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Abstract
Malware is a blanket term for Trojan, viruses, spyware, worms, and other files that are 
purposely created to harm computers, mobile devices, or computer networks. Malware 
commonly steals, encrypts, damages, and causes a mess in these devices. The growth of 
malware attacks has a consequence on the growth and attractiveness of mobile features in 
mobile devices. Most malware research aims to probe the different methods of preventing, 
analysing, and detecting malware attacks. This paper aims to demonstrate an exhaustive 
knowledge map of the Android malware by collecting a ten (10) year dataset from the Web 
of Science database. A bibliometric analysis was employed for analysing articles published 
between 2010 and 2019. Using the keyword "malware", 5622 articles were retrieved. After 
scrutinising with the keywords of "Android malware", 1278 articles were then collected. 
This study provides an overview of the articles, productivity, research area, the Web of 
Science categories, authors, high-cited articles, institutions, and impact journals examining 
malware. Research activities are continued by placing terms in the classification of mal-
ware detection systems that outline important areas in malware research. From the analysis, 
it can be concluded that the highest number of publications focusing on malware studies 
came from the continent of Asia. Additionally, this study discusses the challenges of mal-
ware studies in the recent research studies as well as the future direction.
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Introduction

Malware is a term used for all kinds of malicious software designed to attack and dam-
age a computer system. The common malware causing harm to the network and operating 
system include Trojan horse, worm, virus, spyware, ransomware and adware (Razak et al. 
2016). These malware attack the system in different methods (Qamar et al. 2019). Such a 
malware is proficient in triggering destruction to the operating system and networks. In 
Quarter 2 (Q2) of 2019, malware targeting mobile devices had increased by 50% as com-
pared to the previous year (Palmer 2019). In January 2019, a total of two billion hacked 
records had been uncovered (Sanders 2019). McAfee Labs noted that attacks from ran-
somware had grown by 118% in 2019 (Mcafee 2019a, b) while banking Trojan had dou-
bled from June to September 2018, serving as the most vigorous in growth, among the 
malware families (Mcafee 2019a, b). A new malware reported by Chebyshev et al. (2019) 
revealed that the new Trojan Android.MobOk took money from mobile accounts by using 
subscriptions. To date, a total of 905,174 malicious installation packages had been detected 
by Quarter 1 of 2019. The number had decreased by 151,624 in Quarter 2 of 2019. Statis-
tics showed that the risk tool had increased by 41.24% in 2019 as compared to only 30.20% 
in 2018. Furthermore, the percentage of adware and Trojan was noted to have increased 
by 18.71% and 11.83%, respectively in 2019. This substantial growth in mobile attacks 
over the years showed that attackers were progressively noticing that the Android mobile 
devices are attractive targets (Verkijika 2019).

The Android network offers attractive functions for communication, such as entertain-
ment, data storage, and social communication (Chen and Li 2017). The acceptance of the 
operating system in Android mobile devices has been one of the most targeted by malware, 
spurring the attention of unscrupulous authors (Shrivastava and Kumar 2019a). These peo-
ple have been encouraged by their own unscrupulous goals and other lucrative benefits. 
The lack of priority given to security by mobile device developers has also caused the 
exploitation of malware into mobile devices (Thompson et al. 2017). To combat the secu-
rity issues, Android itself has provided sand-boxing for security mechanism; however, mal-
ware authors creatively manipulated other vulnerabilities of Android to spread the malware 
(Qamar et al. 2019). In addition, the lack of user awareness (Lopes et al. 2019), and the 
vulnerabilities of a computer operating system boost the opportunity for malware to exploit 
data through malicious codes (Goel and Jain 2018). These malicious programmes accom-
plish different purposes, such as encrypting, stealing crucial information stored in phone 
storage, removing important data, modifying or controlling main computing functions, and 
capturing the activities that are unknown to the users (Basu et al. 2019). The reliance on 
mobile devices by most users for their personal work through Wi-Fi access (Sharma and 
Gupta 2018a) gives feasibility to attackers to attack a user’s credential (Sharma and Gupta 
2016). The awareness on the emerging of malware should be alerted to all mobile users as 
a way to prevent the devices from being damaged.

To prevent the dissemination of malware, devices are protected by using existing meth-
ods such as anti-malware software and the intrusion detection system (IDS) (Talal et  al. 
2019). Nevertheless, novel approaches are still needed to detect the rapid increase in mal-
ware attacks throughout the year. With the advent of more advanced technologies, mal-
ware authors are able to hide malware from detection. Malware authors applied a diverse 
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sophisticated obfuscation technique including encryption, packing, polymorphism and 
metamorphism (Huda et  al. 2018). It is generally used to prevent signature extraction 
originating from the malware’s binary code (Or-Meir et al. 2019). This phenomenon has 
prompted many researchers to investigate and analyse the features of malware. Most of the 
studies were conducted so as to introduce a better approach of preventing, detecting, and 
proposing a new approach to solve Android malware. A study by De Lorenzo et al. (2020) 
used dynamic analysis with Vizmal to spot and avoid malware. Vizmal is a visualisation 
tool used to trace the execution of applications in Android. It is used to overcome the issue 
of obfuscation created by malware authors. Rolling acts as an assistant during inspection 
of malware analysis and observes the localisation of malicious. Others studies such as Yer-
ima et al. (2014) and Yu et al. (2013) applied the Bayesian technique to detect malware. 
Another study Magdum (2015) used a feature of permission-based dimension in machine 
learning to identify the malware. All these studies which described the research activities 
in this field are crucial. Despite the many research activities that have been published, the 
bibliometric study of malware likewise becomes popular in today’s research trends to pro-
vide an impactful study.

Bibliometric is a quantitative analysis of articles published in a specific field (Blanco-
Mesa et  al. 2017; Baker et  al. 2019). The bibliometric study analyses the data and fea-
tures of articles, such as productivity, research area, Web of Science (WoS) categories, 
authors, high cited articles, institutions, and impact journals. The bibliometric method 
is used to evaluate the impact of published articles and to assist the researcher in under-
standing the structure of the research life (Reuters 2008). It reveals the area of the stud-
ies, thereby increasing the interest and attention of researchers and funding institutions. 
Analysis derived from the bibliometric method is able to compare the countries that con-
tributed to the publications according to their respective fields. Bibliometric study has been 
applied in a wide range of fields including the COVID-19 pandemic (Gautam et al. 2020), 
environmental (Zhang et al. 2020), agricultural (Luo et al. 2020), sustainable development 
(Ye et al. 2020), Chinese loess plateau (Zhang and Chen 2020), accounting (Merigó and 
Yang 2017), economic (Bonilla et  al. 2015), linguistic decision making (Yu et  al. 2016) 
and fuzzy research (Merigó et al. 2015). Bibliometric studies contribute to several advan-
tages such as: (a) reveal the importance of research in the related field, (b) reveal the devel-
opment of research based on the institution and performance, (c) enable researchers to use 
the publication of related studies for future studies, and (d) to improve the knowledge of 
new researchers.

The current study aims to evaluate studies done on the Android malware which have 
been published in the WoS from the year 2010 to 2019. The study scrutinises the Android 
malware research topic, publication pattern, research area, authors, highly cited articles, 
impact journals, and the institution of the studies. The significant aspect in this analysis 
is that the Web of Science has a wider view of the contributions. In planning the review 
of Android malware articles in the WoS database, the following steps were followed: 
(1) identify and analyse the Android malware study in the Web of Science for 10 years 
(2009–2019); (2) present the findings of Android malware detection considering articles, 
productivity, research area, the Web of Science categories, authors, high-cited articles, 
institutions, and impact journals; (3) define and study the research gap, the highlighted 
questions, and the difficulties encountered in the prior studies; and (4) identify the latest 
trends on Android malware attack. The objective of classifying these steps is to deliver a 
better understanding of Android malware. The proliferation of Android malware studies 
has been analysed to determine the tendency of malware pattern and the detection proce-
dures taken to prevent the spreading of malware. Focusing on the past 10 years publication 
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of malware specifically for Android malware study, this bibliometric analysis similarly 
looked at the introduction of the scope and aims of the study by planning and evaluating 
the challenges in malware trends.

