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Abstract 

 

Author name disambiguation results are often evaluated by measures such as Cluster-F, K-metric, 

Pairwise-F, Splitting & Lumping Error, and B-cubed. Although these measures have distinctive 

evaluation schemes, this paper shows that they can be calculated in a single framework by a set of 

common steps that compare truth and predicted clusters through two hash tables recording information 

about name instances with their predicted cluster indices and frequencies of those indices per truth cluster. 

This integrative calculation reduces greatly calculation runtime, which is scalable to a clustering task 

involving millions of name instances within a few seconds. During the integration process, B-cubed and 

K-metric are shown to produce the same precision and recall scores. In this framework, especially, name 

instance pairs for Pairwise-F are counted using a heuristic, surpassing a state-of-the-art algorithm in 

speedy calculation. Details of the integrative calculation are described with examples and pseudo-code to 

assist scholars to implement each measure easily and validate the correctness of implementation. The 

integrative calculation will help scholars compare similarities and differences of multiple measures before 

they select ones that characterize best the clustering performances of their disambiguation methods. 
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Introduction 

 

Author name disambiguation is an entity resolution task to generate clusters of name instances to refer to 

distinct authors in bibliographic data. It is crucial to research that mines authorship data because 

ambiguous names can lead to merging and/or splitting of author identities and thus flawed knowledge 

about research production and collaboration (Fegley & Torvik, 2013; Kim & Diesner, 2015, 2016; 

Strotmann & Zhao, 2012). As publications and ambiguous author names such as East Asian names 

increase in digital libraries (Bornmann & Mutz, 2015; Torvik & Smalheiser, 2009), various methods for 

disambiguating author names (Hussain & Asghar, 2017; Smalheiser & Torvik, 2009) have been proposed. 

 

After a disambiguation method is implemented, its clustering result is evaluated by a variety of measures. 

As there is no consensus on a definitive measure for author name disambiguation (Ferreira, Gonçalves, & 

Laender, 2012), one or two measures are chosen at the researcher’s discretion. The selection of a measure 

is, sometimes, justified by the argument that it is frequently used or enables the comparison of a study 

with prior work. In many studies, however, a measure is selected without such clarification.  

 

The clustering measure selection should be understood in the context of each study. It can, however, 

change our impression about a disambiguation method if its performance is evaluated high by one 

measure but low or mediocre by another. Applying diverse measures to a disambiguation study can be a 

non-trivial task because clustering measures have distinct evaluation schemes which are not easy to 

compare their similarities and differences. In addition, the straightforward implementation of a measure 

such as Pairwise-F can consume too much runtime depending on data size because the number of instance 

pairs for comparison can increase quadratically in a worst-case scenario (Menestrina, Whang, & Garcia-

Molina, 2010). 

 

To aid scholars to select measures that characterize best their disambiguation results, this study shows that 

five commonly used measures for evaluating clustering results in author name disambiguation can be 

calculated all-in-one by implementing a common code. This integrative calculation shows intuitively 

where those measures are similar and different in evaluating clustering performance. Especially, the 

proposed approach reduces computation runtime, dramatically for Pairwise-F in particular. In the 

following sections, the usage patterns of clustering measures in author name disambiguation research are 

reviewed. Then, the integration process is explained step-by-step with pseudo-code and examples. 

 

Literature Review 

 

Table 1 shows the list of selected author name disambiguation studies and their measures for evaluating 

clustering performance. Note that detailed explanation of each measure will be provided in the Results 

section later in this paper.  

 
Table 1: Clustering performance measures in selected author name disambiguation studies 

Studies Cluster-F K-metric SE & LE Pairwise-F 𝐵3 

Cota et al. (2010)  √  √  

Fan et al. (2011)    √  

Ferreira et al. (2014)  √  √  

Han et al. (2017)     √ 

Huang et al. (2006) √   √  

Hussain and Asghar (2018) √ √  √  

Kim and Diesner (2016) √ √    

Kim and Kim (2018)     √ 



Lerchenmueller and 

Sorenson (2016) 
  √   

Levin et al. (2012)    √ √ 

Liu et al. (2014)   √ √  

Liu et al. (2015)    √  

Louppe et al. (2016)    √ √ 

Momeni and Mayr (2016)     √ 

Müller et al. (2017)     √ 

Pereira et al. (2009) √ √  √  

Santana et al. (2017)  √  √  

Shin et al. (2014) √ √  √  

Qian et al. (2015)     √ 

Torvik and Smalheiser 

(2009) 
  √   

Wu et al. (2014)  √  √  

Zhang et al. (2018)    √  

Zhu et al. (2018)    √  

 

According to the table, Pairwise-F is the most popular. It appears in 15 out of 23 studies. This confirms 

that it is the most frequently used in entity resolution in general (Menestrina et al., 2010) as well as in 

author name disambiguation (Levin, Krawczyk, Bethard, & Jurafsky, 2012)1. K-metric is found in 8 

studies, followed by B-cubed (B3, 7) and Cluster-F (5). Three studies use the Splitting & Lumping Errors 

(SE & LE) measure. 

 

In Table 1, 11 out of 23 studies rely on a single measure while others on two or three measures. In 

addition, the combinations of co-used measures vary. Figure 1 shows the pairs of co-used measures in the 

Table 1 studies and their co-usage frequencies. For example, Pairwise-F is paired with K-metric 7 times. 

Interestingly, some possible pairs have never been calculated together. For example, B3 is paired with 

Pairwise-F twice but not with K-metric, Cluster-F, and SE & LE.   

 

 
 

Figure 1: Co-Usage frequency of pairs of disambiguation measures used together in selected studies in Table 1 

                                                           
1 Note that B-Cubed is more frequently used than other measures in person name disambiguation on the Web (e.g., 

Delgado, Martínez, Montalvo, & Fresno, (2017)) because the metric has formal properties that can handle evaluation 

scenarios specific to the task. For details, see Amigó, Gonzalo, Artiles, and Verdejo (2009). 



The use of Pairwise-F is sometimes justified by its frequent usage in entity resolution studies. Other 

measures are selected to follow the practice of referenced studies to be compared or without any 

clarification. Although such choices should be understood in each study’s unique context, they can 

change our impression about the clustering performance of a disambiguation method. To illustrate this, 

the disambiguation performance of a digital library, DBLP (Ley, 2009; Reitz & Hoffmann, 2013), was 

evaluated on a labeled dataset, KISTI (Kang, Kim, Lee, Jung, & You, 2011). KISTI consists of a set of 

ambiguous name instances filtered from publication records in DBLP and disambiguated semi-manually 

by researchers at the Korean Institute for Science and Technology Information. Among 41,673 name 

instances in the original KISTI, a total of 41,358 name instances are matched to DBLP records2. Figure 2 

shows the DBLP’s clustering performance evaluated on KISTI by five measures. 

 

 
Figure 2: Performance of DBLP’s author name disambiguation evaluated by five measures on KISTI 

 

Figure 2 shows that DBLP’s disambiguation is highly accurate: precision, recall, and F scores of three 

measures – Pairwise-F, B3, and K-metric – are all above 0.95, corroborating Kim (2018). Cluster-F and 

SE & LE scores are, however, not so much encouraging. Especially, Cluster-F shows that DBLP performs 

a little worse in recall than in precision, which contrasts other three measures reporting that DBLP 

performs better in recall than in precision. According to SE & LE, DBLP disambiguates better regarding 

recall than precision but the recall-precision performance gap (|recall – precision| = 0.1794) is much 

pronounced than those by Pairwise-F, K-metric, and B3 (|recall – precision| = 0.0346 ~ 0.0487).  

