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Abstract
The recent ‘outburst’ of COVID-19 spurred efforts to model and forecast its diffusion pat-
terns, either in terms of infections, people in need of medical assistance (ICU occupation) 
or casualties. Forecasting patterns and their implied end states remains cumbersome when 
few (stochastic) data points are available during the early stage of diffusion processes. 
Extrapolations based on compounded growth rates do not account for inflection points nor 
end-states. In order to remedy this situation, we advance a set of heuristics which combine 
forecasting and scenario thinking. Inspired by scenario thinking we allow for a broad range 
of end states (and their implied growth dynamics, parameters) which are consecutively 
being assessed in terms of how well they coincide with actual observations. When applying 
this approach to the diffusion of COVID-19, it becomes clear that combining potential end 
states with unfolding trajectories provides a better-informed decision space as short term 
predictions are accurate, while a portfolio of different end states informs the long view. 
The creation of such a decision space requires temporal distance. Only to the extent that 
one refrains from incorporating more recent data, more plausible end states become vis-
ible. Such dynamic approach also allows one to assess the potential effects of mitigating 
measures. As such, our contribution implies a plea for dynamically blending forecasting 
algorithms and scenario-oriented thinking, rather than conceiving them as substitutes or 
complements.

Keywords  Scenario thinking · Forecasting · Decision making under uncertainty · Diffusion 
models

Introduction

In December 2019, the first cases of COVID-19 have been reported in Wuhan City 
(Habei province, China). As a respiratory infectious disease caused by the SARS-CoV-2 
virus, COVID-19 belongs to the Coronaviridae family and is believed to have a zoonotic 
origin. By January 20, 2020, cases were confirmed in Thailand, Japan and South Korea. 
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The first European cases were reported from France already on January 24 and from 
Germany by January 28. The World Health Organization (WHO) declared the outbreak 
a “public health emergency of international concern” on January 30, 2020; where the 
WHO Director-General labelled it as a global pandemic on March 11, 2020.

Italy was the first European country heavily affected by COVID-19, with clusters of 
cases being reported in Lombardy, Piedmont and Veneto on February 22, 2020. Over 
the following days and weeks, additional cases were reported from several other Euro-
pean countries. By March 18, Italian hospitals experienced a huge shortage of Intensive 
Care Unit beds (ICU), hospital beds and breathing assistance equipment. Daily, up to 
1000 people deceased from COVID-19 in Italy, exceeding 10,000 causalities by March 
28.

During the early stage of the outbreak of a pandemic, governments have to take critical 
decisions relying on only a few available stochastic data points. Epidemiological modeling 
is one of the key methods available to inform governments about the presumed underlying 
dynamics and parameters of the epidemic, by fitting the observed data to existing models 
obtained from previous epidemics and delineating the uncertainty around parameters. As 
soon as the uncertainty is low enough to model the course of the epidemic, the effect of 
containment and mitigation measures can be simulated, and the resulting outcomes can 
then inform decision making. The most used models for the spread of COVID-19 in a 
naïve population are variants of Susceptible/Infected/Recovered (SIR) models, with poten-
tially additional categories (Wu et al. 2020). They represent a virus moving into a Suscep-
tible population, where those Exposed progress to Infected and either Recover or Die (E 
and D being additional categories relevant for COVID-19), where the rates of transitions 
between compartments have to be estimated from the data points. Such estimation also 
implies that one uncovers the reproductive number—R (the average number of secondary 
infections caused by one infected person)—and either the number of infected people or the 
infection fatality rate (the one being derived from the other). When not enough data points 
are available to estimate those parameters (e.g. by means of combining differential equa-
tions, stochastic and Bayesian inference), and when neither the number of infected people 
(given absence of surveillance testing) nor the infection fatality rate (given the unknown 
proportion of undiagnosed) are known, such models have to make assumptions that may 
not necessarily be true expanding the uncertainty of the predictions.

As epidemiological models initially—i.e. during the early phases of a newly emergent 
virus—cannot accurately estimate the basic epidemiological parameters, it becomes specu-
lative to delineate or forecast future capacity needs within the health system (e.g. num-
ber of hospital beds, beds in ICU, …) including the implied timeframes. Assessing the 
resilience of the healthcare system and taking appropriate decisions in terms of potentially 
implied medical capacity, requires insights in both short-term evolutions and medium-term 
end states. Within this paper, we examine whether diffusion models widely known and 
used within the innovation (and technology) discipline and being ‘agnostic’ in terms of 
underlying parameters bear relevance for modeling and forecasting pandemic phenomena 
like the COVID-19 virus.

