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Abstract
Initial deployment and subsequent dynamic reconfiguration of a 

software system is difficult because of the interplay of many 
interdependent factors, including cost, time, application state, 

and system resources. As the size and complexity of software 

systems increases, procedures (manual or automated) that 
assume a static software architecture and environment are 

becoming untenable. We have developed a novel technique for 

carrying out the deployment and reconfiguration planning 
processes that leverages recent advances in the field of temporal 

planning. We describe a tool called Planit, which manages the 

deployment and reconfiguration of a software system utilizing a 
temporal planner. Given a model of the structure of a software 

system, the network upon which the system should be hosted, and 

a goal configuration, Planit will use the temporal planner to 
devise possible deployments of the system. Given information 

about changes in the state of the system, network and a revised 

goal, Planit will use the temporal planner to devise possible 
reconfigurations of the system. We present the results of a case 

study in which Planit is applied to a system consisting of various 

components that communicate across an application-level 
overlay network. 

1. Introduction 

Deployment and dynamic reconfiguration of software systems 

pose a tough challenge because of the architectural complexity of 

modern, distributed software systems. A significant body of 

research exists that addresses the optimization of the deployment 

and dynamic reconfiguration process. However, software systems 

continue to evolve in the direction of ever increasing complexity, 

and distributed systems are becoming the norm. In this 

environment, existing techniques are beginning to reach their 

limit. Many systems now require a system administrator to 

manage and evolve large scripts that control the system. Dynamic 

reconfigurationthe reconfiguration of a system while it is 

executingonly exacerbates the problem. This facility is 

required in large distributed systems where it may not be possible 

or economical to stop the entire system to allow modification to 

part of its hardware or software [14]. Clearly there is a need for 

new tools and techniques that automate the process of 

deployment and dynamic reconfiguration of software systems. 

The dynamic reconfiguration process looks very much like the 

traditional control system model of “sense-plan-act”. For 

software systems, sensing involves the monitoring of the system 

and its environment to detect problems such as machine or 

component failures. Planning involves the construction of a plan 

to return the software system to normal or near normal 

functionality. Acting is the execution of the steps as defined in 

the plan. Each step in the plan effects a state transition. The plan 

as a whole causes a transition from the present state of the system 

to a desired state. The problem is that there are number of ways 

in which this state transition can be performed. All of these ways 

have different time, cost, and resource usage implications. 

Finding the optimal plan is difficult when all of these variables 

are taken into account. 

There has been a lot of work in the sensing and acting phases [3,

4, 6, 15, 16, 28] but much less work on the problem of finding 

the optimal techniques for planning a reconfiguration [3, 18]. The 

artificial intelligence (AI) community has been dealing with this 

kind of problem for a long time, where it arises in robot motion 

planning, intelligent manufacturing, and operations research. AI 

provide automated planners that avoid traditional state-space 

search mechanisms like breadth first, depth first, or best first. 

Instead they use heuristics and other techniques for searching the 

plan space. Recently these planners have become powerful 

enough to be used in real-world applications. Moreover, they 

now accept more powerful input specifications and are able to 

optimize time, cost, and resource constraints. There is a flavor of 

planner called temporal planners that is specifically geared 

towards time optimization. 

In this paper we demonstrate the synergy between deployment, 

dynamic reconfiguration, and planning. Each planner requires a 

domain for the representation of the semantics of the possible 

transitions. Along with the domain, the planner requires a 

specification of the initial state and the goal state. We have 

developed an initial domain for the deployment and dynamic 

reconfiguration of software systems. 

We have developed a tool, Planit, which can monitor a software 

system and obtain events indicating some kind of state change. 

Depending on the state of the system, Planit develops an initial 

state of the system. If it requires a change in configuration, it  

develops a desired state of the system based on its possible 

configuration rules. It writes the initial and desired state in a 

problem file and gives it to the planner. The planner computes a 

plan for the transition between the initial state and the desired 

state and returns a plan. Planit receives and interprets this plan 

and disseminates the new configuration to the system for 

execution. 
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The technical part of the paper is organized as follows. Section 2 

motivates the use of AI planning techniques for reconfiguration. 