 

This illustrates why we need to consider various measures for evaluating a disambiguation method. 

Depending on the choices of measures, the same clustering results can be evaluated as encouraging or less 

so. As shown in Table 1, however, the selection of measures do not seem to be guided by any common 

practice. But this does not imply that scholars need to report evaluation results obtained from all available 

measures, which is undesirable for efficient scientific communication.  

 

Instead, it should be emphasized that the use of diverse measures can illuminate where a proposed 

disambiguation method performs well and worse. For example, the low Cluster-F coupled with high B3 in 

Figure 2 indicates that misidentified name instances by DBLP are not many (high B3 scores) but appear 

across several truth clusters because a single misidentified instance in a truth cluster decides the DBLP’s 

performance for the cluster as a failure. In addition, diverse measures can enable scholars to compare 

                                                           
2 For details on the matching procedure, see Kim (2018). 



performances of their proposed methods with other studies evaluated by different measures and thus to 

find room for improvement or synthesize strengths of each study.  

 

Applying different measures to a disambiguation study can, however, be a non-trivial task. Although each 

measure is well defined in equations, its implementation requires a careful validation of evaluation 

accuracy. In addition, each measure can be implemented by different code snippets which are not often 

shared. So, scholars who want to implement a clustering measure often need to write code from scratch. 

Sometimes, the calculation of a measure such as Pairwise-F may not be easily implementable for a large 

dataset: it can consume much computing time and RAM because the number of instance pairs can 

increase quadratically “in the worst case” (Menestrina et al., 2010)3. 

 

To facilitate the efficient use of diverse clustering measures for author name disambiguation, this study 

proposes algorithms to calculate the five commonly used measures all-in-one in an integrative framework. 

Specifically, although the five measures have different evaluation schemes, they can be calculated by 

implementing a common code, which will help us understand better the similarities and differences of 

those measures. This integrative calculation is the first attempt of this sort and a novel contribution to the 

measurement of clustering performance in author name disambiguation. Moreover, during the integration 

process, B3 and K-metric are shown to produce the same precision and recall scores. Within this 

framework, especially, Pairwise-F is calculated by a heuristic rather than a brute-force comparison of 

instance pairs, reducing greatly computation time from quadratic (at worst) to linear one. This solution is 

motivated by Menestrina et al. (2010) where Pairwise-F is calculated linearly through a ‘Slice’ algorithm 

combined with a cost function. This study combines the ‘Slice’ algorithm with a heuristic to calculate 

Pairwise-F faster than the ‘Slice’ algorithm + cost function approach. In following sections, the details of 

integrative calculation are described with examples and pseudo-code. 

 

Methods 

 

To evaluate the clustering performance in author name disambiguation, scholars usually measure the 

similarity between clustering results produced by a disambiguation method and those by human coders in 

two ways: recall and precision. Here, a cluster consists of name instances that are decided to represent the 

same authors by an algorithm (a predicted cluster) or manual labeling (a truth cluster). Recall considers 

how many truth clusters are not compromised by merged or split name instances in predicted clusters, 

while precision evaluates how many predicted clusters group correctly name instances that belong to the 

same truth clusters. 

 

Incorporating the aforesaid five measures into the same framework is possible because all of them 

evaluate performance by both recall and precision. What makes them different is that each measure is 

designed to assess precision and recall at one of three levels: cluster, instance, or pair of instances, as 

summarized in Table 2. 

 
Table 2: Summary of Calculation Level and Recall-Precision Types per Performance Measure 

Measure Cluster-F K-metric SE & LE Pairwise-F B3 

Calculation 

Level 
Cluster Cluster Cluster Pair Instance 

                                                           
3 For example, a set of 3,964 author name instances can generate over 7.8M instance pairs (Kim, Sefid, & Giles, 

2017). To address this challenge in the context of author name disambiguation, a few studies have proposed 

advanced blocking algorithms. For details, see Kim et al. (2017).  



Recall  
Cluster 

Recall 
AAP 

Splitting 

Error 

Pairwise 

Recall 
B3 Recall 

Precision 
Cluster 

Precision 
ACP 

Lumping 

Error 

Pairwise 

Precision 
B3 Precision 

F Score 
Harmonic 

Mean 

Geometric 

Mean 

Harmonic 

Mean 

Harmonic 

Mean 

Harmonic 

Mean 

   

Despite such different calculation levels, the measures can be implemented by embedding the instance- 

and pair-level calculations into the cluster level calculation through a set of common code (“skeleton 

code” hereafter). Algorithm 1 shows the skeleton code. 

  

Algorithm 1: Skeleton Code 

1 

P: a set of predicted clusters 

p: an instance of a cluster 𝑃𝑖 

pIndex: a hash of an instance p and its cluster index i  

T: a set of truth clusters 

t: an instance of a cluster  𝑇𝑗 

tMap: a hash of an instance t and its cluster index i mapped in pIndex  

2 pIndex ← {} 

3 for each 𝑃𝑖 ∈ 𝑃 do 

4        for each 𝑝 ∈  𝑃𝑖 do 

5               pIndex[p] ← i 

6       end for        

7 end for 

8 for each 𝑇𝑗 ∈ 𝑇 do 

9       tMap ← {} 

10       for each 𝑡 ∈ 𝑇𝑗 do 

11             if 𝑝𝐼𝑛𝑑𝑒𝑥[𝑡] ∉ 𝑘𝑒𝑦𝑠(𝑡𝑀𝑎𝑝) then 

12                   𝑡𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] ← 0 

13             end if 

14            t𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] ← 𝑡𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] + 1   
15       end for 

16       for each (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒)  ∈ 𝑡𝑀𝑎𝑝 do 

17             # do calculation 

18             end if 

19       end for 

20 end for 

 

 

The key idea of Algorithm 1 is that truth clusters are not compared cluster by cluster to predicted ones. 

Instead, a name instance (p) in a predicted cluster (Pi) is recorded into a hash table (pIndex) where the 

instance p (key) is mapped to its cluster membership (= i: value) (code line #2~#7). Next, a name instance 

(t) in a truth cluster (Tj) is checked for its index (i) in predicted clusters (P) by referencing pIndex. Then, 

the count of the index (i) are recorded into another hash table (tMap) where an index i (key) is mapped to 

its frequency (value) (code line #10~#15). In other words, this code snippet counts the number of name 

instances in a truth cluster that appear together in predicted clusters (= sharing the same i), which 

corresponds to detecting the intersection of a truth cluster (Tj) and predicted clusters (P). Note that this 

procedure adopts part of the Slice algorithm in Menestrina et al. (2010). 

Within this cluster-level calculation framework, pair- and instance-level measures can be calculated with 

some modification of their evaluation schemes. To demonstrate this, each measure is explained in detail 

below starting from cluster-level to pair- and instance-level. 

 



Results 

Cluster Level: Cluster-F 

Cluster-F (cF) is a harmonic mean of cluster recall (cR) and cluster precision (cP) (Menestrina et al., 

2010). 