Within the next section, we briefly outline the essence of diffusion models whereby the 
seminal work of Bass (1969) provides our starting point. Next, we outline the heuristics—
building on the Bass model—advanced by Decock et al. (2020b) that project and assess 
multiple end states (‘scenarios’) in parallel. This approach is then applied to forecast and 
monitor the ICU capacity in Belgium during the (first) raise of the COVID-19 pandemic 
in March 2020. It will become visible that this approach yields accurate predictions and is 
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instrumental to inform capacity related decision-making processes. We end by discussing 
limitations, potential refinements and avenues for future research.

Modeling diffusion patterns

Modeling diffusion: the seminal contribution of F. Bass

When modelling the diffusion of an innovation, two processes are being advanced: adop-
tion initiated by so-called innovators (Rogers 1962) followed by imitation. As such, these 
processes resemble the phenomena observed in the context of epidemics revolving around 
infection resulting in local spread. Management scholars apply sigmoid growth curves, like 
the logistic equation (Verhulst 1838) or the Bass model (1969), to model and forecast the 
outcomes of the underlying dynamics. During the early stages of the introduction, expo-
nential growth prevails; as the diffusion process evolves, the growth rate diminishes and 
leads to an end stage of adoption, i.e. market or segment saturation.

In the context of the COVID-19 pandemic, we apply the Bass (1969) diffusion model to 
mirror underlying growth dynamics. In general, pandemics evolve in a sigmoidal manner 
whereby infectious spread ultimately results in herd immunity. This process towards herd 
immunity might imply high peaks (of simultaneously infected people), whereby the height 
of the peak is unknown in case of a new virus. These peaks will—after a time delay—result 
in an increase in the number of hospitalized people, patients entering the ICU’s and lastly 
a rise in deceased. All these subsequent curves follow a sigmoid curve as well with heights 
and timing driven by exposition and transition rates which are also not exactly known in 
the case of a new virus (Kermack and McKendrik 1927). As this process ‘mimics’ the dif-
fusion patterns known in the management literature, modelling based on diffusion models 
stemming from the management literature might become relevant.1

As explained in Decock et al. (2020b), the straightforward intuition and predictive abil-
ity of the model advanced by Bass (Parker 1994; Chandrasekaran and Tellis 2007) resulted 
in adoption by marketing and innovation scholars alike (e.g. Mahajan et al. 1990; Massiani 
and Gohs 2015). The Bass model disentangles innovators from imitators, both consider-
ing a different adoption rationale and reacting to different means of communication (Bass 
1969; Lekvall and Wahlbin 1973; Mahajan et  al. 1990; Bass et  al. 1994). In its discrete 
form, the Bass model can be written as:

Nt = Nt−1 + p
(

m − Nt−1

)

+ q
Nt−1

m

(

m − Nt−1

)

1  It could be noticed that diffusion curves might become affected—over time—by ‘lock down’ policy 
measures. If such measures have an impact, they will result in a flattening of the curve; which in terms of 
modelling would translate into several, consecutive curves unfolding over time, whereby each subsequent 
curve will have a lower peak and also lower levels of acceleration. If these consecutive curves imply lower 
peaks and are relatively closely situated in time, the resulting curve can also be approximated by a sigmoid. 
Within this contribution, we focus on the ‘first’ peak, as the short-term capacity implications for the medi-
cal system will be most outspoken during the initial, upwards wave. As we focus in this contribution on 
modelling the first wave, based on initial observations (stemming from the period in which no specific lock 
down measures had been taken yet), the resulting models should be considered as a worst-case scenario (in 
which the taken measures would yield no effect at all in terms of flattening the curve).
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where Nt = the cumulative number of adopters (here: ICU occupation) at time t, m = the 
potential market (here: the ultimate number of ICU occupation; the end state), p = coef-
ficient of innovation (here: the infection parameter), q = coefficient of imitation (here: the 
intensity of contamination), (m − Nt−1) = non-adopters at the beginning of period t, and 
(Nt−1/m) = the fraction that has already adopted.