Section 3  describes the domain of reconfiguration. Section 4 

defines the reconfiguration process when using planning, and the 

operation of the underlying Planit system. Section 5 presents a 

case study and some performance measurements resulting from 

that study. 

2. The Need for Planning 

There are several reasons that motivate the use of planning for 

deployment and dynamic reconfiguration of software systems 

with the help of AI techniques. 

The first reason is the dynamic nature of the environment for 

deployment and reconfiguration. Much of the prior work in 

reconfiguration (see Section 6) has implicitly assumed that the set 

of resources is fixed and available. For example, the set of 

machines is static and all of them are available; the set of 

deployed components is statically determined. In practice, this is 

seldom true, and so any process for deploying and reconfiguring 

a system must take such variability into account. Planning 

inherently has the ability to address these kinds of problems. 

The second reason, which is driven in part by the first issue, is the 

large and complex nature of the search space that is involved in 

finding an optimal plan. Using traditional search-based 

techniques, such as depth-first search, can take a lot of time to 

find an optimal plan. Moreover, this is not search in the node 

space; this search is in the space of plans [25]. Therefore, without 

good heuristics the search process takes a long time to come up 

with an optimal plan. 

The third reason is that in some situations an explicit contingency 

configuration is not given for a system. This happens when the 

system is trapped in an unanticipated state. The developers of the 

system may not have envisioned this unanticipated state, and the 

specific recovery plan for the system depends on that state. Many 

factors play a role in going into an unanticipated state. These 

factors include malicious external attacks, internal 

inconsistencies, failure of a critical resource, and many others. 

These factors at different times can lead to a partial failure of the 

system or can completely prevent the system from providing any 

kind of service. Bringing the system out from these unanticipated 

states is very difficult without any intelligence. Planners have the 

capability of finding the way out of unanticipated states provided 

the right set of inputs. 

The fourth reason is to find a reconfiguration plan that is close to 

optimal in usage of time, cost, and resources. These factors 

sometimes conflict with each other, so the goal is to find the 

balance among them. Optimizing usage of resources is difficult 

without an intelligent technique. Here, time refers to the 

execution time of the plan. The time for finding the plan is also 

important and can affect the quality of the plan because the 

planner may produce a better plan when given more time. 

Coming up with an optimal plan that utilizes the resources, 

execution time and cost in the best possible way in the minimum 

time is not generally feasible with manual techniques. 

These reasons are convincing enough to use more sophisticated 

techniques for automating the dynamic reconfiguration process. 

Finding the right plan for the reconfiguration process is the first 

step that we have taken in this direction. AI planners reduce the 

search space of finding the optimal plan by using different 

heuristics. The heuristic that is used by LPG [23], the planner that 

we use in this project, is called “Local Search on Planning 

Graphs”. Different planners [9, 23, 24] use other search heuristics 

to find an optimal plan. 

3. The Domain of Reconfigurable Systems 

In order to use planning technology to reconfigure software 

systems, we need to represent the structure and state of those 

systems using some kind of modeling language. This structural 

model is often referred to as the architecture of the system. The 

state model typically is represented by local predicates about 

individual elements of the architecture or global predicates about 

the architecture as a whole. These predicates allow us to specify 

both the current and desired states of the system. 

We adopt a simplified version of the models used in Architecture 

Definition Languages (ADLs) [4, 5] as the basis for our 

specification. Our model differs from ADLs in that it also 

includes information about the structure and state of the 

environment. In our case, that environment is the set of machines 

onto which a software system is deployed. For our purposes, 

then, the model consists of three kinds of entities: components,

connectors, and machines.

Components contain the logic of the system. A component is any 

entity that one can manage. An instance of a component can only 

exist at one machine at one time. Components need to be 

connected to a connector in order to communicate with other 

components. Some of the operations that can be performed on the 

components are starting a component, stopping a component, and 

connecting a component. 

Connectors provide communication links. Each connector 

instance exists on one machine. The connector can be linked to 

other connectors for communication. A connector can be thought 

of as a weak form of the connectors described by Mehta et al. 