 

𝑐𝑅 =  
|𝑃 ∩ 𝑇|

|𝑇|
             (1) 

𝑐𝑃 =  
|𝑃 ∩ 𝑇|

|𝑃|
             (2) 

𝑐𝐹 =  
2 × 𝑐𝑅 × 𝑐𝑃

(𝑐𝑅 + 𝑐𝑃)
             (3) 

 

Here, P is a set of predicted clusters, while T is a set of truth clusters. The numerator |𝑃 ∩ 𝑇| counts the 

number of predicted clusters that contain all and the only instances belonging to the same truth clusters. 

Cluster recall (cR) is the ratio of the numerator over the number of all truth clusters (|𝑇|). Cluster 

precision (cP) is the ratio of this numerator over the number of all predicted clusters (|𝑃|).  

Table 3 shows an example for calculating Cluster-F. In the first column, there are three truth clusters (T1, 

T2, and T3) in which eight name instances with numeric ids (1, 2, 3…8) are assigned. The second column 

shows predicted results: eight instances in the first column are assigned to two clusters (P1 and P2). After 

instances are compared across predicted and truth clusters, only one case of |𝑃 ∩ 𝑇| (P1 = T1) is detected. 

So, the numerator for cR is 1, while the denominator is 3 (the number of truth clusters), resulting in cR = 

1/3. The numerator for cP is also 1 but its denominator is 2 (the number of predicted clusters), resulting in 

cP = 1/2. Their harmonic mean is 0.4. 

 

Table 3: An Illustration of Cluster-F Calculation 

Truth Clusters (T) Predicted Clusters (P) Calculation 

T1 = (1, 2, 3) 

T2 = (4, 5) 

T3 = (6, 7, 8) 

P1 = (1, 2, 3) 

P2 = (4, 5, 6, 7, 8) 

cR = 1/3 = 0.3333 

cP = 1/2 = 0.5 

cF = (2×1/3×1/2)/(1/3+1/2) = 0.4 

 

The calculation of cR and cP can be implemented as follows. 

  

Algorithm 2: Cluster-F 

1 

P, p, pIndex, T, t, tMap # same as in Algorithm 1 hereafter 

cSize: a hash of a cluster 𝑷𝒊 and its size 

cMatch: the count of 𝑷𝒊 that contains all and the only instances in 𝑻𝒋 

2 pIndex ← {} 

3 for each 𝑃𝑖 ∈ 𝑃 do 

4        for each 𝑝 ∈  𝑃𝑖 do 

5               pIndex[p] ← i 

6        end for        



7       cSize[i] ← |𝑷𝒊| 
8 end for 

9 cMatch ← 0 

10 for each 𝑇𝑗 ∈ 𝑇 do 

11       tMap ← {} 

12       for each 𝑡 ∈ 𝑇𝑗 do 

13             if 𝑝𝐼𝑛𝑑𝑒𝑥[𝑡] ∉ 𝑘𝑒𝑦𝑠(𝑡𝑀𝑎𝑝) then 

14                   𝑡𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] ← 0 

15             end if 

16            t𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] ← 𝑡𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] + 1   
17       end for 

18       for each (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒)  ∈ 𝑡𝑀𝑎𝑝 do 

19             if 𝒗𝒂𝒍𝒖𝒆 =  |𝑻𝒋| and cSize[key] = |𝑻𝒋| then 

20                   cMatch ← cMatch + 1 

21             end if 

22       end for 

23 end for 

24 cR ← 𝑐𝑀𝑎𝑡𝑐ℎ |𝑇|⁄  

25 cP ← 𝑐𝑀𝑎𝑡𝑐ℎ |𝑃|⁄  

26 return cR, cP 

 

In Algorithm 2, the code lines added to Algorithm 1 are highlighted in bold. As a result of running the 

skeleton code, the hash table tMap records every cluster index i associated with name instances in T and 

the frequency of each index. If (1) an index i (key)’s frequency in tMap is the same as the size of a truth 

cluster Tj (value = |𝑇𝑗| ) and (2) the size of the cluster Pi is the same (cSize[key] = |𝑇𝑗|), this means that all 

and only name instances in the truth cluster appear together in the same predicted cluster. This is a case of 

the intersection (|𝑃 ∩ 𝑇|) and increments cMatch, the numerator for cR and cP.    

Cluster Level: K-metric 

K-metric consists of Average Author Purity (AAP), Average Cluster Purity (ACP), and their geometric 

mean (K) (Santana et al., 2017). 

 

𝐴𝐴𝑃 =
1

𝑁
∑ ∑

𝑛𝑖𝑗
2

𝑛𝑗

|𝑃|

𝑖=1

|𝑇|

𝑗=1

       (4) 

𝐴𝐶𝑃 =
1

𝑁
∑ ∑

𝑛𝑖𝑗
2

𝑛𝑖

|𝑇|

𝑗=1

|𝑃|

𝑖=1

       (5) 

𝐾 =  √𝐴𝐶𝑃 × 𝐴𝐴𝑃        (6) 

Here, T and P represent sets of truth and predicted clusters each. N is the total of name instances to be 

disambiguated. Assume that every name instance in truth clusters is assigned to one of predicted clusters 

throughout this paper. 𝑛𝑖𝑗 is the number of Pi name instances that also appear in Tj; 𝑛𝑖 and 𝑛𝑗 represent 

the numbers of name instances in Pi and Tj, respectively. AAP measures the fragmentation of truth 

clusters. In other words, its value is low when many instances of an author (= a truth cluster) are split into 

separate predicted clusters (≈ recall). In contrast, ACP measures the purity of the predicted clusters. The 

ACP value decreases if predicted clusters contain name instances that should belong to other predicted 

clusters (≈ precision). 



Table 4 illustrates the K-metric calculation. AAP starts by counting the number of name instances in the 

truth cluster that appear in each predicted cluster. For example, all instances in T1 appear together in P1, 

thus 𝑛11
2  = 32 (= 9) and 𝑛1 = 3. This repeats over other truth clusters (T2 = 22/2 and T3 = 32/3). The same 

procedure is applied for ACP but this time staring from P1 being compared to each truth cluster. 

 

Table 4: An Illustration of K-metric Calculation 

Truth Clusters (T) Predicted Clusters (P) Calculation 

T1 = (1, 2, 3) 

T2 = (4, 5) 

T3 = (6, 7, 8) 

P1 = (1, 2, 3) 

P2 = (4, 5, 6, 7, 8) 

 

AAP = (32/3+22/2+32/3)/8= 1.0 

ACP = (32/3+22/5+32/5)/8 = 0.7 

K = √1.0 × 0.7 = 0.8367 

 

Equations 4 and 5 can be re-written using a set notation as follows. The order of cluster comparison (truth 

→ predicted or predicted → truth) does not affect the calculation outcome because the final set of 

intersection (𝑃𝑖 ∩ 𝑇𝑗) are the same. So, the summation can be ordered as truth clusters being compared to 

predicted clusters (i.e., truth → predicted) for both AAP and ACP. 

 

𝐴𝐴𝑃 =
1

𝑁
∑ ∑

𝑛𝑖𝑗
2

𝑛𝑗

|𝑃|

𝑖=1

|𝑇|

𝑗=1

=
1

𝑁
∑ ∑

|𝑃𝑖 ∩ 𝑇𝑗|
2

|𝑇𝑗|
𝑖∈𝑃𝑗∈𝑇

       (7) 

𝐴𝐶𝑃 =
1

𝑁
∑ ∑

𝑛𝑖𝑗
2

𝑛𝑖

|𝑇|

𝑗=1

|𝑃|

𝑖=1

=  
1

𝑁
∑ ∑

|𝑃𝑖 ∩ 𝑇𝑗|
2

|𝑃𝑖|
𝑖∈𝑃𝑗∈𝑇

      (8) 

 

The revised equations can be implemented expanding Algorithm 1. 

