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Abstract
As an important biomedical database, PubMed provides users with free access to abstracts 
of its documents. However, citations between these documents need to be collected from 
external data sources. Although previous studies have investigated the coverage of various 
data sources, the quality of citations is underexplored. In response, this study compares 
the coverage and citation quality of five freely available data sources on 30 million Pub-
Med documents, including OpenCitations Index of CrossRef open DOI-to-DOI citations 
(COCI), Dimensions, Microsoft Academic Graph (MAG), National Institutes of Health’s 
Open Citation Collection (NIH-OCC), and Semantic Scholar Open Research Corpus 
(S2ORC). Three gold standards and five metrics are introduced to evaluate the correctness 
and completeness of citations. Our results indicate that Dimensions is the most comprehen-
sive data source that provides references for 62.4% of PubMed documents, outperforming 
the official NIH-OCC dataset (56.7%). Over 90% of citation links in other data sources can 
also be found in Dimensions. The coverage of MAG, COCI, and S2ORC is 59.6%, 34.7%, 
and 23.5%, respectively. Regarding the citation quality, Dimensions and NIH-OCC achieve 
the best overall results. Almost all data sources have a precision higher than 90%, but 
their recall is much lower. All databases have better performances on recent publications 
than earlier ones. Meanwhile, the gaps between different data sources have diminished for 
the documents published in recent years. This study provides evidence for researchers to 
choose suitable PubMed citation sources, which is also helpful for evaluating the citation 
quality of free bibliographic databases.
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Introduction

As an indispensable component of scientific publications, citation allows the author to 
include relevant studies in his/her own work for various motivations, including acknowl-
edgment, criticism, persuasion, and background reading (Tahamtan & Bornmann, 
2018). With backward citations (also known as references), one can trace the intel-
lectual bases of academic work (Hammarfelt, 2011). On the other hand, the scientific 
impact and derived studies of this work can also be investigated through its forward 
citations (Hu et  al., 2011). The importance of citation is even more prominent when 
it comes to the field of bibliometrics. By recording the citation relationship between 
publications, citation indices (e.g., Science Citation Index and Social Sciences Citation 
Index) have been developed and used for document retrieval and analytical purposes. 
Subsequently, numerous bibliometric applications have emerged, including research 
evaluation (Abdul-Majeed et  al., 2021; Hirsch, 2005), identification of research front 
(Small et al., 2014; Wang, 2018), and topic evolution analysis (Chen et al., 2017; Han, 
2020). These applications serve as valuable tools for researchers and decision-makers, 
but they also heavily rely on citation data.

Clarivate’s Web of Science (WoS) and Elsevier’s Scopus are the two most compre-
hensive bibliographic databases that provide users with the metadata of hundreds of 
millions of scientific publications and citations between these documents. In fact, WoS 
and Scopus have been the preferred choices for many bibliometrics studies as they are 
recognized as authoritative and accurate data sources (Zhu & Liu, 2020). However, both 
databases are commercial, charging a substantial cost for the access to their data. Such a 
paywall impedes researchers without institutional access to perform analyses on the two 
platforms. To alleviate this problem, the open access (OA) movement has been proposed 
and enacted by organizations and scientists from various disciplines. For instance, the 
establishment of PubMed and arXiv enables access to the abstracts and full texts of 
research papers free of charge. This results in accelerated scholarly communication as 
well as increased exposure of publications (Wang et al., 2015). It is also found that open 
access may promote the impact of scientific documents (Koler-Povh et al., 2014).

As one of the most comprehensive life science and biomedical databases, PubMed 
provides researchers with free access to the abstracts of its documents. It is an impor-
tant database for literature-based discovery and other bibliometric research. During the 
COVID-19 pandemic, PubMed plays a critical role in grasping the latest scientific find-
ings and supporting decision making. A number of studies have been conducted on it 
to help the fight against COVID-19, including drug repurposing/discovery (Mohamed 
et  al., 2021), evolutionary path analysis (Ho & Liu, 2021), and topic analysis (Zhang 
et  al., 2021). While the PubMed documents are open to researchers, the citation rela-
tionships are not shipped with them. In other words, citation links between these doc-
uments are still “protected” behind the paywall. This poses a significant challenge to 
bibliometricians, who have to augment PubMed with external data sources to continue 
their citation-based studies (Boyack et al., 2020; Xu et al., 2020).

To rectify this, scholars urge that citation data should be recognized as a part of the 
commons that are freely and legally available for sharing (Shotton, 2013). New aca-
demic products that involve citation data have also been developed and open to the 
public, including Dimensions, Microsoft Academic Graph (MAG), Semantic Scholar, 
and PubMed Central (PMC). National Institutes of Health (NIH) has also launched 
its official project to construct an open citation collection for PubMed documents (Ian 
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Hutchins et al., 2019). With such a wide range of free bibliographic data sources, a criti-
cal research problem has emerged:

Which is the most suitable free data source for providing PubMed with citation 
relationships?

Related studies have been conducted to analyze the differences between academic data-
bases, primarily focusing on the coverage of documents (Harzing, 2016), journals (Singh 
et  al., 2021), scholars (Harzing & Alakangas, 2017), and institutions (Hug & Brändle, 
2017). However, besides the coverage, it is also essential to evaluate the correctness and 
other aspects of the quality of the databases. Missing and false citations may cause prob-
lems in bibliometric practices, especially for the studies that are sensitive to citation rela-
tionships, e.g., main path analysis and link prediction. In addition, most previous studies 
compared databases based on relatively small or biased samples. They did not take Pub-
Med as a research object, either.