[21]. The connector needs to be connected to another connector 

before it can accept connections from the component. The 

connector has almost the same operations as a component, except 

that it has an interconnect operation that links it with other 

connectors. 

Machines are places where components and connectors are 

deployed. A machine may have a resource constraint that 

controls the number of components and connectors that may be 

assigned to that machine. The operations that can be performed 

on the machine are start and stop. Note that we do not explicitly 

model inter-machine connections. We assume that all the 

machines are connected to a network and that any two machines 

can communicate using, for example, TCP/IP. We assume that a 

connector deployed on a machine will use the inter-machine 

communication channels as the substrate for the connector’s 

communication activities. 
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3.1 Component and Connector States 
Components, connectors, and machines all have associated state 

machines that define what states they can achieve and in what 

order. These states are shown in Figure 1.. Components and 

connectors have essentially the same set of states, so they are 

unified in the figure.  

A component (or connector) starts in the inactive state. It can 

transition to the active state and to the connected state, which 

indicates that the component/connector has been connected to 

some existing connector. The component/connector can also 

reach a killed state, which indicates that it has failed. A killed 

component/connector cannot be restarted; rather, a new instance 

must be created and started. 

Machines have a somewhat simpler state machine. They can be 

down, up, or killed. Components and connectors cannot be 

assigned to a machine unless it is in the up state. 

4. Planning Activities 

Our approach supports two related planning activities. First, 

planning is used for the initial deployment of the components and 

connectors on machines. Second, planning is used to support a 

form of replanning that occurs when a previously deployed 

system must be dynamically reconfigured due to a problem 

arising in the deployed system. 

4.1 Planning Inputs 
For both planning processes, the planner requires a number of 

inputs. These inputs are divided into three parts: the domain, the 

initial state, and the goal state. 

The domain is relatively static. It specifies the following items. 

1. Types of entities: in our case, this consists of 

components, connectors, and machines. 

2. Entity Predicates/Facts: the predicates associated with 

entities (see the section marked “predicates” in Figure 3). 

An example might be “at-machine”, which is a predicate 

that relates a component (or connector) to the machine to 

which that component is assigned. The domain actually 

specifies simple predicates, which are n-ary relations. 

These can be combined using logical operators into more 

complex predicates. As with Prolog, instances of these n-

ary relations can be asserted as facts, and a state is 

effectively a set of asserted facts. Predicates are also 

referred to as constraints. 

3. Utilities: a variety of utility functions can be defined to 

simplify the specification (see the “functions” section of 

Figure 3). An example might be “local-connection-time”, 

which computes the time to connect a component given 

that the component and the connector are on the same 

machine. 

4. Actions: the actions are the steps that can be included in 

a plan to change the state of the system (see “durative-

action” items in Figure 3). The output plan will consist 

of a sequence of these actions. An example is “start-

component”, which causes the state of a component to 

become “active”. Actions have preconditions (“at start” 

in Figure 3) and post-conditions (“effects” in Figure 3). 

The post-conditions can add, modify, or remove facts 

from the on-going state that is tracked by the planner 

during plan construction. The actions are called 

“durative” because they have an assigned execution time 

that is used in calculating the total plan time. 

The initial state represents the current state of the system (see the 

“init” section of Figure 4). This section defines the known 

entities (components, connectors, machines) and asserts initial 

facts about those entities. The goal state represents the desired 

state of our system (see the “goal” section of Figure 4). It 

specifies predicates that represent constraints that must be 

satisfied in any plan constructed by the planner. 

The last line of Figure 4 defines the metric that is to be used to 

evaluate the quality of a plan. In this case, the metric is minimal 

total execution time for the plan. 

4.2 Explicit and Implicit Configurations 
The initial predicates and the goal constraints are integral part of 

the configurations. They can be specified in two different ways: 

implicit and explicit configuration. 