Predicting the evolution of these S-shaped curves requires an estimation of at least 
three parameters, related to the takeoff, the steepness, and the saturation level of the curve. 
Most scholars use Bass’s model as a starting point to derive the ‘optimal’ set of param-
eter estimations and consequently distill an end-state. Decock et al. (2020b) conclude their 
overview of the literature with pointing at the consensus among scholars and practitioners 
alike: it remains a cumbersome endeavor to delineate robust parameter estimations when 
only few trend data are available (e.g. Van den Bulte and Lilien 1997; Mahajan et al. 1990). 
As such, scholars and practitioners tend to favor scenario-oriented methods during these 
early stages—characterized by high levels of uncertainty—in order to explore plausible 
futures and their constituents. Indeed, from the 1970s onwards, quantitative forecasting 
(including trend extrapolation) has been losing momentum in favor of qualitative foresight 
approaches. The ‘traumatic’ effect of the oil crisis of 1973 initiated a “paradigm shift” in 
future oriented research (Mietzner and Reger 2005), as this event didn’t fit with most of 
the anticipated and predicted futures. Only a few companies, including Royal Dutch/Shell, 
have been elaborating scenarios in which this type of event was portrayed as plausible (van 
der Heijden 1997; Schwartz 1991). In the early 1970s, Pierre Wack—inspired by the pio-
neering work of Herman Kahn at the Rand Corporation in the 1960s (e.g. Kahn and Wiener 
1967)—applied foresight theories from the field of public planning towards business con-
texts (see also Wack 1985a, b). Since the 1980s, scenario-oriented thinking has been fur-
ther developed for management purposes (with pioneering work of Shell’s Strategic Plan-
ning Group members including Arie de Geus, Peter Schwarz and Kees Van der Heijden) at 
the expense of more quantitative approaches, including extrapolation and forecasting.

A new perspective: introducing multi‑finality

Recently, Decock et al. (2020b) build on the initial Bass model in order to model quanti-
tatively different scenarios related to the diffusion of the Battery Electrical Vehicle. The 
heuristics advanced start from the premise of multi-finality (Buckley 1967): “similar initial 
conditions may lead to dis-similar end-states”. Allowing for different end states to unfold, 
a wide range of the implied parameters (m, p and q) are initially being considered. Within 
a next step, more plausible scenarios are selected by means of a loss function, which con-
fronts the obtained forecasts with the few real observations already available. As such, 
this approach does neither require ex ante assumptions about the relevant range of implied 
growth parameters (p and q) nor about potential end states.

The proposed heuristics revolve around the development of a three-dimensional search 
space, reflecting the presence of three model parameters to be estimated. The considered 
search grid in this paper consists of 250,000 different parameter combinations reflecting 
different scenarios. For m, we allow variations of 10% (from 10 to 100% of end states) 
while, for p and q, the ranges vary with 250 and 100 steps respectively. The considered m 
values have been defined based on the population size whereas relevant ranges of p and q 
have been identified in line with ranges documented within the innovation diffusion lit-
erature. The exhaustive search grid allows us to assess all different combinations of the 
three parameters, with no ex ante assumptions on either initial values for each parameter 
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or potential equivalences between different value combination across the three parameters. 
Thus, in this first step, all imaginable combinations are considered to gauge potential diffu-
sion pathways. In a next step, we select more plausible diffusion pathways by introducing 
a loss function. This loss function assesses how well each parameter combination explains 
the current, available observations and therefor calculate 250.000 loss functions whereby 
the ‘goodness of fit’ for each combination is defined as:

In a final step, we introduce a threshold value pertaining to the R2, in order to select—
and, in a subsequent step, to assess and qualify—more plausible scenarios. This subset of 
diffusion paths is being considered as the more likely scenarios as they are performing best 
at explaining what we currently observe in terms of diffusion and will be analyzed in terms 
of growth dynamics and end states.

Scenario‑driven forecasting: making peaks and paths visible in case 
of ICU occupation in Belgium during COVID‑19 (March/April 2020)

In case of the COVID-19 pandemic, it appeared unclear for regions/countries which end 
states would materialize with respect to the total number of infected persons, the number 
of deceased to expect as well as the implications in terms of capacity and occupation of 
hospital beds and ICU. In this context, decision makers would benefit from forecasts which 
consider capacity requirements also at the highest burden. At the same time, precise esti-
mates of relevant parameters are to a large extent absent: the available numbers for a wide 
range of countries suggest high spreads (both in terms of contamination and potential end 
states). This complicates the quest for accurate predictions, unless one considers simultane-
ously the presence of multiple end states and different growth dynamics (reflected in the 
three parameters to gauge). Stated otherwise, incorporating the multi-finality logic replaces 
the quest for the most accurate estimation by a systematic assessment of plausible trajecto-
ries (paths) and their implied peaks based on limited time series.

