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Abstract
Research on academic paper ranking has received great attention in recent years, and many 
algorithms have been proposed to automatically assess a large number of papers for this 
purpose. How to evaluate or analyse the performance of these ranking algorithms becomes 
an open research question. Theoretically, evaluation of an algorithm requires to compare 
its ranking result against a ground truth paper list. However, such ground truth does not 
exist in the field of scholarly ranking due to the fact that there does not and will not exist 
an absolutely unbiased, objective, and unified standard to formulate the impact of papers. 
Therefore, in practice researchers evaluate or analyse their proposed ranking algorithms 
by different methods, such as using domain expert decisions (test data) and comparing 
against predefined ranking benchmarks. The question is whether using different methods 
leads to different analysis results, and if so, how should we analyse the performance of 
the ranking algorithms? To answer these questions, this study compares among test data 
and different citation-based benchmarks by examining their relationships and assessing the 
effect of the method choices on their analysis results. The results of our experiments show 
that there does exist difference in analysis results when employing test data and different 
benchmarks, and relying exclusively on one benchmark or test data may bring inadequate 
analysis results. In addition, a guideline on how to conduct a comprehensive analysis using 
multiple benchmarks from different perspectives is summarised, which can help provide a 
systematic understanding and profile of the analysed algorithms.
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Introduction

The academic paper rankings have been used for decision making in many areas includ-
ing university ranking, grant funding, academic hiring to name a few. Biased or unreliable 
ranking results could mislead these important decisions and should be alleviated by the 
community of scientometrics. While we have seen advanced ranking methods in the litera-
ture and new ones are being proposed, there is an urgent need for a generalised oversight 
mechanism collectively, otherwise the proposed ones cannot lead to reliable ranking at the 
end but to bad practices. The society of AI has recognised this issue in general, and some 
progress, including developing a collective standard, has been undertaken (Ristoski et al., 
2016). In this paper, we present to what extent different paper ranking methods are per-
forming differently when there is no gold standard available.

The digitisation has greatly facilitated the academic publications, but an ever-grow-
ing number of articles bring great challenges for researchers to identify the important 
ones (Zhang et al., 2019a). To address this problem, many algorithms have been proposed 
for ranking academic papers. For example, the classic PageRank algorithm  (Page et  al., 
1999) measured the importance of papers based on article citation networks. Its variants, 
including CoRank  (Zhou et al., 2007), P-Rank  (Yan et al., 2011a), FutureRank  (Sayyadi 
& Getoor, 2009) and W-Rank (Zhang et al., 2019b), extended the homogeneous citation 
network into heterogeneous networks that further integrated the author, venue, and publi-
cation time information. Given a collection of papers and their bibliometric information, 
these algorithms calculate scores for the papers and translate the scores into paper ranking 
lists where the top papers can be recommended to users (Zhang et al., 2019c). However, 
how to evaluate or analyse the performance of these ranking algorithms is an open research 
question (Xia et al., 2017; Cai et al., 2019).

Theoretically, evaluation of a ranking algorithm requires to compare its results against a 
ground truth paper list. However, such ground truth does not exist in the field of scholarly 
ranking due to the fact that there does not and will not exist an absolutely unbiased, objec-
tive, and unified standard to formulate the quality or impact of academic papers. Similar 
situation also exists in the field of Learning to Rank (L2R), where comparing different L2R 
models based on their evaluation results is hindered by the absence of a standard set of 
benchmark collections (Tax et al., 2015). In practice, researchers evaluate or analyse their 
proposed ranking algorithms by different approaches, such as using test data collected from 
domain expert decisions (Dunaiski et al., 2016; Mariani et al., 2016; Dunaiski et al., 2018) 
and comparing against predefined benchmarks. Examples of such benchmarks include 
citation count-based benchmarks (Chen et al., 2007; Yan et al., 2011b; Wang et al., 2013; 
Ma et al., 2018) and citation network-based benchmarks (Sayyadi & Getoor, 2009; Wau-
mans & Bersini, 2017). Employing different benchmarks and test data sets for evaluation 
can raise concerns about the reliability and comparability of the results, leading to ques-
tions such as what the relationships are between these approaches? Whether using these 
approaches produces different analysis results, and if yes, how the performance of ranking 
algorithms should be analysed?

To answer these questions, this research focuses on assessing the impact of using differ-
ent benchmarks and test data on the analysis results of paper ranking algorithms. Firstly, 
we clarify the definitions of the terms that are used in this paper, and then review the exist-
ing approaches that have been used to evaluate and analyse paper ranking algorithms in the 
literature and summarise them into two major categories, which are citation-based bench-
marks and test data. Secondly, we conduct experiments to examine their relationships and 
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perform a comparative analysis of these benchmarks as well as the test data. In addition, 
an investigation is carried out to evaluate or analyse nine ranking algorithms using these 
different benchmarks and test data. The Spearman’s rank correlation coefficient, receiver 
operating characteristic (ROC) curve, and normalised discounted cumulative gain (nDCG) 
are used as evaluation measures to obtain insights into their scoring behaviours from three 
different perspectives, namely statistical relationship, classification performance, and rank-
ing effectiveness. Finally, a guideline on how to analyse ranking algorithms using multiple 
benchmarks and test data is summarised based on our findings. The overall structure of this 
paper is demonstrated in Fig. 1 where the motivation is briefed in the dashed boxes and the 
actions undertaken in this study are enclosed by the solid lines.

This study discusses at length on the review and comparison of different benchmarks 
and test data and touches upon the practice suggestions of algorithm evaluation and analy-
sis, leading three contributions to the field of academic paper ranking. The first contribu-
tion lies in the systematic review of the existing approaches that have been employed in 
literature to evaluate and analyse paper ranking algorithms with data. The second contri-
bution is the investigation on the relationships amongst the benchmarks and test data, and 
the assessment of the impact of using different benchmarks and test data on the results 
when evaluating paper ranking algorithms. In light of the findings from the investigation, 
a guideline for analysing paper ranking algorithms using multiple benchmarks is summa-
rised, which may provide researchers with a holistic vision and understanding of the ana-
lysed algorithms.

Definitions

As mentioned earlier, the evaluation of an ranking algorithm requires to examine its rank-
ing result against a ground truth ranking list which does not exist especially in the case of 
academic paper ranking. Hence, the problem is how to evaluate or analyse paper ranking 
algorithms if such ground truth is unavailable. The existing studies form two genres: one is 
evaluating the algorithms using test data which contains a special collection of papers that 
integrates domain expert decisions; and the other is analysing the algorithms using predefined 

Fig. 1   Overall research structure. The motivations of this study, including the current situation and the 
research questions, are contained in the dashed boxes, while the studies of this research are enclosed in the 
solid line boxes. The arrows directing from the study actions to the research questions denote the design of 
this research in terms of how the actions are assigned to discuss and answer each question
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ranking metrics which are referred to as benchmarks in this study. For clarity, we define the 
following terms.

Ground truth refers to the underlying objective ranking over a given collection of papers. 
In the field of scholarly rankings, there is usually no absolutely unbiased, objective and unified 
ground truth ranking list that can reflect the true impact, popularity and quality of papers.

Test data refers to a collection of bibliometric entities with certain ground truth that can be 
used to evaluate ranking algorithms. For academic paper rankings, a test data set usually con-
tains papers assessed by domain experts (Bornmann & Marx, 2015a) or won certain awards, 
such as the best paper awards and high-impact awards (Dunaiski, 2019) in conferences and 
journals of a research field. Using test data is an effective way to evaluate ranking algorithms 
but one should be aware of the availability issue, such as the potential difficulties in obtain-
ing appropriate test data and the limitations of choices in research fields and publication ven-
ues (Dunaiski et al., 2018).

Benchmarks refer to the predefined ranking metrics used for examining the ranking results 
of an algorithm. Examples of such benchmarks used in existing studies include future cita-
tion count (FCC) (Wang et al., 2013) and future PageRank (FPR) (Sayyadi & Getoor, 2009). 
Since ground truth refers to the information provided by direct observation as opposed to that 
provided by inference, benchmarks are not desirable candidates to form ground truth because 
they can only infer rather than observe the impact or quality of papers. Although benchmarks 
cannot be used directly as ground truth, analysing the ranking algorithms based on bench-
marks is still a useful way to gain insights into the algorithms. For example, the FCC was 
adopted as benchmark to evaluate, or more precisely speaking, analyse a proposed paper rank-
ing algorithm which was able to rank papers using a heterogeneous network that integrates 
citation, author, and journal/conference information; and the publication time information is 
also involved in the network propagation (Wang et al., 2013). Since the motivation underlying 
the algorithm design is to capture time information in the evolving network to obtain predic-
tions on the future impact of papers, it is reasonable to compare its ranking result with the 
FCC ranking list as it can infer the future impact of papers and is an interpretable benchmark. 
Another study adopted FPR as benchmark to analyse a proposed paper ranking algorithm 
named FutureRank (Sayyadi & Getoor, 2009). This algorithm inherited the basic assumption 
of PageRank, that is, important articles are likely to receive more citations from other articles, 
and extended this definition from historical citation networks (data available at the user query 
time) to future citation networks (future data after the user query time). The proposed Future-
Rank exploits the citation, author, and publication time information in order to predict the FPR 
of query papers, where the FPR, in the authors’ opinion, infers the future impact of papers.