Implicit Configuration. The implicit configuration specifies a 

non-specific predicate about the system that needs to hold after 

the plan finishes. For example, it can be stated that component A
must be connected, but without specifying exactly to what it is 

connected. This helps the system to specify partial information as 

a goal. In cases where the system does not have an explicit 

configuration of the system, it specifies the goal state in terms of 

the implicit configuration. 

Explicit Configuration. In an explicit configuration the artifacts 

and their configurations are explicitly described as facts in the 

goal state. For example, it can be stated that component A is 

connected, and specifically that it is connected to connector B.

Explicit configuration information can be specified in a number 

of ways, depending on the need the system. An explicit 

configuration typically requires the use of pairs of related 

predicates: connected-component and component-is-connected

for example. The former predicate specifies that a specific 

Figure 1. State Machine Diagrams for Components, 
Connectors, and Machines 
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component A is connected to a specific connector B and, hence, 

is an explicit configuration statement. The latter predicate 

specifies only that component A is connected to some 

(unspecified) connector. If connected-component(A,B) is true, 

then component-is-connected(A) must also be true. 

4.3 Deployment Planning 
Initial deployment is the process by which the system is deployed 

across the network for the very first time; the system is treated as 

having been not previously started anywhere in the network. We 

assume that all of the necessary files are accessible at every 

machine, so we are only concerned with the activation of the 

components and connectors on machines. Initial deployment 

takes a domain, an initial state, and a goal state as its inputs. The 

initial state in this case specifies the list of artifacts and facts 

about those artifacts, such as an indication of how much time it 

will take an artifact to start. The enumeration of artifacts contains 

a list of all the components, connectors, and machines for the 

system to be deployed. Each of these artifacts has its own time 

limitations, cost and resource constraints. For example, 

component A might have a start time of 11 seconds, a stop time 

of 5 seconds, and a connect time of 8 seconds. 

The goal state specifies the normal operating state of the system 

in which all machines are up, all components and connectors are 

assigned to machines, and all components and connectors are 

connected. The goal state configuration can be given explicitly or 

implicitly. If no explicit configuration is given about a certain 

artifact, then Planit uses the implicit configuration by default. 

4.4 Replanning 
Once the system is deployed into a new configuration, problems 

may occur in the operation of the system: problems such as 

component or connector failure. In the event of a problem, the 

effect of that problem must be determined. For example, when a 

specific machine goes down, the effect is that all the components 

and connectors on that machine are killed. The analysis of the 

effects of a problem produces a new specification of the current 

state that reflects the fact that various components and connectors 

and machines are inactive or killed. Note that this analysis is 

carried out by Planit and not by the planner component. 

The next step is for Planit to construct a new goal state that 

indicates which failed components and connectors must be 

restarted and where. In some cases contingency specifications

may exist for specific artifacts. A contingency specification 

indicates how and where to restart a specific component. Thus, 

there might be a specification that if component A is killed, then 

it should be restarted on machine X. If that is not possible, then 

restart it on machine Y. If that is not possible, then start it 

anywhere. For the artifacts with contingency configurations, the 

goal state includes an explicit configuration derived from the 

contingency specification. The artifacts that do not have any 

explicit configuration available are added to the goal state using 

an implicit configuration. If a component is still running, then all 

of the known facts about the component are listed in the new goal 

state explicitly. 

At this point the planner is given the domain, the current state (as 

initial) and the new goal state. The planner is then charged with 

finding out the best possible plan to go from the initial state to the 

goal state. Note that we have effectively converted a replanning 

(define (domain jtmc3) 

(:requirements :typing :durative-actions :fluents :conditional-effects) 

(:types connector component machine - object) 

(:predicates  

(connected-component ?c - component ?d - connector) 

         (working-component ?c - component) 

(active ?d - connector) 

 (dn-free ?d - connector)  

(interconnected ?d1 - connector ?d2 - connector) 

 (ready ?d - connector)  

  (killed ?d - connector) 

  (up-machine ?m - machine) 

 (at-machinec ?c - component ?m - machine) 

  (at-machined ?d - connector ?m - machine) 

  (component-is-connected ?c - component) 

  (connector-started ?d - connector))  

(:functions (start-time-component ?c - component) 