By applying this set of heuristics, the COVID-19 diffusion patterns for Belgium have been 
modeled to analyze whether they allow to arrive at a better-informed decision space, both in 
terms of the short-term path that is being ‘walked’ (daily/weekly) and in terms of the peaks 
to expect (end states). Models have been developed both for deceased and for ICU occupa-
tion rates in several countries; however, we focus in this contribution on the ICU occupa-
tion in Belgium. We argue and demonstrate how blending the initial forecasting models with 
scenario-oriented thinking—i.e. forecasting ‘paths’ leading to different ‘peaks’—could yield 
novel insights in terms of decision making under highly uncertain circumstances.

Model composition for ICU occupation in Belgium2

In Belgium, the first confirmed COVID-19 case was reported on February 3, 2020, related 
to a person repatriated from Wuhan; while the first COVID-19 deceased was registered on 

R2
= 1 −

SSError

SSObserved

2  A concince version of the analysis and results reported in this section have been also included in Decock 
et al. (2020a).
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March 10. In ‘steady state’; the Belgian hospitals have around 1900 ICU beds at their dis-
posal. Policy makers decided to increase ICU capacity and allocated approximately 2300 
ICU beds exclusively for COVID-19 patients. The question that then becomes crucial: will 
this be enough for the coming weeks and months? In order to obtain insights on the likeli-
hood of potentially unfolding scenarios, it becomes crucial to monitor the ICU occupation 
and delineate policy options for timely adjusting the ICU capacity.

Table  1 depicts the number of patients in ICU (related to COVID-19) in Belgium, 
between March 12 and March 24.

A multi-dimensional search space was composed, consisting of scenarios whereby the 
ICU-capacity was allowed to range from 1000 to 10,000 beds. Combined with variations in 
p (250) and q (100) we calculate 250.000 possible curves, based on the observations until 
March 24 (i.e. time series of 13 data points).

Next, we retrieve all parameter combinations that pass the 99% threshold (n = 806)3 and 
label them as the more likely scenarios. Figure 1a, b combine the initial observations (i.e., 
the green dotted line) with the stylized more likely scenarios (averaged by end state), for 
both the ICU occupation in the long term (Fig. 1a) and the short term (i.e. 1 week ahead) 
(Fig. 1b). The latter also includes dashed grey lines representing the curves composed of 
the minimum and the maximum of the daily values of this subset of 806 models.

Based on the subset of more likely scenarios, we could compose a dashboard informing 
decision makers about the corresponding short-term evolutions, related to all plausible end 
states. Table 2 depicts the average forecasts of ICU occupation for the different end states 
between March 25 and March 31, the overall daily minimum and maximum forecast, the 
overall daily average forecast of the 806 pathways, and the average daily forecast of the 
10 averaged end states. One could conclude that—based on the observations until March 
24—worst-case scenarios could not be excluded yet (implying end states requiring 5.000 
ICU beds and beyond).

Table 1   COVID-19 ICU occupation in Belgium between 12/03/2020 and 24/03/2020. (Source: Sciensano)

Date ICU occupa-
tion

Date ICU occupation Date ICU occupation

12/03/20 5 17/03/20 100 22/03/20 322
13/03/20 24 18/03/20 130 23/03/20 381
14/03/20 33 19/03/20 164 24/03/20 474
15/03/20 53 20/03/20 238
16/03/20 79 21/03/20 290

3  We assessed whether relaxing the threshold value of 99% would alter the obtained results. Lowering the 
threshold towards 98%, results in 1825 pathways; a threshold of 95% withholds 5122 curves. As “Appen-
dix” reveals all three threshold values yield similar frequency distributions for the implied end states. Com-
paring the overall averages of the daily forecasts (between March 25 and March 31) of the 98% scenarios 
with the corresponding forecasts stemming from the 99% scenarios (as depicted in Table 2) results in minor 
deviations ranging between 1.10 and 1.52%.
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Results