 

Algorithm 3: K-metric 

1 

P, p, pIndex, T, t, tMap 

cSize: a hash of a cluster 𝑷𝒊 and its size 

instSum: the total of name instances to be disambiguated 

aapSum, acpSum: totals of aap and acp values per cluster  
2 pIndex ← {} 

3 for each 𝑃𝑖 ∈ 𝑃 do 

4        for each 𝑝 ∈  𝑃𝑖 do 

5               pIndex[p] ← i 

6        end for        

7       cSize[i] ← |𝑷𝒊| 
8 end for 

9 instSum ← 0 

10 for each 𝑇𝑗 ∈ 𝑇 do 

11       instSum ← instSum +  |𝑻𝒋| 

12       tMap ← {} 

13       for each 𝑡 ∈ 𝑇𝑗 do 

14             if 𝑝𝐼𝑛𝑑𝑒𝑥[𝑡] ∉ 𝑘𝑒𝑦𝑠(𝑡𝑀𝑎𝑝) then 

15                   𝑡𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] ← 0 

16             end if 

17            t𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] ← 𝑡𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] + 1   



18       end for 

19       for each (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒)  ∈ 𝑡𝑀𝑎𝑝 do 

20             aapSum ← aapSum + 𝒗𝒂𝒍𝒖𝒆𝟐 |𝑻𝒋|⁄  

21             acpSum ← acpSum + 𝒗𝒂𝒍𝒖𝒆𝟐 |𝒄𝑺𝒊𝒛𝒆[𝒌𝒆𝒚]|⁄  

22       end for 

23 end for 

24 AAP ← 𝑎𝑎𝑝𝑆𝑢𝑚 𝑖𝑛𝑠𝑡𝑆𝑢𝑚⁄  

25 ACP ← 𝑎𝑐𝑝𝑆𝑢𝑚 𝑖𝑛𝑠𝑡𝑆𝑢𝑚⁄  

26 return AAP, ACP 

 

Algorithm 3 recycles the skeleton code. The added lines to Algorithm 1 are shown in bold. The re-use is 

possible because in Equation 7 and 8, K-metric is calculated in a single procedure in which truth clusters 

are compared to predicted clusters for both AAP and ACP. In contrast, Equation 4 and Equation 5 

formulate that truth clusters are compared to predicted clusters for AAP and then predicted clusters to 

truth clusters for ACP. 

As all name instances in truth clusters are assigned to one of predicted clusters, the value of N can be 

obtained by counting instances in either truth (instSum, code line #11) or predicted clusters. In code lines 

#20~21, |𝑃𝑖 ∩ 𝑇𝑗|
2

|𝑇𝑗|⁄   in Equation 7 and |𝑃𝑖 ∩ 𝑇𝑗|
2

|𝑃𝑖|⁄  in Equation 8 are calculated and summed into 

aapSum and acpSum, respectively, using the hash values in tMap. Especially, |𝑃𝑖| is obtained by 

referencing a predicted cluster index i (key) to cSize generated in code line #7. 

Cluster Level: Splitting & Lumping Error  

Several studies have adopted the concept of Lumping (= merging) and Splitting Error (Kim & Diesner, 

2016; Lerchenmueller & Sorenson, 2016; Li et al., 2014; Liu et al., 2014; Torvik & Smalheiser, 2009). 

Splitting Error (SE) and Lumping Error (LE) are defined as follows (Li et al., 2014): 

 

𝑆𝐸 =
∑ |{𝑥|𝑥 ∈ 𝑇𝑎, 𝑥 ∉ 𝑃𝑎}|𝑎

∑ |𝑇𝑎|𝑎
          (9) 

𝐿𝐸 =
∑ |{𝑥|𝑥 ∈ 𝑃𝑎, 𝑥 ∉ 𝑇𝑎}|𝑎

∑ |𝑃𝑎|𝑎
        (10) 

 

Here, 𝑥 means an author name instance. 𝑇𝑎 represents the truth cluster of a unique author a, while 𝑃𝑎 

means the predicted cluster that contains the largest number of name instances of the unique author a. SE 

evaluates how many name instances of a unique author (= a truth cluster) fail to appear in the predicted 

cluster that contains the largest number of name instances associated with the unique author (≈ recall). LE 

measures how many name instances in a predicted cluster belong to other distinct authors, i.e., truth 

clusters (≈ precision). Note that SE and LE consider only a predicted cluster that contains the largest 

number of name instances of a truth cluster. In contrast, Cluster-F considers only the perfect match of all 

name instances between a predicted cluster and a truth cluster. Others (K-metric, Pairwise-F, and B3) 

consider all intersection sets of instances between a truth cluster and predicted clusters.  

Table 5 illustrates how to calculate SE and LE. The SE calculation starts by comparing name instances in 

T1 with P1 and P2. P1 contains the largest number of T1 name instances. As there is no name instance in T1 

that does not belong to P1, the value for |{𝑥|𝑥 ∈ 𝑇𝑎 , 𝑥 ∉ 𝑃𝑎}| in Equation 9 is zero. Likewise, no splitting 

error case is detected for T2 and T3 because all name instances in T2 and T3 are found in P2, the predicted 



cluster that contains all name instances of both T2 and T3. Thus, the numerator for SE is 0, while its 

denominator, sum of all truth cluster sizes, is 8. For LE, name instances in T1 are all found in P1. But 

name instances in T2 and T3 are lumped with those from T3 and T2, respectively, in the same predicted 

cluster P2. Regarding the error for T2, three name instances from T3 are wrongly assigned to P2 (thus, 

lumping error = 3), while for T3, two instances from T2 are wrongly assigned to P2 (thus, lumping error = 

2). As both T2 and T3 share the largest predicted cluster, P2, their |𝑃𝑎| value is 5 (=|P2|). 

 

Table 5: An Illustration of Splitting & Lumping Errors Calculation 

Truth Clusters (T) Predicted Clusters (P) Calculation 

T1 = (1, 2, 3) 

T2 = (4, 5) 

T3 = (6, 7, 8) 

P1 = (1, 2, 3) 

P2 = (4, 5, 6, 7, 8) 

SE = (0+0+0)/(3+2+3) = 0.0 

LE = (0+3+2)/(3+5+5) = 0.3846 

 

A key difference between SE & LE and other four measures is that SE & LE counts errors (split or lumped 

name instances), while others count correctly predicted name instances. For the comparison across five 

measures, these error-based measures can be converted into recall (eR), precision (eP), and F (eF) 

measures as follows (Lerchenmueller & Sorenson, 2016; Liu et al., 2014; Torvik & Smalheiser, 2009): 

 

𝑒𝑅 =  1 − 𝑆𝐸        (11) 

𝑒𝑃 =  1 − 𝐿𝐸        (12) 

𝑒𝐹 =  
2 × 𝑒𝑅 × 𝑒𝑃

𝑒𝑅 + 𝑒𝑃
       (13) 

 

This conversion scales eR between 0 (all split) and 1 (no splitting), and eP between 0 (all lumped) and 1 

(no lumping). In Table 5, for example, eR = 1 – SE = 1 – 0 = 1 and eP = 1 – LE = 1 – 0.3846 = 0.6154. 

Their harmonic mean (= 0.7619) is eF. 