 (interconnect-time ?dn1 - connector ?dn2 - connector) 

 (connect-time-component ?c - component) 

 (start-dn-time ?d - connector) 

 (machine-up-time ?m - machine) 

 (machine-down-time ?m -machine) 

 (available-connection ?m - machine) 

 (local-connection-time ?m - machine) 

 (remote-connection-time ?m - machine) 

(:durative-action connect-component 

 :parameters (?c - component ?d - connector ?m - machine) 

 :duration (= ?duration (remote-connection-time ?m)) 

 :condition (and 

 (at start (not (connected-component ?c ?d))) 

 (over all (working-component ?c)) 

 (at start (not (killed ?d))) 

 (at start (active ?d)) 

 (at start (ready ?d)) 

                 ) 

 :effect (and  

(at end (connected-component ?c ?d)) 

 (at end (component-is-connected ?c))   

 ) ) 

(:durative-action local-connection-component …) 

(:durative-action start-component…) 

(:durative-action start-connector…) 

(:durative-action start-machine…) 

(:durative-action dn-interconnection…) 

Figure 3. Deployment and Reconfiguration Domain
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Figure 2. Planit Architecture
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problem into a standard planning problem. This is possible 

because we have so much information about the current state of 

the system.  

4.5 Planit Operation 
Planit consists of three main packages. These packages serve 

different roles in its functionality. A high level figure of Planit 

and its interactions with the Planner and the system being 

configured is shown in figure 2. The heart of Planit is the 

Reconfiguration Manager. This Reconfiguration Manager serves 

as the mediator to the outside world. It is the interface between 

the running system and the Planner. It is assumed that sensors 

actively monitor the running system and report important events 

such as machine failures or component failures. These events are 

transmitted to the Reconfiguration Manager using the Siena 

publish/subscribe system [1]. 

Once an event is received by the Reconfiguration Manager, it 

delegates the event to a Problem Manager. The Problem Manager 

analyzes the event and evaluates the extent of damage to the 

system. The first part of the analysis determines the initial state 

part of the problem file. The second part of the analysis is 

responsible for checking the explicit and implicit configurations 

and determining the new goal state for repairing the damage. The 

Reconfiguration Manager then sends these new initial and goal 

states along with the domain file to the Planner. The Planner 

generates a series of increasingly better plans, where “better” is 

determined by some metric, such as number of steps or overall 

plan execution time. The Reconfiguration Manager checks for 

the best available plan that is generated within some time frame. 

The resulting plan is parsed, saved, and converted to a sequence 

of steps to be carried out on specific machines. This actual 

reconfiguration mechanism at each machine is not part of Planit. 

Planit was developed on Sun OS 5.8 using an Ultra2/2200/512 

with two 200Mhz CPUs and 512 MB RAM. The planner is LPG 

version 1.1 (Local search for Planning Graphs) [3]. Planit itself is 

implemented in Java 1.2. All the functionality has been tested for 

its compatibility with LPG. We believe Planit can be used with 

other temporal planners with few modifications. 

5. A Case Study 

In this section we demonstrate the operation of Planit using a 

specific domain and architecture for a system. We have selected a 

simple but concrete example to give an overview of all the tasks 

that Planit is able to perform. In this case study we demonstrate 

both the deployment process and the reconfiguration process. A 

subset of the domain developed for this case study is shown in 

Figure 3. The domain is written in PDDL [19] a widely used 

standard format for plan specification. The three artifact types 

used in this domain model are component, connector, and 

machine. Each type has its own independent operation and also 

operations that are dependent on other artifacts. For example, a 

component can be started, but it cannot be connected unless a 

connector is also started. For these dependencies each action has 

a set of preconditions and post-conditions. The action cannot be 

started unless the preconditions are met. The post-conditions can 

be assumed to be true after the action is performed. Sometimes 

there are preconditions that involve post-conditions of multiple 

artifacts. 

Deployment. Figure 4 shows the initial state and goal state 

specifications for the initial deployment of our system. In the 

example, the goal state is an explicit configuration that asks the 

planner to go into this goal state and not any other state. The 

initial state plus the goal state are combined into a single problem 

file that is given to the planner along with a file containing the 

domain specification. 