The current study used “android malware” as the main keyword to get the related 
publications. The keyword is imperative in order to retrieve current information on the 
research trend, and also to disclose the research direction and attraction. The related pub-
lications were searched by using the WoS Core Collection database. Limit was set at the 
past 10 years (2010–2019). Additionally, this paper also discussed the malware detection 
system and the challenges in malware study. As a summary of the paper, we analysed the 
research publication comprising seven (7) continents including Asia, Europe, North Amer-
ica, the Middle East, Australia, South America, and Africa. Asia had the highest publica-
tion at 40.5%, among all the continents, followed by Europe with 26.5%, and North Amer-
ica with 20.3%. This showed that Asia outperformed Europe by a difference of 14% while 
North America and Europe had some disparity. The continent with the least contribution of 
publication of Android malware seemed to be Africa, at 0.7% only. Table 1 illustrates the 
distribution of the publication in seven continents.

The remainder of this paper is systematised as follows. Section 2 discusses the process 
of collecting data. Section 3 provides the findings of the studies. Section 4 explains the tax-
onomy for the detection system of malware. Section 5 discusses the challenges and immi-
nent trends and Sect. 6 concludes the paper.

Methodology

Bibliometric is defined as the statistical method used to analyse articles, books, and other 
publications. It is frequently used in the library and information science field (Library 
2020). Bibliometric is similarly referred to as scientometrics. Bibliometric analysis cov-
ers part of the research evaluation methodology, and various kinds of literature tend to 
have their own method of bibliometric analysis (Ellegaard and Wallin 2015). According 
to Razak et  al. (2016), bibliometric is a process to appraise, analyse, and envision the 
arrangement of scientific fields. The bibliometric approach focuses on quantitative analy-
sis, such as citation counts. In such analysis, the term ‘complementary’ is used as a quali-
tative indicator to search for issues like funding granted, rewards received, peer review, 
and number of patents (Library 2019). The key concepts of the bibliometric approach are 
output and impact, which are used as a measurement for publications and citations. Hence, 

Table 1   Publication of 7 
continents

Continent Publication %

Asia 40.5
Europe 26.5
North America 20.3
Middle East 8.7
Australia 2.3
South America 1.0
Africa 0.7
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bibliometric studies give many advantages in order to provide the important trend of the 
research topic.

Bibliometric analysis has been used in various areas of study. The bibliometric study 
done by Shanker et al. (2020) analysed the studies of neurosurgeon’s academic works in 
the New York metropolitan area. Another bibliometric study was by Iwami et al. (2019) 
who examined fields that co-evolved with information technology while (Ospina-Mateus 
et al. 2019) analysed the study of motorcycle accidents. A study by Baker et al. (2019) in 
the field of financial economics used bibliometric analysis to present the productivity and 
impact of RFE (review of financial economics). Additionally, Prashar and Sunder (2019) 
used bibliometric study in the field of sustainability development, Raparelli and Bajocco 
(2019) in the field of vehicle agricultural and Galetsi and Katsaliaki (2019) in the field of 
Information Science. Comparatively, the bibliometric study of malware is only just emerg-
ing in research trends as compared to other fields. In this study, the researcher illustrates 
how to evaluate the research by using the bibliometric method. The evaluation is conducted 
through the analysis to get the impact of the articles. Table 2 analyses past studies which 
had applied the bibliometric approach, in which the current study is similarly applying. 
However, there are some dissimilarities noted on the keyword and findings used.

For the development of this study, the author used the database Web of Science which 
belongs to Thomson Reuters. In this study, WoS core collection database was chosen and 
SciELO Citation Index, KCI-Korean Journal Database, and Russian Science Citation Index 
were removed. The selected articles are solely written in English. To carry out the research 
analysis, the keywords malware and android malware were used to distinguish the numbers 
of publications of both keywords. The keyword Android malware focused on the publica-
tion of mobile malware while the keyword malware generated global information of mal-
ware including cybercrime, IoT, phishing and many more articles of malware in the WoS. 
The advantages of using the keyword ‘Android malware’ is the collected articles are related 
to mobile malware and resulted in better in findings. Thus, the Android malware is selected 
for the keyword in this bibliometric study.

The data for this study were analysed two times by considering the changes of number 
of the publication in the WoS database. Firstly, analysis of data was on October 2019 and 
secondly in February 2020. In February 2020, there were 1278 articles of Android mal-
ware and 5622 articles for malware. In this filter, 97 articles were excluded consisting of 
the SciELO Citation Index, KCI-Korean Journal Database, and Russian Science Citation 
Index. Then, the selected 1278 articles were analysed for the title, year of publications, 

Table 2   The list of studies of 
bibliometric methods

References Fields Year

Prashar and Sunder (2019) Sustainability development 2020
Shukla et al. (2020) Medical Informatics 2020
Galetsi and Katsaliaki (2019) Information Science 2019
Baker et al. (2019) Financial economics 2019
Lu et al. (2019) Public health 2019
Ahmad et al. (2019) Dental traumatology 2019
Raparelli and Bajocco (2019) Vehicle agricultural 2019
Firdaus et al. (2019) Blockchain 2019
Razak et al. (2016) Malware 2016
This study Android malware 2020
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research area, author/s, citation, institution/s and impact journal. These articles included 
articles, journals and book chapters. With the selected 1278 articles, an analysis was done 
by forming the affiliation between the research area, author/s, citation, institution/s and 
impact journal. Finally, the open-source application called R was used as a tool to visualise 
the final result. R was used because this tool supports many bibliographic visual for analy-
sis and comprises excellent features. Figure 1 clarifies the data collection process.

Web of Science (WoS)

The Web of Science (WoS) is a webpage that offers multiple databases for indexed journal 
articles. Formerly known as the Web of Knowledge, the WoS was introduced by the Insti-
tute for Science Information (ISI). It is presently managed by Clarivate Analytics (Iwami 
et  al. 2019). The WoS has indexed coverage starting from the year 1900. The WoS has 
covered more than 12,000 impact journals, with 148,000 journals and book-based proceed-
ings, across 256 disciplines in science, social sciences, and humanities (Webofknowledge 
2018). It provides the basic search, cited reference search, author search, and advanced 
search, from four databases such as the Web of Science Core Collection, the KCI-Korean 
Journal Database, Russian Science Citation Index, and SciELO Citation Index. The WoS 
provides the citation report; it also analyses the result so that it can track the activities, and 
the impact of the journal through an appropriate keyword search.

Including of 1278 record of:
Journals
Books chapter
Articles 

Keyword use: 
Android malware

WoS 
Database

Excluding 97 records of:
KCI-korean Journal Database
Russion Science Citation Index 
SciELO Citation Index

Findings:
Productivity
Research area
Web of Science categories
Authors
High cited articles
Institutions
Impact Journals

Analyze dan visualize

Documentation

Fig. 1   Methodology of data collection
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This study chose the WoS database because the contents of the WoS had been evaluated 
before, based on publication impact, review, influence, and geographical distribution. The 
WoS served as a research tool that accommodates the user in acquiring the information, 
and in analysing and disseminating knowledge. The WoS has innumerable capabilities of 
search and analysis. These are useful for researchers when searching for index journals in 
their respective areas. The indexing was first used to search for the results across disci-
plines. Past studies of bibliometric included Baker et al. (2019), Shukla et al. (2020), Yao 
et al. (2020) and Chen et al. (2019) which utilised the WoS database comprising of sci-
ence, social science, arts, and humanities field. Besides the WoS, there are other database 
websites, such as ScienceDirect, Elsevier’s Scopus, IEEE Explore, Google Scholar, and 
Springer.

Findings

This section describes the findings of Android malware studies. Articles between 2010 
and 2019 were analysed. Findings were divided into seven (7) sub-topics: publication year, 
countries, research areas, authors, institutions, highly cited article, and impact journals. 
The total publications were noted to be 1278 articles, as presented in Table 3.

The statistics in Table  3 showed that publications of Android malware studies had 
increased twice in amount, starting from 2011 until 2014. The highest publication was in 
2017, with 254 publications. The increased publication can be attributed to the wild growth 
of malicious software on Android devices. This seemed to have encouraged researchers to 
examine the factors infected by malware, the vulnerabilities of the devices, and the impact 
and method used to prevent and reduce those malware attacks. Publications on Android 
malware dropped slightly in the year between 2018 and 2019. The reason can be attrib-
uted to the delayed time taken by reviewers and publishers to accept such articles. Figure 2 
describes the type of publications based on the years.

