
1

 Deployment and Dynamic Reconfiguration Planning

For Distributed Software Systems

Naveed Arshad Dennis Heimbigner Alexander. L Wolf

Department of Computer Science

University of Colorado at Boulder
{arshad, dennis, alw} @ cs.colorado.edu

Abstract
Initial deployment and subsequent dynamic reconfiguration of a

software system is difficult because of the interplay of many
interdependent factors, including cost, time, application state,

and system resources. As the size and complexity of software

systems increases, procedures (manual or automated) that
assume a static software architecture and environment are

becoming untenable. We have developed a novel technique for

carrying out the deployment and reconfiguration planning
processes that leverages recent advances in the field of temporal

planning. We describe a tool called Planit, which manages the

deployment and reconfiguration of a software system utilizing a
temporal planner. Given a model of the structure of a software

system, the network upon which the system should be hosted, and

a goal configuration, Planit will use the temporal planner to
devise possible deployments of the system. Given information

about changes in the state of the system, network and a revised

goal, Planit will use the temporal planner to devise possible
reconfigurations of the system. We present the results of a case

study in which Planit is applied to a system consisting of various

components that communicate across an application-level
overlay network.

1. Introduction

Deployment and dynamic reconfiguration of software systems

pose a tough challenge because of the architectural complexity of

modern, distributed software systems. A significant body of

research exists that addresses the optimization of the deployment

and dynamic reconfiguration process. However, software systems

continue to evolve in the direction of ever increasing complexity,

and distributed systems are becoming the norm. In this

environment, existing techniques are beginning to reach their

limit. Many systems now require a system administrator to

manage and evolve large scripts that control the system. Dynamic

reconfigurationthe reconfiguration of a system while it is

executingonly exacerbates the problem. This facility is

required in large distributed systems where it may not be possible

or economical to stop the entire system to allow modification to

part of its hardware or software [14]. Clearly there is a need for

new tools and techniques that automate the process of

deployment and dynamic reconfiguration of software systems.

The dynamic reconfiguration process looks very much like the

traditional control system model of “sense-plan-act”. For

software systems, sensing involves the monitoring of the system

and its environment to detect problems such as machine or

component failures. Planning involves the construction of a plan

to return the software system to normal or near normal

functionality. Acting is the execution of the steps as defined in

the plan. Each step in the plan effects a state transition. The plan

as a whole causes a transition from the present state of the system

to a desired state. The problem is that there are number of ways

in which this state transition can be performed. All of these ways

have different time, cost, and resource usage implications.

Finding the optimal plan is difficult when all of these variables

are taken into account.

There has been a lot of work in the sensing and acting phases [3,

4, 6, 15, 16, 28] but much less work on the problem of finding

the optimal techniques for planning a reconfiguration [3, 18]. The

artificial intelligence (AI) community has been dealing with this

kind of problem for a long time, where it arises in robot motion

planning, intelligent manufacturing, and operations research. AI

provide automated planners that avoid traditional state-space

search mechanisms like breadth first, depth first, or best first.

Instead they use heuristics and other techniques for searching the

plan space. Recently these planners have become powerful

enough to be used in real-world applications. Moreover, they

now accept more powerful input specifications and are able to

optimize time, cost, and resource constraints. There is a flavor of

planner called temporal planners that is specifically geared

towards time optimization.

In this paper we demonstrate the synergy between deployment,

dynamic reconfiguration, and planning. Each planner requires a

domain for the representation of the semantics of the possible

transitions. Along with the domain, the planner requires a

specification of the initial state and the goal state. We have

developed an initial domain for the deployment and dynamic

reconfiguration of software systems.

We have developed a tool, Planit, which can monitor a software

system and obtain events indicating some kind of state change.

Depending on the state of the system, Planit develops an initial

state of the system. If it requires a change in configuration, it

develops a desired state of the system based on its possible

configuration rules. It writes the initial and desired state in a

problem file and gives it to the planner. The planner computes a

plan for the transition between the initial state and the desired

state and returns a plan. Planit receives and interprets this plan

and disseminates the new configuration to the system for

execution.

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’03)

1082-3409/03 $17.00 © 2003 IEEE

2

The technical part of the paper is organized as follows. Section 2

motivates the use of AI planning techniques for reconfiguration.

Section 3 describes the domain of reconfiguration. Section 4

defines the reconfiguration process when using planning, and the

operation of the underlying Planit system. Section 5 presents a

case study and some performance measurements resulting from

that study.

2. The Need for Planning

There are several reasons that motivate the use of planning for

deployment and dynamic reconfiguration of software systems

with the help of AI techniques.