Equation 9 and 10 can be re-written using a set notation as follows. 

 

𝑆𝐸 =
∑ |{𝑥|𝑥 ∈ 𝑇𝑎,   𝑥 ∉ 𝑃𝑎}|𝑎

∑ |𝑇𝑎|𝑎
 =  

∑ (|𝑇𝑎|𝑎 − |𝑇𝑎 ∩ 𝑃𝑎|)

∑ |𝑇𝑎|𝑎
         (14) 

𝐿𝐸 =
∑ |{𝑥|𝑥 ∈ 𝑃𝑎,   𝑥 ∉ 𝑇𝑎}|𝑎

∑ |𝑃𝑎|𝑎
 =  

∑ (|𝑃𝑎|𝑎 − |𝑇𝑎 ∩ 𝑃𝑎|)

∑ |𝑃𝑎|𝑎
         (15) 

 

The calculation of SE and LE can be implemented by adding lines to the skeleton code as follows. 

Algorithm 4: SE & LE 

1 

P, p, pIndex, T, t, tMap 

cSize: a hash of a cluster 𝑷𝒊 and its size 

spSum: sum of split instances 

lmSum: sum of lumped instances 



instTrSum: sum of instances in the truth clusters for a unique author 

instPrSum; sum of instances in the largest predicted clusters for a unique author 
2 pIndex ← {} 

3 for each 𝑃𝑖 ∈ 𝑃 do 

4        for each 𝑝 ∈  𝑃𝑖 do 

5               pIndex[p] ← i 

6        end for        

7       cSize[i] ← |𝑷𝒊| 
8 end for 

9 for each 𝑇𝑗 ∈ 𝑇 do 

10       tMap ← {} 

11       for each 𝑡 ∈ 𝑇𝑗 do 

12             if 𝑝𝐼𝑛𝑑𝑒𝑥[𝑡] ∉ 𝑘𝑒𝑦𝑠(𝑡𝑀𝑎𝑝) then 

13                   𝑡𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] ← 0 

14             end if 

15            t𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] ← 𝑡𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] + 1   
16       end for 

17       maxKey ← 0, maxValue ← 0 

18       for each (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒)  ∈ 𝑖𝑛𝑑𝑒𝑥𝑀𝑎𝑝 do 

19             if value > maxValue then 

20                    maxValue ← value 

21                    maxKey ← key 

22             end if 

23       end for 

24       spSum ← 𝒔𝒑𝑺𝒖𝒎 + (|𝑻𝒋| − 𝒎𝒂𝒙𝑽𝒂𝒍𝒖𝒆)  

25       lmSum ← 𝒍𝒎𝑺𝒖𝒎 +  (𝒄𝑺𝒊𝒛𝒆[𝒎𝒂𝒙𝑲𝒆𝒚] − 𝒎𝒂𝒙𝑽𝒂𝒍𝒖𝒆) 

26       instTrSum ← 𝒊𝒏𝒔𝒕𝑻𝒓𝑺𝒖𝒎 + |𝑻𝒋| 

27       instPrSum ← 𝒊𝒏𝒔𝒕𝑷𝒓𝑺𝒖𝒎 +  𝒄𝑺𝒊𝒛𝒆[𝒎𝒂𝒙𝑲𝒆𝒚] 
28 end for 

29 SE ← 𝑠𝑝𝑆𝑢𝑚 𝑖𝑛𝑠𝑡𝑇𝑟𝑆𝑢𝑚⁄  

30 LE ← 𝑙𝑚𝑆𝑢𝑚 𝑖𝑛𝑠𝑡𝑃𝑟𝑆𝑢𝑚⁄  

31 return SE, LE 

 

In Algorithm 4, code lines #17 and #19~#22 find the predicted cluster index i (key) with the largest 

frequency (value) from tMap. For an author a (= a truth cluster |𝑇𝑎|), the maxValue in tMap is used for 

counting |𝑇𝑎 ∩ 𝑃𝑎| in Equation 14 and 15. In addition, the key for the maxValue is used to obtain the value 

for cSize[maxKey] = |𝑃𝑎|, which is the size of the predicted cluster that contains the largest number of 

name instances in the truth cluster |𝑇𝑎|. 

Pairwise Level: Pairwise-F 

This measures disambiguation performance at a pair-level via pairwise Precision (pP), pairwise Recall 

(pR), and Pairwise-F1 (pF) as defined below (Menestrina et al., 2010): 

𝑝𝑅 =  
|𝑝𝑎𝑖𝑟𝑠(𝑃) ∩ 𝑝𝑎𝑖𝑟𝑠(𝑇)|

|𝑝𝑎𝑖𝑟𝑠(𝑇)|
     (16) 

𝑝𝑃 =  
|𝑝𝑎𝑖𝑟𝑠(𝑃) ∩ 𝑝𝑎𝑖𝑟𝑠(𝑇)|

|𝑝𝑎𝑖𝑟𝑠(𝑃)|
     (17) 

𝑝𝐹 =  
2 × 𝑝𝑅 × 𝑝𝑃

𝑝𝑅 + 𝑝𝑃
     (18) 

 



Here, pairs(P) and pairs(T) mean name instance pairs generated from the same cluster in predicted 

clusters P and truth clusters T. The numerator |𝑝𝑎𝑖𝑟𝑠(𝑃) ∩ 𝑝𝑎𝑖𝑟𝑠(𝑇)| is the number of instance pairs that 

appear both in P and T. 

The calculation of pR and pP is illustrated in Table 6. Here, a pair of name instances is represented by two 

instance ids separated by a vertical bar. In T1, for example, three name instances (1, 2, and 3) are paired 

into three pairs (1|2, 1|3, and 2|3). The list of name pairs of truth clusters is compared with that of 

predicted clusters to generate a list of pairs found in both lists. The count of these intersection pairs 

constitutes the numerator (1|2, 1|3, 2|3, 4|5, 6|7, 6|8, 7|8; 7 pairs), which is divided by the total of pairs in 

truth clusters (= 7) for pR and by the total of pairs in predicted clusters (=13) for pP. 

 

Table 6: An Illustration of Pairwise-F Calculation 

Truth Clusters (T) Predicted Clusters (P) Calculation 

T1 = (1, 2, 3) → (1|2, 1|3, 

2|3) 

T2 = (4, 5) → (4|5) 

T3 = (6, 7, 8) → (6|7, 6|8, 

7|8) 

P1 = (1, 2, 3) → (1|2, 1|3, 

2|3) 

P2 = (4, 5, 6, 7, 8)  

→ (4|5, 4|6, 4|7, 4|8, 5|6, 

5|7, 5|8, 6|7, 6|8, 7|8) 

pR = 7/7 = 1.0 

pP = 7/13 = 0.5385 

pF = 2×(1.0×0.5385)/(1.0+0.5385) = 0.7000 

 

Calculating pR and pP can be memory- and time-consuming because the number of pairs in a cluster 

increases in a quadratic way with the size of name instances (Levin et al., 2012; Louppe, Al-Natsheh, 

Susik, & Maguire, 2016). For example, the number of pairs for a cluster with 10 instances is 45, while 

that of a cluster with 1,000 instances is 499,500. To overcome this problem, the Pairwise-F measures can 

be re-written as follows. 