To fill these gaps, we study the quality of citation relationships provided by five freely 
available data sources based on the 2020 version of PubMed Baseline,1 which contains 
over 30 million publications but most of the citations are not given. The free bibliographic 
data sources are compared pairwise and against gold standards (PubMed, Scopus, and 
WoS) in terms of various evaluation metrics. Different from previous studies, we avoid 
selection bias by adopting a complete set of documents and retrieving their backward cita-
tions from each database. In addition to coverage, we define other metrics to investigate 
the data quality, including accuracy, precision, and recall. Through diachronic analyses, 
our research also shows how citation quality changes over time. Our study is beneficial 
to researchers to select the proper free citation sources, especially those without institu-
tional access. Moreover, this study is primarily based on open datasets, which increases the 
reproducibility and validity of our results. The extracted PMID-to-PMID citations in this 
study are available on Zenodo.2

This paper is organized as follows. In Related work, we briefly review related work on 
academic databases comparison. The data collection, processing, and evaluation methods 
are described in the Methodology section, following which, we present the results. In Dis-
cussion, we elaborate the implications, limitations, and future work of this study. Finally, 
we conclude our research in the Conclusions.

Related work

To investigate the differences between academic databases, scholars first performed bib-
liometric analyses based on small samples of documents. Harzing (2016) compared the 
publication and citation coverage of Microsoft Academic Graph, Google Scholar, WoS, 
and Scopus. The comparison was based on her 124 publications and forward citations, 
showing that Google Scholar and Microsoft Academic Graph had a larger coverage than 
WoS and Scopus. Later, Harzing and Alakangas (2017) expanded the sample to the publi-
cations authored by 145 scholars from the same university. The result also confirmed that 
the two databases not only covered more publications but also had higher citation counts 
of these documents. In a similar vein, research of this type starts with a controlled set of 

1  ftp://​ftp.​ncbi.​nlm.​nih.​gov/​pubmed/​basel​ine.
2  https://​doi.​org/​10.​5281/​zenodo.​51844​61.

ftp://ftp.ncbi.nlm.nih.gov/pubmed/baseline
https://doi.org/10.5281/zenodo.5184461
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documents, which usually consists of article lists maintained by academics or institutions, 
and iteratively searches for these documents as well as their citations in candidate data-
bases (Bar-Ilan, 2010; de Winter et al., 2014; Harzing, 2019; Hug & Brändle, 2017; Hug 
et al., 2017). Although these studies have provided insight into the coverage of different 
data sources, their analyses were based on small and different sets of documents. There-
fore, results may vary when using other samples, undermining the generality and compara-
bility of the research.

Recently, more studies have focused on larger and more comprehensive sets of articles. 
Thelwall (2017) sampled 172,752 articles from 29 large journals for analysis. As he paid 
special attention to the disciplinary differences of citation counts, the selected journals cov-
ered 26 Scopus broad fields. Martín-Martín et  al. (2018) used 2515 highly-cited articles 
displayed in Google Scholar’s Classic Papers as seed documents. A total of 2,448,055 for-
ward citations of these documents were extracted from three databases, covering almost all 
subject areas. In addition to disciplinary differences in citation coverage, they also revealed 
characteristics of unique citations in each database. According to their results, Google 
Scholar had a significant advantage in indexing non-journal and non-English citations. In 
the follow-up research, they included three more data sources and performed a pairwise 
comparison (Martín-Martín et al., 2020). Google Scholar still ranked first in terms of the 
coverage of citations, followed by Microsoft Academic Graph. While a larger and system-
atic sample increases the validity of these studies, three limitations remain as follows: (1) 
Samples used in previous research were biased toward highly-cited, classical articles and 
those published in large journals. (2) Most studies focused only on the coverage of data-
bases. Given that citations provided by the databases may contain errors (Van Eck & Walt-
man, 2017), additional quality measurements are needed when comparing different data 
sources. (3) Previous studies mainly collected forward citations of the seed documents to 
construct their experimental dataset. This is an effective approach to enlarge the sample, 
but the dynamic nature of forward citations also makes it difficult to investigate the correct-
ness and completeness of data.

Some researchers have realized these limitations and attempted to perform the compari-
son more systematically. In particular, the complete lists of documents covered by the data-
bases have been used to eliminate the selection bias (Mongeon & Paul-Hus, 2016; Visser 
et  al., 2021). Special attention has also been paid to the correctness of citation relation-
ships (Haunschild et al., 2018; Van Eck & Waltman, 2017). The most relevant study of our 
research is Visser et al.’s work (Visser et al., 2021) on the large-scale comparison between 
five databases. They obtained the metadata of all documents from each dataset and ana-
lyzed the coverage in terms of various breakdown criteria, including publication year, doc-
ument type, and language. In addition, they studied the overlap of citations between Scopus 
and other data sources, from which the reason for incomplete/incorrect citations was also 
investigated manually, such as citations towards unpublished documents and the “second-
ary version” of documents (preprints or proceedings). However, the main focus was still on 
the publication coverage of databases, and limited attention was paid to citations and cor-
responding evaluation metrics.

In this study, we investigate the quality of PubMed-to-PubMed citations provided by 
five free bibliographic data sources based on the complete set of PubMed documents. We 
define various quality measurements, including coverage, accuracy, precision, as well as 
recall, and compare data sources against three gold standards. Temporal changes of these 
quality metrics are also investigated. Our research provides practical references for select-
ing the suitable free database to augment the PubMed dataset. In addition, this study is 
helpful to the scientists who are interested in performing bibliometric analyses based on 



9523Scientometrics (2021) 126:9519–9542	

1 3

open/freely available data sources, by providing the knowledge of how accurate the citation 
links are and how the quality changes through time.

Methodology

Figure 1 shows the overall framework of our research, which consists of four stages. The 
first step is to collect the PubMed Baseline and extract the identifier and metadata of each 
document. This results in a baseline dataset, whose citations are retrieved from external 
databases later. Next, PubMed-to-PubMed citations are collected from five freely available 
data sources and matched with the documents in our baseline. In the third step, a subset 
of documents is sampled from the baseline dataset. Their backward citations are retrieved 
from three authoritative databases, composing the gold standards used to evaluate the data 
sources. Finally, we analyze the overlap and correlation between these databases based on 
the complete PubMed dataset. Evaluation metrics are also developed to measure the data 
quality against gold standards. In addition, we perform diachronic analyses to study the 
temporal changes in the citation quality. It should be noticed that we intend to investigate 
the differences in citation quality for documents published in different years, rather than the 
longitudinal differences for versions of data sources released at different times. Details of 
these stages are described in the following subsections.