In addition, we define evaluation measures as the measures used to judge the performance 
of an algorithm and to compare the performance of different algorithms. Three evaluation 
measures are adopted in our analysis, including the Spearman’s rank correlation coefficient, 
ROC curves and nDCG, which consider the statistical relationship, classification performance, 
and ranking effectiveness, respectively.

Test data and benchmarks

This section reviews the two practical approaches for evaluating and analysing paper 
ranking algorithms. The first approach is using test data, and the second one is using 
benchmarks. Since a benchmark itself is a ranking metric that infers the impact or qual-
ity of papers from a specific perspective, using different benchmarks can reflect the 
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characteristics and the scoring behaviours of the analysed ranking algorithms. In this study, 
we group the benchmarks into two categories, one is based on citation counts (where the 
paper scores are directly computed by counting citation numbers), and the other is based 
on citation networks (where the paper scores are computed by iterative calculations on the 
future citation networks).

Test data

Peer assessment by domain experts is generally considered as a method that is more appro-
priate to obtain paper rankings than citation-based metrics. Human expert decisions are 
based on human intelligence and their domain knowledge which involves a comprehen-
sive evaluation of all kinds of information. Hence, the scoring or ranking results given by 
human experts are often considered more reliable and convincing because they examine 
the quality and impact of each paper using complex but interpretable criteria that do not 
exclusively rely on citations  (Ahlgren & Waltman, 2014; Saarela et al., 2016). However, 
hiring domain experts to evaluate large-scale paper sets is impractical since it is expensive 
and time-consuming. Therefore, this approach is only suitable for the application scenarios 
where the number of scholarly entities to be evaluated are within the human capacity.

A similar but practical approach is to collect test data sets based on existing assessments 
provided by domain experts. For example, Bornmann and Marx (2015a) collected a test 
data set from a post-publication peer review system of the biomedical literature. However, 
such data resources only exist in few cases. An alternative approach of collecting test data 
sets is to use certain reputable awards, such as the best paper awards and high-impact paper 
awards in conferences and journals of a research field (Dunaiski et al., 2016).

Test data has been widely used to evaluate rankings of entities in scholarly citation net-
works. For example, a test data set comprising papers awarded the prize of being Most 
Influential Papers (MIP) by the ICSE program committee was used to evaluate the rank-
ing results of NewRank  (Dunaiski & Visser, 2012). According to the ICES MIP award-
ing rules1, each year the current program committee for ICSE’N reviews the papers from 
ICSE’(N-10) and awards the ones which are consider to be the most influential paper 
during the previous 10 years. SARank (Ma et al., 2018) proposed the RECOM approach 
which assumed academic papers with larger number of recommendations indicated higher 
importance of the papers. Following this assumptions, the RECOM adopted the number of 
recommendations of 93 articles on ACL Anthology Network (AAN) dataset (Radev et al., 
2013) as ground truth. Sidiropoulos and Manolopoulos (2005) used the ‘VLDB 10 Year 
Award’ and the ‘SIGMOD Test of Time Award’ as test data to evaluate ranking algorithms 
for scientific publications. Mariani et al. (2016) used the list of Milestone Letters (MLs) 
selected by editors of Physical Review Letters from American Physical Society (APS) 
dataset. Dunaiski et al. (2016) collected a list of 207 academic papers which received high-
impact awards from 14 conferences from the domain of computer science and used it to 
evaluate paper ranking algorithms. As for predicting high-impact papers, they used 464 
papers which were awarded best papers by 32 venues for evaluation. Later, Dunaiski et al. 
(2018) extended the test data to 1155 best awarded papers collected from 36 venues and 
849 high-impact awarded paper from 30 venues to evaluate rankings of academic papers.

1  http://​www.​sigso​ft.​org/​awards/​icseM​IPAwa​rd.​html.

http://www.sigsoft.org/awards/icseMIPAward.html
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Using test data is an effective way to evaluate ranking algorithms. However, collecting 
appropriate large-scale test data sets is a challenge due to the limited resources which are 
only available in specific research fields, publication venues (journals and conferences) and 
publication time. In addition, the difficulty in ensuring the obtained test data is representa-
tive, unbiased, and sufficient is another obstacle to the collection and broader application 
of test data.

Citation count‑based benchmarks

Citation count is an intuitive and interpretable indicator to infer the impact of a paper, and 
it has been widely used to analyse paper ranking algorithms. Given a collection of query 
papers and a predefined historical time point (the user query time), citation count can be 
further refined to historical citation count (HCC) and future citation count (FCC).

Historical citation count

The HCC infers the impact of the query papers based on their citation status at the time of 
the user query. The assumption is that high-impact papers should have received more cita-
tions at the time of the user query. Therefore, for each query paper, HCC is the number of 
citations received before a historical time point.

HCC has a long history of being used as benchmark to analyse ranking algo-
rithms  (Lawani & Bayer, 1983). For instance, in the study where PageRank was intro-
duced in citation analysis for the first time, citation count was adopted as the benchmark 
to demonstrate the effectiveness of PageRank (Chen et al., 2007). Yan et al. (2011b) used 
the paper citations as a measurement for the popularity among researchers and focused on 
the problem of citation count prediction to examine the characteristics for popularity, and 
citation counts were used to assess the popularity predictions. Later, another algorithm, 
P-Rank (Yan et al., 2011a), was proposed which took into account the heterogeneous net-
work containing articles, authors, and journals. In this study, the citation count was used 
to generate a benchmark list in which the top 20 papers were compared with the top 20 
papers ranked by the P-Rank algorithm. Additionally, a recently proposed ranking algo-
rithm, PePSI (Zhang et al., 2018), investigated personalised prediction of scholars’ scien-
tific impact by classifying scholars into different types according to their citation dynamics, 
and the citation count was adopted as the benchmark.

Future citation count

The FCC infers the impact of the query papers based on their future citation trends after 
the user query time with the assumption that high-impact papers should be able to obtain 
more citations in the future. Therefore, for each query paper, FCC is the number of cita-
tions received after a historical time point.

The relationship between HCC and FCC is illustrated in Fig. 2. It is worth noting that 
the use of FCC requires to define a historical time point to divide a database into two parts: 
a historical part and a future part. The historical time point is an imaginary time point 
predefined by researchers to simulate the time of the user query. They view the system 
from the historical time point, run the ranking algorithms using historical data before this 
time point, and calculate FCC on the future data as benchmark to evaluate the ranking 
algorithms.
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FCC was used as a benchmark to assess a heterogeneous network-based ranking algo-
rithm that integrated PageRank and HITS (Wang et al., 2013). To analyse the performance 
of this algorithm, the FCC of the query papers was generated and compared with the rank-
ing result of the proposed algorithm. Focusing on ranking the future popularity of new 
publications and young researchers, MRFRank  (Wang et  al., 2014) was proposed which 
combined various available information, such as time and text features. The number of 
papers’ future citations was employed as benchmark by sorting them in the descending 
order. CocaRank (Zhang et al., 2016) and MRCoRank (Wang et al., 2016) were proposed to 
measure the future influence of academic rising stars for both researchers and publications, 
and both algorithms used the FCC as benchmarks for analysis. In addition, a recent query 
independent academic paper ranking algorithm, SARank (Ma et al., 2018), was proposed 
which further improved traditional PageRank with a time decaying factor, and it adopted 
two benchmarks, namely RECOM (short for recommendation) and PFCTN (short for past 
and future citations). The PFCTN proposed to use both past and future citations of a paper 
with the same period of time to represent the significance of the paper at the concerned 
time, while the RECOM assumed more recommendations indicated higher importance.

The advantages of using citation counts as benchmarks lie in the interpretable results, 
low computational cost, and high applicability. In addition, HCC and FCC formulate the 
impact of papers differently as they respectively consider the current citation status and 
future trends. However, they also show limitations. Firstly, HCC tends to favour older 
papers because they have existed longer for more citations. Some old articles become 
unfashionable, but they may have received many citations in the past. Secondly, as dis-
covered by Bornmann and Daniel (2008), the motivations for citing articles are different, 
thereby the impact represented by the citations could be different. Finally, citation count is 
partially subject to research fields and publication time because the citation densities are 
uneven in different fields (Radicchi et al., 2008) and are dynamic over time (Bornmann & 
Mutz, 2015b).

