝑚 + (|𝑇𝑗| − 𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒)

35 lmSum ← 𝑙𝑚𝑆𝑢𝑚 + (𝑐𝑆𝑖𝑧𝑒[𝑚𝑎𝑥𝐾𝑒𝑦] − 𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒)

36 instTrSum ← 𝑖𝑛𝑠𝑡𝑇𝑟𝑆𝑢𝑚 + |𝑇𝑗|

37 instPrSum ← instPrSum + 𝑐𝑆𝑖𝑧𝑒[𝑚𝑎𝑥𝐾𝑒𝑦]
38 end for

39 cR ← 𝑐𝑀𝑎𝑡𝑐ℎ |𝑇|,⁄ 𝑐𝑃 ← 𝑐𝑀𝑎𝑡𝑐ℎ |𝑃|⁄

40 AAP ← 𝑎𝑎𝑝𝑆𝑢𝑚 𝑖𝑛𝑠𝑡𝑆𝑢𝑚⁄ , ACP ← 𝑎𝑐𝑝𝑆𝑢𝑚 𝑖𝑛𝑠𝑡𝑆𝑢𝑚⁄

41 SE ← 𝑠𝑝𝑆𝑢𝑚 𝑖𝑛𝑠𝑡𝑇𝑟𝑆𝑢𝑚⁄ , LE ← 𝑙𝑚𝑆𝑢𝑚 𝑖𝑛𝑠𝑡𝑃𝑟𝑆𝑢𝑚⁄

42 pR ← 𝑝𝑎𝑖𝑟𝐼𝑛𝑡𝑆𝑢𝑚 𝑝𝑎𝑖𝑟𝑇𝑟𝑆𝑢𝑚⁄ , pP ← 𝑝𝑎𝑖𝑟𝐼𝑛𝑡𝑆𝑢𝑚 𝑝𝑎𝑖𝑟𝑃𝑟𝑆𝑢𝑚⁄

43 return cR, cP, AAP (bR), ACP (bP), SE, LE, pR, pP

Besides integrating multiple measures in a single framework, the algorithm greatly reduces computation

time. To illustrate this, a total of 41,358 name instances in KISTI were used to evaluate the clustering

performance of DBLP’s disambiguation by the five measures as in Figure 2. For this, especially, the steps

implied in the original equations of the five measures were implemented straightforwardly. For example,

instance pairs per cluster were generated (797,297 truth pairs and 826,187 predicted pairs) and compared

for intersection one by one. Execution time of each measure was measured in seconds and compared to

that of the same measure implemented by its corresponding Algorithm 2~54. Table 9 reports the runtime

results.

Table 9: Runtime (in Seconds) of Measures Implemented by Straightforward vs Proposed Algorithms

Calculation Cluster-F K-metric SE & LE Pairwise-F B3

Straightforward 46.920 231.975 119.925 23433.140 138.956

Proposed

(Algorithm 2~5)
0.025 0.055 0.057 0.055 0.055

All-In-One

(Algorithm 6)
0.064

Table 9 reports that Algorithm 2~5 calculated each measure less than 0.057 seconds, while the

straightforward implementations took approximately 47 (Cluster-F) up to 23,433 (6.5 hour, Pairwise-F)

seconds. All measures could be calculated in less than 0.065 seconds by the All-In-One algorithm.

To test the scalability of Algorithm 6, a set of 1.2 M name instances associated with unique identifiers in

a high-energy physics publication library, INSPIRE, was obtained (Louppe et al., 2016). Using the

INSPIRE unique identifiers as the ground truth of author identity, the performance of all-initials-based

name disambiguation5 was evaluated by the five measures. This task is challenging, especially for the

calculation of Pairwise-F, because the number of instance pairs in truth clusters (= 15,388 authors)

approximates 213.4 M, while that in predicted clusters (= 18,672) was almost 194.5 M (intersection pairs

4 Runtime was tested on a desktop with Intel Core i7-7700 CPU (3.60GHz), 32G RAM, and 64-bit Windows OS by

running code in Strawberry Perl 64-bit (ver. 5.26). Runtime was tested 10 times for each measure and the best result

was reported for each.
5 Two name instances that share the same full surname and initials of all forenames are predicted to refer to the same

person. For details, see Kim (2018).