Fig. 1   Research framework of citation sources comparison
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Baseline preparation

As we focus on the citation links provided by different data sources, a set of documents 
without citation relationships should be defined beforehand. PubMed Baseline is an annual 
snapshot of PubMed that offers a complete list and metadata of documents, while the cita-
tion relationships of most of the documents are absent. We downloaded the PubMed 2020 
Baseline dataset in October 2020, which contains 30 million PubMed documents published 
by 2019. The dataset was delivered in XML format and we extracted the metadata of all 
documents through Python scripts. The digital object identifier (DOI) and PubMed ID 
(PMID) of each document were parsed to match with other data sources. The major func-
tion of the PubMed Baseline is to provide a common platform to compare different citation 
sources.

Collecting and matching citations

In the second step, we collected the backward citations (i.e., the references) of documents 
in the baseline from five free bibliographic databases: OpenCitations Index of CrossRef 
open DOI-to-DOI citations (COCI), Dimensions, Microsoft Academic Graph (MAG), 
National Institutes of Health’s Open Citation Collection (NIH-OCC), and Semantic Schol-
ar’s Open Research Corpus (S2ORC).

We collected references instead of forward citations because the reference list of an arti-
cle is fixed after publishment, which makes it easier to examine the correctness and com-
pleteness. In addition, by collecting the references of these documents, their forward cita-
tions can also be found within the dataset. The collecting and matching procedures of each 
data source are described below.

COCI COCI contains all the citations that are specified by the open references to DOI-
identified works present in Crossref (Heibi et  al., 2019). We downloaded the September 
2020 Dump of COCI from OpenCitations’ official website. It contained 733 million DOI-
to-DOI citation links between 59 million publications (OpenCitations, 2020). By matching 
the DOIs with those in our baseline, we obtained 258 million referencing relationships of 
11 million PubMed documents. During the peer-review process of this paper, COCI has 
integrated references from Elsevier in an important release (OpenCitations, 2021). We 
measured its performance separately (denoted as COCI.Updated) to compare it with the 
previous release.

Dimensions Dimensions is a database with over 105 million publications and offers no-
cost access to researchers (Herzog et  al., 2020). Through the applications programming 
interface (API), we retrieved the references of all PubMed documents by their DOIs or 
PMIDs in November 2020. The DOIs and PMIDs of the references were provided if avail-
able. By matching the DOIs and PMIDs with those in our baseline, we obtained 509 mil-
lion referencing relationships of 19 million PubMed documents.

MAG As one of the largest academic databases, MAG contains over 240 million pub-
lications of various types (Sinha et al., 2015). We acquired the October 2020 version of 
MAG and extracted DOI-to-DOI citation links from it. Although PMIDs were also pro-
vided as the second-class attribute of MAG articles, we found a substantial number of 
articles were assigned with wrong PMIDs. For papers without DOIs, we matched them 
to the PubMed database jointly by the last name of the first author, International Standard 
Serial Number (ISSN) of the venue, publication year, volume number, and the begin page 
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number. A MAG document was matched to a PubMed document only if they had the same 
values of all five fields. As a result, we obtained 480 million referencing relationships of 18 
million PubMed documents.

NIH-OCC To solve the problem that a large number of citations are not open, NIH 
started to build its own open citation collection in 2019 (Ian Hutchins et al., 2019). NIH-
OCC provides native PMID-to-PMID citations between PubMed articles. We downloaded 
the September 2020 version of NIH-OCC (iCite et al., 2020). By matching the PMIDs with 
those in our baseline, we obtained 468 million referencing relationships of 17 million Pub-
Med documents.

S2ORC S2ORC is a general-purpose corpus freely available for researchers. It contains 
over 136 million publications and 467 million citation relationships between them (Lo 
et  al., 2020). PMIDs and DOIs are provided if available. We downloaded the July 2020 
version of S2ORC and matched the PMIDs and DOIs with those in our baseline. Finally, 
we obtained 183 million referencing relationships of 7 million PubMed documents from 
S2ORC.

Gold standard establishment

To evaluate the quality of citation provided by the five data sources, the actual reference 
lists of PubMed documents should be obtained as gold standards. We established three gold 
standards in this study. The first gold standard consists of citation relationships included 
in the PubMed Baseline, which are provided by the publishers or have full-text articles 
archived in PMC. It contains 174 million references of 5.5 million PubMed publications 
(~ 19%). As we focused on finding citations within the PubMed Baseline, references with-
out PMIDs were dropped. We treated citation relationships of the first gold standard as the 
most authentic since they were shipped with the PubMed Baseline. On the other hand, we 
also expected that all data sources would achieve better results on this gold standard as the 
data may be directly integrated into these data sources.

In addition to the first gold standard, we also collected citation relationships from Sco-
pus and WoS as our second and third gold standards. We chose Scopus and WoS since 
they are the most established bibliographic databases, which allow us to compare freely 
available data sources against the commercial veterans. Although the problems of missing 
and incorrect citations have also been found in both Scopus and WoS, it is still beneficial 
to investigate to what extent free data sources resemble them. We expected that the perfor-
mance of free data sources would be lower on the second and third gold standards. How-
ever, the performances on the second and third gold standards are more helpful to judge 
the overall citation quality of free data sources as they represent a more general population.

Because we do not have access to the full Scopus and WoS databases, a representative 
set of documents was sampled from the PubMed Baseline and their references were col-
lected from the two databases. This sample consists of 50,000 documents randomly sam-
pled over the last 50 years (1970–2019), from which 1000 documents were selected each 
year. The publication types were restricted to journal article and review to ensure the exist-
ence of references. Publications whose references are available in the PubMed Baseline are 
not selected. To collect data from Scopus, we queried the PMID and DOI of each docu-
ment in our sample and exported the metadata of their references in CSV format. The Sco-
pus API was not used because we found that the metadata of many references was missing, 
while they were properly supplied through the export function on the Scopus website. A 
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similar procedure was applied to the WoS Core Collection. WoS allows exporting all meta-
data of the documents as well as their references in batches of up to 500.