In Fig. 2, it is noted that publications were increasing smoothly year by year. This occur-
rence then dropped slightly in 2018, and more significantly in 2019. Undoubtedly, publica-
tions of journals consume time from acceptance of articles to publication, hence the rate in 
publication showed a decline. This had clearly affected the number of publications for that 
particular year. In addition, the publication of book chapters was more noticeable in the 
year 2017 and 2019.

Productivity

Table 4 illustrates the output of the publications among the continents. It is essential to 
scrutinise the output growth of the articles in order to analyse the malware issue that is a 
worldwide concern. These articles were analysed based on the continent category so as to 

Table 3   Publication based on the year

Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

No. of Publication 1 6 26 60 119 198 241 254 236 137
Publication % 0.1 0.5 2.0 4.7 9.3 15.5 18.8 19.9 18.5 10.7
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detect the awareness of the malware issue and the frequency of malware attacks in the user 
country. Data presented in Table 4 list the publications across continents from year 2010 to 
2019.

Following the analysis of publications across continents, data are subsequently catego-
rised based on countries and continents according to year. Table 5 further illustrates.

From the above, it can be noted that the most productive continent in publishing arti-
cles were Asia and Europe. The former produced 40.5% while the latter produced 26.5%, 
and North America produced 20.3%. It appears that Asia had outperformed Europe by 
14%, thereby making Asia the most prolific in publications focusing on Android malware. 
Among these, 20.1% of publications were from China. Other countries that followed suit 
include: the United States, India, Italy, and South Korea. Comparatively, the Middle East, 
Australia, Africa, and South America contributed less.

Research funding is genuinely needed in scientific research. Here, it is observed that 
the United States had spent around 500 billion USD for research and development (R&D) 
while China had spent about 400 billion USD (Enago Academy 2018). However, research 
in the United States remained stagnant due to economic trouble (Enago Academy 2018) 
whereas China managed to increase its R&D funding, simultaneously yielding the most 
in scientific research. This is because it had the support of its government with a lot of 
funding provided for a collaborative venture in China (International Center 2019). In this 
regard, China defeated the United States, for the first time in science publishing (Enago 
Academy 2018; Dockrill 2018). Thus, Asia has become the most prolific in the publication 
of Android malware articles.

Research area

The subsequent finding focused on research areas which discussed the total publications 
found on a particular research area. This measure is important for measuring the perfor-
mance and challenges observed in the different fields of studies. The yield of the related 
research areas uncovered the movement of the research studies. Here, it was noted that the 

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Articles 1 1 3 7 22 51 58 68 101 102
Journal 0 5 23 54 99 148 186 187 130 34
Book chapter 0 0 0 0 0 0 0 2 0 3
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Fig. 2   Numbers of publication type based on years
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Table 4   Productivity based on 
continents

Continent/country Number of articles % of articles

South America 17 1.0
 Argentina 1 0.1
 Brazil 5 0.3
 Chile 2 0.1
 Colombia 8 0.6
 Ecuador 1 0.1

North America 330 20.3
 Canada 48 2.9
 Mexico 7 0.4
 Nicaragua 4 0.2
 Russia 6 0.4
 United States 272 16.7

Asia 659 40.5
 Bangladesh 5 0.3
 China 328 20.1
 India 110 6.8
 Indonesia 4 0.2
 Japan 15 0.9
 Malaysia 42 2.6
 Alestine 2 0.1
 Singapore 33 2.0
 South Korea 73 4.5
 Sri Lanka 1 0.1
 Taiwan 33 2.0
 Thailand 3 0.2
 Vietnam 10 0.6

Europe 431 26.5
 Austria 13 0.8
 Belgium 3 0.2
 Croatia 2 0.1
 Cyprus 3 0.2
 Czech Republic 5 0.3
 Denmark 7 0.4
 England 60 3.7
 Finland 10 0.6
 France 36 2.2
 Germany 44 2.7
 Greece 14 0.9
 Iceland 1 0.1
 Italy 98 6.0
 Luxembourg 20 1.2
 Malta 1 0.1
 Myanmar 1 0.1
 Netherlands 5 0.3
 North Ireland 13 0.8
 Norway 2 0.1
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WoS contained 27 research fields in the publication of Android malware. Table 6 presents 
this outcome.

From the above, the statistics showed that there were numerous research areas that were 
related, for instance, Computer Science, Engineering, Telecommunication, Science Tech-
nology, and Automation Control systems. The publications noted for all these research 
areas were dominated by Computer Science and Engineering, with 86.1% and 38%, respec-
tively. The total publications for Computer Science involving Android malware issues 
emerged from the evolution of device technology. Here, it was observed that the total pub-
lications from the Computer Science field were 1100 articles, followed by Engineering 
with 386 articles.

Second to Computer Science, the Engineering field was then followed by the Tele-
communications field. Based on this, it can thus be deduced that Computer Science and 

Table 4   (continued) Continent/country Number of articles % of articles

 Poland 2 0.1
 Portugal 6 0.4
 Romania 6 0.4
 Scotland 8 0.5
 Slovakia 2 0.1
 Spain 46 2.8
 Sweden 9 0.6
 Switzerland 11 0.7
 Ukraine 1 0.1
 Wales 2 0.1

Australia 37 2.3
 Australia 35 2.1
 New Zealand 2 0.1

Middle East 142 8.7
 Algeria 2 0.1
 Egypt 3 0.2
 Iran 17 1.0
 Israel 7 0.4
 Jordan 4 0.2
 Lebanon 4 0.2
 Morocco 2 0.1
 Oman 1 0.1
 Pakistan 29 1.8
 Qatar 5 0.3
 Saudi Arabia 24 1.5
 Turkey 38 2.3
 U Arab Emirates 6 0.4

Africa 12 0.7
 Namibia 1 0.1
 Nigeria 3 0.2
 South Africa 7 0.4
 Tunisia 1 0.1
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Table 5   Productivity of continent based on year

Continent/country Year

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

South America 0 0 0 0 1 5 5 0 3 4
 Argentina 0 0 0 0 0 0 0 0 0 1
 Brazil 0 0 0 0 0 2 1 0 2 0
 Chile 0 0 0 0 0 1 1 0 0 0
 Colombia 0 0 0 0 1 2 3 0 1 2
 Ecuador 0 0 0 0 0 0 0 0 0 1

North America 0 1 9 21 33 54 71 64 62 15
 Canada 0 0 2 0 5 11 7 7 11 5
 Mexico 0 0 0 0 0 0 5 1 1 0
 Nicaragua 0 0 0 0 0 0 1 2 1 0
 Russia 0 0 1 0 0 0 0 4 1 0
 United States 0 1 6 21 28 43 58 50 48 10

Asia 0 1 8 19 62 97 120 131 139 82
 Bangladesh 0 0 0 0 0 1 1 1 2 0
 China 0 1 5 7 25 44 59 69 75 43
 India 0 0 0 1 12 18 15 25 25 14
 Indonesia 0 0 0 0 0 2 1 0 1 0
 Japan 0 0 0 1 1 1 3 4 3 2
 Malaysia 0 0 0 3 4 4 6 10 12 3
 Palestine 0 0 0 1 0 0 0 0 0 1
 Singapore 0 0 0 0 1 5 10 7 6 4
 South Korea 0 0 0 5 14 14 13 6 11 10
 Sri Lanka 0 0 0 0 0 1 0 0 0 0
 Taiwan 0 0 2 1 5 7 10 4 2 2
 Thailand 0 0 1 0 0 0 2 0 0 0
 Vietnam 0 0 0 0 0 0 0 5 2 3

Europe 0 5 10 21 34 63 89 91 77 41
 Austria 0 0 1 3 2 1 2 1 1 2
 Belgium 0 0 0 0 1 1 1 0 0 0
 Croatia 0 0 0 0 0 1 1 0 0 0
 Cyprus 0 0 0 0 0 0 1 0 2 0
 Czech Republic 0 0 0 0 0 2 1 0 0 2
 Denmark 0 0 0 0 1 0 1 1 4 0
 England 0 0 1 1 4 6 10 16 15 7
 Finland 0 0 1 0 2 1 2 4 0 0
 France 0 0 2 2 5 6 4 8 8 1
 Germany 0 2 3 4 3 12 8 6 4 2
 Greece 0 1 0 0 2 6 1 1 3 0
 Iceland 0 0 0 0 1 0 0 0 0 0
 Italy 0 1 0 3 7 10 30 19 19 9
 Luxembourg 0 0 1 0 2 3 5 7 0 2
 Malta 0 0 0 0 0 0 0 0 1 0
 Myanmar 0 0 0 0 0 0 1 0 0 0
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Engineering correlated with each other. Both contributed to developing a new technol-
ogy that could be used by academia and the public. Nonetheless, there were specific terms 
observed to be related to Computer Science and Engineering, for instance, machine learn-
ing, security, artificial intelligence, computer architecture, and data processing. The devel-
opment of new mobile devices was associated with the expertise of Computer Science and 
Telecommunications, hence their link with each other.