The first reason is the dynamic nature of the environment for

deployment and reconfiguration. Much of the prior work in

reconfiguration (see Section 6) has implicitly assumed that the set

of resources is fixed and available. For example, the set of

machines is static and all of them are available; the set of

deployed components is statically determined. In practice, this is

seldom true, and so any process for deploying and reconfiguring

a system must take such variability into account. Planning

inherently has the ability to address these kinds of problems.

The second reason, which is driven in part by the first issue, is the

large and complex nature of the search space that is involved in

finding an optimal plan. Using traditional search-based

techniques, such as depth-first search, can take a lot of time to

find an optimal plan. Moreover, this is not search in the node

space; this search is in the space of plans [25]. Therefore, without

good heuristics the search process takes a long time to come up

with an optimal plan.

The third reason is that in some situations an explicit contingency

configuration is not given for a system. This happens when the

system is trapped in an unanticipated state. The developers of the

system may not have envisioned this unanticipated state, and the

specific recovery plan for the system depends on that state. Many

factors play a role in going into an unanticipated state. These

factors include malicious external attacks, internal

inconsistencies, failure of a critical resource, and many others.

These factors at different times can lead to a partial failure of the

system or can completely prevent the system from providing any

kind of service. Bringing the system out from these unanticipated

states is very difficult without any intelligence. Planners have the

capability of finding the way out of unanticipated states provided

the right set of inputs.

The fourth reason is to find a reconfiguration plan that is close to

optimal in usage of time, cost, and resources. These factors

sometimes conflict with each other, so the goal is to find the

balance among them. Optimizing usage of resources is difficult

without an intelligent technique. Here, time refers to the

execution time of the plan. The time for finding the plan is also

important and can affect the quality of the plan because the

planner may produce a better plan when given more time.

Coming up with an optimal plan that utilizes the resources,

execution time and cost in the best possible way in the minimum

time is not generally feasible with manual techniques.

These reasons are convincing enough to use more sophisticated

techniques for automating the dynamic reconfiguration process.

Finding the right plan for the reconfiguration process is the first

step that we have taken in this direction. AI planners reduce the

search space of finding the optimal plan by using different

heuristics. The heuristic that is used by LPG [23], the planner that

we use in this project, is called “Local Search on Planning

Graphs”. Different planners [9, 23, 24] use other search heuristics

to find an optimal plan.

3. The Domain of Reconfigurable Systems

In order to use planning technology to reconfigure software

systems, we need to represent the structure and state of those

systems using some kind of modeling language. This structural

model is often referred to as the architecture of the system. The

state model typically is represented by local predicates about

individual elements of the architecture or global predicates about

the architecture as a whole. These predicates allow us to specify

both the current and desired states of the system.

We adopt a simplified version of the models used in Architecture

Definition Languages (ADLs) [4, 5] as the basis for our

specification. Our model differs from ADLs in that it also

includes information about the structure and state of the

environment. In our case, that environment is the set of machines

onto which a software system is deployed. For our purposes,

then, the model consists of three kinds of entities: components,

connectors, and machines.

Components contain the logic of the system. A component is any

entity that one can manage. An instance of a component can only

exist at one machine at one time. Components need to be

connected to a connector in order to communicate with other

components. Some of the operations that can be performed on the

components are starting a component, stopping a component, and

connecting a component.

Connectors provide communication links. Each connector

instance exists on one machine. The connector can be linked to

other connectors for communication. A connector can be thought

of as a weak form of the connectors described by Mehta et al.

[21]. The connector needs to be connected to another connector

before it can accept connections from the component. The

connector has almost the same operations as a component, except

that it has an interconnect operation that links it with other

connectors.

Machines are places where components and connectors are

deployed. A machine may have a resource constraint that

controls the number of components and connectors that may be

assigned to that machine. The operations that can be performed

on the machine are start and stop. Note that we do not explicitly

model inter-machine connections. We assume that all the

machines are connected to a network and that any two machines

can communicate using, for example, TCP/IP. We assume that a

connector deployed on a machine will use the inter-machine

communication channels as the substrate for the connector’s

communication activities.

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’03)

1082-3409/03 $17.00 © 2003 IEEE

3

3.1 Component and Connector States
Components, connectors, and machines all have associated state

machines that define what states they can achieve and in what

order. These states are shown in Figure 1.. Components and

connectors have essentially the same set of states, so they are

unified in the figure.

A component (or connector) starts in the inactive state. It can

transition to the active state and to the connected state, which

indicates that the component/connector has been connected to

some existing connector. The component/connector can also

reach a killed state, which indicates that it has failed. A killed

component/connector cannot be restarted; rather, a new instance

must be created and started.

Machines have a somewhat simpler state machine. They can be

down, up, or killed. Components and connectors cannot be

assigned to a machine unless it is in the up state.