Weighted future citation count

The weighted FCC (wFCC) further improves the FCC by considering the quality of each 
citation. Since the reference papers are usually cited for various reasons and motivations, 
these citations should not be treated equally (Garfield, 1979). The concept of citation rel-
evance was proposed accordingly  (Zhang et  al., 2019b). It is an attribute of the citation 
link, with a value between 0 and 1. Specifically, a larger value indicates a higher relevance 
between the two papers of a citation link. The calculation of citation relevance consists of 

Fig. 2   Illustration of HCC and FCC. In this example, the user query time is the year 2000 and for a query 
paper P, its historical citations and future citations are denoted as solid lines and dashed lines, respectively



4052	 Scientometrics (2022) 127:4045–4074

1 3

two components, one is the semantic similarity based on the contextual information of the 
two papers and the other is the structural similarity calculated from the citation network. 
The interpretation is that the semantic similarity of two papers is higher when the issues or 
methods they are addressing are similar or related, meanwhile, their structural similarity is 
higher when they are simultaneously linked by more common article nodes in the citation 
network. A citation is considered highly relevant when the two articles are semantically 
similar or share many mutual links in the citation network.

The definition of the wFCC is built on top of the FCC, and includes w, a weight indicat-
ing the citation relevance. It is given by:

where wi,j denotes the relevance weight for citation from paper i to paper j, � and � are two 
hyper-parameters that adjust the ratio of the two components, Ssemantic and Sstructural denote 
the semantic similarity and structural similarity between the two papers respectively. 
Calculation of the Ssemantic(pi, pj) is based on the ‘align, disambiguate and walk’ algo-
rithm (Pilehvar et al., 2013) and the computation of Sstructural(pi, pj) is based on the cosine 
similarity in the citation network, as follows:

where Lpi denotes the set of nodes linked to and from paper pi , Lpi ∩ Lpi denotes the set of 
common nodes that connect to both pi and pj , and ∣ ⋅ ∣ denotes the number of nodes in the 
set.

The wFCC embeds the semantic and structural similarities between papers into the 
FCC, which potentially provides a benchmark that is less biased since wFCC is not exclu-
sively based on citation count. However, the involvement of citation relevance reduces the 
interpretability of its ranking results, and the computational cost increases dramatically due 
to the complexity of semantic analysis.

Other variants of citation count include those considering the citation functions and 
conflict of interest (COI). In the first variant, only the functional citations were counted 
while the perfunctory citations were filtered out (Xu et al., 2014). The second variant only 
considered citations without COI, and it was used to evaluate the positive and negative 
COI-distinguished objective ranking algorithm proposed in the study  (Bai et  al., 2017). 
However, these variants share a similar limitation as the wFCC, that is, they require addi-
tional calculation procedures or modules to identify the function of each citation, or recog-
nise the relationship of interest between the authors of the papers.

Time normalisation

Benchmarks based on citation counts tend to be biased towards old papers and underesti-
mate new papers as they have less time to accumulate citations. For example, a paper pub-
lished earlier with more citations is not necessarily more impactful than a paper published 
later with fewer citations. In other words, citations should not be treated equally and the 
publication time should be considered when comparing papers using citation count (Walt-
man, 2016). Therefore, in this study, we apply normalisation to citation count metrics to 
correct the bias introduced by publication time. The normalisation factor is based on an 
exponential function, as follows:

(1)wi,j = � ⋅ Ssemantic(pi, pj) + � ⋅ Sstructural(pi, pj)

(2)Sstructural(pi, pj) =
∣ Lpi ∩ Lpj ∣

√

∣ Lpi ∣ × ∣ Lpj ∣
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where � is a constant set to 0.3, Thistorical is the historical time point (evaluation time point), 
and t denotes paper’s publication year ( t ≤ Thistorical ). The normalised versions of HCC, 
FCC and wFCC metrics are denoted as HCC_t, FCC_t and wFCC_t, respectively, and they 
are calculated by multiplying by the normalisation factor as follows:

Citation network‑based benchmarks

Compared with citation count-based benchmarks that only focus on the number of cita-
tions, citation network-based benchmarks further consider the citation relationships 
through iterative calculations on the citation networks and take into account the influences 
of other bibliometric entities such as authors and publication venues. Citation network-
based benchmarks are recursively defined on the citation graph or extended heterogeneous 
graphs which integrate paper-author and paper-venue graphs.

In this study, we examine four citation network-based benchmarks, including the future 
PageRank (FPR), future PageRank with author entity considered (FPR+A), with pub-
lication venue entity considered (FPR+V), and with publication time entity considered 
(FPR+T). These benchmarks are selected based on the gradual expansion and utilisation 
of bibliographic information. Specifically, the FPR is based on the citation graph, FPR+A 
and FPR+V further incorporate the paper-author and paper-journal graphs respectively, 
and FPR+T considers citation graph and publication time. It is worth noting that these 
benchmarks are calculated based on future citation networks as illustrated in Fig. 3. The 
use of FPR-based benchmarks requires to set a historical time point, as in the case of FCC, 
to divide a database into two parts. One part is the historical citation network which con-
tains query papers and their citations before the historical time point; and the other part is 
the future citation network which contains future citations received by the query papers 
and citations among papers published after the historical time point. The historical citation 
network is used for testing ranking algorithms, and the future citation network is used for 
generating benchmarks to analyse the behaviour of the ranking algorithms.

(3)Zt = e−�⋅(Thistorical−t)

(4)HCC_t = Zt ⋅ HCC

(5)FCC_t = Zt ⋅ FCC

(6)wFCC_t = Zt ⋅ wFCC.

Fig. 3   Illustration of future citation network. In this example, the historical time point (user query time) 
is the year 2000, and the historical citation network and future citation network are denoted by the dashed 
lines and solid lines, respectively
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Future PageRank

The FPR refers to the PageRank algorithm running on the future citation networks. PageR-
ank is an algorithm used by Google Search, one of the pioneers of Internet search engines, 
to rank web pages in their searching results  (Page et  al., 1999). PageRank determines a 
rough estimate of the importance of web pages based on the inbound and outbound con-
nections to the pages. Let S(pi) denote the score estimated for paper pi , PageRank is com-
puted by the follow iteration:

where In(pi) refers to the set of papers that cite pi , ∣ Out(pj) ∣ is the number of outbound 
papers that pj cites, N is the total number of papers under consideration, and d is a damping 
factor that usually set as 0.85 to allow a random jump in the citation network.

In PageRank, a paper with higher citations and is cited by papers with higher PageRank 
scores will have a higher ranking. However, it has the following limitations. Firstly, the 
random walking model does not conform to the paper evaluation and ranking behaviour in 
reality. Secondly, it does not filter internal and low-value links. Finally, it is biased to older 
papers and not friendly to high-quality new papers (Walker et al., 2007; Wang et al., 2014). 
Despite its drawbacks, PageRank is still an important algorithm in academic paper ranking 
and citation analysis.

The use of FPR as benchmark for algorithms analysis was proposed in the FutureRank 
algorithm (Sayyadi & Getoor, 2009). It took the top 50 papers sorted by FPR from a data-
set as the true paper ranking and measured the precision by comparing this ranking list 
with the top 50 returned by the proposed FutureRank algorithm. Waumans and Bersini 
(2017) analysed the citation growth trend and leveraged this information to predict the 
significance of academic papers. To validate the proposed ranking algorithm, its ranking 
result was analysed using the FPR as benchmark.

Future PageRank and author

The FPR+A extends the citation network into a heterogeneous network that integrates the 
impact of authors through the author-paper network. In each iteration, two components are 
required, one from the citation network using PageRank and the other from the author-
paper network using hyperlink-induced topic search (HITS) algorithm. Below we will 
briefly introduce the HITS algorithm and give the calculation formula of the PR+A based 
on it.