After collecting data from Scopus and WoS, the references need to be matched with the 
documents in the PubMed Baseline. A reference that meets any of the following criteria 
were considered a match to the PubMed publication.

(1)	 Sharing the same PMID or DOI with a document in the PubMed Baseline.
(2)	 Sharing the same venue, volume, publication year, and start page with a document in 

the PubMed Baseline.
(3)	 Sharing the same title and publication year with only one document in the PubMed 

Baseline.

Finally, we collected 42,803 (85.6%) documents from Scopus and 977,813 references 
were matched in the PubMed Baseline. The figures for WoS were 37,897 (75.8%) docu-
ments and 851,521 PubMed references. Documents that were not found in the databases or 
had no PubMed references were not included in the two gold standards.

Citation quality evaluation

As reported by previous research, the problems of missing and incorrect citations exist in 
various bibliographical databases (Van Eck & Waltman, 2017; Visser et  al., 2021). For 
instance, in the NIH-OCC dataset, we found document PMID-23487520 published in 2013 
was incorrectly reported as the reference of document PMID-15224180 published in 2004. 
Similar errors were also found in the reference lists of the documents PMID-8702918, 
PMID-12917354, and PMID-15818467. Therefore, it is necessary to understand the qual-
ity of data sources before using them in bibliometric research. While most of the compara-
tive studies focused only on the coverage, this study also pays attention to other aspects of 
the citation quality. We evaluate the correctness and completeness of citation data provided 
by different data sources with the metrics below.

Coverage It measures the proportion of PubMed documents whose references can be 
found in the free data source, regardless of the correctness and completeness of references. 
The coverage does not count the situation that the metadata of a document can be found but 
not its references. The coverage of a data source is calculated as follows:

Precision It measures the extent to which the references provided by the free data source 
are correct, compared with the gold standard. We first calculated the precision of the refer-
ences on every single document:

where TP denotes the references of a document provided by the data source, which are 
also reported as true references in the gold standard (i.e., true positive). FP denotes the 
references provided by the data source but does not exist in the gold standard (i.e., false 
positive). The precision of the data source is calculated as the average of document-level 
reference precision:

(1)CoverageDB =
count(docDB ∩ docPubMed)

count(docPubMed )

(2)Precisiondoc =
TP

TP + FP
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It should be noted that only documents covered by the specific data source were included in 
the calculation process of precision. Therefore, n equals to the number of covered documents.

Recall It measures the extent to which the references provided by the free data source 
are complete, compared with the gold standard. The recall of the references was first calcu-
lated for every document:

where TP has the same meaning as formula (2). FN denotes the references that are reported 
as true references of a document by the gold standard, but the relationships are not found in 
the free data source (i.e., false negatives). The recall of the data source is calculated as the 
average of document-level reference recall:

Similarly, only documents covered by the specific data source were included in the cal-
culation process of recall.

F1-score It is a measure of data quality combining both precision and recall. We 
adopted the macro version of F1-score of a data source in this study, which is the average 
document-level F1-score:

Accuracy It measures the proportion of PubMed documents whose references are cor-
rectly provided by the free data source, without the problems of incorrect and missing ref-
erences (formula 8). Only the documents covered by the specific data source were included 
in the calculation process of precision.

where doccorrect denotes documents whose reference lists are correctly and completely pro-
vided by the data source. In other words, the F1-scores of these documents equal to 1.

Results

Descriptive statistics

We first present the descriptive statistics of the coverage of five data sources. As Table 1 
shows, Dimensions has the highest coverage that 62.4% of documents in the PubMed 2020 

(3)PrecisionDB =
1

n

n
∑

doc=1

Precisiondoc

(4)Recalldoc =
TP

TP + FN

(5)RecallDB =
1

n

n
∑

doc=1

Recalldoc

(6)F1doc = 2 ×
Precisiondoc × Recalldoc

Precisiondoc + Recalldoc

(7)F1DB =
1

n

n
∑

doc=1

F1doc

(8)AccuracyDB =
count(doccorrect)

count(docDB ∩ docPubMed)
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Baseline can find at least one reference in this data source. NIH-OCC has a lower coverage 
but the most references per document, while MAG has a similar coverage but fewer refer-
ences on average. On the other hand, the coverage of COCI and S2ORC are substantially 
lower, so as the average references. The integration of Elsevier’s references significantly 
increased the coverage of COCI.Updated by 50% with the average number of references 
almost unchanged. By combining the data from all five databases, 66.9% of PubMed docu-
ments can find their references and the average number of references per document is 27.3. 
It is worth noting that the coverage presented in Table 1 is relatively conservative since 
not all types of PubMed documents should have references. There are 28,374,243 articles 

Table 1   The coverage of five bibliographic data sources on the PubMed Baseline

Bold font denotes the data source with the highest value in each column
Note: *A distinct referencing relationship is identified between one citing publication and one cited publica-
tion; **Duplicate citing publications and referencing relationships are merges

Database Publications Coverage (%) Adjusted 
coverage (%)

Referencing 
relationships*

Avg. references

COCI 10,563,315 34.7 37.2 257,638,206 24.4
COCI.Updated 15,349,346 50.5 54.1 374,332,023 24.4
Dimensions 18,995,173 62.4 66.9 508,742,050 26.8
MAG 18,136,034 59.6 63.9 479,947,694 26.5
NIH-OCC 17,248,884 56.7 60.8 467,922,262 27.1
S2ORC 7,145,784 23.5 25.2 182,653,647 25.6
Combined result** 20,339,956 66.9 71.7 555,460,052 27.3

Fig. 2   The temporal change of coverage of each data source. The black line in the major graph represents 
the annual distribution of PubMed documents. The inset plot shows the percentage of PubMed documents 
whose references can be found in any one of the five data sources. PubMed documents published before 
1900 are not included as their references cannot be found in all data sources
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and reviews in the PubMed 2020 Baseline. By taking this number as the denominator, we 
obtained the adjusted coverage for each data source (column 4, Table 1).