4. Planning Activities

Our approach supports two related planning activities. First,

planning is used for the initial deployment of the components and

connectors on machines. Second, planning is used to support a

form of replanning that occurs when a previously deployed

system must be dynamically reconfigured due to a problem

arising in the deployed system.

4.1 Planning Inputs
For both planning processes, the planner requires a number of

inputs. These inputs are divided into three parts: the domain, the

initial state, and the goal state.

The domain is relatively static. It specifies the following items.

1. Types of entities: in our case, this consists of

components, connectors, and machines.

2. Entity Predicates/Facts: the predicates associated with

entities (see the section marked “predicates” in Figure 3).

An example might be “at-machine”, which is a predicate

that relates a component (or connector) to the machine to

which that component is assigned. The domain actually

specifies simple predicates, which are n-ary relations.

These can be combined using logical operators into more

complex predicates. As with Prolog, instances of these n-

ary relations can be asserted as facts, and a state is

effectively a set of asserted facts. Predicates are also

referred to as constraints.

3. Utilities: a variety of utility functions can be defined to

simplify the specification (see the “functions” section of

Figure 3). An example might be “local-connection-time”,

which computes the time to connect a component given

that the component and the connector are on the same

machine.

4. Actions: the actions are the steps that can be included in

a plan to change the state of the system (see “durative-

action” items in Figure 3). The output plan will consist

of a sequence of these actions. An example is “start-

component”, which causes the state of a component to

become “active”. Actions have preconditions (“at start”

in Figure 3) and post-conditions (“effects” in Figure 3).

The post-conditions can add, modify, or remove facts

from the on-going state that is tracked by the planner

during plan construction. The actions are called

“durative” because they have an assigned execution time

that is used in calculating the total plan time.

The initial state represents the current state of the system (see the

“init” section of Figure 4). This section defines the known

entities (components, connectors, machines) and asserts initial

facts about those entities. The goal state represents the desired

state of our system (see the “goal” section of Figure 4). It

specifies predicates that represent constraints that must be

satisfied in any plan constructed by the planner.

The last line of Figure 4 defines the metric that is to be used to

evaluate the quality of a plan. In this case, the metric is minimal

total execution time for the plan.

4.2 Explicit and Implicit Configurations
The initial predicates and the goal constraints are integral part of

the configurations. They can be specified in two different ways:

implicit and explicit configuration.

Implicit Configuration. The implicit configuration specifies a

non-specific predicate about the system that needs to hold after

the plan finishes. For example, it can be stated that component A
must be connected, but without specifying exactly to what it is

connected. This helps the system to specify partial information as

a goal. In cases where the system does not have an explicit

configuration of the system, it specifies the goal state in terms of

the implicit configuration.

Explicit Configuration. In an explicit configuration the artifacts

and their configurations are explicitly described as facts in the

goal state. For example, it can be stated that component A is

connected, and specifically that it is connected to connector B.

Explicit configuration information can be specified in a number

of ways, depending on the need the system. An explicit

configuration typically requires the use of pairs of related

predicates: connected-component and component-is-connected

for example. The former predicate specifies that a specific

Figure 1. State Machine Diagrams for Components,
Connectors, and Machines

Component and Connector States

Machine States

Down Up

Machine Started

Machine Stopped
Killed

Machine Killed

Inactive
Started

Stopped

Machine Down

Connected

Disconnected
Killed

Killed
Active Connected

Component and Connector States

Machine States

Down Up

Machine Started

Machine Stopped
Killed

Machine Killed

Inactive
Started

Stopped

Machine Down

Connected

Disconnected
Killed

Killed
Active Connected

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’03)

1082-3409/03 $17.00 © 2003 IEEE

4

component A is connected to a specific connector B and, hence,

is an explicit configuration statement. The latter predicate

specifies only that component A is connected to some

(unspecified) connector. If connected-component(A,B) is true,

then component-is-connected(A) must also be true.

4.3 Deployment Planning
Initial deployment is the process by which the system is deployed

across the network for the very first time; the system is treated as

having been not previously started anywhere in the network. We

assume that all of the necessary files are accessible at every

machine, so we are only concerned with the activation of the

components and connectors on machines. Initial deployment

takes a domain, an initial state, and a goal state as its inputs. The

initial state in this case specifies the list of artifacts and facts

about those artifacts, such as an indication of how much time it

will take an artifact to start. The enumeration of artifacts contains

a list of all the components, connectors, and machines for the

system to be deployed. Each of these artifacts has its own time

limitations, cost and resource constraints. For example,

component A might have a start time of 11 seconds, a stop time

of 5 seconds, and a connect time of 8 seconds.