≈ 179.9 M). Algorithm 6 produced evaluation results by all five measures in 1.583 seconds. Tested only

for the Pairwise-F calculation by Algorithm 5, the runtime was 1.552 seconds, which is comparable to

12.903 seconds by the Generalized Merged Distance (GMD) algorithm6 (Menestrina et al., 2010), the

most runtime-efficient method for calculating Pairwise-F so far.

Conclusion and Discussion

This paper demonstrated that five measures of clustering performance in author name disambiguation can

be integrated into one calculation framework. This was possible mainly because name instances in truth

and predicted clusters were compared not by a brute-force cluster-by-cluster comparison but by the use of

two hash tables recording instances with their predicted cluster indices and their frequencies in the

predicted-truth cluster intersection. Using set notations, each measure’s equations was formulated to fit

into the integrative framework.

A few contributions of this paper are worth noting. First, as there is no standard collection of code for the

five performance measures above, this paper can provide an anchoring place for scholars to implement

them and validate their correctness with efficient code and samples. Second, the measurement integration

dramatically reduces runtime compared to the straightforward implementation of those measures mainly

due to the use of hash tables instead of brute-force cluster-by-cluster and instance-by-instance

comparisons that can increase runtime up to O(n2). Especially, Pairwise-F was re-formulated using a

heuristic for counting pairs in a cluster. The scalability of the integrative calculation can help scholars

evaluate the clustering performance of a disambiguation method at a large scale, for example, using

several millions of name instances associated with Researcher IDs in Web of Science (Backes, 2018).

This paper demonstrated this potential by evaluating the clustering results of 1.2M name instances.

Another contribution is that K-metric and B3 measures were shown to produce the same recall and

precision scores. This means that studies using either K-metric or B3 have evaluated their clustering

results by the basically same measures and thus are directly comparable to one another. Also, this can be

good news to scholars who use K-metric because B3 has been argued to evaluate clustering results better

than others on challenging cases (Amigó et al., 2009). In addition, the usage frequency of these two

different-but-same measures in Table 1 equals that of Pairwise-F (= 15), which makes them a family of

major measurement in author name disambiguation.

Most importantly, the integrative calculation shows that the five measures for clustering performance in

author name disambiguation can be understood within a single framework for their similarities and

differences. This can help us modify current measures or propose new measures that assess

disambiguation performance from distinctive perspectives. In addition, this integrative framework can

incorporate other clustering measures such as Closest-Cluster-F (Menestrina et al., 2010) and Variation of

Information (Meilă, 2003), which have been rarely used in author name disambiguation. Such integration

will not only guide us to select measures characterizing best disambiguation performance but also help

future efforts to compare different evaluation schemes under diverse ambiguity conditions for entity

resolution in general beyond author name disambiguation.

Acknowledgements

This work was supported by grants from the National Science Foundation (#1561687 and #1535370), the

Alfred P. Sloan Foundation and the Ewing Marion Kauffman Foundation.

6 The GMD method was implemented by Algorithm 1 in Menestrina et al. (2010).

References

Amigó, E., Gonzalo, J., Artiles, J., & Verdejo, F. (2009). A comparison of extrinsic clustering evaluation metrics based on formal

constraints. Information Retrieval, 12(4), 461-486. doi:10.1007/s10791-008-9066-8

Backes, T. (2018). The Impact of Name-Matching and Blocking on Author Disambiguation. Paper presented at the Proceedings

of the 27th ACM International Conference on Information and Knowledge Management, Torino, Italy. doi:

10.1145/3269206.3271699

Bornmann, L., & Mutz, R. (2015). Growth rates of modern science: A bibliometric analysis based on the number of publications

and cited references. Journal of the Association for Information Science and Technology, 66(11), 2215-2222.

doi:10.1002/asi.23329

Cota, R. G., Ferreira, A. A., Nascimento, C., Gonçalves, M. A., & Laender, A. H. F. (2010). An Unsupervised Heuristic-Based

Hierarchical Method for Name Disambiguation in Bibliographic Citations. Journal of the American Society for

Information Science and Technology, 61(9), 1853-1870. doi:10.1002/asi.21363

Delgado, A. D., Martínez, R., Montalvo, S., & Fresno, V. (2017). Person Name Disambiguation in the Web Using Adaptive

Threshold Clustering. Journal of the Association for Information Science and Technology, 68(7), 1751-1762.