Table 5   (continued)

Continent/country Year

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

 Netherlands 0 0 0 1 0 0 1 2 1 0
 North Ireland 0 0 0 1 2 2 2 2 1 3
 Norway 0 0 0 0 0 1 0 0 0 1
 Poland 0 0 0 0 0 0 1 1 0 0
 Portugal 0 0 0 0 0 0 1 3 1 1
 Romania 0 0 0 0 0 3 0 2 1 0
 Scotland 0 0 0 1 0 1 5 1 0 0
 Slovakia 0 0 0 0 0 1 0 1 0 0
 Spain 0 0 1 4 2 5 4 10 12 8
 Sweden 0 0 0 1 0 0 2 4 2 0
 Switzerland 0 1 0 0 0 1 5 0 1 3
 Ukraine 0 0 0 0 0 0 0 1 0 0
 Wales 0 0 0 0 0 0 0 1 1 0

Australia 0 0 0 2 2 5 8 2 8 10
 Australia 0 0 0 2 2 4 8 2 7 10
 New Zealand 0 0 0 0 0 1 0 0 1 0

Middle East 1 0 1 3 7 13 26 27 36 28
 Algeria 0 0 0 0 0 0 1 0 1 0
 Egypt 0 0 0 0 0 1 0 0 2 0
 Iran 0 0 0 1 1 1 2 7 3 2
 Israel 1 0 1 1 2 1 1 0 0 0
 Jordan 0 0 0 0 0 0 1 1 0 2
 Lebanon 0 0 0 1 1 0 1 0 1 0
 Morocco 0 0 0 0 0 0 1 0 1 0
 Oman 0 0 0 0 0 1 0 0 0 0
 Pakistan 0 0 0 0 0 2 7 2 11 7
 Qatar 0 0 0 0 0 0 2 2 0 1
 Saudi Arabia 0 0 0 0 2 1 3 6 4 8
 Turkey 0 0 0 0 1 4 6 8 12 7
 U Arab Emirates 0 0 0 0 0 2 1 1 1 1

Africa 0 0 2 0 2 3 0 1 1 3
 Namibia 0 0 0 0 0 0 0 0 0 1
 Nigeria 0 0 0 0 1 1 0 0 0 1
 South Africa 0 0 2 0 1 2 0 0 1 1
 Tunisia 0 0 0 0 0 0 0 1 0 0
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The article with the highest citation was traced to Dissecting Android Malware: Char-
acterisation and Evolution with 655 citations under the Computer Science and Engineering 
area in the WoS database. This confirmed that there was a close connection between the 
field of Computer Science and Engineering. Consequently, there was no significant differ-
ence within the first and second contributors in the publication of Android malware arti-
cles. Both areas were correlated in producing articles on the same topics. The rest of the 
research areas are listed in Table 6.

Web of Science categories

Table 7 lists the WoS categories, which presents the seven (7) sub-categories of Computer 
Science. The first among these was Computer Science Theory Methods, followed by Com-
puter Science Information System. The other five sub-categories came under the research 
area of Engineering comprising Electrical Electronics Engineering, Multidisciplinary 
Engineering, Mechanical Engineering, Industrial Engineering, and Aerospace Engineering. 

Table 6   Research area of studies

Research areas Publications Publication %

Computer Science 1100 86.1
Engineering 486 38.0
Telecommunications 321 25.0
Science Technology Other Topics 28 2.2
Automation Control Systems 28 2.2
Robotics 14 1.2
Mathematics 10 0.8
Physics 10 0.8
Materials Science 7 0.6
Information Science Library Science 5 0.4
Operations Research Management Science 5 0.4
Chemistry 4 0.3
Education Educational Research 3 0.2
Instruments Instrumentation 3 0.2
Acoustics 2 0.2
Energy Fuels 2 0.2
Mechanics 2 0.2
Optics 2 0.2
Business Economics 2 0.2
Fisheries 1 0.1
Health Care Sciences Services 1 0.1
Imaging Science Photographic Technology 1 0.1
Legal Medicine 1 0.1
Mathematical Computational Biology 1 0.1
Medical Informatics 1 0.1
Psychology 1 0.1
Social Sciences Other Topics 1 0.1
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Table 7   Web of Science categories

WoS category Publication % Publication

Computer Science Theory Methods 554 43.4
Computer Science Information Systems 499 39.0
Engineering Electrical Electronic 465 36.4
Telecommunications 319 25.0
Computer Science Software Engineering 211 16.5
Computer Science Artificial Intelligence 162 12.7
Computer Science Hardware Architecture 108 8.5
Computer Science Interdisciplinary Applications 102 8.0
Automation Control Systems 28 2.1
Multidisciplinary Sciences 19 1.5
Engineering Multidisciplinary 18 1.4
Robotics 14 1.1
Computer Science Cybernetics 9 0.7
Mathematics Applied 9 0.7
Physics Applied 8 0.6
Materials Science Multidisciplinary 7 0.6
Logic 6 0.5
Information Science Library Science 5 0.4
Operations Research Management Science 5 0.4
Engineering Mechanical 4 0.3
Mathematics 4 0.3
Chemistry Multidisciplinary 3 0.2
Instruments Instrumentation 3 0.2
Acoustics 2 0.2
Education Educational Research 2 0.2
Education Scientific Disciplines 2 0.2
Energy Fuels 2 0.2
Engineering Industrial 2 0.2
Green Sustainable Science Technology 2 0.2
Mathematics Interdisciplinary Applications 2 0.2
Mechanics 2 0.2
Optics 2 0.2
Business 1 0.1
Chemistry Analytical 1 0.1
Engineering Aerospace 1 0.1
Ergonomics 1 0.1
Fisheries 1 0.1
Health Care Sciences Services 1 0.1
Imaging Science Photographic Technology 1 0.1
Mathematical Computational Biology 1 0.1
Medical Informatics 1 0.1
Medicine Legal 1 0.1
Nanoscience Nanotechnology 1 0.1
Physics Fluids Plasmas 1 0.1
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As is obvious, Electrical Electronics Engineering comprised the most Android malware 
related publications, while Aerospace Engineering had the lowest.

Author

The finding in terms of the author is significant in this bibliometric study. It facilitates 
other researchers in their studies by highlighting the most prolific or most active contribu-
tor in terms of publications in the Android malware research. Table 8 presents the top 20 
most influential and productive authors. The table classified under Author is organised in 
terms of the number of publications, institutions, and countries.