The goal state specifies the normal operating state of the system

in which all machines are up, all components and connectors are

assigned to machines, and all components and connectors are

connected. The goal state configuration can be given explicitly or

implicitly. If no explicit configuration is given about a certain

artifact, then Planit uses the implicit configuration by default.

4.4 Replanning
Once the system is deployed into a new configuration, problems

may occur in the operation of the system: problems such as

component or connector failure. In the event of a problem, the

effect of that problem must be determined. For example, when a

specific machine goes down, the effect is that all the components

and connectors on that machine are killed. The analysis of the

effects of a problem produces a new specification of the current

state that reflects the fact that various components and connectors

and machines are inactive or killed. Note that this analysis is

carried out by Planit and not by the planner component.

The next step is for Planit to construct a new goal state that

indicates which failed components and connectors must be

restarted and where. In some cases contingency specifications

may exist for specific artifacts. A contingency specification

indicates how and where to restart a specific component. Thus,

there might be a specification that if component A is killed, then

it should be restarted on machine X. If that is not possible, then

restart it on machine Y. If that is not possible, then start it

anywhere. For the artifacts with contingency configurations, the

goal state includes an explicit configuration derived from the

contingency specification. The artifacts that do not have any

explicit configuration available are added to the goal state using

an implicit configuration. If a component is still running, then all

of the known facts about the component are listed in the new goal

state explicitly.

At this point the planner is given the domain, the current state (as

initial) and the new goal state. The planner is then charged with

finding out the best possible plan to go from the initial state to the

goal state. Note that we have effectively converted a replanning

(define (domain jtmc3)

(:requirements :typing :durative-actions :fluents :conditional-effects)

(:types connector component machine - object)

(:predicates

(connected-component ?c - component ?d - connector)

 (working-component ?c - component)

(active ?d - connector)

 (dn-free ?d - connector)

(interconnected ?d1 - connector ?d2 - connector)

 (ready ?d - connector)

 (killed ?d - connector)

 (up-machine ?m - machine)

 (at-machinec ?c - component ?m - machine)

 (at-machined ?d - connector ?m - machine)

 (component-is-connected ?c - component)

 (connector-started ?d - connector))

(:functions (start-time-component ?c - component)

 (interconnect-time ?dn1 - connector ?dn2 - connector)

 (connect-time-component ?c - component)

 (start-dn-time ?d - connector)

 (machine-up-time ?m - machine)

 (machine-down-time ?m -machine)

 (available-connection ?m - machine)

 (local-connection-time ?m - machine)

 (remote-connection-time ?m - machine)

(:durative-action connect-component

 :parameters (?c - component ?d - connector ?m - machine)

 :duration (= ?duration (remote-connection-time ?m))

 :condition (and

 (at start (not (connected-component ?c ?d)))

 (over all (working-component ?c))

 (at start (not (killed ?d)))

 (at start (active ?d))

 (at start (ready ?d))

)

 :effect (and

(at end (connected-component ?c ?d))

 (at end (component-is-connected ?c))

))

(:durative-action local-connection-component …)

(:durative-action start-component…)

(:durative-action start-connector…)

(:durative-action start-machine…)

(:durative-action dn-interconnection…)

Figure 3. Deployment and Reconfiguration Domain

Properties

Utility

Actions

Types

Persistent

Storage
System Configuration

Desired Configuration
+

Artifact List
Planner (LPG)

Domain
+

Problem File Plan(s)

Planit

Persistent

Storage
System Configuration

Desired Configuration
+

Artifact List
Planner (LPG)

Domain
+

Problem File Plan(s)

Planit

Figure 2. Planit Architecture

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’03)

1082-3409/03 $17.00 © 2003 IEEE

5

problem into a standard planning problem. This is possible

because we have so much information about the current state of

the system.

4.5 Planit Operation
Planit consists of three main packages. These packages serve

different roles in its functionality. A high level figure of Planit

and its interactions with the Planner and the system being

configured is shown in figure 2. The heart of Planit is the

Reconfiguration Manager. This Reconfiguration Manager serves

as the mediator to the outside world. It is the interface between

the running system and the Planner. It is assumed that sensors

actively monitor the running system and report important events

such as machine failures or component failures. These events are

transmitted to the Reconfiguration Manager using the Siena

publish/subscribe system [1].

Once an event is received by the Reconfiguration Manager, it

delegates the event to a Problem Manager. The Problem Manager

analyzes the event and evaluates the extent of damage to the

system. The first part of the analysis determines the initial state

part of the problem file. The second part of the analysis is

responsible for checking the explicit and implicit configurations

and determining the new goal state for repairing the damage. The

Reconfiguration Manager then sends these new initial and goal

states along with the domain file to the Planner. The Planner

generates a series of increasingly better plans, where “better” is

determined by some metric, such as number of steps or overall

plan execution time. The Reconfiguration Manager checks for

the best available plan that is generated within some time frame.