HITS is a well-known link analysis algorithm proposed to rate web pages (Kleinberg, 
1999). Unlike PageRank, HITS defines hubs and authorities in a heterogeneous network, 
in which authoritative pages refer to the important high-quality pages, while hub pages 
refer to directory pages that link to authoritative pages. Two assumptions are applied, 
namely 1) a high-quality authoritative page will be pointed to by many high-quality 
hub pages; and 2) a high-quality hub page will point to many high-quality authoritative 
pages. In the field of academic paper ranking, these two assumptions are revised accord-
ingly, namely 1) a high-quality authoritative paper will be cited by many high-quality 
hub papers; and 2) a high-quality hub paper will cite many high-quality authoritative 

(7)S(pi) ⟵ (1 − d) ⋅
1

N
+ d ⋅

∑

pj∈In(pi)

S(pj)

∣ Out(pj) ∣
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papers. Let S(pi, t) and H(pi, t) denote the authority score and hub score for paper pi , the 
computation of HITS is based on recursive iterations between the authority update and 
hub update, as follow:

where In(pj) and Out(pj) denote the set of papers that cite pj and the set of papers that pj 
cites, respectively. Let A denote the adjacency matrix of the citation network, the above 
equations can be rewritten as:

where � and � are scale factors for normalisation, and H⃗ and S⃗ denote hub and authority 
scores for all papers. Hence, the authority score of papers can be computed by the follow-
ing equation.

Comparing with a paper’s PageRank score which is only related to the papers that cite the 
paper, its HITS score is also related to papers that were cited by the paper. Therefore, HITS 
algorithm is easy to be manipulated by cheaters  (Kleinberg, 1999). A cheater can turn a 
low-quality paper into a high-quality hub by citing many high-authority papers, and mean-
while, cites a cheating paper to improve its authority score. Despite being less stable than 
PageRank, HITS offers a neat solution to integrate the impact of other bibliometric enti-
ties in paper ranking. Specifically, a heterogeneous network can be defined by integrating 
the citation network with author-paper network and venue-paper network. Then the idea of 
hubs and authorities can be extended to the heterogeneous network.

For an author-paper network, the authors and papers are considered as hubs and 
authorities respectively, and they are updated by the following steps:

where H(ai) denote the hub scores of author ai computed by collecting the authority scores 
from corresponding papers; SA(pi) denote the authority score of paper pi propagated from 
the corresponding authors in the paper-author network; In(⋅) and Out(⋅) denote the set of 
nodes link to and link out from the entity, respectively; and �A is a scaling factor used for 
normalisation. Finally, the PR+A score of paper pj is a weighted summation of the two 
components, as follows:

(8)H(pi) ⟵
∑

pj∈Out(pi)

S(pj)

(9)S(pi) ⟵
∑

pj∈In(pi)

H(pj)

(10)H⃗ = 𝜆AS⃗

(11)S⃗ = 𝜇ATH⃗

(12)S⃗ = 𝜆𝜇ATAS⃗

(13)H(ai) ⟵
∑

pj∈Out(ai)

S(pj)

∣ Out(ai) ∣

(14)SA(pi) ⟵ �A

∑

aj∈In(pi)

H(aj)
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where N is the total number of query papers, and � and � are two hyper-parameters that 
adjust the weight of each component. A similar approach was used by the CoRank algo-
rithm (Zhou et al., 2007). This method couples two random walks in the citation network 
and the authors’ social network by the paper author network to jointly rank authors and 
papers.

Future PageRank and venue

Similar to the PR+A, FPR+V is defined on a heterogeneous network that integrates the 
citation network and paper-venue network considering the influence of publication venues 
(journals and conferences). The same idea was used by the P-Rank algorithm for measur-
ing prestige in heterogeneous scholarly networks (Yan et al., 2011a).

For the paper-venue network, the venues and papers are considered as hubs and authori-
ties respectively, and they are updated by the following steps:

where H(vi) denote the hub scores of venue vi computed by collecting the authority scores 
from corresponding papers; SV (pi) denote the authority score of paper pi propagated from 
the corresponding venues in the paper-venue network; In(⋅) and Out(⋅) denote the set of 
nodes link to and link out from the entity, respectively; and �V is a scaling factor used for 
normalisation. Finally, the PR+V score of paper pj is a weighted summation of the two 
components, as follows:

where N is the total number of query papers, and � and � are two hyper-parameters that 
adjust the weight of each component.

Future PageRank and time

The FPR+T benchmark takes into account papers’ publication time by adding a time-
related term to compensate for the smaller number of citations of newly published papers. 
Similar to the normalisation factor used in direct citation metrics, the time term ST is 
defined on the following exponential function:

where � is a constant set to 0.3, Thistorical and t denote the historical time point and the publi-
cation year of paper pi respectively, therefore, Thistorical − t(pi) represents the time past since 
publication. Then PR+T is calculated by the following equation:

(15)S(pi) = � ⋅ PageRank(pi) + � ⋅ SA(pi) + (1 − � − �) ⋅
1

N

(16)H(vi) ⟵
∑

pj∈Out(vi)

S(pj)

∣ Out(vi) ∣

(17)SV (pi) ⟵ �V

∑

vj∈In(pi)

H(vj)

(18)S(pi) = � ⋅ PageRank(pi) + � ⋅ SV (pi) + (1 − � − �) ⋅
1

N

(19)ST (pi) = e−�(Thistorical−t(pi))
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where N is the total number of query papers, and � and � are two hyper-parameters that 
adjust the weight of each component.

Summary

Table 1 summarises the benchmarks/test data and evaluation measures used in a collection 
of existing studies.

From the table, we observe that HCC used to be an important benchmark widely 
employed to analyse scholarly ranking algorithms. Despite its advantages, it is not friendly 
to high-quality new papers. FCC and some variants of the HCC were used in more recent 
studies as they considered the factors which could address the issue of the HCC. In addi-
tion, using test data to evaluate ranking algorithms has received increasing attention in 
recent studies since the awards and recommendations are decided by domain expertise. 
Besides, it is worth noting that the evaluation measures corresponding to different types of 
benchmarks are different. Specifically, when comparing ranking results to those generated 
by citation-based metrics, the Spearman’s rank correlation and classification-based meas-
ures such as accuracy and ROC curves are often used as evaluation measures. On the other 
hand, when using test data for evaluation, distribution-based measures such as average and 
median, and alternative evaluation measures such as normalised discounted cumulative 
gain and average precision are more popular.

Experiment design

Datasets

Two academic data sources are used in this study, namely the arXiv and Microsoft Aca-
demic Graph (MAG). The arXiv has been popular for its use in evaluating paper ranking 
algorithms. It contains rich bibliometric information collected mainly from the domains of 
mathematics and physics. The MAG covers a wider range in terms of publication time and 
research fields of the papers included, which provides an opportunity to analyse recent data 
in multiple research topics. The use of multiple datasets alleviates potential bias brought by 
dataset itself and contributes to reliable results and interpretations. Four datasets are col-
lected from these two sources and described as follows.

•	 The arXiv  - It contains 29,555 academic papers published from 1992 to 2003 with 
352,808 associated citations. We further extracted the author, venue (journal or confer-
ence) and publication time information of these papers, involving 14,909 authors and 
428 venues.

•	 The MAG (ID)  - This dataset was extracted from the MAG, containing 6428 papers 
published in the field of Intrusion Detection (ID), a secondary subject of Cyber Secu-
rity. The corresponding bibliometric information was also extracted, including 94,887 
citations, 18,890 authors and 720 venues.

•	 Test data (CS) - This test data set was collected from the MAG, containing the papers 
in the field of computer science from 2000 to 2011. We manually labelled gold stand-

(20)S(pi) = � ⋅ PageRank(pi) + � ⋅ ST (pi) + (1 − � − �) ⋅
1

N



4058	 Scientometrics (2022) 127:4045–4074

1 3

ard papers (ground truth) in this dataset based on their long lasting impact and signifi-
cant contribution in their respective fields for a certain period of time after publishing. 
Many conferences in computer science issue awards, such as Test of Time award or 
Most Influential award, to those high impact papers published 10 years prior to the 
award year (or longer depending on the conference). The awarding decisions are gen-
erally made through nomination and peer-assessment by domain experts, and finally 
agreed by conference committee panels. Hence we selected 33 reputed computer sci-
ence conferences, covering artificial intelligence, machine learning, natural language 
processing, computer vision, software engineering, data mining, programming lan-

Table 1   A summary of existing ranking algorithms and their associated benchmarks/test data and evalua-
tion measures

CoI: conflict of interest, Corr: Spearman’s rank correlation, DET: detection error tradeoff,
SFD: Spearman’s Footrule distance, R2 : coefficient of determination,
PCA: principal component analysis, RI: recommendation intensity, AP: average precision,
ARR: average ranking ratio, NIR: normalised identification rate,
ROC: receiver operating characteristic curve, GAP: graded average precision,
MAP: mean average precision, nDCG: normalised discounted cumulative gain

Ranking algorithms Benchmarks/test data Measures

PageRank (Chen et al., 2007) HCC Corr
(Ma et al., 2008) HCC Corr
(Yan & Ding, 2010) HCC Intermedium
TS-Rank (Li et al., 2010) FCC SFD
(Yan et al., 2011b) FCC R