Fan, X., Wang, J., Pu, X., Zhou, L., & Lv, B. (2011). On Graph-Based Name Disambiguation. Journal of Data and Information

Quality, 2(2), 1-23. doi:10.1145/1891879.1891883

Fegley, B. D., & Torvik, V. I. (2013). Has large-scale named-entity network analysis been resting on a flawed assumption? PLOS

ONE, 8(7). doi:10.1371/journal.pone.0070299

Ferreira, A. A., Gonçalves, M. A., & Laender, A. H. F. (2012). A Brief Survey of Automatic Methods for Author Name

Disambiguation. Sigmod Record, 41(2), 15-26.

Ferreira, A. A., Veloso, A., Gonçalves, M. A., & Laender, A. H. F. (2014). Self-Training Author Name Disambiguation for

Information Scarce Scenarios. Journal of the Association for Information Science and Technology, 65(6), 1257-1278.

doi:10.1002/asi.22992

Han, H., Yao, C., Fu, Y., Yu, Y., Zhang, Y., & Xu, S. (2017). Semantic fingerprints-based author name disambiguation in

Chinese documents. Scientometrics, 111(3), 1879-1896. doi: 10.1007/s11192-017-2338-6

Huang, J., Ertekin, S., & Giles, C. L. (2006). Efficient Name Disambiguation for Large-Scale Databases, Berlin, Heidelberg.

Hussain, I., & Asghar, S. (2017). A survey of author name disambiguation techniques: 2010–2016. The Knowledge Engineering

Review, 32, e22.

Hussain, I., & Asghar, S. (2018). DISC: Disambiguating homonyms using graph structural clustering. Journal of Information

Science, 44(6), 830-847. doi:10.1017/S0269888917000182

Kang, I. S., Kim, P., Lee, S., Jung, H., & You, B. J. (2011). Construction of a Large-Scale Test Set for Author Disambiguation.

Information Processing & Management, 47(3), 452-465. doi:10.1016/j.ipm.2010.10.001

Kim, J. (2018). Evaluating author name disambiguation for digital libraries: A case of DBLP. Scientometrics, 116(3), 1867-1886.

doi:10.1007/s11192-018-2824-5

Kim, J., & Diesner, J. (2015). The effect of data pre-processing on understanding the evolution of collaboration networks.

Journal of Informetrics, 9(1), 226-236. doi:10.1016/j.joi.2015.01.002

Kim, J., & Diesner, J. (2016). Distortive effects of initial-based name disambiguation on measurements of large-scale

coauthorship networks. Journal of the Association for Information Science and Technology, 67(6), 1446-1461.

doi:10.1002/asi.23489

Kim, J., & Kim, J. (2018). The impact of imbalanced training data on machine learning for author name disambiguation.

Scientometrics, 117(1), 511-526. doi:10.1007/s11192-018-2865-9

Kim, K., Sefid, A., & Giles, C. L. (2017). Scaling Author Name Disambiguation with CNF Blocking. arXiv preprint

arXiv:1709.09657.

Lerchenmueller, M. J., & Sorenson, O. (2016). Author Disambiguation in PubMed: Evidence on the Precision and Recall of

Author-ity among NIH-Funded Scientists. PLOS ONE, 11(7), e0158731. doi:10.1371/journal.pone.0158731

Levin, M., Krawczyk, S., Bethard, S., & Jurafsky, D. (2012). Citation-Based Bootstrapping for Large-Scale Author

Disambiguation. Journal of the American Society for Information Science and Technology, 63(5), 1030-1047.

doi:10.1002/asi.22621

Ley, M. (2009). DBLP: some lessons learned. Proceedings of the VLDB Endowment, 2(2), 1493-1500.