The resulting plan is parsed, saved, and converted to a sequence

of steps to be carried out on specific machines. This actual

reconfiguration mechanism at each machine is not part of Planit.

Planit was developed on Sun OS 5.8 using an Ultra2/2200/512

with two 200Mhz CPUs and 512 MB RAM. The planner is LPG

version 1.1 (Local search for Planning Graphs) [3]. Planit itself is

implemented in Java 1.2. All the functionality has been tested for

its compatibility with LPG. We believe Planit can be used with

other temporal planners with few modifications.

5. A Case Study

In this section we demonstrate the operation of Planit using a

specific domain and architecture for a system. We have selected a

simple but concrete example to give an overview of all the tasks

that Planit is able to perform. In this case study we demonstrate

both the deployment process and the reconfiguration process. A

subset of the domain developed for this case study is shown in

Figure 3. The domain is written in PDDL [19] a widely used

standard format for plan specification. The three artifact types

used in this domain model are component, connector, and

machine. Each type has its own independent operation and also

operations that are dependent on other artifacts. For example, a

component can be started, but it cannot be connected unless a

connector is also started. For these dependencies each action has

a set of preconditions and post-conditions. The action cannot be

started unless the preconditions are met. The post-conditions can

be assumed to be true after the action is performed. Sometimes

there are preconditions that involve post-conditions of multiple

artifacts.

Deployment. Figure 4 shows the initial state and goal state

specifications for the initial deployment of our system. In the

example, the goal state is an explicit configuration that asks the

planner to go into this goal state and not any other state. The

initial state plus the goal state are combined into a single problem

file that is given to the planner along with a file containing the

domain specification.

The planner, LPG in our case, constructs a plan as a sequence of

steps, a subset of which is shown in figure 5. This figure only

shows the deployment performed on machine2. The left-hand

side shows the time for the execution of each action. In the

middle, the name of the action and the artifacts involved are

given. O the right-hand side, the time required for the execution

of each action is given. It is also worth noting that there are

actions that are carried out in parallel.

Dynamic Reconfiguration Process. If some part of the

deployed system fails, then there is a need to carry out the

dynamic reconfiguration process. Suppose there is a failure of

machine2. We need to figure out what is the extent of the damage

(:init

 (= (start-time-component awacs0) 9.0)…

 (= (interconnect-time connector0 connector3) 6.0)…

 (= (interconnect-time connector3 connector0) 6.0)…

 (= (connect-time-component awacs0) 19.0)…

 (= (start-dn-time connector0) 30.0)…

 (= (machine-up-time machine0) 1.0)…

 (= (available-connection machine0) 15)…

 (= (local-connection-time machine0) 11.0)…

 (= (remote-connection-time machine0) 31.0)…

)

(:goal

(and

 (connected-component awacs0 connector2)

 (connected-component groundRadar1 connector3)

 (connected-component satellite2 connector0)

 (connected-component positionFuselet3 connector1)

 (connected-component awacs4 connector2)

 (connected-component groundRadar5 connector3)

 (connected-component satellite6 connector0)

 (connected-component positionFuselet7 connector1)

)

)

(:metric minimize (total-time))

Figure 4. Problem File

0.001: (START-MACHINE MACHINE2)[1.000]

1.005: (START-CONNECTOR CONNECTOR2 MACHINE2)[30.000]

31.007:(START-COMPONENT AWACS4 MACHINE2)[5.000]

31.009:(DN-INTERCONNECTION CONNECTOR0

CONNECTOR2)[3.000]

31.010:(DN-INTERCONNECTION CONNECTOR2

CONNECTOR3)[3.000]

36.014:(START-COMPONENT AWACS0 MACHINE2)[9.000]

36.015:(LOCAL-CONNECTION-COMPONENT AWACS4

CONNECTOR2 MACHINE2)[11.000]

45.023:(LOCAL-CONNECTION-COMPONENT AWACS0

CONNECTOR2 MACHINE2)[11.000]

Figure 5. Plan for Explicit Configuration

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’03)

1082-3409/03 $17.00 © 2003 IEEE

6

to the whole system. This can be traced by checking the artifacts

that are directly deployed on machine2 or connected to one of the

artifacts on machine2. There are three artifacts, namely

connector2, awacs0 and awacs2 deployed on this machine. These

need to be restarted and reconnected. However, suppose the

system does not know what to do when machine2 is down. In this

case we use the implicit configuration to ask the planner to plan a

way out of this state by providing another initial state and goal

state. Figure 6 shows just the goal state specification. The rest of

the facts in the problem file remain the same as described in the

initial deployment process.