2

P-Rank (Yan et al., 2011a) HCC PCA, Corr
AAAI13 (Wang et al., 2013) FCC Corr
MRFRank (Wang et al., 2014) FCC RI
(Xu et al., 2014) Functional HCC AP, SFD
CocaRank (Zhang et al., 2016) FCC Corr
MRCoRank (Wang et al., 2016) FCC RI
PANDORA (Bai et al., 2017) HCC w/o CoI Corr, RI
PePSI (Zhang et al., 2018) HCC ROC
SARank (Ma et al., 2018) HCC, FCC Pairwise accuracy
W-Rank (Zhang et al., 2019a, 2019b, 2019c) FCC, wFCC Corr, ROC
(Sidiropoulos & Manolopoulos, 2005) Awarded papers Position sum
CoRank (Zhou et al., 2007) Recommendations DCG
NewRank (Dunaiski & Visser, 2012) Awarded papers % In Top10, Avg.Dist
(Mariani et al., 2016) Awarded papers Standard deviation
(Dunaiski et al., 2016) Awarded papers MAP
Rescaled PageRank (Mariani et al., 2016) Awarded papers ARR, NIR
SARank (Ma et al., 2018) Recommendations Pairwise accuracy
MutualRank (Jiang et al., 2016) Recommendations nDCG, GAP
(Dunaiski et al., 2018) Awarded papers AP, ROC, DCG, nDCG
FutureRank (Sayyadi & Getoor, 2009) FPR Corr, DET
(Waumans & Bersini, 2017) FPR In-degree
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guages, databases, information retrieval, etc., and searched the test data (CS) set against 
their award lists. In this way, we labelled 143 papers which were published from 2000 
to 2005 and awarded mainly after 2010. The collection of conferences and the num-
ber of papers awarded by each conference are listed in Table A1. Note that the papers 
which were honourably mentioned or shortlisted in these awards were also labelled to 
cater for the non-linear process of scientific development (Mariani et al., 2016; Jiang 
et  al., 2016). Covering more fields of study in the gold standard collection was also 
for this purpose, so that the time distribution of these papers is not uniform over years, 
which better represents the real development of the domain. The distribution of the 
yearly number of gold standard papers in test data (CS) is demonstrated in Fig. A1(a).

•	 Test data (PH) - This test data set is composed of two parts. The first part comprises 
Nobel Prize papers  (Li et  al., 2019) and Milestone papers in the journal of Physical 
Review Letters2. These papers were awarded due to their long-lived contribution to the 
field, by either announcing significant discoveries or initiating new research areas, and 
the awarding decisions were made after years of validating and proving the significance 
of these papers. The second part contains the references of the Nobel Prize papers. This 
is inspired by the study where papers cited by popular textbooks and survey papers for 
a domain or certain topics were considered as gold standard  (Jiang & Zhuge, 2019). 
Being cited by the Nobel Prize papers shows that these papers have gained recognition 
from the Nobel Prize laureates, which can be considered as being recommended by the 
domain experts. By taking these recommended papers into account, the gold standard 
collection in this test data set is assured to conform with the non-linear scientific devel-
opment as aforementioned. A total of 246 papers were collected, and related informa-
tion is listed in Table A2. The distribution of the yearly number of gold standard papers 
in this test data is demonstrated in Fig. A1(b). It is noted the existence of many “influ-
ential” papers which may not receive a high number of citations but give direct birth to 
these gold standard papers (Hu & Rousseau, 2016), however they are not included in 
this study due to the complexity of accurately identifying and verifying them.

A historical time point, T, was set to simulate the user query time, which divided a dataset 
into two parts, namely a historical part for running the ranking algorithms and a future part 
for computing benchmarks defined on the future citation. Considering the publication time 
range of the datasets, we set the T of arXiv, MAG, test data CS, and test data PH to 1998, 
2008, 2005, and 2001, respectively. Details of the four datasets are summarised in Table 2.

Evaluation measures

Three evaluation measures, including the Spearman’s rank correlation coefficient, receiver 
operating characteristic (ROC) curve and the area under the curve, and normalised dis-
counted cumulative gain (nDCG), are adopted in the experiments. These measures evalu-
ate ranking results from the perspectives of mathematical statistics, classification accuracy, 
and ranking effectiveness, respectively, and have been commonly used to evaluate ranking 
algorithms. A synergistic use of multiple measures can help obtain more reliable analysis 
results.

2  https://​journ​als.​aps.​org/​prl/​50yea​rs/​miles​tones.

https://journals.aps.org/prl/50years/milestones
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Spearman’s rank correlation

Spearman’s rank correlation coefficient, � , measures the strength and direction of asso-
ciation between two paper ranking lists (Myers et al., 2013). It is defined by the follow-
ing equation:

where R1 and R2 denote the average ranking positions of all papers in these two ranking 
lists. R1(Pi) and R2 ( Pi ) are the ranking positions of paper Pi in the first ranking list of the 
first period P1 and the second ranking list of the second period P2 respectively. In addition, 
we calculate the confidence interval (CI) corresponding to each coefficient at the signifi-
cance level of 0.05. The CI is defined on Fisher transformation (Fisher, 1915) as follows:

where N is the number of papers in the ranking list, and z�∕2 = 1.96 is the two-tailed criti-
cal value of the standard normal distribution with a significance level of 0.05 ( � = 0.05).

Receiver operating characteristic curve

Correlation analysis has its own limitations (West et al., 2010; Thelwall, 2016), there-
fore we also perform the ROC curves as a supplementary measure. For academic paper 
ranking, the ROC curve is defined on a classification task that aims to discriminate 
good-quality or high-impact papers from low-quality or low-impact papers. It visualises 
the true positive rate (TPR) against the false positive rate (FPR) at different threshold 
settings (Fawcett, 2006). The calculation of TPR and FPR are based on comparing the 
ranking results to a selected baseline.

(21)� =

∑

i(R1(Pi) − R1)(R2(Pi) − R2)
�

∑

i(R1(Pi) − R1)
2(R2(Pi) − R2)

2

(22)CI = tanh( arctanh � ± z�∕2∕
√

N − 3)

Table 2   Statistics of the four collected datasets

Dataset ArXiv MAG (ID) Test data (CS) Test data (PH)

#Papers 29,555 6428 647,180 1,483,924
#Gold papers N/A N/A 143 246
#Citations 352,808 94,887 2,862,492 6,892,638
#Authors 14,909 18,890 306,343 908,421
#Venues 428 720 5059 2938
Publication time 1992–2003 2000-2017 2000–2011 1981–2011
Evaluation time T 1998 2008 2005 2001
#Papers before T 16,142 3418 262,845 240,356
#Papers after T 13,413 3,010 384,335 1,243,568
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Normalised discounted cumulative gain

Discounted Cumulative Gain (DCG) is an effective measure to evaluate ranking quality 
in the field of information retrieval (Järvelin & Kekäläinen, 2002). It measures the gain 
of a paper based on its position in the result rank list using a graded relevance scale of 
papers in the list. The DCG at a certain position (cut-off value), denoted as DCG@p, is 
accumulated from the top of the result list to the position p with the gain of each result 
discounted at lower ranks, as follows:

where reli refers to the graded relevance of the result at position i. We set the relevance of 
awarded paper to 1 and 0 otherwise. The normalised DCG is computed as:

where IDCG@p denotes the ideal DCG at position p that is calculated as follows:

where RELp represents the list of relevant papers (ordered by their relevance) in the corpus 
up to position p. The nDCG@p is an effective measure when using test data to evaluate 
paper ranking results. In this experiment, we calculate the nDCG at different cut-off val-
ues from 1 to 300. Papers ranked top will contribute greater to the nDCG@p compared to 
those behind in the rank, and the decrease in the gain of papers is proportional to the loga-
rithm of their position. A greater nDCG@p value indicates better performance in terms of 
recommendation correctness.

Experiments

Three experiments are designed. Experiment 1 aims to examine the relationships between 
different benchmarks. Specifically, six citation count-based benchmarks are analysed, 
including the HCC, FCC, wFCC, and their time-normalised versions, HCC_t, FCC_t, and 
wFCC_t. For citation network-based benchmarks, we examine the FPR, FPR+A, FPR+V, 
and FPR+T. Analysing the relationships between different benchmarks can bring valuable 
insights into the similarities and differences in their scoring behaviour. Spearman’s rank 
correlation coefficients and ROC curves are used in the analysis.