The planner, LPG in our case, constructs a plan as a sequence of 

steps, a subset of which is shown in figure 5. This figure only 

shows the deployment performed on machine2. The left-hand 

side shows the time for the execution of each action. In the 

middle, the name of the action and the artifacts involved are 

given. O the right-hand side, the time required for the execution 

of each action is given. It is also worth noting that there are 

actions that are carried out in parallel. 

Dynamic Reconfiguration Process.  If some part of the 

deployed system fails, then there is a need to carry out the 

dynamic reconfiguration process. Suppose there is a failure of 

machine2. We need to figure out what is the extent of the damage 

(:init 

 (= (start-time-component awacs0) 9.0)… 

 (= (interconnect-time connector0 connector3) 6.0)… 

 (= (interconnect-time connector3 connector0) 6.0)… 

 (= (connect-time-component awacs0) 19.0)… 

 (= (start-dn-time connector0) 30.0)… 

 (= (machine-up-time machine0) 1.0)… 

 (= (available-connection machine0) 15)… 

 (= (local-connection-time machine0) 11.0)… 

 (= (remote-connection-time machine0) 31.0)… 

 ) 

(:goal 

(and

 (connected-component awacs0 connector2) 

 (connected-component groundRadar1 connector3) 

 (connected-component satellite2 connector0) 

 (connected-component positionFuselet3 connector1) 

 (connected-component awacs4 connector2) 

 (connected-component groundRadar5 connector3) 

 (connected-component satellite6 connector0) 

 (connected-component positionFuselet7 connector1) 

)

)

(:metric minimize (total-time)) 

Figure 4. Problem File 

0.001: (START-MACHINE MACHINE2)[1.000]  

1.005: (START-CONNECTOR CONNECTOR2 MACHINE2)[30.000]  

31.007:(START-COMPONENT AWACS4 MACHINE2)[5.000]  

31.009:(DN-INTERCONNECTION CONNECTOR0 

CONNECTOR2)[3.000]  

31.010:(DN-INTERCONNECTION CONNECTOR2 

CONNECTOR3)[3.000]  

36.014:(START-COMPONENT AWACS0 MACHINE2)[9.000]  

36.015:(LOCAL-CONNECTION-COMPONENT AWACS4 

CONNECTOR2 MACHINE2)[11.000]  

45.023:(LOCAL-CONNECTION-COMPONENT AWACS0 

CONNECTOR2 MACHINE2)[11.000] 

Figure 5. Plan for Explicit Configuration 

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’03) 

1082-3409/03 $17.00 © 2003 IEEE 



6

to the whole system. This can be traced by checking the artifacts 

that are directly deployed on machine2 or connected to one of the 

artifacts on machine2. There are three artifacts, namely 

connector2, awacs0 and awacs2 deployed on this machine. These 

need to be restarted and reconnected. However, suppose the 

system does not know what to do when machine2 is down. In this 

case we use the implicit configuration to ask the planner to plan a 

way out of this state by providing another initial state and goal 

state. Figure 6 shows just the goal state specification. The rest of 

the facts in the problem file remain the same as described in the 

initial deployment process. 

The resulting plan is shown in figure 7. The three artifacts are 

started and connected on other machines. The planner finds the 

best possible plan for the implicit goal state, while balancing the 

time, cost, and resource constraints. 

Planit will take this plan and initiate the necessary steps to carry 

out the plan. This process repeats whenever there is a problem in 

the system. It asks Planit to develop a plan for going from a bad 

state to a good state. Planit checks the extent of damage and 

contingency configuration. It then develops the initial and goal 

state and develops a plan. Finally, it interprets and disseminates 

the information returned by the planner in the form of plans. 

5.1 Experimental Results 
In this section we give the results of the experiments that we have 

conducted using Planit and LPG. We have conducted 

experiments for the evaluation of two aspects of Planit: one for 

explicit reconfiguration and one for implicit reconfiguration.