The resulting plan is shown in figure 7. The three artifacts are

started and connected on other machines. The planner finds the

best possible plan for the implicit goal state, while balancing the

time, cost, and resource constraints.

Planit will take this plan and initiate the necessary steps to carry

out the plan. This process repeats whenever there is a problem in

the system. It asks Planit to develop a plan for going from a bad

state to a good state. Planit checks the extent of damage and

contingency configuration. It then develops the initial and goal

state and develops a plan. Finally, it interprets and disseminates

the information returned by the planner in the form of plans.

5.1 Experimental Results
In this section we give the results of the experiments that we have

conducted using Planit and LPG. We have conducted

experiments for the evaluation of two aspects of Planit: one for

explicit reconfiguration and one for implicit reconfiguration.

Experimental Setup. Several system artifacts are used in our

experiments. These artifacts can be broadly divided into

component instances named AWACS, Ground Radar and

Satellite. Connector and machine instances are also created. The

experiments have been conducted on only the initial deployment

of the system because, for the planner, this is the toughest task.

We have performed five experiments. The experimental setup for

these experiments is given in Table 1.

Table 1

Experiment No. No. Components No. Connectors No. Machines

1 10 4 4

2 20 6 6

3 30 8 8

4 40 10 10

5 60 10 10

Results for Explicit Reconfiguration. The results in Table 2

show the plans that the planner was able to find given a 30-

second period and a maximum of 5 plans. Time to find the best

plan and the duration of the plan to go from the initial state to the

goal state are also given. The execution time for the worst plan

and the best plan are given for comparison.

One can see that in the case of explicit configuration, the planner

has performed quite well. It is able to calculate at least one plan

for all the experiments and in some cases the best and worst

duration have significant differences among multiple plans.

Table 2

Experiment No. of Plans

Found in

30 Seconds

Time to Find

Best Plan

(seconds)

Duration of

Best Plan

(seconds)

Duration of

Worst Plan

(seconds)

1 5 12.39 67 83

2 4 18.64 66 137

3 3 27.95 100 144

4 2 23.00 76 84

5 1 17.93 138 N/A

Results for Implicit Reconfiguration. The results in Table 3

show the plans found using a 60-second window. Time to find

the best plan and the duration of the best plan and the worst plan

to go from the initial state to the goal state are also given.

The planner is able to calculate the results through Experiment 3.

In the case of Experiments 4 and 5 the search space is so large

that the planner is not able to calculate the plan in the specified

time. We repeated Experiment 4, but with an unlimited time, and

the planner was able to find a plan in 412 seconds as compared to

the 60 seconds time limit for other experiments. We conclude

that the increase in the number of artifacts can decrease the

ability of the planner to find out the explicit reconfigurations in a

small amount of time. However if one gives ample amount of

time it will eventually finds a solution, provided a solution exists

for the problem.

Table 3

Experiment No of Plans

Found in 60

seconds

Time to Find

Best Plan

(seconds)

Duration of

 Best Plan

(seconds)

Duration of

Worst Plan

(seconds)

1 3 4.92 62 70

2 5 56.71 65 81

3 2 36.99 108 124

4 0 N/A N/A N/A

5 0 N/A N/A N/A

6. Related Work

The related work of this research can be seen from two

perspectives. The first perspective is the techniques that are

developed for solving the problem of deployment and of dynamic

reconfiguration in software systems. The second perspective is

(component-is-connected awacs0)

(component-is-connected awacs4)

(ready connector2)

Figure 6. Goal Description for Implicit Configuration

(START-COMPONENT AWACS4 MACHINE3)[5.000]

(START-COMPONENT AWACS0 MACHINE1)[9.000]

(LOCAL-CONNECTION-COMPONENT AWACS4 CONNECTOR3

MACHINE3)[11.000]

(START-CONNECTOR CONNECTOR2 MACHINE0)[30.000]

(LOCAL-CONNECTION-COMPONENT AWACS0 CONNECTOR1

MACHINE1)[11.000]

Figure 7. Plan for Implicit Configuration

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’03)

1082-3409/03 $17.00 © 2003 IEEE

7

research and use of planning to solve other real-world planning

problems.

Surprisingly, and to the best of our knowledge, there has not been

a direct use of AI planners in the solution of dynamic

reconfiguration of software systems. Some authors have

proposed planning for dynamic reconfiguration [3, 18]. However

they do not use AI-style planners. The planning in these papers

can be regarded as configuration scripts that trigger various parts

of the script depending on the state of the system.

6.1 Deployment and Dynamic Reconfiguration
The deployment and dynamic reconfiguration problem has been

the subject of much research. One of the very first research

efforts in the area of dynamic reconfiguration of software

systems was presented by Kramer and Magee [14]. They

described several properties that a component requires in order to

be reconfigured dynamically.