Experiment 2 aims to examine the relationships between benchmarks and domain 
expert recommendations in the test data. An important task of assessing academic papers 
is to identify top quality and high impact papers from large scale paper collections. This 
task is considerably different from ranking all the papers by granting scores to each of them 
because top paper recommendation focuses on the few gem publications. Therefore, this 
experiment simulates the scenario of paper recommendation and is designed to compare 
the benchmarks against domain expert decisions using test data. The assumption is that 
decisions made by domain experts are not exclusively based on bibliometric information of 

(23)DCG@p =

p
∑

i=1

reli

log2(i + 1)

(24)nDCG@p =
DCG@p

IDCG@p

(25)IDCG@p =

∣RELp∣
∑

i=1

reli

log2(i + 1)
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the papers, yet these papers should be recognised as high impact measured by some bench-
marks, e.g., higher future citation count. The results of this experiment can contribute to 
bridging between domain expert recommendations and the objective benchmarks. The two 
test data sets and nDCG are used in this experiment.

Finally, in experiment 3, we analyse nine existing ranking algorithms using test data 
and different benchmarks to show the impact of evaluation method choices on evaluation 
results. The nine ranking algorithms and their features are summarised in Table 3.

These algorithms are selected due to their distinguishing features, including whether 
they are based on PageRank or HITS algorithm, whether they are time-sensitive, and the 
bibliometric factors considered. Specifically, grouping them into PageRank- and HITS-
based algorithms will help reveal whether the evaluation methods favour random walk 
based or mutual reinforcement based algorithms. Note that we categorised the algorithms 
based on the core methodology employed in each algorithm, although a few algorithms 
mixed PageRank scores into the HITS algorithm, such as FutureRank. In addition, compar-
ing time-sensitive and -insensitive algorithms against different benchmarks and test data 
can uncover the differences between the benchmarks and their time-sensitive variants, as 
well as the relationship between test data and the two types of benchmarks. Thirdly, evalu-
ating the algorithms which involve diverse combinations of bibliometric factors can dem-
onstrate the differences between citation count-based benchmarks and citation network-
based benchmarks. It will also reveal the distinctive paper recommending decisions made 
by experts compared to the score-based benchmarks. The Spearman’s rank correlation 
coefficients, ROC curves and nDCG are used in these comparative analysis.

Results

Comparison of different benchmarks

The correlation analysis results are summarised in six tables. Specifically, Table 4 lists 
the Spearman’s rank correlation coefficients between citation count-based benchmarks 

Table 3   Paper ranking algorithms and their features

C: Citations amongst papers, A: Authors of papers, V: Venues of publications

Algorithm Features

PageRank(PR)- or 
HITS-based

Time-sensitive Factors concerned

PageRank (Chen et al., 2007) PR × C
TS-Rank (Li et al., 2010) PR

√

C
Rescaled PageRank (RS-PageRank) (Mari-

ani et al., 2016)
PR

√

C

CoRank (Zhou et al., 2007) PR × C, A
P-Rank (Zhao et al., 2009) PR × C, A, V
HITS (Ng et al., 2001) HITS × C
FutureRank (Sayyadi & Getoor, 2009) HITS

√

C, A
MutualRank (Jiang et al., 2016) HITS × C, A, V
AAAI13 (Wang et al., 2013) HITS

√

C, A, V
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(HCC, FCC, wFCC and their time-normalised versions) and citation network-based 
benchmarks (FPR, FPR+A, FPR+V, and FPR+T) on the arXiv and MAG datasets as 
well as two test data sets, respectively. Moreover, Table  A3 shows the results of cor-
relation analysis between benchmarks in the citation count-based group, and Table A4 
shows that for the citation network-based group.

Table 4   Results of Spearman’s rank correlation analysis between citation count-based and citation network-
based benchmarks

The 95% confidence intervals are reported in the brackets, and values greater than 0.8 are highlighted. The 
header line contains the citation network-based benchmarks, and the citation count-based benchmarks com-
pose the header row
HCC historical citation count, FCC future citation count wFCC weight future citation count, _t: normal-
ised by the factor of publication time, FPR future PageRank, wFPR weighted future PageRank, FPR+A, 
FPR+V, FPR+T future PageRank considering author, venue and time factors

Results on the arXiv dataset

FPR wFPR FPR+A FPR+V FPR+T

HCC 0.28 (0.27,0.3) 0.27 (0.25,0.29) 0.3 (0.28,0.32) 0.34 (0.32,0.36) 0.1 (0.08,0.12)
FCC 0.83 (0.82,0.83) 0.82 (0.81,0.83) 0.79 (0.78,0.8) 0.69 (0.68,0.7) 0.77 (0.76,0.78)
wFCC 0.81 (0.8,0.82) 0.84 (0.83,0.84) 0.77 (0.77,0.78) 0.67 (0.66,0.68) 0.77 (0.76,0.77)
HCC_t 0.35 (0.33,0.36) 0.34 (0.32,0.35) 0.36 (0.34,0.38) 0.41 (0.38,0.41) 0.27 (0.26,0.29)
FCC_t 0.75 (0.75,0.76) 0.76 (0.75,0.78) 0.72 (0.71,0.73) 0.63 (0.62,0.64) 0.85 (0.85,0.86)
wFCC_t 0.74 (0.73,0.75) 0.77 (0.76,0.78) 0.7 (0.69,0.71) 0.61 (0.6,0.63) 0.84 (0.84,0.85)

Results on the MAG (ID) dataset

FPR wFPR FPR+A FPR+V FPR+T

HCC 0.45 (0.41,0.5) 0.43 (0.38,0.47) 0.47 (0.42,0.51) 0.41 (0.37,0.46) 0.3 (0.25,0.35)
FCC 0.84 (0.82,0.86) 0.82 (0.81,0.84) 0.79 (0.77,0.81) 0.79 (0.77,0.81) 0.8 (0.78,0.82)
wFCC 0.79 (0.77,0.81) 0.82 (0.8,0.84) 0.74 (0.71,0.76) 0.75 (0.72,0.77) 0.76 (0.74,0.78)
HCC_t 0.5 (0.46,0.54) 0.47 (0.43,0.52) 0.5 (0.46,0.54) 0.46 (0.41,0.5) 0.38 (0.34,0.43)
FCC_t 0.69 (0.66,0.72) 0.69 (0.66,0.72) 0.64 (0.61,0.67) 0.65 (0.61,0.68) 0.78 (0.76,0.8)
wFCC_t 0.63 (0.6,0.66) 0.67 (0.64,0.7) 0.57 (0.54,0.61) 0.59 (0.55,0.63) 0.72 (0.69,0.74)

Results on test data (CS)

FPR FPR+A FPR+V FPR+T

HCC 0.64 (0.63,0.64) 0.58 (0.58,0.58) 0.57 (0.57,0.57) 0.33 (0.32,0.33)
FCC 0.86 (0.86,0.86) 0.84 (0.84,0.84) 0.78 (0.78,0.78) 0.78 (0.78,0.78)
HCC_t 0.63 (0.62,0.63) 0.58 (0.58,0.59) 0.57 (0.56,0.57) 0.41 (0.4,0.41)
FCC_t 0.74 (0.74,0.74) 0.74 (0.74,0.74) 0.68 (0.67,0.68) 0.86 (0.86,0.87)

Results on test data (PH)

FPR FPR+A FPR+V FPR+T

HCC 0.25 (0.25,0.26) 0.23 (0.23,0.23) 0.31 (0.31,0.32) 0.18 (0.18,0.19)
FCC 0.87 (0.87,0.87) 0.8 (0.8,0.81) 0.87 (0.87,0.87) 0.83 (0.83,0.83)
HCC_t 0.23 (0.23,0.24) 0.21 (0.21,0.22) 0.3 (0.29,0.3) 0.18 (0.18,0.18)
FCC_t 0.51 (0.51,0.51) 0.48 (0.48,0.48) 0.52 (0.52,0.52) 0.69 (0.69,0.69)
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In addition, Fig. 4 shows the ROC curves of all the benchmarks on the four datasets. 
The generation of ROC curves required to assign a baseline to calculate the TPR and 
FPR, hence the FCC and FPR were selected because they were representatives of the 
citation count-based benchmarks and citation network-based benchmarks, respectively. 
Note that the objective of analysing ROC curves is to compare benchmarks, thus the 
baselines serve the purpose of comparative study, and selection of baseline is not the 
focus of this analysis.

Based on the results of correlation analysis and ROC curves, the following observa-
tions are obtained.

•	 Comparing between citation count-based and citation network-based benchmarks, 
as shown in Table  4, we notice that benchmarks defined under the same assump-
tion tend to achieve similar ranking results. For instance, FCC, FCC_t, FPR and 
FPR+T share the same assumption, that is, future citations matter for paper evalua-
tion. Although they score papers using different approaches, their ranking results are 
similar in terms of correlation (e.g., greater correlation coefficients as highlighted in 
the table). This also explains the better performance of the time-awared benchmarks 
in the ROC results in Fig. 4 where FCC and FPR are used as baselines.