As days evolved, data of the 15 days between March 25 and April 8 became available, 
as reported in Table 3 and visualized as red dots in Fig. 2a, b for the total ICU occu-
pation and in Fig. 2c regarding the daily net increase. Based on this unfolding path it 
becomes feasible to qualify the likelihood of different pathways and their corresponding 
end-states.
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Fig. 1   Overview of stylized pathways reflecting more likely scenarios a towards maximum ICU capacity 
needed in Belgium (R2 > .99), composed by using time series data from March 12 until March 24 (green 
dots), b for size and timing of the evolution towards maximum ICU capacity needed in Belgium (R2 > .99), 
composed by using time series data from March 12 until March 24 (green dots)
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During the first 3  days after modelling different end states and their implied paths—
i.e. between March 25 and March 27—the reported actuals were higher than the average 
forecasts of the 10,000 ICU occupation pathway, while still below the overall maximum. 
From March 28 onwards, the observed patterns started to move into the direction of sce-
narios suggesting that required levels would be situated between 1000 and 3000 of ICU 
occupation. Worst-case scenarios—pertaining to 5000 + ICU capacity—became less and 
less likely. Based on these insights, we reported to the Belgian government an expected 
maximum ICU occupation between 2000 and 3000 beds needed by the third week of April 
(see Fig. 2a, b). In addition, the peak of the net increase—for both end states—would be 
reached by the beginning of April (see Fig.  2c). Consecutive model updates and refine-
ments allowed us to predict the paths and the peaks even more precisely. Based on the 
updates, we reported from March 30 onwards that an expected maximum ICU occupation 
between 1000 and 2000 beds would be required by the second week of April, with a cor-
responding peak of the net increase—for both end states—reached by the end of March. 
From April 3 onwards we could narrow down this prediction towards a maximum capacity 
range between 1500 and 2000 beds. In addition, we confirmed to the Belgian authorities 
that the peak of daily net increase has been reached between March 25–27, and that for the 

Table 2   Decision space forecasting the ICU occupation between March 25 and March 31

Max. ICU capacity Average ICU occupation for the corresponding pathways

25/03/20 26/03/20 27/03/20 28/03/20 29/03/20 30/03/20 31/03/20

1000 530.41 598.30 662.88 722.03 774.37 819.26 856.77
2000 549.63 640.24 737.86 840.94 947.44 1054.95 1160.93
3000 554.59 651.96 760.39 879.53 1008.49 1145.73 1289.10
4000 556.01 656.58 770.32 897.71 1038.78 1192.99 1359.08
5000 560.06 662.81 780.00 912.65 1061.44 1226.54 1407.53
6000 557.22 659.75 777.21 910.96 1062.18 1231.69 1419.82
7000 565.75 671.08 792.29 931.05 1088.92 1267.17 1466.65
8000 560.28 665.33 786.64 926.13 1085.62 1266.81 1471.03
9000 562.46 668.74 791.80 933.75 1096.72 1282.72 1493.55
10,000 559.37 664.17 785.49 925.47 1086.32 1270.25 1479.31
Overall minimum 467.52 520.39 571.98 621.99 669.57 713.99 754.72
Overall maximum 655.25 812.99 1002.77 1229.04 1495.87 1806.41 2162.24
Overall average 545.50 631.60 723.48 820.43 921.78 1026.99 1135.52
Average of the 10 end states 555.58 653.90 764.49 888.02 1025.03 1175.81 1340.38

Table 3   COVID-19 ICU occupation in Belgium between 25/03/2020 and 08/04/2020 ( Source: Sciensano)

Date ICU occupation Date ICU occupation Date ICU occupation

25/03/20 605 30/03/20 1021 4/04/20 1261
26/03/20 690 31/03/20 1088 5/04/20 1257
27/03/20 789 1/04/20 1144 6/04/20 1260
28/03/20 867 2/04/20 1205 7/04/20 1276
29/03/20 927 3/04/20 1245 8/04/20 1285
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coming days, the growth rate of the ICU capacity would decline substantially. The plateau 
of ICU occupation in Belgium was reached by April 4, fluctuating since then around 1260 
beds. On April 6 we reported that the peak of the maximum capacity was reached exactly 
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Fig. 2   Overview of stylized pathways reflecting more likely scenarios a towards maximum ICU capacity 
needed in Belgium (R2 > .99), composed by using time series data from March 12 until March 24 (green 
dots) and including the unfolding observations between March 25 and March 31 (red dots), b for size and 
timing of the evolution towards maximum ICU capacity needed in Belgium (R2 > .99), composed by using 
time series data from March 12 until March 24 (green dots) and including the unfolding observations from 
March 25 onwards (red dots), c for size and timing of the evolution of the net increase of ICU occupation 
in Belgium (R2 > .99), composed by using time series data from March 12 until March 24 (green dots) and 
including the unfolding observations from March 25 onwards (red dots)
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1  week after the peak of daily net increase. The growth peak has been reached exactly 
2 weeks after the introduction of the mitigation measures by the Belgian government.