 

𝑝𝑅 =  
|𝑝𝑎𝑖𝑟𝑠(𝑃) ∩ 𝑝𝑎𝑖𝑟𝑠(𝑇)|

|𝑝𝑎𝑖𝑟𝑠(𝑇)|
 =

∑ ∑ |𝑇𝑗 ∩ 𝑃𝑖| × (|𝑇𝑗 ∩ 𝑃𝑖| − 1) 2⁄𝑖∈𝑃𝑗∈𝑇

∑ |𝑇𝑗| × (|𝑇𝑗| − 1) 2⁄𝑗∈𝑇

     (19) 

𝑝𝑃 =  
|𝑝𝑎𝑖𝑟𝑠(𝑃) ∩ 𝑝𝑎𝑖𝑟𝑠(𝑇)|

|𝑝𝑎𝑖𝑟𝑠(𝑃)|
=  

∑ ∑ |𝑇𝑗 ∩ 𝑃𝑖| × (|𝑇𝑗 ∩ 𝑃𝑖| − 1) 2⁄𝑖∈𝑃𝑗∈𝑇

∑ |𝑃𝑖| × (|𝑃𝑖| − 1) 2⁄𝑖∈𝑃
     (20) 

 

Here, the number of pairs in a cluster is counted not by generating all possible pairs in the cluster but by a 

heuristic that the number of pairs in a cluster can be calculated from the number of instances in a cluster 

via cluster size × (cluster size – 1)/2. Likewise, the number of pairs in an intersection can be obtained 

from the number of instances in it. Algorithm 4 implements this heuristic.  

 

Algorithm 5: Pairwise-F 

1 

P, p, pIndex, T, t, tMap  

pairPrSum: the total of instance pairs in predicted clusters 

pairTrSum: the total of instance pairs in truth clusters 

pairIntSum: the total of instance pairs in the intersection of predicted and truth clusters 
2 pIndex ← {} 

3 for each 𝑃𝑖 ∈ 𝑃 do 

4        for each 𝑝 ∈  𝑃𝑖 do 

5               pIndex[p] ← i 



6        end for        

7        pairPrSum ← pairPrSum + |𝑷𝒊| × (|𝑷𝒊| − 𝟏)/𝟐 

8 end for 

9 for each 𝑇𝑗 ∈ 𝑇 do 

10       pairTrSum ← pairTrSum + |𝑻𝒋| × (|𝑻𝒋| − 𝟏)/𝟐 

11       tMap ← {} 

12       for each 𝑡 ∈ 𝑇𝑗 do 

13             if 𝑝𝐼𝑛𝑑𝑒𝑥[𝑡] ∉ 𝑘𝑒𝑦𝑠(𝑡𝑀𝑎𝑝) then 

14                   𝑡𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] ← 0 

15             end if 

16            t𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] ← 𝑡𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] + 1   
17       end for 

18       for each (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒)  ∈ 𝑖𝑛𝑑𝑒𝑥𝑀𝑎𝑝 do 

19             pairIntSum ← pairIntSum + |𝒗𝒂𝒍𝒖𝒆| × (|𝒗𝒂𝒍𝒖𝒆| − 𝟏)/𝟐 

20       end for 

21 end for 

22 pR ← 𝑝𝑎𝑖𝑟𝐼𝑛𝑡𝑆𝑢𝑚 𝑝𝑎𝑖𝑟𝑇𝑟𝑆𝑢𝑚⁄  

23 pP ← 𝑝𝑎𝑖𝑟𝐼𝑛𝑡𝑆𝑢𝑚 𝑝𝑎𝑖𝑟𝑃𝑟𝑆𝑢𝑚⁄  

24 return pR, pP 

 

Again, this implementation of pR and pP is based on the same skeleton code for K-metric and SE & LE 

as well as Cluster-F. The added code to Algorithm 1 are highlighted in bold. 

Instance Level: B-Cubed 

This measures clustering performance at an instance-level. Three parts of this measure – B3 Recall (bR), 

B3 Precision (bP), and B3 F (bF) – are defined as follows (Levin et al., 2012): 

 

𝑏𝑅 =  
1

𝑁
∑

|𝑃(𝑡)  ∩ 𝑇(𝑡)|

|𝑇(𝑡)|
𝑡 ∈ 𝑇

          (21) 

𝑏𝑃 =  
1

𝑁
∑

|𝑃(𝑡)  ∩ 𝑇(𝑡)|

|𝑃(𝑡)|
𝑡 ∈ 𝑇

          (22) 

𝑏𝐹 =  
2 × 𝑏𝑅 × 𝑏𝑃

𝑏𝑅 +  𝑏𝑃
          (23) 

 

Here, t is a name instance in truth clusters T. N is the number of all name instances in truth clusters (T). 

𝑇(𝑡) means a truth cluster that contains a name instance t, while 𝑃(𝑡) means a predicted cluster that 

contains the name instance t.  

Table 7 shows an illustration of B3 calculation. Starting with the instance 1 in T1 for bR, for example, a 

predicted cluster containing it is detected: 𝑃(1) = 𝑃1 and (1) = 𝑇1 . Next, the intersection of the truth 

cluster (T1) and the predicted cluster (P1) is filtered (1, 2, and 3). Then, |𝑃1 ∩ 𝑇1| |𝑇1|⁄  = 3/3 is obtained. 

This is repeated for instances 2 and 3 in T1, resulting in an array of (3/3, 3/3, 3/3) for T1. After the same 

procedure is applied to T2 and T3, the sum of |𝑃(𝑡)  ∩ 𝑇(𝑡)| |𝑇(𝑡)|⁄  for all name instances is divided by 

the total of those instances (= 8), producing bR = 1.0. 

 



Table 7: An Illustration of B3 F Calculation 

Truth Clusters (T) Predicted Clusters (P) Calculation 

T1 = (1, 2, 3) 

T2 = (4, 5) 

T3 = (6, 7, 8) 

P1 = (1, 2, 3) 

P2 = (4, 5, 6, 7, 8) 

 

bR = ((3/3+3/3+3/3)+(2/2+2/2)+(3/3+3/3+3/3))/8 = 1.0 

bP = ((3/3+3/3+3/3)+(2/5+2/5+3/5+3/5+3/5))/8 = 0.7 

bF = 2×(1.0×0.7)/(1.0+0.7) = 0.8235 

 

Although B3 is an instance level metric, its calculation can be formulated as a cluster-level calculation. 

This is possible because in Equation 21 and 22, the calculation results for each name instance in the same 

intersection are the same. In Table 7, for example, instances 4 and 5 in T2 have the same calculation 

outcome (= 2/2) as they appear together in the intersection of T2 and P2. So, we can re-write (2/2 + 2/2) as 

(2/2)×2 = 22/2. Here, 2/2 (or 22) is the calculation outcome for an instance and 2 besides 2/2 is the number 

of instances in the intersection (|T2 ∩ P2|). Drawing on this formulation, Equation 21 and 22 can be re-

written as follows. 