Li, G. C., Lai, R., D'Amour, A., Doolin, D. M., Sun, Y., Torvik, V. I., . . . Fleming, L. (2014). Disambiguation and co-authorship

networks of the US patent inventor database (1975-2010). Research Policy, 43(6), 941-955.
doi:10.1016/j.respol.2014.01.012

Liu, W., Islamaj Dogan, R., Kim, S., Comeau, D. C., Kim, W., Yeganova, L., . . . Wilbur, W. J. (2014). Author Name

Disambiguation for PubMed. Journal of the Association for Information Science and Technology, 65(4), 765-781.

doi:10.1002/asi.23063

Liu, Y., Li, W., Huang, Z., & Fang, Q. (2015). A fast method based on multiple clustering for name disambiguation in

bibliographic citations. Journal of the Association for Information Science and Technology, 66(3), 634-644.

doi:10.1002/asi.23063

Louppe, G., Al-Natsheh, H. T., Susik, M., & Maguire, E. J. (2016). Ethnicity Sensitive Author Disambiguation Using Semi-

supervised Learning. Knowledge Engineering and Semantic Web, Kesw 2016, 649, 272-287. doi:10.1007/978-3-319-

45880-9_21

Meilă, M. (2003). Comparing clusterings by the variation of information. In Learning theory and kernel machines (pp. 173-187):

Springer.

Menestrina, D., Whang, S. E., & Garcia-Molina, H. (2010). Evaluating entity resolution results. Proceedings of the VLDB

Endowment, 3(1-2), 208-219.

Momeni, F., & Mayr, P. (2016). Evaluating Co-authorship Networks in Author Name Disambiguation for Common Names. Paper

presented at the 20th international Conference on Theory and Practice of Digital Libraries (TPDL 2016), Hannover,

Germany. doi: 10.1007/978-3-319-43997-6_31

Müller, M. C., Reitz, F., & Roy, N. (2017). Data sets for author name disambiguation: An empirical analysis and a new resource.

Scientometrics, 111(3), 1467-1500. doi:10.1007/s11192-017-2363-5

Pereira, D. A., Ribeiro-Neto, B., Ziviani, N., Laender, A. H. F., Gonçalves, M. A., & Ferreira, A. A. (2009). Using web

information for author name disambiguation. Paper presented at the Proceedings of the 9th ACM/IEEE-CS joint

conference on Digital libraries, Austin, TX, USA.

Qian, Y., Zheng, Q., Sakai, T., Ye, J., & Liu, J. (2015). Dynamic author name disambiguation for growing digital libraries.

Information Retrieval Journal, 18(5), 379-412. doi:10.1007/s10791-015-9261-3

Reitz, F., & Hoffmann, O. (2013). Learning from the Past: An Analysis of Person Name Corrections in the DBLP Collection and

Social Network Properties of Affected Entities. In T. Özyer, J. Rokne, G. Wagner, & A. H. P. Reuser (Eds.), The

Influence of Technology on Social Network Analysis and Mining (pp. 427-453). Vienna: Springer Vienna.

Santana, A. F., Gonçalves, M. A., Laender, A. H. F., & Ferreira, A. A. (2017). Incremental author name disambiguation by

exploiting domain‐specific heuristics. Journal of the Association for Information Science and Technology, 68(4), 931-

945. doi:10.1002/asi.23726

Shin, D., Kim, T., Choi, J., & Kim, J. (2014). Author Name Disambiguation Using a Graph Model with Node Splitting and

Merging Based on Bibliographic Information. Scientometrics, 100(1), 15-50. doi:10.1007/s11192-014-1289-4

Smalheiser, N. R., & Torvik, V. I. (2009). Author Name Disambiguation. Annual Review of Information Science and Technology,

43, 287-313.

Strotmann, A., & Zhao, D. Z. (2012). Author name disambiguation: What difference does it make in author-based citation

analysis? Journal of the American Society for Information Science and Technology, 63(9), 1820-1833.

doi:10.1002/asi.22695

Torvik, V. I., & Smalheiser, N. R. (2009). Author name disambiguation in MEDLINE. ACM Transactions on Knowledge

Discovery from Data, 3(3). doi:10.1145/1552303.1552304

Wu, H., Li, B., Pei, Y. J., & He, J. (2014). Unsupervised author disambiguation using Dempster-Shafer theory. Scientometrics,

101(3), 1955-1972. doi: 10.1007/s11192-014-1283-x

Zhang, Y., Zhang, F., Yao, P., & Tang, J. (2018). Name Disambiguation in AMiner: Clustering, Maintenance, and Human in the

Loop. Paper presented at the Proceedings of the 24th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, London, United Kingdom.

Zhu, J., Wu, X., Lin, X., Huang, C., Fung, G. P. C., & Tang, Y. (2018). A novel multiple layers name disambiguation framework

for digital libraries using dynamic clustering. Scientometrics, 114(3), 781-794. doi: 10.1007/s11192-017-2611-8