In terms of the change of coverage over time, Dimensions remains the most comprehen-
sive data source from 1900 to 2019, followed by NIH-OCC (Fig. 2). The coverage of MAG 
is higher than NIH-OCC for documents published in 1997–2011 and 2018–2019, while it 
ranks third in other time periods. COCI and S2ORC have the lowest coverage during the 
whole period. The updated version of COCI has a larger coverage than the September 2020 
release since 1945. It even surpasses MAG after 2018. In addition, an abnormal decrease is 
observed in the coverage of NIH-OCC and S2ORC in 2017. As shown in the inset plot, an 
increasing proportion of PubMed documents can find references in free data sources. The 
sudden drop in 1945 is caused by the sharp increase of indexed PubMed documents.

Overlap analysis

Moreover, we investigated the document-level and referencing-relationship-level overlap 
among the five databases (Fig. 3). We used UpSet plots (Lex et al., 2014) to visualize the 
results, in which the lower area shows the exclusive combinations of data sources with 
their sizes in percentage above. It is shown that 22.6% of the documents and 19.2% of the 
referencing relationships are shared by all data sources. MAG possesses the largest number 
of exclusive documents (2.9%), followed by Dimensions (2.7%), whereas most of the docu-
ments in COCI can also be found in other data sources. Surprisingly, while S2ORC ranks 
last in terms of document coverage, it has the third-largest number of exclusive documents 
(1.2%). By contrast, though NIH-OCC has the second-largest document coverage, it has 
relatively fewer exclusive documents (< 1.0%). Regarding referencing relationships, the 
number of exclusive relationships is the largest in MAG (4.2%), followed by Dimensions 
(2.1%), S2ORC (1.5%), NIH-OCC (0.5%), and COCI (~ 0.0%). Documents that can be 
found in all databases except S2ORC constitute the largest proportion in Fig. 3a (27.0%). 
Similar characteristic exists in the overlap of referencing relationships (Fig. 3b).

To understand the overlapping relationship more in-depth, we compared the docu-
ments and referencing relationship of the five databases in a pairwise way (Tables 2 and 
3). Again, Dimensions is the most comprehensive data source that over 90% of documents 
from other free bibliographic databases can be found in it. It contains almost all (99.49%) 
PubMed documents and referencing relationships in COCI. As an official project supported 
by the National Institutes of Health Office of Portfolio Analysis (OPA), NIH-OCC contains 
over 84% of documents and referencing relationships provided by other free data sources. 
Dimensions is not an NIH-supported project, but it still outperforms NIH-OCC on the cov-
erage of PubMed. This suggests that Dimensions is a competitive free data source to use 
in bibliometric research. Similarly, MAG also has a larger coverage of PubMed documents 
(89.16%) and referencing relationships (86.41%) than NIH-OCC. Nonetheless, all data 
sources except NIH-OCC have significantly lower coverage of referencing relationships, 
compared with the coverage of citing documents. This may suggest possible missing cita-
tions problems and we further analyze them in the following sections.

Correlation analysis

We also investigated how similar were citation counts of the cited documents shared by 
all data sources. The citation counts were obtained based on the referencing relationships 
within the same database. As the citation counts of documents are not normally distributed 



9530	 Scientometrics (2021) 126:9519–9542

1 3

(Thelwall, 2016), the Spearman correlation was calculated for each pair of data sources 
(Table 4). The highest correlation coefficient (0.99) is observed between Dimensions and 
MAG, as well as between Dimensions and NIH-OCC. With the lowest coverage, S2ORC 
presents a relatively low but similar correlation (0.84) with other databases. All correlation 

Fig. 3   Overlap of documents (a) and referencing relationships (b) among the five data sources. Combina-
tions with < 1% of elements are omitted
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Table 2   Pairwise document overlap of five data sources

Bold value in a row denotes the highest overlap percentage of one data source (row) covered by another 
(column)

COCI (%) COCI.Updated 
(%)

Dimensions (%) MAG (%) NIH-OCC (%) S2ORC (%)

Overall 51.93 75.46 93.39 89.16 84.80 35.13
COCI 100.00 99.49 96.34 99.46 44.44
COCI.Updated 68.82 99.37 96.95 96.35 34.52
Dimensions 55.33 80.30 90.00 89.78 34.64
MAG 56.11 82.05 94.27 87.82 36.02
NIH-OCC 60.91 85.74 98.87 92.34 36.04
S2ORC 65.70 74.16 92.09 91.42 87.00

Table 3   Pairwise referencing relationships overlap of five data sources

Bold value in a row denotes the highest overlap percentage of one data source (row) covered by another 
(column)

COCI (%) COCI.Updated 
(%)

Dimensions (%) MAG (%) NIH-OCC (%) S2ORC (%)

Overall 46.38 67.39 91.59 86.41 84.24 32.88
COCI 100.00 99.49 96.69 99.30 42.32
COCI.Upadted 68.83 99.08 96.94 94.82 33.37
Dimensions 50.38 72.91 87.48 90.53 32.81
MAG 51.91 75.61 92.73 86.45 33.34
NIH-OCC 54.68 75.85 98.43 88.67 34.09
S2ORC 59.69 68.38 91.37 87.60 87.33

Table 4   Spearman correlation between the five data sources

Note: 13,390,210 cited documents shared by all data sources were included in the calculation. All correla-
tions are significant at the 0.01 level (2-tailed)

COCI COCI.Updated Dimensions MAG NIH-OCC S2ORC

COCI 1.00
COCI.Updated 0.96 1.00
Dimensions 0.93 0.97 1.00
MAG 0.92 0.97 0.99 1.00
NIH-OCC 0.94 0.97 0.99 0.98 1.00
S2ORC 0.84 0.82 0.84 0.84 0.84 1.00
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coefficients are above 0.8, suggesting the citation ranks of publications have high consist-
ency across data sources.