Agnew et al. [3] proposed a declarative approach. This approach

makes the programmers responsible for writing the configuration

changes in the form of a script. Another language, Gerel [18],

was developed that takes a different perspective on the

programming of reconfigurations. In this approach the language

mechanism selects the configuration objects dynamically using

their structural properties.

Research efforts have also applied workflow systems [11] to the

dynamic reconfiguration problem, as well as agent-based

approaches [12]. In these approaches, the components are divided

into two categories: application components and management

components. The interface between application components and

management components provides appropriate methods to

change the state of an application.

Another approach suggested, by Cook and Dage [13], uses

multiple versions of the component running at the same time.

They argue that in order to not break the present functionality of

the system, multiple versions of the same components need to

coexist together.

Research efforts have addressed the development of

reconfiguration mechanisms on platforms like CORBA and J2EE

[28, 20, 16]. Batista and Rodriguez [28] provide an approach that

supports both program-based and ad hoc approaches to

reconfiguration. Middleware has been used to provide dynamic

configuration [16]. This approach uses the facilities of a flexible

computing environment provided by object middleware such as

CORBA, Java RMI, or DCOM. Dynamic reconfiguration

approaches have been applied to the J2EE platform and Java-

based software in general [16]. In these approaches the

reconfiguration has been achieved by employing the power of

Java to work across multiple platforms. AI Planning

The second perspective is the usage of AI planners and their

usage in other fields. Planning can be viewed as a type of

problem solving in which the agent uses beliefs about the actions

and their consequences to search for a solution over the most

abstract space of plans, rather than over a space of situations [25].

Planners have been developed to solve a range of problems in

many different areas. There have been many research efforts that

deal with temporal and resource planning [10, 17, 22, 24, 27].

These and other approaches attack the temporal planning

problem through various ways. Some of these approaches include

Graphplan (with extensions), model-checking techniques,

hierarchical decomposition, heuristic strategies, and reasoning

about temporal networks. These approaches are capable of

planning with durative actions, temporally extended goals,

temporal windows, and other features of time-critical planning

domains [24].

The use of AI planning systems for solving real-world problems

has significantly increased in recent years. The European

Network of Excellence in AI Planning “PLANET” [8] identifies

key areas where planning can be applied. These areas range from

robot planning to intelligent manufacturing. PLANET has

identified the various strengths and shortcomings of the AI

planners. They have proposed areas of improvement for further

research. Software deployment, however, does not appear to be

one of their targets.

7. Future Work

There are many opportunities for future work.

Dynamic Architectures. Planit can be extended to accommodate

the dynamic addition of new components. At this time Planit can

only deal with a fixed initial set of components.

Configuration Scalability. To date we have not experimented

with more then 120 artifacts. This number can be increased to

show if the use of planners is viable for larger systems.

Moreover, at this time we have only one domain file, both for

deployment and for reconfiguration. Multiple domain files could

be created that can capture the domain semantics in a better way

and also reduce the search space of the planner.

Plan Execution. One important aspect of planning is immediate

acting. This refers to the intertwining of the construction of the

plan with the execution of the plan. At this time our planner does

not provide such functionality. However, this facility is being

added, and it will make the integration of planning and acting

possible.

Plan Quality. There are very rudimentary measures for

determining properties of a good state and what makes one state

better than another state. There is a need for work in this area to

determine better metrics that distinguish between a good state

from a bad state or a very good state.

8. Conclusion

We have shown how to apply AI planning to the problem of

deployment and dynamic configuration of software systems. Our

approach supports both the initial deployment of a system as well

as later reconfiguration to repair damage to that system. We have

developed a system called Planit that manages the system being

configured and incorporates a planner to support initial planning

and replanning of the managed system.

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’03)

1082-3409/03 $17.00 © 2003 IEEE

8

9. References

1. A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design

and Evaluation of a Wide-Area Event Notification

Service. ACM Transactions on Computer Systems,

19(3):332–383, August 2001.

2. A. Gerevini, I. Serina, “LPG: a Planner based on Planning

Graphs with Action Costs”, in Proceedings of the Sixth

Int. Conference on AI Planning and Scheduling (AIPS'02),

AAAI Press, pp. 13-22, 2002.

3. B. Agnew, C. R. Hofmeister, J. Purtilo. Planning for

change: A reconfiguration language for distributed

systems. Distributed Systems Engineering, Sept. 1994,

vol.1, (no.5):313-22.

4. D. Garlan, R. Monroe, and D. Wile. “Acme: An

Architecture Description Interchange Language”

Proceedings of CASCON 97, Toronto, Ontario, November

1997, pp. 169-183.