 

𝑏𝑅 =  
1

𝑁
∑

|𝑃(𝑡)  ∩ 𝑇(𝑡)|

|𝑇(𝑡)|
𝑡 ∈ 𝑇

=
1

𝑁
∑ ∑

|𝑃(𝑡) ∩  𝑇𝑗|

|𝑇𝑗|
𝑡∈𝑇𝑗𝑗∈𝑇

=  
1

𝑁
∑ ∑ ∑

|𝑃𝑖 ∩  𝑇𝑗|

|𝑇𝑗|
𝑖∈𝑃𝑡∈𝑇𝑗𝑗∈𝑇

 

=  
1

𝑁
∑ ∑

|𝑃𝑖 ∩  𝑇𝑗|

|𝑇𝑗|
× |𝑃𝑖 ∩  𝑇𝑗|

𝑖∈𝑃

 

𝑗∈𝑇

=
1

𝑁
∑ ∑

|𝑃𝑖 ∩  𝑇𝑗|
2

|𝑇𝑗|
𝑖∈𝑃𝑗∈𝑇

= 𝐴𝐴𝑃           (24) 

𝑏𝑃 =  
1

𝑁
∑

|𝑃(𝑡)  ∩ 𝑇(𝑡)|

|𝑃(𝑡)|
𝑡 ∈ 𝑇

=
1

𝑁
∑ ∑

|𝑃(𝑡) ∩  𝑇𝑗|

|𝑃(𝑡)|
𝑡∈𝑇𝑗𝑗∈𝑇

=  
1

𝑁
∑ ∑ ∑

|𝑃𝑖 ∩  𝑇𝑗|

|𝑃𝑖|
𝑖∈𝑃𝑡∈𝑇𝑗𝑗∈𝑇

 

=  
1

𝑁
∑ ∑

|𝑃𝑖 ∩  𝑇𝑗|

|𝑃𝑖|
× |𝑃𝑖 ∩  𝑇𝑗|

𝑖∈𝑃

 

𝑗∈𝑇

=
1

𝑁
∑ ∑

|𝑃𝑖 ∩  𝑇𝑗|
2

|𝑃𝑖|
𝑖∈𝑃𝑗∈𝑇

= 𝐴𝐶𝑃           (25) 

 

In Equation 24, a cluster 𝑇𝑗 is set first as a calculation unit ( ∑ ∑ ( )𝑡∈𝑇𝑗𝑗∈𝑇 ). This follows the 

transformation of 𝑇(𝑡) to 𝑇𝑗 because all name instances in 𝑇𝑗 have the same set elements (themselves) and 

thus the same value for |𝑇(𝑡)| (= |𝑇𝑗|). Next, an instance t needs to be checked cluster by cluster to 

decide where it appears in predicted clusters 𝑃𝑖(𝑡) as in ∑ ∑ ∑ |𝑃𝑖(𝑡) ∩  𝑇𝑗| |𝑇𝑗|⁄𝑖∈𝑃𝑡∈𝑇𝑗𝑗∈𝑇 . Evidently, 

𝑃𝑖(𝑡) is the same as 𝑃𝑖. Finally, the calculation process can be simplified as ∑ ∑ |𝑃𝑖 ∩  𝑇𝑗| |𝑇𝑗|⁄ ×𝑖∈𝑃𝑗∈𝑇

|𝑃𝑖 ∩  𝑇𝑗|. This is because the calculation results of |𝑃𝑖 ∩  𝑇𝑗| |𝑇𝑗|⁄  for name instances in the same cluster 

are the same if the instances appear in the same intersection (𝑃𝑖 ∩  𝑇𝑗). That is why |𝑃𝑖 ∩  𝑇𝑗| |𝑇𝑗|⁄  is 

multiplied by the number of instances belonging to the intersection (|𝑃𝑖 ∩  𝑇𝑗|), omitting the part of 

instance referencing in the nested summation (∑ ( )𝑡∈𝑇𝑗
). The final re-writing is the same as the 

calculation of AAP in Equation 7. Likewise, bP can be re-written to match ACP (Equation 25). This 

transformation can be illustrated by the example in Table 8, where the calculation for B3 and K-metric is 

juxtaposed to show their similarity. 

  



Table 8: An Illustration of B3 F Calculation in comparison with K-metric Calculation 

Truth Clusters (T) Predicted Clusters (P) Calculation 

T1 = (1, 2, 3) 

T2 = (4, 5) 

T3 = (6, 7, 8) 

P1 = (1, 2, 3) 

P2 = (4, 5, 6, 7, 8) 

 

bR = ((3/3+3/3+3/3)+(2/2+2/2)+(3/3+3/3+3/3))/8 = 1.0 

AAP = ((32/3)+(22/2)+(32/3))/8 = 1.0 

bP = ((3/3+3/3+3/3)+(2/5+2/5+3/5+3/5+3/5))/8 = 0.7 

ACP = ((32/3)+(22/5+32/5))/8 = 0.7 

bF = 2×(1.0×0.7)/(1.0+0.7) = 0.8235 

K = √1.0 × 0.7 = 0.8367 

 

As such, Equations 24 and 25 indicate that bR and bP can be calculated by Algorithm 3 for calculating 

AAP and ACP. A difference is that B3 F is a harmonic mean of AAP (= bR) and ACP (= bP), while K is a 

geometric mean of AAP and ACP. 

All-in-one Calculation and Runtime Test 

In Algorithm 2 ~ 5, the five clustering measures have been shown to be calculable using the same 

skeleton code in Algorithm 1. This commonality enables us to integrate those five measures in a single set 

of code, as in Algorithm 6 below. Note that B3 precision and recall are not calculated because they are the 

same as ACP and AAP in K-metric. 

 

Algorithm 6: All-In-One 

1 

P, p, pIndex, T, t, tMap #common to all measures  

cSize #Cluster-F, K-metric, B3, SE&LE 

cMatch #Cluster-F 

instSum: #K-metric, B3 

aapSum, acpSum #K-metric, B3 

spSum, lmSum, instTrSum, instPrSum # SE&LE 

pairPrSum, parSumTr, pairIntSum #Pairwise-F 

2 pIndex ← {} 

3 for each 𝑃𝑖 ∈ 𝑃 do 

4        for each 𝑝 ∈  𝑃𝑖 do 

5               pIndex[p] ← i 

6        end for        

7       cSize[i] ← |𝑃𝑖| 
8        pairPrSum ← pairPrSum + |𝑃𝑖| × (|𝑃𝑖| − 1)/2 

9 end for 

10 instSum ← 0 

11 for each 𝑇𝑗 ∈ 𝑇 do 

12       instSum ← instSum +  |𝑇𝑗| 

13       pairTrSum ← pairTrSum + |𝑇𝑗| × (|𝑇𝑗| − 1)/2 

14       tMap ← {} 

15       for each 𝑡 ∈ 𝑇𝑗 do 

16             if 𝑝𝐼𝑛𝑑𝑒𝑥[𝑡] ∉ 𝑘𝑒𝑦𝑠(𝑡𝑀𝑎𝑝) then 

17                   𝑡𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] ← 0 

18             end if 

19            t𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] ← 𝑡𝑀𝑎𝑝[𝑝𝐼𝑛𝑑𝑒𝑥[𝑡]] + 1   
20       end for 

21       maxKey ← 0, maxValue ← 0 

22       for each (𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒)  ∈ 𝑖𝑛𝑑𝑒𝑥𝑀𝑎𝑝 do 

23             if 𝑣𝑎𝑙𝑢𝑒 =  |𝑇𝑗| and cSize[key] = |𝑇𝑗| then 

24                   cMatch ← cMatch + 1 

25             end if 

26             aapSum ← aapSum + 𝑣𝑎𝑙𝑢𝑒2 |𝑇𝑗|⁄  



27             acpSum ← acpSum + 𝑣𝑎𝑙𝑢𝑒2 |𝑐𝑆𝑖𝑧𝑒[𝑘𝑒𝑦]|⁄  

28             if value > maxValue then 

29                    maxValue ← value 

30                    maxKey ← key 

31             end if 

32             pairIntSum ← pairIntSum + |𝑣𝑎𝑙𝑢𝑒| × (|𝑣𝑎𝑙𝑢𝑒| − 1)/2 

33       end for 

34       spSum ← 𝑠𝑝𝑆𝑢𝑚 + (|𝑇𝑗| − 𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒)  