Discussion and conclusion

The heuristics outlined above combine a broad range of plausible scenarios (implying dif-
ferent end states and their resulting peaks) with an assessment of more likely pathways. 
Not only do the resulting models provide accurate predictions in the short term; when addi-
tional observations become available, they also point out plausible end-states. By initially 
allowing a wide range of futures (scenarios) to unfold, decision makers have at their dis-
posal a decision space which includes different (and thus also worst-case) scenarios. When 
new observations become available, pathways become visible pointing at specific end 
states in the medium term. As such, the creation of such a decision space requires temporal 
distance: only to the extent that one refrains from incorporating immediately more recent 
data, more plausible end states become visible.

At the same time, updating and re-calibrating the pathways seem to offer potential to 
start qualifying Knightian uncertainty (Knight 1921), which definitely is a line of future 
research to pursue. More specifically, the frequency distribution of the end states (as 
reported in “Appendix”), retained in the subset of more plausible scenarios might inform a 
quantitative assessment of the implied uncertainty.
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Fig. 2   (continued)
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As such, our contribution implies a plea for combining forecasting algorithms with 
a scenario-oriented lens and vice versa. Dynamically blending both approaches has the 
potential to inform policy makers in  situations of urgent decision needs conditioned 
by profound uncertainty. At such critical moments during an unfolding pandemic, the 
use of large amounts of data cannot inform decision-making, as those data are largely 
absent in such instances. In addition, the number of parameters to be estimated in epi-
demiological modeling increases with the complexity of the model: the more catego-
ries added, the more data points needed for confident estimates. To estimate the peak 
in ICU occupation, even more parameters are needed, such as daily influx and daily 
outflux. Diffusion modeling allows to gauge the peak without any underlying assump-
tion, except that the overall shape of the curve is sigmoidal. In absence of contain-
ment or mitigation measures, this is a valid assumption, given that R0 is not changing. 
At the beginning of the epidemic, R0 is the basic reproductive number, indicating the 
number of secondary infections caused by each infected person, if no measures are 
taken. When mitigation measures are taken, R changes (Rt being the reproductive num-
ber under the set of mitigation measures at that time). Any measures have as goal to 
reduce R0 to a value, Rt, that is below 1. Our heuristics will lay out likely paths towards 
potential end states based on initial observations coinciding with R0. As long as Rt is 
not changing or diminishing (below one), the heuristics allow to forecast a peak (which 
in case of a diminishing Rt reflects ‘worst-case’ predictions). If on the other hand, Rt 
is not influenced in a consistent (downward) way (below one), the sigmoid assumption 
no longer holds, and the diffusion of the pandemic will start to display multiple peaks 
which no longer will be grasped by the underlying model specifications which relies 
only on three parameters (and hence two inflection points).

The dynamic use of forecasting techniques combined with the multi-finality, end 
state based, foresight scenarios while coupled to a temporal distancing axiom and 
the subsequent loss function calculations, brings a novel insight to outcome predic-
tion modeling that is deemed directly relevant to policy makers in times of pandemic. 
Rather than just extrapolating from evidence, our approach signals the judicious gov-
ernance of evidence as those model building blocks merge into one coherent set of 
pathways towards increasingly likely outcomes. Policy makers can decide and act in a 
better-informed way on the basis of this set of pathways. In line with Justin Parkhurst’s 
plea (2016) for the good governance of evidence. As the pathways unfold, policy mak-
ers know that they incorporate the effects of the portfolio of mitigating measures they 
have taken going forward. As such, our heuristics support simultaneous policy mak-
ing, policy experimenting and policy learning. A coherent and consistent approach to 
this triad of policy making-experimenting-learning is deemed indispensable to policy 
development in times of deep crises, as the Covid-19 one illustrates. Such conclusion 
does warrant further research into the development and management of policy design 
for deep societal crises. Our modeling approach offers a first endeavor in that direction.
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Appendix

Including scenarios below the 99% threshold allows more pathways to be explored. 
However, this approach yields a similar frequency distribution for the different end 
states, as summarized in Table 4.
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