•	 Comparing between HCC and FCC, it is observed that high HCC does not necessar-
ily imply high FCC. This is reflected by the comparatively lower correlation between 
the HCC and FCC, also their time normalised versions, as shown in Table  A3. 
Although both of them are based on citation count, they infer the impact of papers 

Fig. 4   ROC results on four datasets. The figures in the first row report the ROC of the benchmarks using 
FCC as baseline, and those in the second row report the ROC of the benchmarks using FPR as baseline. 
The solid and dashed lines represent citation count-based and citation network-based benchmarks, respec-
tively
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from two different perspectives. HCC considers the current citation status of the 
papers at the time of the user query, while FCC takes into account new citations 
received by the papers after the time of user query. Our results confirm that the dif-
ferences in the underlying assumptions do lead to different ranking results. In addi-
tion, the relationship between HCC and FCC is also dependent on the research fields 
or datasets. In some areas with low timeliness (e.g., theoretical physics and cryp-
tography), high-impact papers published in the past may continue to influence the 
future and gain high recognition in the future. In contrast, in some other areas, many 
papers were popular for a period but soon obliterated by time in the river of history.

•	 Comparing the benchmarks and their weighted versions, the effect of citation rele-
vance is observed. Accumulating citations weighted by relevance takes into account 
the quality of each citation, and this would be different from directly counting cita-
tions, however this difference is small. Our results demonstrate that wFCC achieved 
different but close ranking results to FCC as shown in Table A3. Similar pattern can 
be obtained by comparing FCC_t and wFCC_t, and by comparing FPR and wFPR 
(in Table  A4). Considering the extra computational cost brought by citation rele-
vance, we only analysed the wFCC on the arXiv and MAG datasets.

•	 Comparing the citation count-based benchmarks (HCC, FCC, wFCC) and their time-
normalised versions in Table A3, we can find that time normalisation has an impact 
on the ranking results, and the degree of the impact is related to research fields and 
datasets (time span of the data and the defined query time). Time normalisation aims 
to correct the bias introduced by publication time by penalising old papers, which 
tends to improve the ranking of newly published papers. For some datasets, e.g., 
test data PH, this could lead to a big difference in the ranking results. This result is 
also supported by the ROC analysis as shown in Fig. 4(5) to Fig. 4(8) where FPR is 
considered as baseline. In these four figures, the area under curve (AUC) of FCC is 
larger than that of FCC_t but the margin in-between their AUC varies in different 
datasets.

•	 Comparing FPR+A, FPR+V and FPR+T against FPR, we observe that integrating the 
paper-author network, paper-venue network, and publication time in the citation net-
work would change the scoring behaviour and lead to different ranking results. The 
underlying assumption of FPR is that more important papers are likely to receive more 
citations from future published papers. On this basis, FPR+A and FPR+V further 
assume that important papers are more likely to be cited by prestigious authors and 
publication venues, while FPR+T believes newly published papers should be promoted. 
The difference in their assumptions can explain their different ranking results. In addi-
tion, the size of the impact of considering the author, venue, and time factors on rank-
ing results varies according to datasets and research fields. For example, on the arXiv 
dataset, there is a huge difference between the ranking results of FPR and FPR+V, but 
this difference is smaller on the MAG dataset. Moreover, the integration of author, 
venue, and publication time has varying degrees of impact on the ranking results. For 
example, on the arXiv data set, compared with only using citation information, further 
integrating venue information leads to a greater impact on the final paper ranks than 
considering author information.

Our analysis shows similarities and differences between different benchmarks. Since each 
of them represents a unique perspective, we can collectively use multiple benchmarks to 
analyse ranking algorithms.
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Comparison of test data and benchmarks

The nDCG results of the benchmarks on the two test data sets are reported in Fig. 5. We 
examine each benchmark at different cut-off values (x-axis), which simulates the scenar-
ios where different numbers of papers are recommended. Our results confirmed that the 
gold standard papers in the test data exhibit the property that is not exclusively based on 
citations, citation networks and the information of author and venue.

Among all the tested benchmarks, no one is able to identify all the gold standard 
papers in the test data with high effectiveness. This observation implies that experts 
do not simply rely on bibliometric information (i.e., citations and authors) to judge the 
quality or impact of the papers. This is reasonable since domain expert decisions are 
usually based on peer-assessment of the papers’ content. However, the citation status, 
as well as the author, venue, and publication time information, are still factors that 
experts may have taken into consideration when selecting awarded papers. This is why 
using benchmarks can still identify some of the gold standard papers. For example, FCC 
achieved above 0.2 nDCG at the cut-off value of 600 on both test data sets.

Another finding observed from Fig. 5 is that the extent to which these citation-based 
benchmarks explain domain expert decisions varies for different fields of research. Spe-
cifically, in the test data (CS) the FCC and FCC_t perform better than HCC and HCC_t, 
however HCC (HCC_t) dominates FCC (FCC_t) in the test data (PH). This result points 
out how different the fields of computer science and physics develop in terms of paper 
citation accumulation, which also emphasises the significance of employing multiple 
test data sets for algorithm evaluation. In addition, the different performance of the cita-
tion network-based benchmarks confirms this point as well. The time factor considered 
in the FPR plays a more significant role in collecting gold papers in the test data (CS) 
while the venue information does not, however both FPR+T and FPR+V show similar 
performance in the test data (PH). It is also interesting that the integration of author 
information does not help this case.

Fig. 5   The nDCG curves of the benchmarks on the two test data sets. Different cut-off values are set to 
simulate the scenarios where different numbers of papers are recommended. The solid and dashed lines rep-
resent citation count-based and citation network-based benchmarks, respectively



4067Scientometrics (2022) 127:4045–4074	

1 3

In summary, citation-based benchmarks cannot fully explain the domain expert deci-
sions in the test data. However, they may share certain properties, or there may be causal 
relationships. For example, high-quality or high-impact papers recommended by domain 
experts usually get wide recognition and receive a large number of citations after being 
awarded, therefore, FCC can identify more awarded papers successfully. Moreover, the 
nDCG analysis indicates that it is important to employ multiple test data sets in different 
research areas for the sake of fairness and robustness of algorithm evaluation.

Analysis of ranking algorithms using test data and benchmarks

Results of the Spearman’s rank correlation coefficients are summarised in Fig. 6. In addi-
tion, Fig. 7 shows the ROC curves of the nine ranking algorithms using each benchmark 
on the arXiv dataset. Since the calculation of ROC curves of algorithms requires compar-
ing to a baseline, we show the performance of these algorithms using each benchmark as a 
baseline. The corresponding ROC results on the MAG dataset, test data (CS) and test data 
(PH) are reported in Online Appendix Fig. A2, Fig. A3 and Fig. A4, respectively. Finally, 
the nDCG results of the nine algorithms are reported in Fig. 8. Specifically, the calculation 
of nDCG is based on the relevance of papers. In the test data, the relevance of a paper is 
defined by whether the paper was awarded (awarded - 1, not awarded - 0).

Results from correlation, ROC and nDCG analysis indicate that using different test 
data and benchmarks to evaluate and analyse ranking algorithms will lead to different 
results. From Fig.  6, Fig.  7 and  Fig.  8, there is no algorithm that always dominates the 
others in these three types of analysis. This confirms that assessing paper ranking algo-
rithms from different perspectives can generate diverse results. For example, when using 
HCC as the benchmark, PageRank shows higher correlation and classification accuracy 

Fig. 6   Spearman’s rank correlation coefficients between algorithms and benchmarks on four datasets (time-
sensitive algorithms are represented using triangular markers). Different benchmarks are used to analyse 
the nine selected algorithms. The varying ranks of the algorithms in the columns indicate the difference in 
evaluation results when using different benchmarks
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than FutureRank on four datasets, as shown in the correlation analysis in Fig. 6 and ROC 
curves in Fig. 7. In contrast, when using FCC as the benchmark, FutureRank demonstrates 
its advantages over PageRank. These different analysis results are drawn from different per-
spectives. They are not contradictory, but complementary.