Experimental Setup. Several system artifacts are used in our 

experiments. These artifacts can be broadly divided into 

component instances named AWACS, Ground Radar and 

Satellite. Connector and machine instances are also created. The 

experiments have been conducted on only the initial deployment 

of the system because, for the planner, this is the toughest task. 

We have performed five experiments. The experimental setup for 

these experiments is given in Table 1. 

Table 1 

Experiment No. No. Components No. Connectors No. Machines 

1 10 4 4 

2 20 6 6 

3 30 8 8 

4 40 10 10 

5 60 10 10 

Results for Explicit Reconfiguration.  The results in Table 2 

show the plans that the planner was able to find given a 30-

second period and a maximum of 5 plans. Time to find the best 

plan and the duration of the plan to go from the initial state to the 

goal state are also given. The execution time for the worst plan 

and the best plan are given for comparison.

One can see that in the case of explicit configuration, the planner 

has performed quite well. It is able to calculate at least one plan 

for all the experiments and in some cases the best and worst 

duration have significant differences among multiple plans. 

Table 2 

Experiment No. of Plans 

Found in 

30 Seconds 

Time to Find 

Best Plan 

(seconds) 

Duration of 

Best Plan 

(seconds) 

Duration of  

Worst Plan 

(seconds) 

1 5 12.39 67 83 

2 4 18.64 66 137 

3 3 27.95 100 144 

4 2 23.00 76 84 

5 1 17.93 138 N/A 

Results for Implicit Reconfiguration. The results in Table 3 

show the plans found using a 60-second window. Time to find 

the best plan and the duration of the best plan and the worst plan 

to go from the initial state to the goal state are also given.

The planner is able to calculate the results through Experiment 3. 

In the case of Experiments 4 and 5 the search space is so large 

that the planner is not able to calculate the plan in the specified 

time. We repeated Experiment 4, but with an unlimited time, and 

the planner was able to find a plan in 412 seconds as compared to 

the 60 seconds time limit for other experiments. We conclude 

that the increase in the number of artifacts can decrease the 

ability of the planner to find out the explicit reconfigurations in a 

small amount of time. However if one gives ample amount of 

time it will eventually finds a solution, provided a solution exists 

for the problem. 

Table 3 

Experiment No of Plans 

Found in 60 

seconds 

Time to Find 

Best Plan 

(seconds) 

Duration of 

 Best Plan 

(seconds) 

Duration of 

Worst Plan 

(seconds) 

1 3 4.92 62 70 

2 5 56.71 65 81 

3 2 36.99 108 124 

4 0 N/A N/A N/A 

5 0 N/A N/A N/A 

6. Related Work 

The related work of this research can be seen from two 

perspectives. The first perspective is the techniques that are 

developed for solving the problem of deployment and of dynamic 

reconfiguration in software systems. The second perspective is 

(component-is-connected awacs0) 

(component-is-connected awacs4) 

(ready connector2)

Figure 6. Goal Description for Implicit Configuration

(START-COMPONENT AWACS4 MACHINE3)[5.000]  

(START-COMPONENT AWACS0 MACHINE1)[9.000]  

(LOCAL-CONNECTION-COMPONENT AWACS4 CONNECTOR3 

MACHINE3)[11.000] 

(START-CONNECTOR CONNECTOR2 MACHINE0)[30.000]  

(LOCAL-CONNECTION-COMPONENT AWACS0 CONNECTOR1 

MACHINE1)[11.000] 

Figure 7. Plan for Implicit Configuration 
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research and use of planning to solve other real-world planning 

problems. 

Surprisingly, and to the best of our knowledge, there has not been 

a direct use of AI planners in the solution of dynamic 

reconfiguration of software systems. Some authors have 

proposed planning for dynamic reconfiguration [3, 18]. However 

they do not use AI-style planners. The planning in these papers 

can be regarded as configuration scripts that trigger various parts 

of the script depending on the state of the system. 

6.1 Deployment and Dynamic Reconfiguration 
The deployment and dynamic reconfiguration problem has been 

the subject of much research. One of the very first research 

efforts in the area of dynamic reconfiguration of software 

systems was presented by Kramer and Magee [14]. They 

described several properties that a component requires in order to 

be reconfigured dynamically. 