Table 7   (continued)

WoS category Publication % Publication

Physics Mathematical 1 0.1
Physics Multidisciplinary 1 0.1
Psychology Experimental 1 0.1
Psychology Multidisciplinary 1 0.1
Social Sciences Interdisciplinary 1 0.1

Table 8   Authors

Authors Publication % Publications Institution Country

Francesco Mercaldo 33 2.5 University of Sannio Italy
Fabio Martinelli 20 1.6 University of Sannio Italy
Mauro Conti 19 1.5 Uni of Padua Italy
Carraro Aoron Visaggio 18 1.4 University of Sannio Italy
Jacques Klein 17 1.4 Univ Luxembourg Luxembourg
Yang Liu 16 1.3 Xidian Univ China
Nor Badrul Anuar 15 1.2 Univ of Malaya Malaysia
Li Li 15 1.2 Monash Uni Australia
Tegawende F Bissyande 14 1.1 Univ Luxembourg Luxembourg
Zhenxiang Chen 13 1.0 Univ of Jinan China
Vijay Laxmi 13 1.0 Malaviya Natl Inst Technol India
Wei Wang 13 1.0 Univ of Beijing China
Manoj Singh Gaur 12 0.9 Malaviya Natl Inst Technol India
Le Traon Yves 12 0.9 Univ Luxembourg Luxembourg
Li Qi 12 0.9 Uni Beijing China
Vittoria Nardone 11 0.9 University of Sannio Italy
Sakir Sezer 11 0.9 University Belfast Ireland
Vinod P 11 0.9 Uni of Padua Italy
ShanshanWang 10 0.8 Univ of Jinan China
QibenYan 10 0.8 Univ of Nebraska-Lincoln United States
Suleiman Y. Yerima 10 0.8 University Belfast Ireland
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Data above highlights publications generated from all the seven continents. Countries 
like Europe and Asia were the most notable, producing the most publications in Android 
malware with countries like Italy, Luxembourg, Malaysia, China, and India holding the 
best record. The top three authors were from the continent of Europe, specifically, from 
Italy. The most prominent author was Francesco Mercaldo, who published 33 articles, fol-
lowed by Fabio Martinelli with 20 articles and Mauro Conti with 19 publications. Both 
Francesco Mercaldo and Fabio Martinelli were from the University of Sanni, whereas 
Mauro Conti was from the University of Padua. From Asia, Yang Liu, Nor Badrul Anuar, 
and Vijay Laxmi served as the most active contributors. From China, Yang Li contributed 
a total of 16 publications while Nor Badrul from the University of Malaya, Malaysia, con-
tributed a total of 15 articles. The top 20 authors who were involved in various research 
areas were from 16 different institutions.

High cited articles

This section describes the number of citations, as illustrated in Table 9. A list of 25 most 
cited articles with information in terms of citation numbers, published journal, year, and 
research areas was presented. The top three contained the most cited publications which 
were published between five and seven years ago. This information conformed with the 
theory that the citation came from articles that have been longer in the database (Razak 
et  al. 2016). The research areas contributing to the publications on Android malware 
include Engineering, Telecommunications, Science Technology other topics, Automa-
tion Control Systems, Robotics, Mathematics, and finally, Computer Science which had 
become the dominant field for highly cited articles.

As noted in Table 9, the article that was most cited was, “Dissecting Android Malware: 
Characterisation And Evolution” which received 655 citations (Zhou and Jiang 2012). 
The author of this article was from China, the continent of Asia, and the article was pub-
lished by the journal of the IEEE Symposium on Security and Privacy in 2012. The article 
described the characteristics and evolution of malware by presenting a total of 1260 sam-
ples of Android malware from 49 dissimilar families. The characteristics of these malware 
samples were examined based on their behaviours, including installation, activation, and 
payloads. The article indicated the best detection of the malware at 79.6% and the worst 
detection at 20.2% based on the dataset. This outcome thus demanded that a better solution 
be developed for the next generation of mobile malware detection.

The top second article was “Flowdroid: Precise Context, Flow, Field, Object-Sensitive 
And Lifecycle-Aware Taint Analysis For Android Apps”, with 385 citations published in 
2014 by Acm Sigplan Notices (Arzt et al. 2014). This article used static taint analysis to 
present FLOWDROID for Android applications. The experiment was implemented on 500 
benign and 1000 malware from Google play and the VirusShare project, respectively. A 
closer view of both the two articles suggested that researchers studying malware detection 
could use this information for further knowledge. These articles were the most highly cited 
and acknowledged by other new researchers based on findings, methods, and ideas.

Institutions

This section discusses the publications that were linked to the respective institution. The 
aim of doing this was to categorise the institutions by comparing the publications. It 
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was found that institutions from Asia held the highest in Android malware publications. 
Table 10 illustrates the top 30 of the greatest institution, comprising four continents: Asia, 
Europe, the Middle East, and North America.

Table  10 presents the most distinguished institutions in publishing Android malware 
articles. It is noted that the Chinese Academy of Science is the greatest institution for pub-
lication, followed by Beijing University. This also showed that institutions from the con-
tinent of Asia had the greatest number of publications. This was then followed by other 
institutions from the continent of Europe, followed in line by North America.

Other distinguished institutions that were from Asia include the University of Chinese 
Academy, Tsinghua University, University of Malaya, Korea University, and the Univer-
sity of Jinan. This study further discovered that most eminent institutions in Asia were 
located in China. Moreover, China’s speed in the publication surpassed other countries in 
Asia, with mainly seven (7) institutions that contributed to these publications. Moreover, 

Table 10   Institutions

Institutions Publications % Publication Country

Chinese Academy of Sciences 47 3.7 China
Beijing University of Posts Telecommunications 33 2.6 China
Consiglio Nazionale Delle Ricerche Cnr 28 2.2 Italy
University of Sannio 26 2.0 Italy
Institute of Information Engineering Cas 25 2.0 China
Istituto Di Informatica E Telematica Iit Cnr 23 1.8 China
University of Chinese Academy of Sciences Cas 21 1.6 China
Tsinghua University 20 1.6 China
University of London 20 1.6 England
University of Luxembourg 20 1.6 Luxembourg
University of Padua 19 1.5 Italy
Pennsylvania Commonwealth System of Higher Education 19 1.5 United States
Universiti Malaya 17 1.3 Malaysia
University of California System 16 1.3 United States
University System of Georgia 16 1.3 United States
Korea University 15 1.2 Korea
University of Jinan 15 1.2 China
Nanyang Technological University 14 1.1 Singapore
Nanyang Technological University National Institute of 

Education Nie Singapore
14 1.1 Singapore

Centre National De La Recherche Scientifique 13 1.0 France
State University System of Florida 13 1.0 United States
Gazi University 12 0.9 Turkey
Inria 12 0.9 France
Malaviya National Institute of Technology Jaipur 12 0.9 India
Queens University Belfast 12 0.9 North island
Royal Holloway University London 12 0.9 England
University of New Brunswick 12 0.9 Canada
University of North Carolina 12 0.9 United State
University of Texas System 12 0.9 United State
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the analysis showed that the entire publications among institutions were held together by a 
small gap. Slightly different publications among the institutions proved that the researchers 
had excellent facility and high competition.

Impact journal

This section discusses the impact of the journal under the Computer Science field. A jour-
nal is a publication comprising of articles written by researchers and experts in a specific 
field of study and solely for academic or technical purposes. The impact journal is one of 
the critical parts in this study as it represents the most prominent journal with the greatest 
citations received in publications. The most influential journals are shown in Table 11 with 
the quartile, numbers of citation, impact factor, and average citations per year.

From the top 20 highest impact journal articles of Android malware, there were eight (8) 
articles with Quartile 1 (Q1) impact. Q1 to Q4 refers to journal’s ranking quartiles within 
a subdiscipline. Q1 is the greatest impact of the journal. In this regard, the most influential 
journal in this study was the IEEE Communications Surveys and Tutorials that have been 
in the WoS for five (5) years. It has an average of 22.2 citations per year. The title of the 
best impact journal article in the WoS was: Android Security: A Survey of Issues, Malware 
Penetration, and Defenses with 111 citations. Moreover, the oldest journal in the WoS is 
the Journal of Systems and Software which has been in the WoS for ten years. It has 44 
citations and an average of 4.4 citations per year. Aforementioned, the number of journals 
for Quartile 2 (Q2) is two (2), and for Quartile 3 is seven (7).

Figure 3 illustrates the top 20 authors, with 17 countries, and 28 of the most used key-
words. As seen in the figure, China is the highest contributor to the publication of an article 
with 12 authors. Next in line is Italy, the United States, India, and Luxembourg. There 
seemed to be a significant difference between the first contributor, China, and the sec-
ond contributor, Italy. The most common keywords used by the authors were: malware, 
Android, malware detection, and machine learning. Likewise, Malaysia also contributed to 
the publication, with the keyword most used being Android. The figure shows that the con-
tinent of Asia is the most prolific contributor to the production of Android malware, with 
studies conducted in China, Malaysia, India, and Singapore.