Quality of the citations

In addition to coverage, overlap, and correlation of citation counts, more evidence is 
needed to evaluate the citations provided by the free data sources. One of the most impor-
tant questions is how accurate and complete these citation relationships are. The quality of 
the citations from free data sources is defined as the extent to which they resemble citations 
in the gold standards. To this end, we established three gold standards and five measure-
ments for evaluation purposes (see the Methodology section). References provided by free 
data sources were compared against the true references in the gold standards. Table 5 pre-
sents descriptive statistics of the three gold standards. The PubMed Baseline gold standard 
is the largest and has the greatest number of average references per document. The Scopus 
and WoS gold standards are smaller and have a similar number of average references.

Evaluation on the PubMed baseline gold standard

Table  6 presents the evaluation results of five bibliographic data sources on the first 
gold standard, which consists of referencing relationships extracted from the PubMed 
2020 Baseline. Since the National Library of Medicine (NLM) is one of the contributors 
of NIH-OCC, it is not surprising that NIH-OCC covers all documents in this gold stand-
ard. In addition, NIH-OCC achieves the best results in terms of all evaluation metrics. 

Table 5   Descriptive statistics of 
the gold standards

Note:  *A distinct referencing relationship is identified by one citing 
publication and one cited publication

Gold standard Publications Referencing 
relationships*

Avg. references

PubMed Baseline 5,512,064 175,958,177 31.9
Scopus 42,803 977,813 22.8
Web of Science 37,897 851,521 22.5

Table 6   Performance of the five data sources on the PubMed Baseline gold standard|N = 5,512,064

Bold font denotes the data source with the best performance
Note: Only documents covered by the specific data source were included in the calculation of precision, 
recall, and F1-score

COCI (%) COCI.
Updated 
(%)

Dimensions (%) MAG (%) NIH-OCC (%) S2ORC (%)

Coverage 65.57 72.29 99.98 87.36 100.00 63.03
Precision 99.87 99.87 99.60 97.87 99.90 97.66
Recall 84.69 85.18 98.80 90.80 98.99 79.00
F1-score 90.59 90.95 99.07 93.37 99.34 86.27
Accuracy 15.67 15.60 81.55 27.73 89.08 5.86
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As a database not specifically for PubMed documents, Dimensions achieves extraordi-
nary results that are only slightly behind NIH-OCC. Both databases provide correct and 
complete references for over 80% of documents in the first gold standard. One possible 
reason for the close performances of Dimensions and NIH-OCC is that they share simi-
lar upstream data providers (e.g., Crossref, NLM, and some partner publishers). How-
ever, they also have different internal data processing pipelines that may introduce dis-
parity in their final datasets.

On the other hand, while MAG performs relatively well in terms of coverage (87.36%), 
it suffers from the problem of low accuracy (27.73%). We found that 91% and 39% of the 
error cases are due to incomplete (recall < 1.0) and incorrect (precision < 1.0) references, 
while 31% have both problems. Similar patterns were observed in other data sources, indi-
cating that recall is a more serious problem than precision for these databases. By incor-
porating high-quality references from Elsevier, the updated version of COCI significantly 
increases its coverage with even higher precision and recall. S2ORC is inferior to other 
data sources in terms of all evaluation metrics.

We further analyzed the annual changes in the five metrics. Figure 4 shows that NIH-
OCC has a coverage of 100% throughout the whole period, whereas Dimensions also has 
extremely similar coverage. There is an upward trend in the coverage of MAG, COCI, and 
S2ORC between 1970 and 2019. In particular, the coverage of MAG and COCI rise dra-
matically for documents published after 1995 and 2005, respectively. Also, the difference 
between the updated and previous version of COCI is most prominent after 2005.

Figure 5 presents the other four metrics of each data source. It is evident that the per-
formance of each database increases on recent publications. Among them, NIH-OCC and 
Dimensions make the greatest progress in terms of accuracy (Fig. 5a), while the precision 
of MAG and S2ORC increases most significantly (Fig. 5c). The performances of two ver-
sions of COCI on these metrics are close. In addition, NIH-OCC and Dimensions have 
a similar and extraordinary performance during the whole period, compared with other 
data sources. The gaps between different data sources diminish for documents published in 
recent years.

Fig. 4   Temporal changes in the coverage of different data sources on the PubMed Baseline gold standard



9534	 Scientometrics (2021) 126:9519–9542

1 3

Evaluation on the Scopus gold standard

Regarding the Scopus gold standard, all data sources experience a drop in performance, 
compared with those on the first gold standard (Table 7). It is reasonable because the refer-
ences of documents in this gold standard cannot be exported directly from PubMed. By 
representing a more general population of documents, the Scopus gold standard can yield 
more informative results than the first gold standard. Intriguingly, Dimensions outperforms 
NIH-OCC in terms of coverage (90.53% vs. 84.10%), recall (93.85% vs. 93.44%), and 
accuracy (52.49% vs. 44.70%). The precision (97.70%) and F1-score (94.78%) of Dimen-
sions are only slightly behind those of NIH-OCC (97.73% and 94.92%). This confirms that 

Fig. 5   Temporal changes in the accuracy, precision, recall, and F1-score of different data sources on the 
PubMed Baseline gold standard

Table 7   Performance of the five data sources on the Scopus gold standard | N = 42,803

Bold font denotes the data source with the best performance
Note: Only documents covered by the specific data source were included in the calculation of precision, 
recall, F1-score

COCI (%) COCI.
Updated 
(%)

Dimensions (%) MAG (%) NIH-OCC (%) S2ORC (%)

Coverage 50.59 80.47 90.53 86.87 84.10 20.30
Precision 97.72 98.05 97.70 96.00 97.73 95.99
Recall 80.11 78.86 93.85 86.40 93.44 72.56
F1-score 86.36 85.88 94.78 89.82 94.92 80.85
Accuracy 22.38 18.87 52.49 23.18 44.70 6.41
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Dimensions is a competitive data source for providing citations of PubMed documents. 
The updated version of COCI achieves the highest precision performance. In addition, it is 
obvious that all data sources have a precision of over 95% but a much lower recall. MAG 
has the second largest coverage but lower accuracy due to serious incomplete reference 
problem.