5. D. Garlan, R. T. Monroe, D Wile “Acme: Architectural

Description of Component-Based Systems” Foundations

of Component-Based Systems, Gary T. Leavens and

Murali Sitaraman (Eds), Cambridge University Press,

2000, pp. 47-68.

6. D.M. Heimbigner and A.L. Wolf. Post-Deployment

Configuration Management. In Proceedings of the Sixth

International Workshop on Software Configuration

Management, number 1167 in Lecture Notes in Computer

Science, pages 272–276. Springer-Verlag, 1996.

7. ECP-01 Planet Workshop on Automated Planning and

Scheduling Technologies, 11 September 2001, Toledo,

Spain (http://scom.hud.ac.uk/planet/ecp01_workshop/).

8. European Network of Excellence in AI Planning Web Site

(http://planet.dfki.de/).

9. F. Bacchus and M. Ady, Planning with Resources and

Concurrency: A Forward Chaining Approach,

International Joint Conference on Artificial Intelligence

(IJCAI-2001), pages 417-424, 2001.

10. J. Allen, 1991. “Planning as Temporal Reasoning”. In

Proc. Conf. on Knowledge Representation and Reasoning,

3-14.

11. J. Allen, and J. Koomen, 1983. Planning using a temporal

world model. In Proc. 8th Intl Joint Conf. On Art. Intel.,

741-747

12. J. Berghoff, O. Drobnik, A. Lingnau and C. Mönch.

Agent-based configuration management of distributed

applications. In Proceedings of the Third International

Conference on Configurable Distributed Systems ICCDS

'96, pages 52-59, Maryland, April 1996.

13. J. E. Cook and J. A. Dage. Highly Reliable Upgrading of

Components. 21st International Conference on Software

Engineering (ICSE99), Los Angeles, CA, May 1999

14. J. Kramer and J. Magee. “Dynamic Configuration for

Distributed Systems,” IEEE Transactions on Software

Engineering, Vol. SE-11 No. 4, April 1985, pp. 424-436.

15. J. Magee and J. Kramer. Self Organizing Software

Architectures. In Proceedings of the Second Inter-national

Software Architecture Workshop, pages 35–38, October

1996.

16. J. Paulo, A. Almeida, M. Wegdam, L. Ferreira Pires and

M. Sinderen. An approach to dynamic reconfiguration of

distributed systems based on object-middleware.

Proceedings of the 19th Brazilian Symposium on

Computer Networks (SBRC 2001), Santa Catarina, Brazil,

May 2001

17. J. Penberthy and D. Weld, 1994. Temporal planning with

continuous change. In Proc. 12th National Conference.

Artificial Intelligence.

18. M. Endler, J. Wei. Programming Generic Dynamic

Reconfigurations for Distributed Applications, Proc. of the

International Workshop on Configurable Distributed

Systems London, pp. 68-79, IEE, March 92

19. M. Fox and D. Long. “The Third International Planning

Competition: Temporal and Metric Planning”. University

of Durham, UK

20. M.J. Rutherford, K. Anderson, A. Carzaniga, D.

Heimbigner, and A.L. Wolf, “Reconfiguration in the

Enterprise JavaBean Component Model” In Proceedings

of the IFIP/ACM Working Conference on Component

Deployment, Berlin, 2002, pp. 67-81

21. N. Mehta, N. Medvidovic and S. Phadke, Towards a

Taxonomy of Software Connectors, Technical Report,

Center for Software Engineering, University of Southern

California,USC-CSE-99-529, 1999.

22. N. Muscettola, 1994. HSTS: integrating planning and

scheduling. “Intelligent Scheduling”. Morgan Kaufmann

23. P. Doherty and J. Kvarnström, (2001). TALplanner: A

Temporal Logic Based Planner. AI Magazine, Fall Issue,

2001

24. S. Edelkamp and M. Helmert The Model Checking

Integrated Planning System AI-Magazine (AIMAG), Fall,

2001, pages 67-71

25. S. Russell and P. Norvig, “Artificial Intelligence: A

Modern Approach”, Prentice Hall 1995.

26. S. Shrivastava and S. Wheater, “Architectural Support for

Dynamic Reconfiguration of Large Scale Distributed

Applications” The 4th International Conference on

Configurable Distributed Systems (CDS'98), Annapolis,

Maryland, USA, May 4-6 1998

27. S. Vere. 1983. Planning in time: Windows and durations

for activities and goals. IEEE Trans. Pattern Anal. And

Machine Intel. 5:246-267

28. T. Batista and N. Rodriguez. Dynamic Reconfiguration of

Component-Based Applications. In Proceedings of the

International Symposium on Software Engineering for

Parallel and Distributed Systems, pages 32–39. IEEE

Computer Society, June 2000.

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’03)

1082-3409/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