Figure 4 illustrates the relationship between the title, the authors and their affiliations. 
The titles most frequently used by the authors are Android, malware, and detection, and 
this applies to all the institutions. The title less used by the authors were framework, 
dynamic classification, approach, and techniques. Yang Liu from China was the top author, 
as seen in the figure. He also used the keyword Android in the title of his articles. The top 
university noted in Fig. 4 is traced to the University of Chinese Academy Science from 
China. Likewise, the University of Malaya, and the University of Malaysia Pahang, from 
Malaysia, also contributed to this publication on Android malware.

Malware intrusion detection system (IDS)

This section describes the malware IDS used as a methodology in malware detection. Mal-
ware is purposely created to disrupt the computer or mobile devices so as to gain informa-
tion and to spread the virus to infect the devices. Android has a size of 3.5 million appli-
cations and 99% have been targeted by malware (Amin et al. 2020). Most of the antivirus 
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Fig. 3   Relationship between country, author, and keywords

Fig. 4   Relationship between title with author and affiliation
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provided in Android apps do nothing to check the malware behaviour (Whitwam 2020). On 
top of that, 21.1 million Android mobile devices have been affected by malware applica-
tions when mobile users downloaded applications from Google Play Store (Counterpoint 
2019). This malware will indirectly influence users to adhere to unwanted premium ser-
vices, thereby causing severe damages to the mobile device (Computer Hope 2019). Mal-
ware applications calmly kidnap users’ account details, making users subscribe to premium 
messages via SMS, and then compromising the hardware (The App Store Celebrates 10 
Years and 2 Million Apps 2018). Mobile devices usually contain a lot of personal data 
and crucial information that are often used for online transactions, and as a medium for 
bill payments (Wazid et  al. 2019), thereby leading to many financial transactions. The 
impact of the malware is that it would conduct all these activities silently without the 
mobile device users’ knowledge, causing users’ financial losses. Some methods have been 
introduced to help researchers detect and overcome malware presence. Amin et al. (2020) 
proposed Android Intent (implicit and explicit) for malware detection by combining the 
Android permission and Android Intent. The use of intent continued in study (Shrivastava 
and Kumar 2019a) which focused on permission and intent modelling. On the other hand, 
Taheri et al. (2020) developed four detection methods using Hamming distance to find the 
similarities of benign and malware samples. Those mentioned studies used static analysis 
technique which is considered the greatest method in reducing power and time consump-
tion in detecting the malware. Despite that, Garg et al. (2020) proposed a multi stage model 
using anomaly (dynamic) to solve the security of IoT-enabled application. Both techniques 
have different roles and advantages.

Malware detection system is divided into three (3) sections as illustrated in Fig. 5. This 
system includes the analysis techniques, the detection approaches, and the deployment 
approaches.

Fig. 5   Taxonomy of the malware detection system
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Analysis technique

Analysis technique is a method which can determine the malicious code by classify-
ing the malware features into two types: dynamic analysis and static analysis (Belaoued 
et  al. 2019). Both types of analysis techniques are used to detect malware presence. 
Unfortunately, the unscrupulous author can use obfuscation as a technique to prevent 
being detected (Or-Meir et al. 2019). Obfuscation is a technique practiced so as to make 
something difficult to understand.

Static analysis is a technique of investigating the code in offline mode (Amin et al. 
2020). The examination is executed without running an application (Amin et al. 2020; 
Statista 2019; Tam et al. 2017; Akour et al. 2017). For this purpose, it uses the reverse 
engineering technique to extract certain features for analysis, such as API and data per-
missions (Singhal et  al. 2019). Static analysis detects the malware by comparing the 
detection code with the source code in the database. The process of the static analysis 
reads the code and detects unfamiliar code as malware. Studies by Singhal et al. (2019) 
and Magdum (2015) have detected malware by using static analysis technique. The 
advantage of using static analysis is its fast detection. The process of detection can be 
performed without executing the applications (Shrivastava and Kumar 2017). Although 
static analysis is unable to detect the obfuscation technique, it is able to reveal and 
address the suspicious files much faster (Shrivastava and Kumar 2019a).

Dynamic analysis observes the behaviour of malicious files during the execution of 
an application (Akour et  al. 2017). It is different from static analysis in that dynamic 
analysis is able to detect unknown malware, new malware, and even obfuscation tech-
niques (Kuntz et al. 2017; Kim et al. 2019). The application that is detected as malicious 
by static analysis will then be re-analysed by dynamic analysis. This technique is more 
accurate and it reduces costs. Some studies such as Lanet et  al. (2018) and Feizollah 
et al. (2017) had used dynamic analysis. The only limitation of dynamic analysis is that 

Table 12   The comparison between static and dynamic analyses

Analysis technique Static Dynamic

Characteristic
 Analysis mode Offline mode In execution of applications
 Malware analysis Applied Reverse engineering 

tools such as Apktool
Using the API system to check 

malicious

Analyze the behavior during execu-
tion of an application

It observes the malicious and error 
program

 Tools used for analysis DroidRanger
Scandroid
RiskRanker
Stowaway
AdRisk
DNADroid
Kirin

CrowDroid
TaintDroid
ParanoidAndroid
Aurasium
AppFence
DriodScope

Benefit The detection is fast The result is more accurate
 Limitation It is incapable of detecting 

unfamiliar and new malware 
families

Increase power consumption and cost
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it is unable to identify malicious applications like IMEI stealers (Singhal et al. 2019). 
Table 12 illustrates the comparison between static and dynamic analyses.

Detection approach

Malware detection approaches can be divided into three types: signature, anomaly, and 
hybrid (Razak et  al. 2016). The signature approach detects malware events by matching 
the signature stored in the database via the normal and abnormal patterns (Seo et al. 2014a, 
b). In comparison, the anomaly approach recognises malicious behaviours by supervising 
the events via network traffic and system (Suárez-Tangil et al. 2018). It has the advantage 
of detecting new malware and unfamiliar malware by observing the behaviour. Neverthe-
less, this approach is unable to detect unfamiliar and new malware that is not matched with 
the signature in the database. Thus, the database needs to be updated frequently in order to 
enable the detection of various malware. The comparison between the signature and anom-
aly approaches is presented in Table 13.

Another approach is the hybrid approach which is the combination of the anomaly 
and signature approaches. The combination helps to enable the detection of new malware 
whenever the signature is unable to perform the detection. This approach overcomes the 
deficiency of both the anomaly and signature approaches. The studies by Seo et al. (2014a, 
b) and Yu et al. (2013) had used the anomaly approach to detect malware. Table 14 dem-
onstrates the studies of the signature approach, Table 15 highlights studies of the anomaly 
approach and Table 16 presents the studies of the hybrid approach.

Deployment approach

The deployment approach is used for detecting malware in the intrusion detection system 
(IDS). An IDS is a security tool used for recognising intrusions, just like the firewall (Fei-
zollah et al. 2013). The IDS hardware, software, or combination, is used for monitoring the 
activities and for detecting the malware signal in the network or system. Anomaly detection 
and signature-based detection are two types of IDSs (Daimi 2017). The malware intrusion 

Table 13   The comparison between signature and anomaly approaches

Detection approach Advantages Disadvantages

Signature High detection rate 
and accuracy for 
known attacks

The simple and 
effective to detect 
known malware

Has lower false 
alarm rate

Only detect the code that has a signature in the database
The database needs to update frequently to detect new malware

Anomaly Able to adapt and 
detect new, unique 
and abnormal 
malware

Less dependent 
on an existing 
database

Have a higher false alarm rate due to unconfigured properly 
before their deployment
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detection system is deployed either in a host-based, network-based, or hybrid-based sys-
tem. An activity in the host-based system (HIDS) is monitored, analysed, and processed by 
itself whilst the deployment detection in network-based (NIDS) system is run by a remote 
server (Mas’ud et al. 2014a, b). Meanwhile, the hybrid-based detection system comes from 
the combination of the HIDS and the NIDS. The aim of the combination (HIDS and NIDS) 
is to increase the capabilities of the existing IDS (Potteti and Parati 2015). The deployment 
approach used by previous studies is presented in Table 17.