Agnew et al. [3] proposed a declarative approach. This approach 

makes the programmers responsible for writing the configuration 

changes in the form of a script. Another language, Gerel [18], 

was developed that takes a different perspective on the 

programming of reconfigurations. In this approach the language 

mechanism selects the configuration objects dynamically using 

their structural properties.  

Research efforts have also applied workflow systems [11] to the 

dynamic reconfiguration problem, as well as agent-based 

approaches [12]. In these approaches, the components are divided 

into two categories: application components and management 

components. The interface between application components and 

management components provides appropriate methods to 

change the state of an application. 

Another approach suggested, by Cook and Dage [13], uses 

multiple versions of the component running at the same time. 

They argue that in order to not break the present functionality of 

the system, multiple versions of the same components need to 

coexist together. 

Research efforts have addressed the development of 

reconfiguration mechanisms on platforms like CORBA and J2EE 

[28, 20, 16]. Batista and Rodriguez [28] provide an approach that 

supports both program-based and ad hoc approaches to 

reconfiguration. Middleware has been used to provide dynamic 

configuration [16]. This approach uses the facilities of a flexible 

computing environment provided by object middleware such as 

CORBA, Java RMI, or DCOM. Dynamic reconfiguration 

approaches have been applied to the J2EE platform and Java-

based software in general [16]. In these approaches the 

reconfiguration has been achieved by employing the power of 

Java to work across multiple platforms. AI Planning 

The second perspective is the usage of AI planners and their 

usage in other fields. Planning can be viewed as a type of 

problem solving in which the agent uses beliefs about the actions 

and their consequences to search for a solution over the most 

abstract space of plans, rather than over a space of situations [25]. 

Planners have been developed to solve a range of problems in 

many different areas. There have been many research efforts that 

deal with temporal and resource planning [10, 17, 22, 24, 27]. 

These and other approaches attack the temporal planning 

problem through various ways. Some of these approaches include 

Graphplan (with extensions), model-checking techniques, 

hierarchical decomposition, heuristic strategies, and reasoning 

about temporal networks. These approaches are capable of 

planning with durative actions, temporally extended goals, 

temporal windows, and other features of time-critical planning 

domains [24]. 

The use of AI planning systems for solving real-world problems 

has significantly increased in recent years. The European 

Network of Excellence in AI Planning “PLANET” [8] identifies 

key areas where planning can be applied. These areas range from 

robot planning to intelligent manufacturing. PLANET has 

identified the various strengths and shortcomings of the AI 

planners. They have proposed areas of improvement for further 

research. Software deployment, however, does not appear to be 

one of their targets. 

7. Future Work 

There are many opportunities for future work. 

Dynamic Architectures. Planit can be extended to accommodate 

the dynamic addition of new components. At this time Planit can 

only deal with a fixed initial set of components. 

Configuration Scalability. To date we have not experimented 

with more then 120 artifacts. This number can be increased to 

show if the use of planners is viable for larger systems. 

Moreover, at this time we have only one domain file, both for 

deployment and for reconfiguration. Multiple domain files could 

be created that can capture the domain semantics in a better way 

and also reduce the search space of the planner. 

Plan Execution. One important aspect of planning is immediate 

acting. This refers to the intertwining of the construction of the 

plan with the execution of the plan. At this time our planner does 

not provide such functionality. However, this facility is being 

added, and it will make the integration of planning and acting 

possible.

Plan Quality. There are very rudimentary measures for 

determining properties of a good state and what makes one state 

better than another state. There is a need for work in this area to 

determine better metrics that distinguish between a good state 

from a bad state or a very good state. 

8. Conclusion 

We have shown how to apply AI planning to the problem of 

deployment and dynamic configuration of software systems. Our 

approach supports both the initial deployment of a system as well 

as later reconfiguration to repair damage to that system. We have 

developed a system called Planit that manages the system being 

configured and incorporates a planner to support initial planning 

and replanning of the managed system. 
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