In addition, by comparing between the PageRank-based and HITS-based algorithms, 
especially between HITS, MutualRank and PageRank, we find no obvious bias from any 
benchmarks towards these two types of algorithms. However, all of these three algorithms 
tend to drop performance when time factor is considered in the benchmarks as shown in 
Fig. 6 and Fig. 7. This makes sense as these algorithms do not take into account the impact 
of publication time. Interestingly, such drop is smaller for MutualRank compared to HITS 
and PageRank, which indicates a higher degree of robustness of the MutualRank to per-
form on different benchmarks. In addition, it can be observed that the time involved bench-
marks (HCC_t, FCC_t and FPR+T) favour the time-sensitive algorithms compared to their 

Fig. 7   ROC curves of the nine ranking algorithms using different benchmarks on the arXiv dataset (time-
sensitive algorithms are represented using dashed lines). The ROC curves are in different shapes, which 
indicates the difference in evaluation results when using different benchmarks

Fig. 8   nDCG curves of the nine ranking algorithms on the two test data sets (time-sensitive algorithms are 
represented using dashed lines). Different test data is used to evaluate the nine selected algorithms. The 
nDCG curves are in different shapes, which indicates the difference in evaluation results when using differ-
ent test data
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original version (HCC, FCC and FPR), and such case is more obvious when the evaluated 
algorithms consider multiple bibliometric factors. Specifically, Fig. 6 and Fig. 7 show that 
FutureRank and AAAI13 perform better on HCC_t, FCC_t and FPR+T benchmarks com-
pared to that on HCC, FCC and FPR benchmarks, yet the time considered benchmarks do 
not show bias towards RS-PageRank and TS-Rank. Moreover, the algorithms taking into 
account multiple bibliometric factors tend to obtain better analysis results when these fac-
tors are also involved in the benchmarks. For instance, P-Rank shows higher correlation 
and AUC on the FPR+V benchmark compared to the other PageRank-based algorithms 
because it integrates the venue information while the others do not.

Another finding is that, the field of research from which the test data set is collected 
can largely influence the evaluation results of the ranking algorithms. The same ranking 
algorithm could receive dramatically different nDCG values on different test data sets. This 
point is clearly evidenced in Fig. 8 where HITS and MutualRank collect a higher number 
of gold standard papers in the test data (CS) while more gold papers in test data (PH) are 
found by PageRank and TS-Rank. Furthermore, comparing the nDCG values between the 
algorithms in Fig. 8 and the benchmarks in Fig. 5, the benchmarks obtain higher nDCG 
values than the algorithms when cut-off value is smaller than 1000, which means that the 
benchmarks (e.g., FCC) are able to better explain domain expert decisions in gold paper 
recommendation. Therefore, analysing algorithms on benchmarks can help build a more 
comprehensive understanding of the algorithms when using test data alone does not lead to 
consistent results.

Guideline

Based on results of the three experiments, a guideline for evaluating and analysing paper 
ranking algorithms is summarised as follows.

•	 Using appropriate test data is a preferred method to evaluate paper ranking algorithms 
since the collection of test data is based on peer-assessment and domain expert deci-
sions, thereby it can provide results that are more reliable in terms of the effectiveness 
of the ranking results. However, collecting appropriate large-scale test data sets is a 
challenge due to the limitations of relevant data resources. In addition, how to obtain 
representative, unbiased and sufficient opinions is still an open research question. As a 
result, the applications of test data in algorithm evaluation are limited by the research 
fields, publication venues and time.

•	 Algorithms are usually proposed based on different assumptions and objectives. When 
the goal of a ranking algorithm is to approximate a certain benchmark, that benchmark 
should be used to analyse the level of fulfillment for the proposed algorithm. For exam-
ple, the FutureRank is proposed to predict the future PageRank scores of papers based 
on their existing data, then it is reasonable to use FPR as benchmark in the analysis. 
However, it would be not fair to compare with other algorithms on this benchmark 
since it may favour the algorithm which is proposed under the same assumption. Hence 
we recommend to employ multiple benchmarks for a fair comparison. For example, if 
an algorithm is designed to predict the future impact of papers, FCC, FCC_t, as well 
as FPR and FPR+T can be used together to validate the scoring behaviour of the algo-
rithm.

•	 Using benchmarks for analysis can shed light on the properties of a ranking algorithm. 
This is particularly useful when test data is not available. According to the results of 
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the comparative analysis on benchmarks, we recommend to use multiple benchmarks 
which reflect different characteristics. This is an improvement over the existing com-
mon practice where either test data or only one type of benchmark is employed for 
algorithm evaluation or analysis. A more comprehensive analysis can potentially reduce 
the bias introduced by applying one single benchmark. The prior knowledge of the 
benchmarks helps provide a deep understanding of the scoring behaviour of the ranking 
algorithms and gain valuable insights into their underlying properties.

The following is a walk-through example of how to employ multiple benchmarks for a 
comparative analysis. Fig. 9 shows the performance profile of the six paper ranking algo-
rithms (PageRank, HITS, MutualRank, AAAI13, RS-PageRank and TS-Rank) in radar 
charts. Specifically, we analyse the performance of each algorithm on the eight bench-
marks (FCC, FCC_t, HCC, HCC_t, FPR, FPR+A, FPR+V, FPR+T) using the two test 
data sets. Analysis results on the Spearman’s rank correlation coefficients, area under the 
ROC curves, and nDCG@300 are generated separately. For the nDCG values, gold stand-
ard papers define the relevance for the Gold indicator in the figures. In addition, we define 
new relevance by each of the eight benchmarks. To obtain a new relevance, we rank all the 
papers according to a selected benchmark, and define the relevance of the top K papers as 
1 and the rest as 0. This is to simulate the situation that the top K papers are recommended. 
The K is set to the number of awarded papers in the test data for a fair comparison.

The performance profile of the algorithms on different benchmarks can help identify the 
properties of the algorithms. Specifically, in each radar chart, the profile of each algorithm 
forms a unique shape, which displays the performance of this particular algorithm on dif-
ferent benchmarks. If an algorithm covers a larger area toward a benchmark which empha-
sises on a specific bibliometric factor, it indicates that the scoring behaviour of this algo-
rithm shares similar properties with that of the benchmark. For instance, it is obvious that 

Fig. 9   Performance profiles of six ranking algorithms on eight benchmarks and two test data sets
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PageRank and HITS outperform the other algorithms on the HCC and HCC_t benchmarks 
in the correlation and ROC analysis, meaning these two algorithms tend to favour the paper 
with many older citations. In contrast, the AAAI13 algorithm always dominates the others 
on the FCC_t benchmark, showing its focus on the papers with relatively new citations, 
which makes it more suitable to search for emerging breakthrough research. In addition, 
algorithms considering more bibliometric factors for ranking papers do not necessarily 
obtain higher recommendation effectiveness in terms of identifying gold standard papers.

Conclusion

This study carried out a comprehensive review and investigation on the existing methods 
used for evaluating and analysing paper ranking algorithms, and then grouped these meth-
ods into two main categories (test data and citation-based benchmarks) based on how they 
generate paper rankings. Extensive comparisons were conducted and the characteristics 
of the benchmarks were analysed to assess the relationships and differences among these 
methods. Specifically, three experiments were carried out to respectively investigate the 
relationships between the all the citation-based benchmarks, compare all the benchmarks 
against test data, and analyse ranking algorithms using test data and benchmarks. Overall, 
two academic data sources (arXiv and MAG), three research fields (intrusion detection, 
computer science and physics) and two test data sets were employed in the investigation. 
The papers awarded for their long lasting contribution to the field were labelled as gold 
standard in one test data set, and the Milestone papers, Nobel Prize papers and their refer-
ences were labelled to construct the other test data.

Our findings confirmed the existence of differences in the analysis results when using 
test data and different benchmarks with data, which means that relying exclusively on one 
single benchmark could lead to inadequate analysis results. A guideline was summarised to 
help choose the evaluation method based on the test data availability and objectives of the 
evaluated algorithms, and lastly a multi-benchmark approach was suggested for algorithm 
analysis, which can help build a comprehensive profile for the evaluated algorithms to gain 
more reliable and holistic insights into their performance. Our systematic review and com-
parative study revealed the relationships and differences among different benchmarks, and 
confirmed the impact of using different benchmarks and test data on the evaluation results. 
This is an importance step towards building up an unbiased and unified benchmark and 
gold standard for evaluation of ranking algorithms in the field of academic paper ranking.

Despise that a guideline was summarised with demonstration of performance profiles of 
different ranking algorithms, this study suffers one limitation that it did not provide a con-
clusive solution to the problem. Our future work will put further effort in designing evalu-
ation procedures and frameworks to support a unified and reliable evaluation of, and a fair 
comparison of, paper ranking algorithms. One way to achieve such evaluation frameworks 
is to create a collection of comprehensive and representative test data sets with proposed 
evaluation metrics (Tax et al., 2015; Dunaiski et al., 2018). However, developing test data 
sets is always challenging due to the difficulty of access to large scale publications, differ-
ent research fields, and the ever-growing number of new papers. Another way is to propose 
an advanced evaluation procedure based on a combination of well-designed benchmarks as 
discussed in this paper. The summarised guideline suggests the practice of ranking algo-
rithm analysis under different conditions, which serves the first step towards this line of 
research and aims to advance in the next study.
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