Mobile malware

The popularity of the mobile device has spurred the emergence of malware. Most mal-
ware target Androids for spreading the malicious code because it is the most commonly 
used operating system in many mobile devices. As mentioned before, malware targets 
mobile activities by stealing user-sensitive data such by encrypting users’ banking data, 
eliminating crucial data, altering, and monitoring user’s activities without the users’ 
knowledge (Qamar et al. 2019; Arabo and Pranggono 2013). Malware is able to interrupt 

Table 17   Deployment and 
detection approach studies

References Deployment 
Approach

Detection Approach Year

Guanghui (2020) NIDS Anomaly 2020
Yang et al. (2019) NIDS Anomaly 2019
Niazi and Faheem (2019) NIDS Anomaly 2019
Liang et al. (2019) NIDS Anomaly 2019
Besharati et al. (2018) HIDS Signature 2019
Jose et al. (2018) HIDS Anomaly 2018
Deshpande et al. (2018) HIDS Anomaly 2018
Subba et al. (2017) HIDS Anomaly 2017
(Haider et al. (2016) HIDS Anomaly 2016
Moon et al. (2016) HIDS Anomaly 2016
Koucham et al. (2015) HIDS Anomaly 2015

Table 18   Malware and the characteristics

Types of malware Characteristic

Virus The virus spreads and infects the file and the program by executed itself
Worm A worm replicates and sending itself through the network without affecting the 

operating system
Trojan horse Trojan will disguise itself as a trustworthy program to attract a user to run it. It will 

distribute the virus when the program is running
Botnet A Botnet spread itself through the network and allowed an attacker to control the 

infected computer
Spyware Spyware took user information, data, and observe their activities without their 

knowledge
Rootkits A rootkit treats the root of the system
Adware Adware is an unwanted advertisement in the form of a popup or banner, and it comes 

from the history of the user’s browser
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the operation of the devices by consuming the resources of the devices such as the stor-
age, processor, and network (Shrivastava and Kumar 2019b) (Cyber Secur. Parallel Dis-
trib. Comput. 2019). The malware author has a lot of creativity such that they spread the 
malware by infecting the devices and network insidiously. To better understand malware 
threats, this section reviews studies of mobile malware extracted from the WoS database, 
published from 2010 to 2019. Table 18 lists the various types of malware and its character-
istics which are incredibly harmful to mobile devices. These diverse types of malware can 
threaten the devices by employing different purposes in order to damage the system in the 
mobile devices.

The table indicates how each malware type can attack the mobile devices through vary-
ing methods. The infected and damaged mobile devices would then be infiltrated with fake 
emails, unnecessary software updates, fake websites, and counterfeit applications. Their 
presence is unnoticed because they are silent; thus, devices would be infected without the 
user’s knowledge. Users would only detect their presence when the devices are fully dam-
aged, or in critical condition. Future studies should attempt to describe the detection using 
multiple methods so as to reduce such incidences on mobile devices. Figure 6 presents the 
mapping of malicious malware types and their behaviours.

Risk analysis

Risk analysis is a process used to identify the loss, the threat, and the level of risk occur-
ring (Alali et al. 2018). The level of risk is measured based on the impact of the mobile 
attack. As mobile device functions grow drastically to compete with the new emergence 
of design among developers in the market place, mobile users face higher risks (Naga 
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Malleswari et al. 2017). Risk analysis is thus analysed by some procedures, such as cat-
egorising the risk, triggers, effects of the risk, re-evaluating the possibility of the risk, and 
finding the factor to mitigate the risk (Sharma and Gupta 2018b; B 2018). There are three 
levels of risk, such as low, medium, and high (Shrivastava and Kumar 2019c). Likewise, 
there are three main elements of security materials, such as confidential data, availability, 
and integrity (B 2018). Table 19 illustrates the risk level of risk analysis.

The risk levels are the yield of the inacceptable effect of ambiguous events or impact 
of the event. The risk levels are evaluated based on the factor of impact and likelihood. 
Nevertheless, the vulnerabilities of this method are that they are unable to incorporate the 
abilities of the threat so as to determine the risk level. Moreover, the threat depends on the 
vulnerabilities of the system. Therefore, risk analysis helps the user to manage the risk fac-
tor for a specific event.

Threats

The risk analysis is the consequence of the threat on mobile devices. Mobile threats are 
divided into four (4) classes, such as application threats, web threats, network threats, and 
physical threats (Lookout 2019). Table 20 represents the details of each threat.

Table 19   Risk level

Risk level Description

High The risk is unacceptable and it reduces the risk implemented before running the application. 
The data are exposed to leakage, unsecured wifi, the presence of spyware, and phishing 
attacks

Medium The risk is acceptable and under protection. It needs to monitor continuously for each threat to 
ensure the level at the normal

Low The risk is acceptable and able to be used. The security is provided by the mobile devices with 
the relevant protection but needs to observe the threat to detect any changes that will increase 
the risk level

Table 20   The threat and descriptions

Threat Description

Application based The threat comes from downloaded applications from the market store. The fraudulent 
application looks legitimate and exploits the devices once downloaded. The vulner-
abilities of the devices contribute to the exploitation of the threat

Web based The connection of the Internet has spurred the threat easily comes when the users used 
the devices to surf the website contained malware

Network based The attackers usually provided open wifi to gain confidential information from the users
Physical based The portable device easily lost or stolen. The value of the devices gathered with the 

data stored inside has encouraged the unscrupulous to get the devices physically
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Evaluation measure

The common evaluation of measurements as practiced by researchers in malware IDS is 
the effectiveness of the system they used. This evaluation focuses on accuracy, true pos-
itive rate (TPR), false positive rate (FPR), true negative rate (TNR), false negative rate 
(FNR), f-measure, and recall. A true positive (TP) indicates the precise measurement of the 
presence of malware. The higher the true positive, the better the outcome. A false negative 
(FN) indicates a detection of malware erroneously defined as benign. A true negative (TN) 
refers the benign correctly as a benign while a false positive (FP) defines a benign errone-
ously as a malware (Kamesh and Sakthi Priya 2012).

Challenges and future direction

The challenges and movements for future research that are related to mobile malware are 
hereby also discussed. A number of studies had emphasised the malware issue which posed 
a threat to mobile devices. It is thus a challenge to many researchers looking at malware 
detection. Although numerous methods have been noted in advanced studies, and various 
systems have been proposed for detecting malware automatically, malicious files, websites 
and the number of malware continue to grow (Akour et al. 2017). Thus, more needs to be 
done in this research field.

Accuracy

The accuracy of malware detection is measured by using the measurement of TP, FP, TN, 
and FN. They are called true if the detection is accurate and matches reality. The perfect 
detection is when the TPR = 100%, TNR = 100, FPR = 0% and FNR = 0%. In truth, it is 
impossible to achieve 100% accuracy of TP and FN (Akour et  al. 2017). However, with 
a larger amount of data, analysis may possibly provide a near accuracy of the positive or 
negative measurement. False positive or false negative is likewise known as a false alarm. 
It incorrectly identifies a legitimate programme as a malicious programme or a malicious 
programme as a legitimate program. This is a big challenge in the IDS. This issue frustrates 
users and the developers when the programme they had created is blocked. This occurrence 
can affect the reputation of their business. No one will run the programme anymore when 
it is flagged as malicious. Another effect for a false alarm is that it could turn the device to 
become dangerous when the suspicious programme runs into the user device. This scenario 
is a significant problem in current technology. A study by Wang et al. (2018) uses a hybrid 
approach to analyse the data of malware, and the results showed a lower rate of false alarm.

Features

Features are the first part to be selected prior to analysing and detecting the malware. The 
best feature selected would allow the detector to become more efficient (Aung and Zaw 
2013). Inappropriate features may cause a high false alarm (Razak et al. 2016). However, 
the number of features can be reduced so as to get a higher level of accuracy. The first 
and crucial step in machine learning method is feature selection (Feizollah et  al. 2015). 
The selection of appropriate features can thus lead to higher accuracy, thereby reducing 
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the false alarm. Nevertheless, accumulating a massive number of inappropriate features for 
the machine learning classification may cause classifier drawbacks like the misunderstand-
ing of algorithm learning, an increase in the model’s running time, and lower generality 
(Mas’ud et  al. 2014a, b). Subsequently, an enormous size of features contributes to the 
growth of space usage, and intricacy management. Therefore, it is unsuitable for mobile 
devices with limited storage and restricted power consumption. The selection of appropri-
ate features enables machine learning classifiers to make more efficient detections during 
the pre-processing of data. Thus, reducing the features is necessary in order to preserve the 
accuracy.