35       lmSum ← 𝑙𝑚𝑆𝑢𝑚 + (𝑐𝑆𝑖𝑧𝑒[𝑚𝑎𝑥𝐾𝑒𝑦] − 𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒) 

36       instTrSum ← 𝑖𝑛𝑠𝑡𝑇𝑟𝑆𝑢𝑚 +  |𝑇𝑗| 

37       instPrSum ← instPrSum +  𝑐𝑆𝑖𝑧𝑒[𝑚𝑎𝑥𝐾𝑒𝑦] 
38 end for 

39 cR ← 𝑐𝑀𝑎𝑡𝑐ℎ |𝑇|,⁄  𝑐𝑃 ←  𝑐𝑀𝑎𝑡𝑐ℎ |𝑃|⁄  

40 AAP ← 𝑎𝑎𝑝𝑆𝑢𝑚 𝑖𝑛𝑠𝑡𝑆𝑢𝑚⁄ , ACP ← 𝑎𝑐𝑝𝑆𝑢𝑚 𝑖𝑛𝑠𝑡𝑆𝑢𝑚⁄  

41 SE ← 𝑠𝑝𝑆𝑢𝑚 𝑖𝑛𝑠𝑡𝑇𝑟𝑆𝑢𝑚⁄ , LE ← 𝑙𝑚𝑆𝑢𝑚 𝑖𝑛𝑠𝑡𝑃𝑟𝑆𝑢𝑚⁄  

42 pR ← 𝑝𝑎𝑖𝑟𝐼𝑛𝑡𝑆𝑢𝑚 𝑝𝑎𝑖𝑟𝑇𝑟𝑆𝑢𝑚⁄ , pP ← 𝑝𝑎𝑖𝑟𝐼𝑛𝑡𝑆𝑢𝑚 𝑝𝑎𝑖𝑟𝑃𝑟𝑆𝑢𝑚⁄  

43 return cR, cP, AAP (bR), ACP (bP), SE, LE, pR, pP 

 

Besides integrating multiple measures in a single framework, the algorithm greatly reduces computation 

time. To illustrate this, a total of 41,358 name instances in KISTI were used to evaluate the clustering 

performance of DBLP’s disambiguation by the five measures as in Figure 2. For this, especially, the steps 

implied in the original equations of the five measures were implemented straightforwardly. For example, 

instance pairs per cluster were generated (797,297 truth pairs and 826,187 predicted pairs) and compared 

for intersection one by one. Execution time of each measure was measured in seconds and compared to 

that of the same measure implemented by its corresponding Algorithm 2~54.  Table 9 reports the runtime 

results. 

Table 9: Runtime (in Seconds) of Measures Implemented by Straightforward vs Proposed Algorithms 

Calculation Cluster-F K-metric SE & LE Pairwise-F B3 

Straightforward 46.920 231.975 119.925 23433.140 138.956 

Proposed 

(Algorithm 2~5) 
0.025 0.055 0.057 0.055 0.055 

All-In-One 

(Algorithm 6) 
0.064 

 

Table 9 reports that Algorithm 2~5 calculated each measure less than 0.057 seconds, while the 

straightforward implementations took approximately 47 (Cluster-F) up to 23,433 (6.5 hour, Pairwise-F) 

seconds. All measures could be calculated in less than 0.065 seconds by the All-In-One algorithm. 

To test the scalability of Algorithm 6, a set of 1.2 M name instances associated with unique identifiers in 

a high-energy physics publication library, INSPIRE, was obtained (Louppe et al., 2016). Using the 

INSPIRE unique identifiers as the ground truth of author identity, the performance of all-initials-based 

name disambiguation5 was evaluated by the five measures. This task is challenging, especially for the 

calculation of Pairwise-F, because the number of instance pairs in truth clusters (= 15,388 authors) 

approximates 213.4 M, while that in predicted clusters (= 18,672) was almost 194.5 M (intersection pairs 

                                                           
4 Runtime was tested on a desktop with Intel Core i7-7700 CPU (3.60GHz), 32G RAM, and 64-bit Windows OS by 

running code in Strawberry Perl 64-bit (ver. 5.26). Runtime was tested 10 times for each measure and the best result 

was reported for each. 
5 Two name instances that share the same full surname and initials of all forenames are predicted to refer to the same 

person. For details, see Kim (2018). 



≈ 179.9 M). Algorithm 6 produced evaluation results by all five measures in 1.583 seconds. Tested only 

for the Pairwise-F calculation by Algorithm 5, the runtime was 1.552 seconds, which is comparable to 

12.903 seconds by the Generalized Merged Distance (GMD) algorithm6 (Menestrina et al., 2010), the 

most runtime-efficient method for calculating Pairwise-F so far. 

Conclusion and Discussion 

This paper demonstrated that five measures of clustering performance in author name disambiguation can 

be integrated into one calculation framework. This was possible mainly because name instances in truth 

and predicted clusters were compared not by a brute-force cluster-by-cluster comparison but by the use of 

two hash tables recording instances with their predicted cluster indices and their frequencies in the 

predicted-truth cluster intersection. Using set notations, each measure’s equations was formulated to fit 

into the integrative framework.  

A few contributions of this paper are worth noting. First, as there is no standard collection of code for the 

five performance measures above, this paper can provide an anchoring place for scholars to implement 

them and validate their correctness with efficient code and samples. Second, the measurement integration 

dramatically reduces runtime compared to the straightforward implementation of those measures mainly 

due to the use of hash tables instead of brute-force cluster-by-cluster and instance-by-instance 

comparisons that can increase runtime up to O(n2). Especially, Pairwise-F was re-formulated using a 

heuristic for counting pairs in a cluster. The scalability of the integrative calculation can help scholars 

evaluate the clustering performance of a disambiguation method at a large scale, for example, using 

several millions of name instances associated with Researcher IDs in Web of Science (Backes, 2018). 

This paper demonstrated this potential by evaluating the clustering results of 1.2M name instances.  

Another contribution is that K-metric and B3 measures were shown to produce the same recall and 

precision scores. This means that studies using either K-metric or B3 have evaluated their clustering 

results by the basically same measures and thus are directly comparable to one another. Also, this can be 

good news to scholars who use K-metric because B3 has been argued to evaluate clustering results better 

than others on challenging cases (Amigó et al., 2009). In addition, the usage frequency of these two 

different-but-same measures in Table 1 equals that of Pairwise-F (= 15), which makes them a family of 

major measurement in author name disambiguation.    

Most importantly, the integrative calculation shows that the five measures for clustering performance in 

author name disambiguation can be understood within a single framework for their similarities and 

differences. This can help us modify current measures or propose new measures that assess 

disambiguation performance from distinctive perspectives. In addition, this integrative framework can 

incorporate other clustering measures such as Closest-Cluster-F (Menestrina et al., 2010) and Variation of 

Information (Meilă, 2003), which have been rarely used in author name disambiguation. Such integration 

will not only guide us to select measures characterizing best disambiguation performance but also help 

future efforts to compare different evaluation schemes under diverse ambiguity conditions for entity 

resolution in general beyond author name disambiguation.  
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