Fig. 6   Temporal changes in the coverage of different data sources on the Scopus gold standard

Fig. 7   Temporal changes in the accuracy, precision, recall, and F1-score of different data sources on the 
Scopus gold standard
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Figures 6 and 7 demonstrate the temporal performance changes of the free bibliographic 
databases on the Scopus gold standard. Dimensions has the largest coverage during the 
whole period, followed by MAG and NIH-OCC. The coverage of COCI and S2ORC is 
much lower. It is worth noting that the updated version of COCI has a much larger cov-
erage than the previous version throughout this period, but their gap diminishes signifi-
cantly after 2018. In general, all data sources cover more PubMed documents over time, 
while COCI experienced a sudden rise in 2018. In addition, Dimensions always provides 
the most accurate references on the Scopus gold standard, followed by NIH-OCC (Fig. 7a). 
It is interesting that COCI provided more accurate references for documents published 
between 1985 and 1996, then its accuracy dropped to 10% for those in 1997 and gradu-
ally increased afterward. The precision, recall, and F1-score of all data sources increase on 
more recent publications. Dimensions and NIH-OCC achieve similar recall rate and F1-
score, so do MAG and COCI (Fig. 7b and 7d).

Evaluation on the Web of Science gold standard

As a complement to the Scopus gold standard, we collected the references of the same 
samples from WoS to construct the third gold standard. Precision and accuracy of all 
data sources decrease significantly on the WoS gold standard, while the coverage, recall, 
and F1-score are less affected (Table  8). Nonetheless, the relative performance of data 
sources remains stable. Dimensions has the largest coverage (87.14%), followed by MAG 
(84.11%), NIH-OCC (79.17%), COCI.Updated (75.72%), COCI (48.76%), and S2ORC 
(21.24%). NIH-OCC has the highest recall (95.06%) and F1-score (92.19%), and its accu-
racy (26.39%) is similar to that of Dimensions (26.94%). COCI.Updated provides the most 
precise (93.44%) references on this gold standard but its coverage is smaller. S2ORC is still 
inferior to other data sources in terms of all evaluation metrics.

With respect to the diachronic changes, the patterns on the WoS gold standard are 
similar to those on the Scopus gold standards. The coverage, recall, and F1-score of all 
data sources increase on recent publications, and the gaps between data sources become 
narrower (Figs. 8 and 9). Two versions of COCI outperform other data sources in terms 
of precision (Fig. 9c). Different from the Scopus gold standards, the accuracy and preci-
sion fluctuate on the WoS gold standard. They even witness decreases for publications in 
recent years (Fig. 9a, c). By manually analyzing the raw data, we found that the metadata 

Table 8   Performance of the five data sources on the WoS gold standard|N = 37,897

Bold font denotes the data source with the best performance
Note: Only documents covered by the specific data source were included in the calculation of precision, 
recall, F1-score

COCI (%) COCI.
Updated 
(%)

Dimensions (%) MAG (%) NIH-OCC (%) S2ORC (%)

Coverage 48.76 75.72 87.14 84.11 79.17 21.24
Precision 92.61 93.44 90.87 90.76 91.26 88.96
Recall 84.04 82.99 93.88 89.42 95.06 73.87
F1-score 86.33 86.35 90.78 88.91 92.19 78.97
Accuracy 18.26 16.17 26.94 17.46 26.39 4.81
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of unpublished references (in press) is absent from WoS’s export results. They were merely 
labeled as “in press” and would not be updated after publishment. This situation became 
more common in later years. Moreover, as suggested by a previous study (van Eck & Walt-
man, 2017), we also found the problem of incorrect references. WoS might provide incor-
rect metadata for references or even totally irrelevant references. Therefore, the experiment 
on the WoS gold standard may underestimate the precision of all data sources, which also 

Fig. 8   Temporal changes in the coverage of different data sources on the WoS gold standard

Fig. 9   Temporal changes in the accuracy, precision, recall, and F1-score of different data sources on the 
WoS gold standard
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significantly affects the accuracy. Nonetheless, the relative performances of databases are 
still informative. While Dimension still has the largest coverage during the whole period, 
NIH-OCC consistently excels other data sources in terms of recall and F1-score.

Discussion

Accessibility of the data sources

The accessibility is yet another major factor to be considered for researchers who decide 
to perform large-scale citation analyses based on bibliographic data sources. Data sources 
that support bulk download and API access can significantly reduce the burden of data col-
lection. Table 9 lists some characteristics of the data sources analyzed in this study. Among 
them, NIH-OCC is the only data source that does not require an application form and sup-
ports bulk download and API (bulk) access. Access to COCI is also convenient, one can 
download the latest release of its entire dataset within an hour. On the other hand, users 
must submit an application form or even a research proposal to request access to Dimen-
sions, MAG (the latest version), and S2ORC. This procedure may take weeks to complete.

It is worth noting that Microsoft delivers the latest version of MAG through the Micro-
soft Azure platform and provides computational functions through Azure Databricks, a 
commercial big data computing platform. Though applying for MAG is free, it still costs 
money to store, compute, and download the dataset. Users may choose archived versions of 
MAG, which is available on archive.org at no cost.3 Unfortunately, during the peer-review 
process of this paper, Microsoft announced that MAG would be retired by December 31, 
2021. At that time, OpenAlex may be a promising replacement yet to be released.4

Finally, collecting data from Dimensions is the most time-consuming as it only allows 
downloading its data in batches up to 500. Nonetheless, such an effort is worthwhile 
because both the coverage and quality of the Dimensions data are satisfying.