Dataset

The occurrence of Android malware attacking users has increased rapidly in recent years. 
The Android malware applies sophisticated techniques such as metamorphism, polymor-
phism, oligomorphic, obfuscation, and modification to avoid detection. The detection 
mechanism provided by mobile devices is unable to operate efficiently due to restricted 
datasets, and the lack of understanding of malicious activities. To evaluate the proposed 
system of detection, a dataset base is required. The limitation of the malware sample can 
make the detection system unreliable. This study Razak et al. (2016) discovered that more 
than 100,000 malware modifications belonged to 777 families. Studies by Zhou and Jiang 
(2012) and Arzt et al. (2014) had used malware samples from the Virus Share project, and 
benign samples from Google Play. They noted that the dataset of malware has been prolif-
erating. Based on this, a restriction mechanism is needed. Moreover, outdated dataset has 
also become inappropriate for analysis, thus research also requires the latest dataset to be 
examined so as to improve the detection performance in terms of accuracy and to lower the 
rate of false alarms.

Risk assessment

Risk assessment is a fundamental method used for explaining the possibility of risk levels. 
It is a crucial part that shields the user against dangerous applications; it grants mobile 
users a possibility of reducing the threat impact to a tolerable level. The process for risk 
assessment is carried out so as to measure the impact of the threat based on the value of the 
assets, threats, vulnerabilities, and the effects resulting from the attack. The acknowledged 
risk from threats and weaknesses must be ranked depending on the criticality of the issue.

Leading a risk assessment is interesting due to less awareness on its effect on risk deci-
sion making. A study by Naga Malleswari et al. (2017) helped to improve users’ awareness 
by presenting the privacy risk for users before granting permission. Similarly, a study by 
Alali et al. (2018) proposed the Fuzzy Inference Model (FIS) which determines four (4) 
factors of risk: threat, vulnerability, impact, and likelihood. These were used for classifying 
the risk impact, and for providing the response to mitigate the risk. Razak et al. (2019) also 
presented the risk factor based on zoning approaches.

Android malware on the Internet of Things (IoT)

The IoT is the modernised technology of communication among things and objects (Wu 
et  al. 2019). The IoT integrates widely with mobile devices by serving various services 
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around the world. The mobile devices supervise and control the provided services for the 
long distance with keyless mechanisms. For example, Macmanus (2012) offered a location 
in Audi’s new business car. The volume of data produced every day from different IoT has 
enlarged, from terabytes to petabytes (Garg et al. 2020). The IoT services produce more 
convenient experiences such as remote monitors to lessen energy waste for home equip-
ment, such as air conditioning, television, and refrigerator. With the sharp growth of tech-
nology, more and more IoTs services are controlled by Android mobile applications.

Behind the sophisticated technology of IoT, the issue of security in IoT services has also 
worsened, especially with malware attacks. Likewise, the IoT threat has also increased over 
the past few years. Attackers are able to slip into mobile user devices and reach the control 
of the IoT. It benefits the attacker by acquiring and integrating information such as personal 
data, contact number, location, payment data of Internet banking from mobile devices. The 
open-source in the Android application has become one of the factors causing malware 
increase in the IoT services. Studies showed that eight new malware families that emerged 
in the year 2015 had mostly originated from China and the United States (Johnson 2016).

To overcome the malware attack, some protection has been introduced. However, the 
protection of the IoT system is actually a part of the tough problem due to the difficulty in 
developing an effective detection system and in avoiding the leakage of information. The 
study by Park et  al. (2019) proposed three levels of awareness to be introduced into the 
IoT system: define the threat, measure the risk, and optimise the risk. A study by Wu et al. 
(2019) was able to detect malware by using the Bayesian network which was grounded on 
traffic feature analysis. The result showed a higher accuracy with fewer substantial features. 
Another study (Ham et al. 2014) used the linear support vector machine (SVM) to detect 
malware so as to secure a reliable IoT service. Another study (Garg et al. 2020) used the 
Density-Based Spatial Clustering of Applications with Noise for the same purpose.

Mobile banking

The successful use of mobile phone among people and network thriving globally has 
encouraged the people to expose their business to online systems (Sharma and Gupta 
2016). Exposing the business has to expand the users of mobile banking. Despite the 
advantages of using mobile banking, this type of banking also invites the proliferation of 
malware altogether. The emergence of banking malware necessitates more attention as this 
threat is one of the most dangerous threats to the mobile user; e.g. by generating malicious 
code with the intention of stealing personal financial information from banking and trans-
ferring funds activities to the hacker accounts. Mobile bankers previously spread the mal-
ware through third-party apps and recently infiltrate Google Play widely (Mobliciti 2020). 
A new version of mobile banking malware is impersonating as legitimate cryptocurrency 
wallet to steal money from the secure wallet found on Google Play (Seals 2020; Whit-
taker 2019). The malware will flourish more in sophistication as cryptocurrency trading 
becomes widespread.

Fake applications for COVID‑19 pandemic

Covid-19 has threatened the world since 2019 and in this period, malware have been 
growing fast. Ransomware thrives 72% and mobile vulnerabilities grow 50% (Security 
2020). This increase in malware is because most of world population is in lockdown, 
whereby this situation renders developers the busiest in gaining profit for their benefit. 
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This complicated situation has offered attackers to highlight their talent of creating 
applications for users. Starting with fake application to control the dissemination of the 
coronavirus, malicious apps were also created to give recommendations on how to avoid 
infection from the biological virus. Users would show unlimited interest in any applica-
tion that are related to COVID-19 in order to stay healthy (Moran 2020). Banking is a 
susceptible sector in this pandemic since users tend to utilise online shopping during 
lockdown situations. Banking trojan and information stealers were found rampant with 
the increase of unemployment (Ljubas 2020). Thus, this sector has contributed to the 
greatest amount of malware activities to spread malice during the COVID-19 pandemic.

Conclusion

The popularity of computers and mobile devices has led to the emergence of new mal-
ware. According to TMS (2011), malware had increased by 54% in 2017 as compared 
to previous years. A total of 24,000 malicious files are detected each day. An estimation 
by (Spring 2019) noted that one out of five computers would be attacked by at least one 
malware in 2019. The Internet is one of the factors frequently spreading malware into 
user’s devices. To alleviate malware problems and to improve safety in mobile devices, 
several approaches have been introduced by various studies.

The current study used the bibliometric technique to analyse the Android malware 
trends from 2010 until 2019. Some findings were noted and highlighted, for instance, 
productivity, research area, authors, highly cited articles, institutions, and impact jour-
nals. These criteria were able to highlight the research trends related to Android mal-
ware production. The number of Android malware production had increased at an aver-
age rate of 2.1% on a yearly basis. The report by Dobran (2019) stated that ransomware 
attacked new organisations every 14 s for the year 2019, and for the year 2021, it would 
be every 11 s.

The bibliometric analysis of the Android malware in 2010 until 2019 showed that 
Asia was the highest contributor of research publications, among other continents. Next 
was Europe and North America. The Middle East, Australia, Africa, and South America 
contributed less. The highest publication of Android malware articles was from China, 
with a total of 25% publications, followed by the United States, India, Italy, and South 
Korea. This implies that Asia had outperformed Europe by a difference of 17.6% of 
publications.

In addition, this study has also highlighted the top 20 authors who were most active 
in the area of research. The top author was Francesco Mercaldo, followed by Fabio Mar-
tinelli, Mauro Conti, and Carraro Aaron Visaggio. These top four authors were from 
Italy, the continent of Europe. The top two authors and the fourth top author were from 
the University of Sannio while the third top author was from the University of Padua. 
The subsequent authors were from the countries of Luxembourg, Malaysia, China, and 
India.

This study has shown the bibliometric analysis of the publications in the field of 
Android malware. The analysis provides the objective and a quantitative measure of the 
influence that a publication has on its respective specialty. The information present in this 
study is important for researchers to build the network of research in their field of study. It 
is hoped that the information would encourage more future research to be performed as a 
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measure to overcome the rapid proliferation of malware. Finally, this study delivers a gen-
eral depiction on the subject matter and aims to exhibit the importance of the expansion in 
the field of Android malware investigation.
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