While all bibliographic data sources employed in this study are freely available, applying 
a dichotomy of “open data” and “non-open data” is still valuable for researchers. According 
to the definition of “open” given by Open Knowledge Foundation,5 open data should allow 

Table 9   Accessibility of the data sources

Note: *Application is required to obtain the latest release of MAG, but archived versions are available on 
archive.org

Require application Bulk download API access API bulk access License

COCI No Yes Yes No CC0
Dimensions Yes No Yes Yes, 500 at a time N/A
MAG Yes/No* Yes No No ODC-By
NIH-OCC No Yes Yes Yes, 1000 at a time CC0
S2ORC Yes Yes No No CC BY-NC 2.0

3  https://​archi​ve.​org/​search.​php?​query=​creat​or%​3A%​22Mic​rosoft+​Acade​mic%​22.
4  https://​opena​lex.​org/.
5  https://​opend​efini​tion.​org/.

https://archive.org/search.php?query=creator%3A%22Microsoft+Academic%22
https://openalex.org/
https://opendefinition.org/
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“freely use, modify, and share by anyone for any purpose”. COCI, NIH-OCC, and the archived 
versions of MAG can be classified as open data sources as they meet all the above characteris-
tics, indicated by their data licenses. However, both Dimensions and S2ORC require users to 
submit applications beforehand and forbid commercial purposes. Dimensions also restricts the 
distribution of its data to any other person. Since not anyone can use the two datasets for any 
purpose, they cannot be considered as open.

Comparison with previous studies

Previous studies on comparing databases primarily focus on the coverage. MAG is consid-
ered an excellent alternative for citation analysis as it covers more documents than Scopus and 
WoS (Harzing, 2016; Harzing & Alakangas, 2017; Martín-Martín et  al., 2020). According 
to our results, although 89.16% of documents in other data sources also exist in MAG, their 
references suffer from data incomplete problem. This problem is even more serious in COCI, 
which is consistent with the research of Visser et  al. (2021). Therefore, caution should be 
taken when adopting MAG or COCI alone as the data source. Visser et al. (2021) also pointed 
out that missing citation links is a significant problem in Dimensions. However, Dimensions 
provides high-quality data with large coverage in our study, both its precision and recall are 
satisfying. One possible reason is that documents in PubMed are mostly from biomedical and 
life science, while Visser et al. (2021) perform their comparisons based on the entire Scopus 
and Dimensions database. In addition, Dimensions is a fast-growing database that continu-
ously expands its coverage (Herzog et al., 2020). The data incomplete issue may have been 
greatly alleviated.

Implications

The implications of this research are mostly practical. With an increasing number of freely 
available bibliographic databases, researchers may have both interest in and concerns about 
substituting the expensive commercial databases with the free ones. However, to what extent 
these data sources resemble the commercial databases they used to employ should be investi-
gated beforehand. Our results on the PubMed Baseline show that Dimensions and NIH-OCC 
are the ideal data sources to retrieve PubMed-to-PubMed citations at no cost, with high cov-
erage and accuracy. Researchers can also combine multiple data sources to generate a more 
comprehensive dataset, depending on the sensitivity of their studies. For instance, integrating 
data sources with high precision but low recall is an effective way to enhance the overall recall 
without undermining the precision.

Although we mainly focused on the citations within PubMed, the comparison between dif-
ferent data sources was performed on a large scale. We also established gold standards based 
on authentic data sources and constructed representative samples to investigate the complete-
ness and correctness of citations. The relative performances of databases are stable across dif-
ferent gold standards. Therefore, our results can provide valid references for researchers to 
choose the appropriate free bibliographic databases for their studies, especially for those based 
on PubMed documents.
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Limitations

This study has several limitations. First, without access to the full data of Scopus and 
WoS (i.e., an in-house version), the referencing relationships in the second and third 
gold standards were obtained from the websites of Scopus and WoS. Due to the rate 
limit, we constructed the Scopus and WoS gold standards based on random samples 
of 50,000 documents. The samples are representative, but the generality can be further 
improved by using all citation data from Scopus and WoS. Second, gold standards are 
not perfect. False positives (incorrect references) and false negatives (incomplete refer-
ences) may occur due to the errors in commercial databases and our conservative match-
ing criteria, respectively. This may lead to underestimation of the data sources’ perfor-
mance. However, the errors in gold standards are rare and the relative performances of 
databases are stable. The results in the current work are still valid.

Conclusions

To conclude, this study aims to help researchers to select appropriate free bibliographic 
data sources for citation-based studies on PubMed. We compare five freely available 
data sources in terms of their ability to provide high-quality citation data for PubMed 
documents. Dimensions turns out to be the most comprehensive data source that pro-
vides references for 62.4% of PubMed documents, outperforming the official NIH-OCC 
dataset. In addition, over 90% of citation links provided by other data sources can be 
found in Dimensions. The correlation between citation counts of documents in differ-
ent data sources is strong, suggesting high consistency on citation ranks across data 
sources.

The results also show that while the coverage is an important factor in choosing data 
sources, it is still necessary to evaluate the correctness and completeness of the citation 
data. On the one hand, large coverage does not guarantee high accuracy, e.g., MAG. On the 
other hand, a data source with smaller coverage may also have competitive performance, 
e.g., COCI. Overall, NIH-OCC and Dimensions achieve the best results. While NIH-OCC 
performs better on the PubMed documents preserved by NLM (the first gold standard), 
Dimensions is still competitive and even outperforms NIH-OCC on a more general popula-
tion of PubMed documents. Almost all data sources have a precision higher than 90%, but 
their recall is much lower. All databases have better performances on recent publications 
than earlier ones. Meanwhile, the differences in performance of data sources have dimin-
ished for documents published in recent years.

Taking accessibility into consideration, one can obtain a large volume of high-quality 
citation data from NIH-OCC with ease and use it for any purpose, while it takes more 
effort to collect data from Dimensions. Our results show that both databases provide high-
quality referencing relationships and have a large coverage, which makes them suitable 
data sources for augmenting PubMed. It is also beneficial for researchers to combine cita-
tions from multiple data sources to build a more comprehensive dataset.
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